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Abstract We introduce a new function, the apparent elastic modulus strain-rate spectrum,
Eapp(ε̇), for the derivation of lumped parameter constants for Generalized Maxwell (GM)
linear viscoelastic models from stress-strain data obtained at various compressive strain
rates (ε̇). The Eapp(ε̇) function was derived using the tangent modulus function obtained
from the GM model stress-strain response to a constant ε̇ input. Material viscoelastic pa-
rameters can be rapidly derived by fitting experimental Eapp data obtained at different strain
rates to the Eapp(ε̇) function. This single-curve fitting returns similar viscoelastic constants
as the original epsilon dot method based on a multi-curve global fitting procedure with
shared parameters. Its low computational cost permits quick and robust identification of
viscoelastic constants even when a large number of strain rates or replicates per strain rate
are considered. This method is particularly suited for the analysis of bulk compression and
nano-indentation data of soft (bio)materials.
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1 Introduction

To date, different testing and analysis methods are used to derive quantitative mechani-
cal properties for describing intrinsic material behavior and predicting material responses
under specific loading conditions (Mattei and Ahluwalia 2016). Although mechanical char-
acterization is often limited to the derivation of elastic properties, many materials, such as
soft tissues and hydrogels, are known to exhibit viscoelastic behavior with time-dependent
responses (Fung 1993; Mattei et al. 2014, 2015b, 2017a; Oyen 2013; Tirella et al. 2014;
Zhao et al. 2010). Creep and stress-relaxation tests are among the most common methods
used to characterize material viscoelastic properties (Chaudhuri et al. 2015; Chin et al. 2011;
Higgs and Ross-Murphy 1990). If a material is subjected to strain or stress inputs small
enough so that its rheological functions do not depend on the input level, the material re-
sponse is said to be within the linear viscoelastic range (LVR).

Another popular method to characterize material viscoelastic behavior is through dy-
namic mechanical analysis (DMA), based on applying a small amplitude cyclic strain (or
stress) input on a sample and measuring the resultant cyclic stress (or strain) response
(Gabler et al. 2009; Kiss et al. 2004; Soong et al. 2006). For a given sinusoidal strain in-
put the resulting stress response will be sinusoidal if the applied strain is small enough so
that the tissue can be approximated as linearly viscoelastic. Viscoelastic material response
is characterized by a phase lag (δ) between the strain input and the stress response, which
is comprised between 0° (purely elastic) and 90° (purely viscous). The dynamic mechani-
cal properties are quantified using the complex modulus (E∗) which can be thought of as
an overall resistance to deformation under dynamic loading. The complex modulus is com-
posed of the storage (E′, elastic component) and the loss (E′′, viscous component) moduli,
which are additive under the linear theory of viscoelasticity (E∗ = E′ + iE′′) (Menard 2008).

However, it is well known that these viscoelastic testing methods may pose some limita-
tions in the case of very compliant materials, such as soft tissues and hydrogels (Tirella
et al. 2014). Indeed, both step-response and dynamic mechanical tests require the es-
tablishment of an initial contact between the sample and the testing apparatus to “trig-
ger” measurements. Starting from this contact point, a given stimulus (e.g. step of de-
formation or force in the case of stress relaxation or creep, respectively, or cyclic stress
or strain in the case of DMA) is applied to the sample under testing, then the resultant
response is measured. As a consequence, force- or strain-triggered methods are likely
to cause significant pre-stress on very soft samples, altering their status. Moreover, they
generally require quite long measurement trials, which may result in sample deteriora-
tion during tests (Mattei et al. 2014). To address these issues, we have recently proposed
the epsilon dot method (ε̇M) for deriving material viscoelastic constants through rapid
measurements performed at different strain rates within the LVR (Mattei et al. 2015b;
Tirella et al. 2014). However, as it is based on a global multi-curve fitting with shared pa-
rameters of stress-time data acquired at different constant strain rates, the method becomes
computationally expensive when a large number of strain rates and/or replicates per strain
rate are considered. Here, we introduce the apparent elastic modulus strain-rate spectrum,
Eapp(ε̇), as a function to derive lumped parameter constants for Generalized Maxwell (GM)
linear viscoelastic models from a single-curve fitting of experimental Eapp data obtained at
different ε̇.

2 Methods

The most general form of linear viscoelastic lumped model (i.e. with constant viscoelastic
parameters) is the GM model (Fig. 1) and consists of a pure spring (E0) in parallel with N
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Fig. 1 Representation of the GM
model

Maxwell arms (i.e. a spring Ei in series with a dashpot ηi ) thus defining a set of N different
characteristic relaxation times (i.e. τi = ηi/Ei ) (Roylance 2001).

The stress-time response of a generalized Maxwell model to a constant strain-rate input
with amplitude ε̇ is given by

σ(t) = ε̇

[
E0t +

N∑
i=1

ηi

(
1 − e

− Ei
ηi

t)] (1)

where N is the number of spring-dashpot Maxwell elements in parallel to the spring E0

(Tirella et al. 2014).
Since ∂ε/∂t = ε̇ is constant, t = ε/ε̇ can be substituted in Eq. (1) obtaining the stress-

strain response:

σ(ε) = ε̇

[
E0

ε

ε̇
+

N∑
i=1

ηi

(
1 − e

− Ei
ηi

ε
ε̇
)]

(2)

The tangent modulus (Et ), defined as the slope of the stress-strain curve at any specified
stress or strain point (Zhang et al. 2002), is given by

Et(ε, ε̇) = ∂σ

∂ε
= E0 +

N∑
i=1

Eie
− Ei

ηi

ε
ε̇ (3)

which is a function of both strain (ε) and strain rate (ε̇) or, dually, a function of time t = ε/ε̇.
For very high (ε̇ → ∞) and low (ε̇ → 0) strain rates, the Et becomes independent of

the strain and is, respectively, equal to the sum of all the spring constants present in the
lumped model (namely the instantaneous modulus, Einst = E0 + ∑N

i=1 Ei for ε̇ → ∞), or
to E0 (generally noted as the equilibrium modulus Eeq = E0) for ε̇ → 0 as expected from
classical viscoelastic theory (Lakes 2009).

Hence, from Eqs. (2) and (3), linear viscoelastic materials—that is materials which can
be represented by linear viscoelastic models combining lumped parameters (i.e. springs and
dashpots) whose elastic and viscous constants do not depend e.g. on strain or strain rate—
exhibit non-linear concave-down stress-strain (or dually, stress-time) responses to a constant
strain-rate input. These non-linear responses are dependent on the strain rate (i.e. the stress at
a given strain increases with ε̇ due to viscous effects, Fig. 2) and their tangent (Et ) decreases
non-linearly over strain (or time) from Einst (at ε, t = 0) to Eeq (for ε, t → ∞) because
of the time-dependency owed to viscous relaxation phenomena. Thus, the changes in Et

are dependent on both the strain rate and, of course, the viscoelastic characteristics of the
material tested.
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Fig. 2 Stress-strain (σ − ε)
curves of a linear viscoelastic
material obtained at different
constant strain rates (ε̇)

Zhang et al. showed that: (i) the tangent modulus for constant strain-rate tests, Et(t),
is equivalent to the relaxation modulus from stress-relaxation tests, E(t) = σ(t)/ε0, where
σ(t) is the stress measured over time in response to a step strain input ε0, and (ii) the plot
of σ(t)/ε̇ versus ε(t)/ε̇, whose tangent returns Et(t) = E(ε(t)/ε̇), is no longer dependent
on the strain rate (i.e. curves obtained at different strain rates can be merged into one) for
linear viscoelasticity (Zhang et al. 2002). Note that if σ(t)/ε̇ versus ε(t)/ε̇ curves collected
at different strain rates cannot be merged into one, the viscoelasticity of the material under
testing is non-linear and the linear superposition principle cannot be applied.

If a material is known to exhibit pure linear viscoelastic behavior, then in principle the
lumped constants of a given linear viscoelastic model (i.e. spring Ei and dashpot ηi val-
ues) can be derived by fitting the non-linear stress-strain data acquired at a single constant
strain-rate to Eq. (2). The strain-range considered in the fitting should extend up to the re-
gion in which the stress-strain tangent (Et ) becomes independent of the strain in order to
ensure that all the viscoelastic relaxation phenomena have occurred and hence are included
in the fitted dataset. However, many real materials are non-linearly elastic, viscoelastic or in-
elastic. Thus, they generally exhibit either strain-hardening (concave up) or strain-softening
(concave-down) stress-strain responses to a constant strain rate. Most biomedical materi-
als, including soft tissues and hydrogels, exhibit concave up σ − ε curves (Fung 1993;
Jaspers et al. 2014; De Pascalis et al. 2014; Rimmer 2011; Vena et al. 2006), a clear indica-
tion of non-linear strain-dependent behavior. As a consequence, linear viscoelastic models
cannot be used to describe the material mechanics. Conversely, in the case of concave-down
stress-strain curves it is almost impossible to determine a priori whether the non-linear be-
havior observed comes from linear viscoelastic phenomena or non-linear material charac-
teristics.

As discussed above, viscoelastic materials do not exhibit an initial linear portion on their
σ − ε curve to calculate a Young’s modulus. Nonetheless, from an engineering point of
view, they are often treated as linearly viscoelastic in the region of small deformations (Mat-
tei et al. 2014; Tirella et al. 2014; Yan and Pochan 2010). Hence, it is common practice to
identify an initial linear region (called the linear viscoelastic region, LVR) for deriving an
apparent (i.e. strain-rate dependent) elastic modulus (Eapp), which is independent of the
magnitude of the applied strain or stress. The LVR can be considered as the first nearly lin-
ear tract of the non-linear stress-strain response exhibited by linear viscoelastic materials:
within this region the material’s molecular arrangements are close to equilibrium and the
mechanical response is essentially a reflection of internal dynamic processes at the molec-
ular level (Choi et al. 2015). Since material rheological functions do not depend on the
input level within the LVR, linear viscoelastic models can be reasonably employed to ana-
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lyze experimental mechanical data. Depending on the testing method chosen to characterize
material linear viscoelastic properties, mechanical data within LVR are typically acquired
at: (i) multiple stress or strain step-input amplitudes (in the case of creep-compliance or
stress-relaxation tests, respectively), (ii) constant stress or strain rate (constant-rate tests like
the epsilon-dot method, ε̇M), or (iii) multiple frequencies (dynamic mechanical analysis,
DMA).

There is no explicit mathematical form to define the Eapp since, by definition, a linear
regression procedure is required to derive the Eapp from experimental σ − ε data obtained
at constant ε̇ within the LVR. However, a good approximation of the Eapp can generally
be obtained by evaluating the tangent modulus (defined in Eq. (3)) at ε∗ = LVR/2 strain.
For instance, if the LVR extends up to ε = 0.05 then Eapp

∼= ∂σ
∂ε

|ε=0.025 (see Supplementary
Information SI 1). Under this assumption, the Eapp epsilon dot spectrum, Eapp(ε̇), can be
derived from Eq. (3), obtaining

Eapp(ε̇) = ∂σ

∂ε
= E0 +

N∑
i=1

Eie
− Ei

ηi

ε∗
ε̇ (4)

The Eapp(ε̇) can be used to identify lumped viscoelastic parameters (i.e. Ei , ηi ) from exper-
imental Eapp data obtained at different constant ε̇ as shown in Sect. 3.

3 Results

To investigate whether the Eapp(ε̇) fitting method proposed in this study returns viscoelas-
tic constants similar to the original ε̇M described in Tirella et al. (2014), it is essential to
maintain all sample, testing and analysis variables unaltered: only then can results be mean-
ingfully compared (Mattei and Ahluwalia 2016). Thus, the same apparent elastic moduli
reported in Tirella et al. (2014) for both 5% w/v Type A gelatin and PDMS (10:1 base to
catalyst) tested in unconfined compression at different constant strain rates (n = 3 repli-
cates per strain rate) were used in this work to obtain two experimental Eapp vs. ε̇ datasets to
analyze with the new Eapp(ε̇) fitting method. Moreover, to exclude any analysis-related vari-
ability factors other than the analysis method, the same LVR range and linear viscoelastic
model previously used in Tirella et al. (2014) were used also for the Eapp(ε̇) fitting. There-
fore, the Eapp vs. ε̇ datasets obtained from Tirella et al. (2014) were fitted to the Eapp(ε̇)

function of a Maxwell Standard Linear Solid (SLS) model (Eq. (5), obtained by substituting
N = 1 in Eq. (4)), fixing ε∗ = LVR/2 = 0.005.

Eapp,SLS(ε̇) = E0 + E1e
− E1

η1
ε∗
ε̇ (5)

To avoid local minima in the fitting procedure, different sets of initial guess parameter values
were used for the SLS viscoelastic constants to estimate (i.e. E0, E1 and η1). In particular,
two different starting sets were defined respectively for gelatin (E0 = 1 kPa; E1 = 10 kPa;
η1 = 10 kPa s) and PDMS (E0 = 100 kPa; E1 = 10 kPa; η1 = 100 kPa s) samples. Then an
annealing scheme—multiplying and dividing each initial guess parameter value by 10—was
adopted, leading to a total of 7 different initial guess sets. The minimum parameter values
were constrained to zero to prevent the fitting procedure returning negative estimated vis-
coelastic coefficients. Comparisons between viscoelastic parameter values were made using
the Student t-test, considering n = 3 (i.e. the number of replicates per strain rate) and setting
significance at p < 0.05. The fitting procedure and the statistical analysis were implemented
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Fig. 3 Experimental Eapp versus ε̇ data (squares) and respective Eapp(ε̇) fitting (dashed line) obtained for
(a) gelatin and (b) PDMS samples tested in unconfined compression at different strain rates. Error bars show
standard deviations of experimental data

Table 1 Maxwell SLS viscoelastic parameters estimated for gelatin and PDMS samples through Eapp(ε̇)

fitting of apparent moduli obtained at various strain rates. Einst, Eeq and τ results are expressed as estimated
parameter value ± standard error of estimation along with those obtained using the ε̇M for comparison. The
last row reports the mean ± standard deviation of the computation time for the 7 different sets of initial guess
values investigated

Gelatin PDMS

Eapp(ε̇) ε̇M Eapp(ε̇) ε̇M

Einst (kPa) 11.12 ± 1.00 11.23 ± 0.45 (2.58 ± 0.11) · 103 (2.55 ± 0.04) · 103

Eeq (kPa) 3.42 ± 0.77 2.43 ± 0.10 (2.18 ± 0.03) · 103 (2.14 ± 0.01) · 103

τ (s) 4.69 ± 1.76 4.85 ± 0.47 0.81 ± 0.28 0.66 ± 0.25

R2 0.98 0.92 0.98 0.98

Computation time (s) 1.26 ± 0.03 8.59 ± 0.39 1.34 ± 0.07 7.78 ± 0.22

in OriginPro 2015 (OriginLab, USA) installed on a Dell XPS 13 9350 laptop with an Intel
i7-6500U CPU, 512 GB SSD and 16 GB RAM, and running Microsoft Windows 10 Pro.
Figure 3 shows experimental Eapp data and fitted curves for gelatin and PDMS samples
tested in unconfined compression at different ε̇.

The fitting results for Maxwell SLS models are summarized in Table 1, where Einst and
Eeq represent the instantaneous (i.e. E0 + E1) and equilibrium (E0) moduli, respectively,
while τ is the characteristic relaxation time, equal to η1/E1. To compare the computational
cost between the new Eapp(ε̇) fitting approach proposed in this study (based on a single-
curve fit) and the original ε̇M (based on multi-curve global fitting with shared parameters),
the computation time is also shown in Table 1.

Fitting results were independent of the set of initial guess parameter values both for the
Eapp(ε̇) and the ε̇M method (Supplementary Information SI 2). No statically significant dif-
ferences were found between the viscoelastic parameters estimated with the Eapp(ε̇) fitting
and the ε̇M for either gelatin or PDMS samples, demonstrating the equivalence of the two
analysis methods (Table 1). Moreover, the significantly lower computational cost highlights
the efficiency of the Eapp(ε̇) fitting method with respect to the original ε̇M .
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4 Discussion

To overcome the issues of pre-stress and long experimental testing trials for viscoelastic
characterization of soft materials using classical testing methods, we developed the epsilon
dot method (ε̇M) which is based on a series of rapid strain rate measurements (Mattei et al.
2015b; Tirella et al. 2014). However, the ε̇M derivation of material viscoelastic constants
involves a global multi-curve fitting of stress-time data obtained at different constant strain
rates, performing chi-square minimization in a combined parameter space where viscoelas-
tic constants to estimate are shared between the globally fitted curves (Tirella et al. 2014).
As a result, this method is computationally expensive and difficult to automate when a large
number of strain rates and/or replicates per strain rate are considered.

Starting from the strain-rate dependent apparent elastic modulus (Eapp) typically used for
describing material viscoelastic behavior, we introduce the concept of the Eapp epsilon dot
spectrum, Eapp(ε̇). This function enables the calculation of viscoelastic constants for Gen-
eralized Maxwell (GM) models through a single-curve fit of Eapp data obtained at different
constant strain rate (ε̇) versus ε̇, according to Eq. (4). The Eapp(ε̇) can be interpreted as the
strain-rate domain equivalent of the storage modulus frequency spectrum, E′(f ), typical of
DMA analysis.

The Eapp(ε̇) method proposed in this study was validated versus the original ε̇M de-
scribed in Tirella et al. (2014). As discussed in Sect. 2, unlike purely elastic materials, vis-
coelastic materials do not exhibit an initial linear portion on their stress-strain curve. Thus,
the selection of the LVR is critical for any study dealing with viscoelastic material char-
acterization and it is likely to affect the derived mechanical properties. According to our
previous work on the ε̇M (Tirella et al. 2014), we here identified the LVR as the region in
which stress varies linearly with strain with R2 > 0.999. To obtain meaningfully comparable
results, two experimental Eapp vs. ε̇ datasets to analyze with the new Eapp(ε̇) fitting method
were obtained from the same apparent elastic moduli reported in Tirella et al. (2014) for
gelatin and PDMS samples. For the same reason, the Eapp(ε̇) fitting was performed consid-
ering the same LVR range (0 ÷ 0.01 strain range) and linear viscoelastic model (Maxwell
SLS) previously used to derive lumped viscoelastic constants with the ε̇M .

Viscoelastic parameters for a Maxwell SLS model estimated using the Eapp(ε̇) equa-
tion were found to be statistically similar to those obtained with the ε̇M , demonstrating the
equivalence of the two fitting approaches. Notably, the standard error of parameter estima-
tions obtained with the Eapp(ε̇) fitting are slightly higher than those of the ε̇M , because
fewer data are considered in the fitting procedure. In fact, for each experimental measure-
ment made at a given strain rate, the former method considers only n = 1 representative
point (i.e. Eapp) instead of the entire stress-time curve within LVR considered by the ε̇M .

It should be noted that, although based on a non-linear function (Eq. (4)), the Eapp(ε̇)

method can only be used to characterize linear viscoelastic properties. Indeed, the Eapp(ε̇)

function is non-linear only with respect to the testing input variable (i.e. the strain rate, ε̇),
but not to its viscoelastic parameters (i.e. spring Ei and dashpot ηi values), which are con-
sidered constants. This is similar to the function used to fit stress-time data in the original
ε̇M or to those used to fit storage and loss moduli obtained from DMA, which are both
non-linear in their respective testing input variable (i.e. strain rate in the case of ε̇M or fre-
quency in the case of DMA), but constant in their viscoelastic parameters. Therefore, like
ε̇M and DMA, this method can only be used to analyze LVR data and describe material
linear viscoelastic properties.

In conclusion, the Eapp(ε̇) fitting method presented in this work is robust and accurate
and, more importantly, because a single curve is used to describe material behavior over the
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strain-rate spectrum, it is computationally more efficient than the original ε̇M (as demon-
strated by the significantly reduced computation time, Table 1). Hence it could facilitate the
adoption of strain-rate mechanical testing methods and subsequent calculation of viscoelas-
tic parameters among researchers interested in characterizing viscoelastic (bio)materials.
Nano-indentation methods are particularly suited for the automated derivation of material
viscoelastic properties with this approach, since they allow the acquisition of Eapp data at
several strain rates in different locations of the same sample (Mattei et al. 2015b). Besides
nano-indentation, it is worth noting that the Eapp(ε̇) fitting method presented in this work
can be adopted to analyze LVR stress-strain data obtained from any type of constant strain-
rate testing approach, regardless of the measurement length-scale, such as bulk compression
(as in this work) or tension and macro-indentation. Potential applications of this viscoelas-
tic characterization method range from mechanical and structural design for (bio)material
and civil engineering (Jelen et al. 2013; Öchsner and Altenbach 2015), to tissue engineering
(Mattei et al. 2017b; Tirella et al. 2015) and cell mechano-biology (Mammoto et al. 2013;
Mattei et al. 2015a).
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