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Epigenetic regulation may contribute to the beneficial effects of physical activity against age-related neurodegeneration. For
example, epigenetic alterations of the gene encoding for α-synuclein (SNCA) have been widely explored in both brain and
peripheral tissues of Parkinson’s disease samples. However, no data are currently available about the effects of physical exercise
on SNCA epigenetic regulation in ageing healthy subjects. The present paper explored whether, in healthy individuals, age and
physical activity are related to blood intron1-SNCA (SNCAI1) methylation, as well as further parameters linked to such
epigenetic modification (total, oligomeric α-synuclein and DNA methyltransferase concentrations in the blood). Here, the
SNCAI1 methylation status increased with ageing, and consistent with this result, low α-synuclein levels were found in the blood.
The direct relationship between SNCAI1 methylation and α-synuclein levels was observed in samples characterized by blood α-
synuclein concentrations of 76.3 ng/mg protein or lower (confidence interval (CI) = 95%). In this selected population, higher
physical activity reduced the total and oligomeric α-synuclein levels. Taken together, our data shed light on ageing- and physical
exercise-induced changes on the SNCA methylation status and protein levels of α-synuclein.

1. Introduction

Ageing is characterized by common cellular features, such as
increased oxidative stress, reduction in protein synthesis,
mitochondrial dysfunction, stem cell depletion, and telomere
attrition [1]. Moreover, the ageing process is strictly linked to
epigenetic control of the genome through DNA and histone
modifications [1, 2], such that DNA methylation has been
suggested as an ageing “clock” [3, 4].

In the central nervous system, DNA methylation [5] reg-
ulates memory formation [6] and its age-related disruption,
which precede cognitive decline [7, 8]. The epigenome is
extremely dynamic, with changes in response not only to
ageing or development, but it is also affected by exogenous
factors, such as nutrient availability and physical exercise

[9–11]. Indeed, several studies indicate that epigenetic regu-
lation may contribute to the widely known beneficial effects
of regular exercise, although the exact mechanisms remain
to be determined at molecular levels [12]. For example, regu-
lar exercise has been suggested to affect the methylation sta-
tus of global and CpG-rich specific genes in the muscle cells,
the different peripheral tissues, and the brain. Moreover, the
gene for neurotrophic factor BDNF (brain-derived growth
factor) is known to be remodelled epigenetically in the hippo-
campus in response to physical exercise [13]. Such studies are
consistent with the hypothesis that epigenetics is central to
coordinating the transcriptional response to the environ-
ment, as well as being involved in neuronal development,
maintenance, and degeneration processes [14–16]. Based on
this, it is not surprising that physical exercise has been
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suggested as a potential preventive countermeasure against
many chronic and degenerative diseases [11, 17–19], includ-
ing age-related neurodegeneration [20]. Among these, evi-
dence was reported for Parkinson’s disease (PD) [21–28],
which is characterized by an accumulation of misfolded
α-synuclein (α-syn) in Lewy bodies, causing synaptic
dysfunction and neuronal loss [29–31]. The exercise-
mediated neuroprotective effects against PD are related to a
reduction in cerebral inflammation and protein misfolding,
as well as changes in gene expression profiles [32, 33]. In this
respect, in addition to α-syn misfolding, epigenetic regula-
tion of its encoding gene (SNCA) has been widely explored,
particularly focusing on the methylation status of the intron1
CpG island [34–37]. Indeed, this intron1 region was demon-
strated to control gene expression by the differential methyl-
ation of its CpG island, as well as by the recruitment of
different transcription factors [34, 35, 38]. Thus, a decrease
of intron1 methylation of SNCA has been hypothesized to
increase α-syn expression in brain tissues and to lead to PD
pathogenesis factors [34, 35]. Moreover, the pathological
significance of DNA methylation was also highlighted in
peripheral tissues. For example, leukocytes from PD subjects
showed hypomethylation of intron1-SNCA compared to
controls. [36, 39, 40]. By contrast, other studies reported no
difference between PD and healthy subjects [41, 42].

In the light of the emerging role of physical activity in
the management of neurodegenerative diseases, gaining
further insight into epigenetic mechanisms regulating gene
transcription during exercise will help further improve life-
style interventions. Therefore, the aim of our study was to
investigate the potential impact of regular training on α-
syn expression and specific DNA methylation in healthy
subjects. In particular, sedentary and exercise subjects were
enrolled to determine the α-syn methylation status of
intron1 CpG islands. The methylation degrees were corre-
lated with the amount of total and oligomeric α-syn con-
tent in red blood cells (RBCs), selected as a valid cellular
model, because they accumulate α-syn and are particularly
susceptible to oxidative stress [43–45].

2. Methods

2.1. Study Population. Thirty-two endurance athletes (ATHL,
mean age 41.4± 13.7 years) and 52 healthy sedentary controls
(SED, mean age 45.9± 14.3 years) were selected for the study
(Table 1). Only subjects free of cardiovascular diseases were
included. Major inclusion criteria were reported previously
[46]. All subjects were nonsmoking and had no regular med-
ication or supplementation of vitamins or trace elements.
Moreover, subjects with a family history of cardiovascular
disease, hypertension, and other cardiovascular risk factors
were excluded [46, 47].

Athletes were recruited from the outpatient clinic of the
Sports Medicine Unit of the Department of Clinical and
Experimental Medicine of the University of Pisa. Sedentary
subjects were not performing any regular physical training.

The level of intensity was evaluated by the use of the
15-point Borg RPE scale [46, 48, 49] for each participant.
The study population was further divided into the

following subgroups: (1) sedentary (SED, n = 52) and
athlete (ATHL, n = 32) subgroups, when the parameter
for subdivision was the degree of physical activity; (2)
“young” (n = 50) and “older” (n = 34) subgroups, when the
parameter for subdivision was age.

This study was approved by the Ethics Committee of the
Great North West Area of Tuscany (271/2014 to F. F.) and
was performed in accordance with the Declaration of
Helsinki. All subjects gave informed and written consent to
participate in the study [46].

2.2. RBC Collection.Whole blood was collected into EDTA
tubes. RBCs were separated from plasma by centrifugation
at 200×g at 4°C for 10min [46]. The resulting pellet was
washed three times with PBS and frozen at −20°C until
use. For athletes, the time period between the last exercise
session and blood sampling was at least 48 h. The various
parameters estimated included (i) CpG site methylation
within SNCA intron1 (SNCAI1); (ii) concentration of the
protein encoded by SNCA (α-syn), considering total levels
and the contribution of its oligomeric form; and (iii) levels
of the DNA methyltransferase enzymes of maintenance
(Dnmt1) and ex novo (Dnmt3a).

2.3. SNCA Intron1 Relative DNA Methylation Analysis.
Genomic DNA was extracted from the whole blood of
healthy individuals (n = 84) using the QIAamp DNA Blood
Kit (catalogue number: 51104; QIAGEN, CA, USA) and
quantified using a NanoDrop Lite Spectrophotometer
(Thermo Fisher Scientific Inc., USA). The SNCA intron1
region previously associated with low levels of CpG island
methylation in PD patients [35–37, 40, 50] was considered
in the present study. Intron1 methylation levels were assessed
by methylation-sensitive restriction enzyme (MRSE) diges-
tion of genomic DNA followed by quantitative real-time
polymerase chain reaction (PCR) according to Pihlstrøm
and coworkers [36]. Briefly, for each DNA sample
(20 ng), duplicates of a “test reaction” (with the MRSEs
AccII and HpaII) and a “reference reaction” (without
MSREs) were incubated at 37°C for 2 h. Then, samples
were amplified using forward and reverse primers (FOR-
5′ATTAGGCTGCTTCTCCGGGATC-3′, REV-5′GTTCTC
AGCCTCCACCCTAG-3′). A melt curve was performed
at the end of the experiment to confirm amplification
specificity. The proportion of genomic DNA methylated
at cut sites was calculated with the equation percent
methylation=100× 2−(CT[test reaction] − CT[reference reaction]).

2.4. Levels of DNAMethyltransferase (Dnmt). The concentra-
tions of Dnmt1 and Dnmt3a were determined in the blood by
specific immunoenzymatic assays, following the manufac-
turer’s instructions (Biomatik Corporation, Ontario, Canada,
http://www.biomatik.com). Briefly, standards or samples
were added to the appropriate precoated microtitre plate
wells with a biotin-conjugated antibody. Then, samples were
incubated with avidin-HRP followed by the addition of the
TMB substrate solution (3,3′,5,5′-tetramethylbenzidine).
After stopping the reaction, the absorbance was read at
450 nm (http://www.biomatik.com).
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2.5. Detection of Total α-Synuclein. Total α-syn was measured
in RBCs as previously described [46, 51]. In brief, precoated
wells (α-syn full-length antibody, sc-10717, Santa Cruz
Biotechnology) were treated with bovine serum albumin
(BSA). RBCs (0.150mg/100μl) were captured on wells for
2 h at 25°C, and aliquots of recombinant α-syn were analysed
in parallel to obtain a standard curve. After extensive wash-
ing, the samples were treated with a mouse monoclonal anti-
body to α-syn (sc-12767, Santa Cruz Biotechnology) and
subsequently with an antimouse HRP antibody [46]. The
samples were washed three times with PBS-T (phosphate-
buffered saline containing 0.01% Tween 20) before the
addition of the enzyme substrate TMB (Thermo Scientific).
Absorbance values were read at 450nm.

2.6. Detection of Oligomeric α-Syn. Oligomeric α-syn levels
in RBCs were assessed using an immunoenzymatic assay,
as previously described [46, 51–53] using an α-syn bio-
tinylated antibody [53]. The wells were coated with the
mouse monoclonal α-syn 211 antibody (sc-12767, Santa
Cruz Biotechnology) and incubated with RBCs (0.04mg/
100μl) for 2 h. Streptavidin-horseradish peroxidase conju-
gate antibody (1 : 1000, GE Healthcare) was used for anti-
gen detection of the biotinylated antibody. After three
washes with PBS-T, TMB was added in each sample, as
reported above.

2.7. Statistical Analysis.Data are expressed as the mean value
± SD. A normal distribution for age was found for the sub-
jects included in this study. Differences between groups
(i.e., young versus older, ATHL versus SED) were evaluated
by one-way ANOVA followed by a Kruskal-Wallis post hoc
test. P values were adjusted with Sidak’s multiple comparison
test. Such analyses were confirmed by a two-way ANOVA
test. Correlation between variables was determined by simple
linear regression analysis, whereas covariate analysis was per-
formed by partial correlation matrix. All statistical proce-
dures were performed using the StatView programme
(Abacus Concepts Inc., SAS Institute, Cary, NC) [46, 54].

3. Results

3.1. Research Plan and Measured Parameters. The present
study explored whether, in healthy individuals, physical
activity or age is related to different parameters evaluated at
the peripheral level, including the CpG site methylation
within SNCA intron 1 (SNCAI1); the concentration of the

protein encoded by SNCA (α-syn), considering total levels
and the contribution of its oligomeric form; and the levels
of the DNA methyltransferase enzymes of maintenance
(Dnmt1) and ex novo (Dnmt3a).

Healthy subjects (n = 84, sedentary and athletes) were
enrolled in the study. The calculation of mean values
and correlation analyses of the parameters related to
SNCA epigenetic modification were initially performed in
the entire population. Then, statistical analyses of such
parameters (in terms of mean value comparisons and cor-
relation analyses) were conducted in samples derived from
the stratification of the same initial entire population in
the following subgroups: (1) sedentary (SED, n = 52) and
athlete (ATHL, n = 32) subgroups, when the parameter
for subdivision was the degree of physical activity; (2)
“young” (n = 50) and “older” (n = 34) subgroups, when
the parameter for subdivision was age.

3.2. Descriptive Statistics. A descriptive table reporting age,
body mass index (BMI), heart rate, and physical activity level
(15-level Borg’s scale) of the entire population and of each
group is shown (Table 1). Young and older groups presented
a mean age of 34.6± 8.6 and 58.8± 7.2, respectively, and did
not present differences in sex and BMI (P = 0 2702). ATHL
and SED did not present differences in age (P = 0 1586) and
BMI (P = 0 0746). As expected, the level of physical exercise
was significantly higher in the ATHL group than in the
SED group (P < 0 001).

3.3. Entire Population Stratified in Subgroups: Mean Values
and Comparison of the Measured Parameters

3.3.1. SNCAI1 Relative DNA Methylation. The levels of SNCA
CpG island relative methylation were measured in DNA
samples extracted from the blood of all subjects. Specifically,
a CpG island region within SNCAI1, previously demonstrated
as a transcriptionally active region [35], was considered. The
analysed CpG islands were from 89,836,281 to 89,836,520 of
chromosome 4 (NC_000004.12). Herein, the percentage of
SNCAI1 relative DNA methylation of the total population
was 4.37± 3.07 (Table 2).

3.3.2. Dnmt1 and Dnmt3a Expression Levels. Dnmt1 is the
maintenance methylation enzyme, which preserves the
methylation patterns established early in development
[55]. By contrast, Dnmt3a has been shown to methylate
hemimethylated and unmethylated DNA with equal effi-
ciencies in vitro [56]. Both Dnmts are expressed not only

Table 1: Demographic and clinical analyses of the total population and of the subgroups. The data are the mean± SD. BMI: body mass index;
ATHL: athletes; SED: sedentary; W: women; M: men.

N Age (y) BMI Heart rate 15-level Borg’s scale

Total population 84 44.4± 14.4 23.5± 2.0 57.6± 4.8 9.7± 3.8

SED 52 (M= 20; W= 32) 45.9± 14.3 24.2± 1.4 62.5± 5.1 6.6± 0.6
ATHL 32 (M= 20; W= 12) 41.4± 13.7 23.6± 1.6 50.2± 3.9 13.7± 2.0
Young subjects 50 (M= 22; W= 28) 34.6± 8.6 23.3± 1.9 55.8± 3.7 8.8± 3.2

Older subjects 34 (M= 18; W= 16) 58.8± 7.2 23.8± 2.2 59.4± 5.9 13.2± 2.2
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in the adult brain [57] but also in the hematopoietic cells
[58] and constitute candidate targets to study the variation
of DNA methylation with ageing and physical exercise.

In the entire population, the Dnmt1 and Dnmt3a expres-
sion level was 490± 372 and 158± 119 pg/mg protein, respec-
tively (Table 2). ELISA assays did not show significant
differences in Dnmt1 protein levels in the different subgroups
(older versus young subjects: P = 0 4832; ATHL versus SED:
P = 0 2292; Figure 1(b)). Similar results were obtained for
Dnmt3a protein concentration (older versus young subjects:
P = 0 8369; ATHL versus SED: P=0.7012; Figure 1(c)).
Overall, these data suggest that the observed differences
in the SNCA methylation status between young and older
subjects are not related to changes in Dnmt1-3a levels.

3.3.3. α-Syn Concentrations. Total and oligomeric concentra-
tions of the gene product, α-syn, were determined in RBCs
isolated from the entire population (Table 2). RBCs were
chosen among blood cells because they contain approxi-
mately 98% of the total amount of circulating α-syn [43].
Total α-syn and oligomeric α-syn mean values were 62.5
± 52.3 and 11.0± 5.4 ng/mg protein, respectively (Table 2).

As depicted in Figure 2(a), older subjects displayed
significant lower α-syn concentrations compared to young
subjects (P = 0 0436), suggesting that α-syn may decrease
with age in RBCs. By contrast, ATHL and SED presented
comparable concentrations of the protein (Figure 2(a)), sug-
gesting that physical exercise poorly modulated the RBC pool
of α-syn.

Due to the high standard deviation of total α-syn
values (see Table 2), the frequency distribution of this
parameter was analysed. The distributions of values led
us to select a population presenting RBC α-syn concentra-
tions of 76.3 ng/mg protein or lower (confidence interval
(CI) = 95%), on which some correlation analyses were per-
formed (see below).

As depicted in Figure 2(b), oligomeric α-syn in RBCs
did not significantly differ between young and older subjects
(P > 0 999), as well as between ATHL and SED (P = 0 3603).

3.4. Correlation of the Measured Parameters with Age.
SNCAI1 methylation at the CpG site presented a positive cor-
relation with age for blood sampling in the total population
(Figure 3(a)), consistent with the data in Figure 1(a). The
negative correlation between SNCA methylation and age

was particularly stronger in subjects presenting RBC α-syn
concentrations of 76 ng/mg protein or lower (Figure 3(b)).
Interestingly, such a correlation was found in the SED
subgroup (Figure 3(c)) but not in the ATHL (P = 0 7608).
These data suggest that ATHL may present additional
factors other than age that contribute to the level of
intron1-SNCA methylation.

For Dnmt levels, a weak inverse correlation between
Dnmt1 expression and age was observed in the ATHL
subgroup (Figure 3(d)). No other significant relationship
with age was found either for Dnmt1 (total population:
P = 0 1659; young: P = 0 8194; older: P = 0 3235; and
SED: P = 0 6095) or Dnmt3a (total population: P = 0 5384;
young: P = 0 9284; older: P = 0 3760; ATHL: P = 0 3632;
and SED: P = 0 8969) concentrations.

Consistent with the data obtained for Dnmt1, total α-
syn concentrations in RBCs showed an inverse correlation
with age of blood sampling in the ATHL subgroup only
(Figure 3(e); young: P = 0 2972; older: P = 0 8112; and
SED: P = 0 6089).

Finally, no statistical significance was observed between
age for blood sampling and oligomeric α-syn levels (total pop-
ulation: P = 0 6054; young: P = 0 4513; older: P = 0 6769;
ATHL: P = 0 1884; and SED: P = 0 2824).

3.5. Correlation of the Measured Parameters with the Level of
Physical Activity. The two-way ANOVA analysis suggests
significant differences in the SNCAI1 methylation rate
between ATHL and SED groups (P < 0 0001). Neverthe-
less, the level of physical activity did not show any signif-
icant correlation with SNCAI1 methylation rate in any of
the analysed groups (young: P = 0 3668; older: P = 0 4685;
ATHL: P = 0 6768; and SED: P = 0 8815). Similarly, the
level of physical exercise did not correlate either with
Dnmt1 (total population: P = 0 8956; young: P = 0 6999;
older: P = 0 8015; ATHL: P = 0 6377; and SED: P = 0 6047)
or Dnmt3a (total population: P = 0 9652; female: P = 0 3622;
male: P = 0 3087; young: P = 0 9309; older: P = 0 5777;
ATHL: P = 0 3721; and SED: P = 0 2811) expression. Inter-
estingly, total α-syn concentrations in RBCs inversely corre-
lated with the rate of physical activity in the older
subjects (Figure 4(a)). In contrast, the oligomeric form of
α-syn showed an inverse correlation with the physical
activity score in the SED subgroup only (Figure 4(b)).
Moreover, the two-way ANOVA analysis evidenced

Table 2: Values of total α-syn and oligomeric α-syn (ng/mg total protein), percentage of DNAmethylation, and levels of Dnmt1 and Dnmt3a
(pg/mg protein) in the indicated subgroups. The values are expressed as mean± SD.

Total α-syn Oligomeric α-syn DNA methylation Dnmt1 Dnmt3a

Total population 62.5± 52.3 11.0± 5.4 4.37± 3.07 490± 372 158± 119
SED 63.2± 50.1 11.4± 5.9 4.45± 3.58 447± 295 161± 110
ATHL 58.6± 42.1 10.3± 4.2 4.03± 1.96 540± 407 155± 129
Young subjects 69.2± 40.8 11.0± 5.4 3.50± 3.03 505± 381 164± 117
Older subjects 52.4± 38.4 11.0± 5.0 5.42± 4.03 445± 355 156± 125
SNCAI1 DNA methylation was significantly higher in the older group than in the young group (Figure 1(a), P = 0 0148), suggesting that age may influence
epigenetic remodeling of the α-syn gene. By contrast, comparable levels in the methylation status of intron1-SNCA were found between ATHL and SED
(Figure 1(a), P = 0 5442).
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significant differences in oligomeric α-syn content between
the ATHL and SED groups (P = 0 0308).

When the population presenting RBC α-syn concentra-
tions≤ 76 ng/mg protein was selected, the negative correla-
tions with level of physical exercise were evidenced not

only for total α-syn (Figure 4(c)) but also for oligomeric
α-syn (Figure 4(d)) and Dnmt3a levels (Figure 4(e)).

3.6. Correlation of SNCAI1 Relative DNA Methylation with
Dnmt Levels. SNCAI1 methylation levels correlated directly
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Figure 1: (a) SNCAI1 relative DNA methylation levels were evaluated by MRSE digestion of genomic DNA extracted from the blood cells of
healthy subjects and followed by quantitative real-time PCR. The results were expressed as the percentage of methylation in young, older,
ATHL, and SED subgroups. (b) Dnmt1 and (c) Dnmt3a levels were determined in the blood of young, older, ATHL, and SED subgroups.
Differences between groups (i.e., young versus older and ATHL versus SED) were evaluated by one-way ANOVA followed by a Kruskal-
Wallis post hoc test. P values were adjusted with Sidak’s multiple comparison test. ∗P < 0 05 between the indicated subgroups.
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with blood Dnmt1 expression in ATHL (Figure 5(a)). No
significant correlations were found in the other subgroups
for Dnmt1 (young: P = 0 4420; older: P = 0 3531; and
SED: P = 0 2232).

The expression of Dnmt3a did not correlate with the
SNCAmethylation rate in any of the analysed groups (young:
P = 0 8902; older: P = 0 3932; ATHL: P = 0 5221; and SED:
P = 0 2778), thus confirming that blood Dnmt3a poorly
modulates intron1-SNCA methylation.

3.7. Correlation of SNCAI1 Relative DNA Methylation with
α-syn Concentrations. Interestingly, in subjects presenting
RBC α-syn concentrations≤ 76ng/mg protein, a significant
correlation between intron1-SNCA methylation rates and
total α-syn levels was evidenced (Figure 5(b)). These data
suggest a causal relationship between such an epigenetic
modification and production of the protein encoded by
SNCAI1 up to this range of α-syn.

By contrast, the SNCAI1 methylation degree was not
related to the RBC content of α-syn (total population:
P = 0 9486; young: P = 0 2944; older: P = 0 6740; ATHL:
P = 0 1221; and SED: P = 0 5875). Similar results were

obtained for the oligomeric form of α-syn (total population:
P = 0 4930; young: P = 0 2916; older: P = 0 9736; ATHL:
P = 0 4990; and SED: P = 0 6521). These data indicate the
lack of a direct relationship between the expression of these
enzymes and the levels of SNCA protein product.

3.8. Correlation of Dnmt Levels with α-Syn Concentrations.
Furthermore, the relationship between Dnmt levels and
α-syn concentrations was observed. Surprisingly, a strong
direct correlation between Dnmt1 expression and total α-
syn levels in RBCs was found in the total population
(Figure 6(a)). Such a direct association remained signifi-
cant in all the subgroups (Figures 6(b)–6(e)).

Similarly, the Dnmt3a content in the blood directly
correlated with the total α-syn levels in RBCs in the total
population (Figure 7(a)), as well as in all the subgroups
(Figures 7(b)–7(e)).

The abovementioned positive correlations between
Dnmt1/Dnmt3a levels and total α-syn concentrations were
maintained for its oligomeric form, in all the analysed
subgroups (Dnmt1 in Figures 8(a)–8(e)); Dnmt3a in
Figures 9(a)–9(e).
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Figure 2: Determination of total and oligomeric α-syn in RBCs. Total (a) and oligomeric (b) α-syn levels were determined in RBCs from the
young, older, ATHL, and SED subgroups, as described in Methods. Differences between groups (i.e., young versus older and ATHL versus
SED) were evaluated by one-way ANOVA followed by a Kruskal-Wallis post hoc test. P values were adjusted with Sidak’s multiple
comparison test. ∗P < 0 05 between the indicated subgroups.
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Figure 3: Correlation analyses between SNCAI1 relative DNA methylation levels, Dnmt1, total α-syn, and age. Correlation analysis between
SNCAI1 relative DNA methylation and age (a) in the total population, (b) in the “95% CI α-syn population” (i.e., subjects characterized by
RBC α-syn concentration of 76 ng/mg protein or lower), and (c) in the SED group. (d) Correlation analysis between Dnmt1 levels and age
in the ATHL group. (e) Correlation analysis between total α-syn levels in RBCs and age in the ATHL group. The correlation between
variables was determined by simple linear regression analysis. P and R2 were reported in the respective panels.
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Figure 4: Correlation between the levels of total and oligomeric α-syn in RBCs and the level of physical activity. (a) Correlation analysis
between total α-syn levels and physical activity in the older group. (b) Correlation analysis between oligomeric α-syn levels and physical
activity in the SED group. Correlation analysis between (c) total α-syn, (d) oligomeric α-syn levels and (e) Dnmt3a and physical activity in
the “95% CI α-syn population.” Correlation between variables was determined by simple linear regression analysis. P and R2 were
reported in the respective panels.
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4. Discussion

Here, the influence of age and physical activity on the epige-
netic modification of the α-syn gene (SNCA) was explored.
The major findings of this paper are as follows: (i) DNA
methylation of intron1-SNCA was directly correlated with
age; (ii) total α-syn concentrations in RBCs were lower in
the older subjects; (iii) Dnmt levels were directly correlated
with both total and oligomeric α-syn; (iv) in the 95-
percentile population, the RBC levels of total α-syn levels
were inversely related to the methylation status of intron1
SNCA; and (v) in the same selected population, the physical
activity level was inversely related to the total and oligomeric
α-syn levels in RBCs, as well as to Dnmt3a concentrations.
Taken together, our data shed light on ageing- and physical
exercise-induced changes on the methylation status and
protein levels of α-syn, which accumulates as a misfolded
oligomer in PD.

Epigenetic mechanisms and particularly DNA methyla-
tion were demonstrated to regulate brain ageing and age-
related neurodegenerations. In particular, epigenetic regu-
lation of the α-syn-encoding gene (SNCA) has been greatly
explored focusing on the methylation status of intron1 CpG
islands [35–37, 39–42, 50, 59]. Nevertheless, controversial
findings have been reported in both brain and peripheral
tissues of patients affected by PD [34, 36, 39–42].

If ageing remains the main contributing factor to PD
pathogenesis, beneficial effects have been described for
moderate physical activity [12, 21, 32], although the
underlying regulatory mechanisms are not completely
understood [60]. Alterations in gene expression as a con-
sequence of physical training are frequently described.
The mechanisms of the described alteration in gene
expression mediated by physical activity could depend on
epigenetic changes in global or gene-specific DNA methyl-
ation levels [12]. In this respect, a genome-wide analysis of
DNA methylation recently highlighted the importance of
epigenetic mechanisms in muscle adaptation to regular
exercise [57, 60].

In the present study, healthy subjects (sedentary and
athletes) were enrolled to investigate the influence of age
and physical exercise on the methylation status of SNCA.
This parameter was related to the blood content of total
and oligomeric forms of α-syn protein, as well as to the
blood concentrations of DNA methyltransferases. In par-
ticular, RBCs were chosen as a peripheral model because
they accumulate misfolded proteins and are particularly
susceptible to oxidative stress [47–49].

First, SNCA methylation levels were shown to be signifi-
cantly higher in the older subgroup than in the young sub-
group and to directly correlate with age. Similarly, DNA
analysis from brain tissues recently revealed a slight increase
of intron1-SNCA DNA methylation levels in presumably
healthy individuals during ageing [61].

Next, α-syn protein accumulation was measured in
RBCs. Older subjects presented lower levels of total but not
oligomeric α-syn. Similar data on the protein levels were
reported in RBCs, plasma, or platelets of healthy subjects or
PD patients [62–66]. Moreover, a significant inverse correla-
tion with age in the selected population presenting RBC α-
syn concentrations up to 76.3 ng/mg protein (confidence
interval = 95%) was observed. In the latter population,
intron1-SNCA DNA methylation levels were inversely
related to total α-syn concentrations. These data suggest that
hypermethylation of intron1-SNCA can lead to a lower con-
centration of total α-syn in the blood, at least for a population
presenting up to 76.3 ng/mg protein. In fact, the current
hypothesis is that the minor levels presented by an elderly
population or PD patients are the result of protein sequestra-
tion into oligomeric forms [62–66]. Further investigations
are needed to clarify the effective influence of SNCA methyl-
ation on α-syn accumulation in the peripheral cells.

The link between SNCA methylation, α-syn concentra-
tions, and Dnmts was then examined. Indeed, the decrease
in global genomic methylation (hypomethylation) that
occurs with ageing has been often proposed as a conse-
quence of decreased Dnmt expression [9, 67–69]. How-
ever, contradictory evidence for both methylcytosine
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Figure 5: Correlation between Dnmt1 and total α-syn and DNAmethylation. (a) Correlation analysis between Dnmt1 and DNAmethylation
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Correlation between variables was determined by simple linear regression analysis. P and R2 were reported in the respective panels.
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Figure 6: Correlation between levels of total α-syn in RBCs and Dnmt1. Correlation analysis between total α-syn levels and Dnmt1 in the
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Figure 7: Correlation between levels of total α-syn in RBCs and Dnmt3a. Correlation analysis between oligomeric α-syn levels and Dnmt3a in
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Figure 8: Correlation between levels of oligomeric α-syn in RBCs and Dnmt1. Correlation analysis between oligomeric α-syn levels and
Dnmt1 in the total population (a), the young group (b), the older group (c), the ATHL group (d), and the SED group (e). Correlation
between variables was determined by simple linear regression analysis. P and R2 were reported in the respective panels.
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Figure 9: Correlation between levels of oligomeric α-syn in RBCs and Dnmt3a. Correlation analysis between oligomeric α-syn levels and
Dnmt3a in the total population (a), the young group (b), the older group (c), the ATHL group (d), and the SED group (e). Correlation
between variables was determined by simple linear regression analysis. P and R2 were reported in the respective panels.
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levels and Dnmt expression was shown during hippocam-
pal ageing [7, 70–76]. Here, no significant differences in
the expression of Dnmt1 or Dnmt3a were found between
the analysed subgroups. By contrast, a reduction of
nuclear Dnmt1 levels was demonstrated in brain samples
from PD patients and α-syn transgenic mice, suggesting
a mechanism by which α-syn may exclude the enzyme
from the nucleus, resulting in further hypomethylation of
α-syn CpG islands [59].

Surprisingly, both Dnmt1 and Dnmt3a levels directly
correlated with the concentrations of total and oligomeric
α-syn. These data suggest that Dnmt concentrations are not
strictly related to SNCA methylation status in this group of
healthy subjects. It is hypothesized that such Dnmt is highly
involved in the methylation of genes different from SNCA.

For the role of physical exercise, sedentary and athletes
were found to present similar percentages of SNCAmethyla-
tion, α-syn concentrations, and Dnmt levels. Although it is
well recognized that physical activity can control gene
expression through epigenetic alterations [11], effective mod-
ulation of the methylation status of neurodegeneration-
related genes remains to be largely investigated, particularly
in peripheral tissues. Recently, exercise was shown to
increase the global DNA methylation profile in the rat
hypothalamus [77] or to induce DNA hypomethylation
of the promoter IV-BDNF [18], as well as “at specific
CpG site located within a VegfA promoter” [11, 78]. The
latter findings were related to a significant reduction of
Dnmt3b mRNA in the hippocampus of exercised rats,
suggesting that genome-wide DNA hypomethylation can
occur in the brain.

Surprisingly, when the population presenting up to
76.3 ng/mg protein of α-syn was selected, the level of physical
exercise inversely correlated not only with total α-syn levels
in RBCs but also with the oligomeric form and with Dnmt
levels. These findings suggest that within the limits of α-syn
accumulation, regular activity can modulate DNA methyla-
tion enzymes and reduce protein accumulation. In this
respect, it should be mentioned that additional mechanisms
on the regulation of α-syn expression cannot be excluded
and will be investigated in future studies.

5. Conclusions

In conclusion, we show that DNA methylation of intron1-
SNCA was modified with ageing but not with physical
exercise. Within a moderate range of α-syn, RBC levels
of the protein were inversely related to the methylation
status of intron1-SNCA and the physical activity level.

Such findings shed light on the effects of physical exercise
on ageing-associated alterations of epigenetic processes in
peripheral cells.
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