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Abstract: A Boundary Element Method (BEM) approach was developed for the analysis of pile
groups. The proposed method includes: the non-linear behavior of the soil by a hyperbolic modulus
reduction curve; the non-linear response of reinforced concrete pile sections, also taking into account
the influence of tension stiffening; the influence of suction by increasing the stiffness of shallow
portions of soil and modeled using the Modified Kovacs model; pile group shadowing effect, modeled
using an approach similar to that proposed in the Strain Wedge Model for pile groups analyses.
The proposed BEM method saves computational effort compared to more sophisticated codes such
as VERSAT-P3D, PLAXIS 3D and FLAC-3D, and provides reliable results using input data from a
standard site investigation. The reliability of this method was verified by comparing results from data
from full scale and centrifuge tests on single piles and pile groups. A comparison is presented between
measured and computed data on a laterally loaded fixed-head pile group composed by reinforced
concrete bored piles. The results of the proposed method are shown to be in good agreement with
those obtained in situ.

Keywords: laterally loaded piles; pile group; shadowing effect; boundary element method; tension
stiffening; reinforced concrete; suction

1. Introduction

The response to the horizontal loading of pile foundations, starting with the single pile, passing
through the pile groups and finally to the combined piled-rafts has been the focus of many studies.
However, as noted by many authors including Mokwa and Duncan [1] and Katzenbach and
Turek [2], additional tests are needed to better understand the interactions between the soil, piles
and superstructures. For the single pile case, it is well known that the key factors that influence the
response include the restraint condition at the pile-head and the pile-soil relative stiffness.

For laterally loaded pile groups, full scale tests conducted by O’Neill [3] and Huang et al. [4] failed
to provide definitive information about the influence of the execution technique while it is certain that
the additional factors to be considered, compare to the single pile case, are: pile spacing, pile-soil-pile
interactions, the stiffness of the connecting structure.

Generally, it is assumed that in pile-groups, under horizontal loads, the displacement of the
pile-heads is the same for all the piles and, so it is heterogeneous the load distribution between these.
In general, because of group effects and in particular the shadowing effect [5] the efficiency of a
pile-group is less than unity with a decreasing trend as the load increase. The efficiency achieves an
asymptotic value for displacements larger than 0.06 pile diameter D [6]. Group effects such as the
shadowing, which leads to a different load distribution between the piles in a group, tend to disappear
for spacing values larger than 5–7 diameters [7,8].
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The most common analysis methods are continuum-based or Winkler-based approaches
(non-linear transfer curves or p-y curves). p-y curves methods are limited to the use of a subgrade soil
reaction modulus which does not represent an actual property of the soil, and the soil is schematized
with a series of independent springs that require the introduction of specific multipliers less than
unity, [5], by which the transfer curves are scaled to consider the presence of group effects.

Since the introduction of the multipliers-concept a lot of works have been published [6,9,10] with
the aim to determine a so+rt of project curves, for these coefficients, as a function of the spacing and
the pile position in the group, although as evidenced by [11] would be more appropriate to evaluate
the trend of these multipliers as a function of the load level (or the displacement level).

Some of the most common p-y curves (and implemented in software such as LPILE [12]
GROUP [13], FLPIER [14]) include those recommended by the American Petroleum Institute.
These were obtained from experimental tests on steel pipe piles with an outer diameter of about
30 cm, and which are not affected by the non-linearity of the pile material. Even recently new
analytical methods based on the transfer curves have been developed [15,16] and new p-y curves were
experimentally determined [17].

Continuum-based approaches are usually solved with boundary element methods (BEM) and
finite element methods (FEM). Despite their potential in geotechnical engineering applications,
FEM suffer from the complexity of the domain discretization, difficulties in choosing the input
parameters and as evidenced in [18] FEM results are affected by the pile modeling. The high
computational costs also prevent their use in parametric studies.

Often, therefore, they are used as a benchmark to validate other simplified approaches or as a tool
to determine p-y curves for comparison with those obtained experimentally in situ [19,20].

BEM approaches, however, describe the soil as a homogeneous elastic half-space, characterized
by a Young modulus and Poisson ratio, and enable pile-soil-pile interactions to be directly evaluated,
and group effects can be considered.

These methods provide a complete solution at the interfaces of the problem domain but
entail numerical approximations when the analysis involves heterogeneous soils. To evaluate the
displacement induced at one point of the subsoil by a load acting in another point, the elastic Mindlin
solution is generally used [21].

The most important works and parametric studies conducted using BEM approaches have been
carried out by Spillers and Stoll [22], Poulos and Davis [23], Davies and Banerjee [24], Sharnouby and
Novak [25]; and Budhu and Davies [26,27].

The computer codes that make use of this approach include DEFPIG [28], PIGLET [29],
and PGROUPN [30]. Recently some other approaches, which permit analysis of pile groups and
piled-rafts [31–33], have been proposed.

Another interesting method is the Strain Wedge Model proposed by Ashour et al. [34,35] for the
analysis of single piles and pile-groups. This method links the response of the one-dimensional beam
on an elastic foundation with a three-dimensional representation of the pile-soil interaction, and thus
with the development and mobilization of a passive wedge of soil in front of the pile.

2. Proposed ‘BEM-Based’ Method

2.1. Key Features of the Proposed Method

The analysis of pile-groups requires non-linear methods that have the capability to reproduce all
relevant interactions between the foundation elements and the soil.

The originality of the proposed approach lies in its ability to provide a complete BEM analysis of
the soil continuum in which all the interactions are modeled. Compared to FEM or FDM analyses,
BEM provides a complete problem solution in terms of boundary values only, specifically at the
pile-soil interfaces.
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This leads to a drastic reduction in unknowns to be solved for, thereby resulting in substantial
savings in computing time and data preparation effort. This feature is particularly significant for
three-dimensional problems such as pile-groups.

The non-linear soil response is modeled by adopting a modified version of the quasi-hyperbolic
elastic modulus reduction curve formulation proposed by Fahey and Carter [36]. The proposed
method, relies upon the following assumptions:

a) pile-soil, pile-pile interactions are considered using the Mindlin’s solution;
b) horizontally layered elastic soil;
c) non-linear behavior for the reinforced concrete pile section;
d) non-linear soil behavior (incremental analysis);
e) the so-called shadowing effect, has been implemented in the code using an approach similar to

that described in [35];
f) the ultimate soil pressure profile is evaluated according to the relationship suggested by [37–40].

To validate the proposed method with its main assumptions, some well-documented case histories
have been collected and a prediction exercise has been carried out. The number of piles in the group
studied is generally rather small (the largest pile-group studied was composed by 15 piles). In all the
examined cases, a load test on a single pile was also available.

2.2. Pile Modelling

The proposed method was developed to capture the response of a pile group subjected to
horizontal load. It consists of a BEM-based approach. The analysis is performed using a non-linear
incremental tangent method.

The pile is modeled as a vertical strip, geometrically defined by the outer diameter D and length
L of the actual pile, discretized in 60 blocks of variable length with depth. With this discretization, it is
possible to minimize the calculation-time.

The discretization is as follows (Figure 1):

• 20 blocks with a thickness ∆ = D/8, starting from the ground level up to a depth of 2.5D;
• 10 blocks with a thickness ∆ = D/4, starting from a depth of 2.5D up to a depth of 5D;
• 10 blocks with a thickness ∆ = D/2, starting from a depth of 5D up to a depth of 10D;
• 10 blocks with a thickness ∆ = D, starting from a depth of 10D up to a depth of 20D;
• 10 blocks with a thickness ∆ = (L− 20D)/10, starting from a depth of 20D up to the pile base depth.
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The definition of the discretization criterion was suggested by Landi [41] as result of some
parametric analyses. The same pile modeling described herein has been recently used by the authors
in [42] to study the lateral response of the single pile. To facilitate the reader‘s overall understanding of
the manuscript, the authors reported here some details of the pile modeling that can be also retrieved
from [42].

The pile flexibility matrix, in case of linear elastic behavior, is obtained using the elastic beam
theory, and each coefficient of this matrix can be expressed using Equation (1) (Figure 2).

aij =
z3

i
3Ep Ip

+
z2

i (zj−zi)
2Ep Ip

if zi < zj

aij =
z3

j
3Ep Ip

+
z2

j (zi−zj)
2Ep Ip

if zi ≥ zj

(1)
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Figure 2. Pile flexibility matrix using the elastic beam theory (auxiliary restraint approach).

In this way, the horizontal displacement of each pile-block assumes the expression as in Equation (2).

yi = −
n

∑
j=1

aijPj + y0 + θ0zi (2)

in which Pj represents the load applied at the generic pile-block j (located at depth zj), and y0 and θ0

are the unknown displacement and rotation at the pile-head. Obviously if the pile-head is fixed, the
rotation becomes a known term. Each pile-point displacement is a function of n + 2 (or n + 1, for fixed
condition) unknowns, n pile-soil interface pressures, y0 and θ0.

The proposed method analyses both steel-pipe and reinforced concrete piles. For the analysis
of steel piles, the flexural rigidity EpIp is assumed to be constant (which means hypothesizing a
linear-elastic behavior of the section until the ultimate bending moment occurs). For reinforced
concrete sections, the development of cracks, even at low values of the bending moment, requires a
different modeling for the pile response. In this case, the “moment-curvature-axial load” relationship
is obtained by a model that has the additional feature of taking the influence of tension stiffening into
account [43].

Details on this model are presented in [43], however this model represents an extension to
the circular section of another model that considers the tension stiffening influence for rectangular
reinforced concrete sections [44].

Once the moment-curvature relationship has been obtained, the coefficients of the flexibility
matrix need to be defined using Equation (3) for the reinforced concrete pile, which is modeled in this
case as a step-tapered beam with a variable flexural rigidity, EpIp, along the pile shaft. In Equation (3),
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the variation of both Ep and Ip along the shaft is fully considered by changing Ip of the section, while
Ep is kept constant. Consequently, in an incremental analysis, the pile flexibility matrix needs to be
updated at each load increment.

aij =
i−1
∑

k=1

[(
(lk−lk−1)

3

3Ep Ik
+

(zj−lk)·(lk−lk−1)
2

2Ep Ik

)
+

(
(lk−lk−1)

2

2Ep Ik
+

(zj−lk)·(lk−lk−1)
Ep Ik

)
· (zi − lk)

]
+

(
(zi−li−1)

3

3Ep Ii
+

(zj−zi)·(zi−li−1)
2

2Ep Ii

)
if zi < zj

aij =
j−1
∑

k=1

[(
(lk−lk−1)

3

3Ep Ik
+

(zj−lk)·(lk−lk−1)
2

2Ep Ik

)
+

(
(lk−lk−1)

2

2Ep Ik
+

(zj−lk)·(lk−lk−1)
Ep Ik

)
· (zi − lk)

]
+

(
(zj−lj−1)

3

3Ep Ij
+

(zi−zj)·(zj−lj−1)
2

2Ep Ij

)
if zi ≥ zj

(3)

In Equation (3), zi and zj represent respectively the distance between the fixed node in Figure 2
and the point along the beam in which the displacement is considered and the distance between the
same fixed node and the point where the load is applied. On the other hand, lk, represents the distance
between the fixed node and the lower part of block k, and EpIk is the flexural rigidity of block k.

2.3. Soil Modelling

The soil is modeled as a multi-layered elastic half-space. BEM analysis requires an appropriate
elementary singular solution to be integrated on the surface of the problem domain. In the case of piles
subjected to horizontal loading, the elastic Mindlin solution is generally used [21]. This solution, which
evaluates the pile-soil interactions, is valid and rigorous only in the case of a homogeneous elastic
half-space, however it can still be considered valid in the case of a multi-layered elastic half-space [23].

In this work, the approximation suggested by Poulos and Davis [23] is used, so the soil elastic
modulus introduced in the Mindlin equation is the mean value between the elastic modulus at the
point where the displacement is evaluated and the elastic modulus at the point where the force is
applied: E = (Ei + Ej)/2.

The horizontal displacement sij at a point i belonging to the half space by a horizontal load Pj
applied at point j can be expressed as in Equation (4) (Figure 3). Where the term bij represents the
general expression for each soil flexibility matrix coefficient.

sij =
Pj(1+ν)

8πEs(1−ν)

[
(3−4ν)

R1
+ 1

R2
+ x2

R3
1
+ 3−4ν

R3
2

x2 + 2cz
R3

2

(
1− 3x2

R2
2

)
+ 4(1−ν)·(1−2ν)

R2+z+c

(
1− x2

R2(R2+z+c)

)]
= bijPj (4)
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Soil Non-Linear Behavior

In [45–47] the shear stress-strain curves were approximated with hyperbolae, with the tangent
equal to Gmax at zero strain and where the tangent is asymptotic to τmax at infinite strain.

By defining a reference strain (γref = τmax/Gmax) it was possible to rewrite the equation of a
hyperbola as a normalized secant shear modulus (Gsec/Gmax) that is reduced with a normalized shear
strain (γ/γref), Equation (5).

Gsec

Gmax
=

1(
1 + γ

γre f

) (5)

Fahey and Carter [36], instead, used the formulations in Equation (6) and Equation (7) for the
secant and the tangent elastic modulus reduction respectively.

Gsec

Gmax
= 1− R f

(
τ

τmax

)g
(6)

Gtan

Gmax
=

(
Gsec
Gmax

)2

[
1− R f (1− g) ·

(
τ

τmax

)g] (7)

These represent a quasi-hyperbolic relation written in terms of shear stress rather than shear
strain, and employing the coefficient g to adjust the curve shape.

To model the non-linear behavior of the soil, therefore, a modified version of the formulation
proposed by Fahey and Carter [36] was adopted.

The vertical stresses (at the pile-soil interface points) are assumed not to vary during the horizontal
load analysis, so only the horizontal stresses change. An analogy can thus be assumed between the
“interface pressure-ultimate soil resistance” ratio and the “shear stress–maximum shear stress” ratio
(p/pult ≈ τ/τmax).

With this assumption, at each step of the analysis the value of the tangent elastic modulus is
updated at each pile-soil interface point using Equation (8).

Gtan

Gmax
=

(
Gsec
Gmax

)2

[
1− R f (1− g) ·

(
p

pult

)g] (8)

In the proposed method Rf is equal to 1, while the parameter g ranges between 0.25 and 1.
The appropriate value for g, to perform the analysis, can be easily estimated by trying to obtain the
best fit with the load-deflection curve of a lateral load test on a single pile or with the load-deflection
curve obtained with other available codes [12,14,28,30,34,42].

The input data required to define the soil flexibility matrix are: the Young’s modulus at small
strain level, Emax and the Poisson ratio. While the input data to define the soil resistance are: the angle
of friction or the undrained shear strength for cohesionless or cohesive, respectively.

The solving scheme, is typical of BEM methods, and requires the imposition of: a) compatibility
equations between the soil and pile displacements and b) equilibrium equations to translation and
rotation (using appropriate boundary conditions defined at the pile-heads).

In the following, the solution system is fully described for the free-head or fixed-head pile group
cases, however a different restraint condition can be considered.

The analyses are performed incrementally, using an adaptive step-size control.

2.4. Influence of Suction on Pile Group Response to Horizontal Loading

Suction is an important aspect in pile foundation subjected to lateral loads because the response
of this foundation system is mainly affected by the shallower soil layers. The proposed method uses
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the “MK-Model” (Modified-Kovacs Model) proposed by Aubertin et al. [48]. This model makes use
of a parameter defined as the equivalent capillary rise hc0 in the porous medium. The role of this
parameter is the same as the average capillary rise in the original model developed by Kovacs and is
calculated using the expression for the rise of water in a capillary tube (hc) with a diameter d.

For the sake of convenience, the expression to estimate the equivalent capillary rise in granular
soils Equation (9) and in cohesive/plastic soils is reported below Equation (10).

hc0(cm) =
0.75

e · D10[1 + 1.17 · log CU ]
(9)

where D10 (in cm) is the diameter corresponding to 10% passing on the grain-size distribution curve,
CU is the coefficient of uniformity (=D60/D10), and e is the void ratio.

hc0 =
0.15 · ρs

e
w1.45

L (10)

where wL is the liquid limit, and ρs is the solid grain density (kg/m3).
The MK-Model uses the equivalent capillary rise as a reference parameter to define the relationship

between the degree of saturation Sr (or volumetric water content θ) and the matric suctionψ. The model
considers that water is held by capillary forces responsible for capillary saturation Sc, and by adhesive
forces, causing saturation by adhesion Sa. The Sc component is more important at relatively low
suction values, while the Sa component becomes dominant at a higher suction when most capillary
water has been withdrawn. The relationship proposed in the MK-Model is written as in Equation (11)
for the degree of saturation:

Sr =
θ

n
= Sc + S∗a · (1− Sc) (11)

In this equation, to ensure that this component does not exceed unity at low suction a truncated
value of the adhesion component Sa* is introduced in place of Sa used in the original model.
The contribution of the capillary and the adhesion components to the total degree of saturation
is defined as a function of hc0 and ψ using the equations reported in Aubertin et al. [48].

Implementing the “MK-Model” in the BEM-based method takes suction into account and increases
the effective stress state of the upper soil layers. This thus increases both the stiffness and the resistance
of the soil located close to the ground surface, which is expressed as a function of the soil stress state.

2.5. Group Effects Modelling

The experimental data revealed that for small spacing values the interaction between piles
belonging to different rows cannot be studied only considering a non-linear reduction of the soil
elastic modulus. This is because the movements of the front piles instantaneously cause an active
state condition in the soil behind the shaft. This causes not only a reduction in the stiffness of the soil
responsible for the back piles response, but also a reduction in resistance.

Therefore, the proposed BEM method required of an approach to better capture the behavior seen
in experimental data. The approach chosen is similar to that proposed by Ashour et al. [35].

In the latter work [35], the interaction among the piles in a group is determined based on the
envisioned geometry of the developing passive wedge of soil in front of the pile in addition to the pile
spacing. As shown in Figure 4, the soil passive wedge in front of a specific pile in the group overlaps
with those of adjacent piles by an area that changes with depth.

The overlap of these wedges of neighboring piles at a generic depth z is characterized as shown
in Figure 5.

According to the pile classification shown in Figure 5, the load carried by inner piles is less than
the load carried by the outer piles in each row. This fact was observed in several field tests as described
in [35].
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As stated in [35], at a given depth (Figure 5), overlapping areas exhibit larger values of soil strains
and stresses compared to the isolated pile. The increase in the average soil stress attributable to the
passive wedge of a given pile depends on the number and area of interfering wedges overlapping the
wedge of the pile in question (Figure 5).

Figure 5. Lateral interaction for a specific pile in the group (similarly as described in the context of the
so-called Strain Wedge Model [35]).

This overlap depends on the position of the pile in the group.
The average stress level in a soil layer (SLg) due to passive wedge interference is evaluated based

on an empirical relationship Equation (12), which provides good agreement with field test results [35].

SLg = SLi
(
1 + ∑ Rj

)1.5 ≤ 1 (12)
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where j = number of neighboring passive wedges in soil layer i that overlap the wedge of the pile in
question; R = ratio between the length of the overlapped portion of the face of the passive wedge (L)
and the total length of the face of the passive wedge (AB); and Rj is determined from all the neighboring
piles (sides and front piles) of the pile in question (Figure 5).

The SLi value on the right-hand side of Equation (12), which represents the SL of the single
isolated pile, for cohesionless soils in the Strain Wedge model, is defined in Equation (13).

SL =
∆σh
∆σh f

=
tan2(45

◦
+ ϕm/2

)
− 1

tan2
(
45◦ + ϕ/2

)
− 1

(13)

where the horizontal stress change at failure ∆σhf (or the deviatoric stress at failure in the triaxial test) is
∆σh f = σv0

[
tan2(45

◦
+ ϕ/2

)
− 1
]
. However, in the proposed method it is assumed that SLi

∼= p/pult,
and thus:

p
pult
∼=

tan2(45
◦
+ ϕm/2

)
− 1

tan2
(
45◦ + ϕ/2

)
− 1

(14)

The mobilized friction angle, φm, can be easily obtained if SLi is known, which is assumed to be
approximately equal to the ratio p/pult.

The values of SLg vary with depth and level of loading. They can be used to evaluate the increased
value of the pressure at each pile-soil interface (pg) (where this increase is caused by the interferences
of the passive wedges) Equations (15) and (16).

SLg =
p

pult

(
1 + ∑ Rj

)1.5 (15)

SLg =
pg

pult
(16)

The value assumed by pg at each pile-soil interface is then used to update the value of the tangent
elastic modulus of the soil at each depth using Equation (8) in which p = pg.

For cohesive soils, on the other hand, is assumed to be in an undrained-condition (total stress).
Consequently, the value of φ is equal to 0◦ and also the value of φm is always 0◦. This means that the
base angle of the passive wedge, for cohesive soils, is constantly equal to 45◦ and only the dimension
in depth (and thus on the plain) of the passive wedge changes when the load increases. However,
in this way only the interaction between the wedge of a pile positioned in a row different from the
front row with the wedge of the pile located in front of it can be considered, and thus the interactions
between the wedges of piles belonging to the same row are neglected (Figure 6).

To overcome this limit, and thus to consider the interactions between the wedges of piles located
side by side, we consider the extreme case in which a row of piles has a relative spacing s/D equal to 1.
In this condition, theoretically, the ultimate soil resistance profile should be coincident to the one in a
retaining wall, given by the difference of the passive earth pressure and the active earth pressure in an
undrained condition. In this case, the active and passive soil pressure profiles (in terms of force per
unit length) acting along the pile shaft are expressed by Equations (17) and (18) respectively.

pa(z) = [σv0(z)− 2cu(z)] · D = [γ · z− 2cu(z)] · D (17)

pp(z) = [σv0(z) + 2cu(z)] · D = [γ · z + 2cu(z)] · D (18)

Note that the value of pa, for shallow depths, could be negative and this means that the soil is in
tension. Assuming reasonably that the soil cannot support tension all the values of pa < 0 are corrected
considering directly pa = 0. The difference between pp and pa thus represents the ultimate soil pressure
profile, pr, (in terms of force per unit length) acting along a pile shaft in a row of piles with a spacing of
1D (or on a retaining wall). For example, Figure 7 shows all these steps to define the resulting lateral
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pressure profile, pr, considering a homogenous cohesive soil with a constant cu equal to 50 kPa, a soil
unit weight γ equal to 20 kN/m3 and a pile diameter D = 1 m.Materials 2018, 8, 300 10 of 23 
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The soil resistance profile is now considered, for the same soil condition shown before, as defined
by Matlock [37] for a single isolated pile in soft clay, and thus expressed by the minimum values of
Equation (19).

min
{[

3 +
γ′
cu

z +
J
D

z
]

cu; 9cuD
}

(19)

Figure 8 compares the values of pr (for a spacing of 1D) and pult (for a single isolated pile).
Based on all the experimental data studied, it is assumed that the ultimate soil resistance profile

for the single isolated is valid only for pile spacing s/D ≥ 6. For a pile spacing ratio of less than 6 it is
considered that the ultimate soil resistance profile is intermediate to the profile pr (assumed for spacing
ratio s/D = 1) and the profile pult (assumed for spacing ratio s/D ≥ 6).

To evaluate the definitive soil resistance profile (pult,def), for spacing ratio between 1 and 6, it is
assumed that pult,def can be expressed as a function of the actual spacing ratio s/D and the depth, z,
using this relationship in Equation (20).

pult,de f (z) = pr(z) + F(s/D) · (pult(z)− pr(z)) (20)

where, F(s/D) is a factor defined as a function of the relative spacing ratio according to Equation (21).

F(s/D) =
s/D− 1

5
(21)



Materials 2018, 11, 300 11 of 21

With this procedure, even for cohesive soil in undrained condition, it is possible to consider the
interactions between piles located side by side, simply by substituting the ultimate soil resistance
evaluated with the expressions defined by Matlock [37] with the pult,def values.

In the proposed approach, the mobilized soil passive wedge starts to develop at a depth, along
the pile shaft, which is different from pile to pile, where the pressure at the interface changes from a
positive to a negative value, passing from a passive to an active state.
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2.6. Solution System

The solution system is defined as: [F][X] = [P] Equation (22). [X] is the unknowns vector made up
of km + 2m + 1 terms or km + m + 1 terms for free or fixed head conditions, respectively; where m is the
number of piles, k the number of the pile blocks for each pile, p are the km unknown pressures acting
at the pile-soil interfaces, y0 is the pile-group displacement, θm are the m pile-heads rotations, Hm are
the m horizontal loads at the pile-heads and [P] is the known-terms vector (with the same dimension
as for the vector [X]). [F] is a (km + 2m + 1) × (km + 2m + 1) or (km + m + 1) × (km + m + 1) matrix,
obtained by summing:

• the km × km pile flexibility matrix [FP], composed of the aij coefficients;

• the km× km flexibility matrix [FS], composed of the bij coefficients that represent the displacements
induced by a load acting at the pile-soil interface j to the pile-soil interface i.

The last 2m + 1 or m + 1 rows and columns, of the [F] matrix, are necessary to impose
the equilibrium and to complete the compatibility equations at each pile-soil interface node.
In Equation (22), H is the applied horizontal load and f is the load eccentricity.

The flexibility matrix [F] is updated at each step of the procedure. The pile flexibility sub-matrix,
[FP], is updated only in the case of a non-linear “moment-curvature” relationship for the pile section.
[FP] is updated using the tangent flexural rigidities, according to the bending-moments reached at
each pile-node in the previous load increment.



a1,1 + b1,1 · · · a1,km + b1,km −1 −z1,1 · · · · · · 0 · · · 0
...

. . .
...

...
...

. . .
...

...
. . .
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akm,1 + bkm,11 · · · akm,km + bkm,km −1 · · · · · · −zkm,m 0 · · · 0

1 · · · 1 0 0 · · · 0 0 · · · 0
z1,1 · · · · · · 0 0 · · · 0 0 f f

...
. . .

...
...

...
. . .

... f 0 f
· · · · · · zm,km 0 0 · · · 0 f f 0
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0
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Once the initial flexibility matrix, [F], has been computed, the total horizontal load is applied
in the first step of the solution procedure. At each generic load increment hk, an iterative process
is performed where two solutions are obtained, the first using hk as the load increment, the second
using two load steps equal to hk/2. The iterative scheme is described in Figure 9, which, for the sake
of simplicity refers to the explicit Euler method with step-doubling and adaptive step-size control.
However, a fourth order Runge-Kutta method can also be used to obtain some improvement in the
accuracy of the solution. The adaptive step-size control numerical technique is fully described in
Press et al. [49].Materials 2018, 8, 300 13 of 23 
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Once these two solutions have been computed, the incremental ratio ε, is computed according to
Equation (23).

ε =
∆u2 − ∆u1

∆u1
(23)
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where ∆u1 and ∆u2 are the incremental displacement at the pile-head evaluated using one and two
steps, respectively. The ε value is compared with a predefined tolerance taken as equal to 0.001
(Figure 10).Materials 2018, 8, 300 14 of 23 
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When this convergence criterion is exceeded (ε > tol), the iterative process starts again with
an updated load increment hk

new which should be able to achieve the desired accuracy and can be
estimated using Equation (24) [49].

hnew
k = SF · hk ·

(
tol
ε

) 1
p+1

(24)

where p is the order of the method used (in the Euler method p = 1, in the Runge-Kutta method p = 4),
and SF is a “safety factor” (taken as equal to 0.90) to guarantee the success in the next attempt. When this
convergence criterion is passed (ε ≤ tol), Equation (24) is used again to estimate the next step-size.
The procedure stops when the final lateral load H is reached. Finally, the entire load-deflection curve
and the deflection, shear, bending moment and pile-soil interface pressure profiles along the pile shaft
at each load-step can be evaluated.

3. Validation of the Proposed Method

In this section, are presented the results of the pile group analyses using the BEM-based approach
proposed within this paper. These results are compared with those obtained in horizontal load tests
on pile groups in sandy and cohesive/plastic soils. The lateral load tests were carried out both on
steel and r.c. piles. The experimental data were retrieved from well-documented tests in the available
literature for a total of 15 pile groups case histories, reported in Table 1. Further information about the
validation procedure can be found in [50].



Materials 2018, 11, 300 14 of 21

Table 1. Case histories studied.

Case Reference Pile Material Pile Diameter (m) Pile Length (m) Soil Type Hmax (kN)

[51] 3 × 3; s = 3D Steel with Grout-fill 0.273 13.11 OC Clay 695
[5] 3 × 3; s = 3D Steel with Grout-fill 0.273 13.11 Sand 808.5
[4] 3 × 2; s = 3D Bored RC 1.5 34.9 Silty Sand 11043

[8] φ’ = 34◦; 3 × 3; s = 3D Aluminum 0.43 13.3 Sand 761.2
[8] φ’ = 39◦; 3 × 3; s = 3D Aluminum 0.43 13.3 Sand 1508.2
[8] φ’ = 34◦; 3 × 3; s = 5D Aluminum 0.43 13.3 Sand 1110.5
[8] φ’ = 39◦; 3 × 3; s = 5D Aluminum 0.43 13.3 Sand 1424

[52] 2 × 1; s = 2D Aluminum 0.72 12 Sand 1183
[52] 2 × 1; s = 4D Aluminum 0.72 12 Sand 1220.1
[52] 2 × 1; s = 6D Aluminum 0.72 12 Sand 1030.72
[53] 3 × 3; s = 3D Steel with Grout-fill 0.305 8.7 Clay 927.05
[11] 3 × 3; s = 3D Steel pipe 0.324 11.5 Sand 488.6

[54] 3 × 3; s = 5.65D Steel pipe 0.324 11.9 Clay 1407
[54] 3 × 4; s = 4.4D Steel pipe 0.324 11.9 Clay 1353.8
[54] 3 × 5; s = 3.3D Steel pipe 0.324 11.9 Clay 1942.5

In the case histories studied the maximum number of piles in the group is 15 and the lateral load
test data on a single pile were always included.

The purpose of the analyses is to validate the BEM approach developed in this work. The analyses
were realized as class A predictions by using the actual pile properties and the soil geotechnical
parameters obtained based on the in situ and laboratory tests data. In particular, the soil elastic
modulus to be considered is a Young’s Modulus at small strain level inferred from in situ tests.

It needs to be remembered that in the analyses of pile-groups the value of the exponent g of
the elastic modulus reduction curve must be defined. The appropriate g value to be inputted can be
easily estimated trying to obtain the best fit with the load-deflection curve of the horizontal test on
the single pile. In Table 2 are reported the input data used to perform the analyses with the proposed
method. These data refer to the properties of the soil layers at least in between the ground surface and
10-diameter depth. Additional details are presented in [50].

Table 2. Input data used to perform the analyses with the proposed method.

Case
EpIp

(MNm2)
γ

(kN/m3) φ (◦) DR
(%) cu (kPa)

Emax (Linear
Increasing with
Depth) (MPa)

G (-) F (m) W.T.
(m)

Head
B.C.

[51] 16.0 19.0 - - 58–145 (0–5.5 m) 70–200 (0–5.5 m) 0.25 0.305 0.0 Free
[5] 16.0 19.5 47 90 - 35–100 (0–2.0 m) 1.0 0.305 0.0 Free
[4] variable 18.5 34 50 - 40–400 (0–34.9 m) 0.5 1.0 1.0 Fixed
[8] 72.1 14.51 34 33 - 60–300 (0–13.3 m) 0.25 1.68 - Free
[8] 72.1 15.18 39 55 - 50–260 (0–13.3 m) 0.5 1.68 - Free

[52] 514.0 16.3 40 89 - 40–200 (0–12.0 m) 1.0 1.6 - Free
[53] 26.91 19.0 - - 50–75 (0–2.9 m) 60–170 (0–8.7 m) 0.25 0.4 0.0 Free
[11] 30.03 19.5 40 44 - 20–150 (0–11.5 m) 0.25 0.86 0.0 Free

[54] 30.03 19.0 - - 60 (0–1 m)120
(1.0–4.0 m) 50–60 (0–4.0 m) 0.25 0.48 1.0 Free

Table notes: EpIp = pile flexural rigidity; γ = soil unit weight; φ = peak friction angle; DR = relative density; cu =
undrained shear strength; Emax = soil elastic modulus at small strain level; g = parameter of the modulus reduction
curve; f = load eccentricity; W.T. = water table depth below the ground surface; Head B.C. = pile-head boundary
conditions (free-head or fixed head).

The comparison between computed and measured results (Figure 11) clearly show the capability
of the proposed BEM method to provide good predictions of the pile groups lateral response.
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In Figure 11, the ratio among the experimental lateral load for a given normalized displacement
(y/D) and the experimental maximum horizontal load is on the x-axis, while the ratio among the
calculated and the measured load (for a given y/D) is on the y-axis.

The error in the load forecasting at each y/D reached during the tests is included in the range
of ±30%.

3.1. Analysis Results with the Proposed BEM Method for a Specific Lateral Load Test on a Bored Pile Group

A full-scale lateral load test program [4] was realized in Taiwan in 2001. Two pile groups,
one consisting in bored piles and the other in driven piles, were subjected to horizontal loading tests.
The tests were also conducted on single piles installed using the same two techniques. In this section,
all the presented results refer to the free-head bored single pile and to the fixed-head bored pile group.
The latter is a 3 × 2 (3 rows and 2 columns) pile group at 3D spacing.
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3.1.1. Soil and Pile Properties Description

The soil in the site was classified as silt or silty sand, with occasional layers of silty clay. The water
table was at 1.0 m below the ground surface and did not change considerably during the entire test
program period. In [4] are fully presented the cone penetration tests and Gmax data profiles.

In the site were placed 13 cast in situ bored piles and 13 precast driven piles. Eleven of the 13 bored
piles (D = 1500 mm, L = 34.9 m; EI = 6.86 GNm2) were realized using bentonite-mud with reverse
circulation. Two of the 13 bored piles were realized by means of a drilling device with hydraulic
oscillator at full length. The measurement instruments (strain gauges and inclinometers) were attached
to the longitudinal reinforcement bars, inserted into the hole before casting the concrete. Bored pile
properties are summarized in Table 3.

Table 3. Structural properties of bored pile.

Pile
Diameter D

(mm)

Pile Length
(m)

Cross
Sectional

Area (cm2)

Concrete
Compressive

Strength f ’c (MPa)

Reinforcement
Yield Stress f y

(MPa)

Steel Ratio
ρs

Intact Flexural
Rigidity EI

(GNm2)

1500 34.9 17672 27.5 471 0.025 6.86

3.1.2. Single Bored Pile B7 (Free-Head) and Pile Group (Fixed-Head): Analysis Results

The soil unit weight (γ) was evaluated based on the cone penetration tests data fully reported
in [4]. Along the first 15 meters in depth the tip resistance in the CPT tests was on average equal to
5 MPa. The pile properties used to perform the BEM analyses are those reported in Table 3.

The bending moment-curvature relationship of the pile section (Figure 12) was computed with
the model that can consider the influence of tension stiffening [43].
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Based on the cone penetration tests data in [4], an angle of internal friction of 34◦ was obtained
using the correlation suggested by Mayne [55] Equation (25).

ϕ′ = 17.6 + 11 · log10

(
qt − σv0√

σ′v0 pa

)
(25)

The Gmax profile was that provided in [4]. This profile was simplified and assumed linearly
increasing from 15 to 150 MPa. The Poisson ratio was set equal to 0.35.

The ultimate soil pressure profile was evaluated according to relationship proposed by Reese et al. [38].
Since the water table was located 1 m below the ground surface, approximate suction effects were
considered, because of the lack of information to use the Modified Kovacs Model rigorously, thus
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increasing the vertical effective soil stresses at the first meter in depth. In fact, a linearly increasing
suction value was assumed from 0 kPa to 10 kPa starting from 1.0 meter depth up to the ground surface.

As a consequence, the soil resistance profile, obtained with the relationships suggested in [38],
is increased in the first meter depth.

The comparison between measured and calculated results for the free-head single pile case are
shown in Figure 13 (considering and not considering suction).
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The capability of the BEM method to forecast the laterally loaded pile response is good in both
cases, nevertheless it can be observed an improvement in the prediction considering suction. The results
for the 3 × 2 fixed-head pile group are presented in Figures 14–16 in terms of the load deflection curve
for an average pile in the group, group efficiency and the pile-deflection profile at a specific value of
the lateral load for all the piles in the group. The group efficiency in the pile-group analysis results is
defined as: Hgroup/(n Hsingle); where, Hgroup = the total horizontal load in the pile group, Hsingle = the
horizontal load in the isolated single pile (at the same displacement-level) and n = the number of piles
in the group.Materials 2018, 8, 300 19 of 23 
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The group efficiency in Figure 15 is higher than one because the single pile was tested in free-head
restraint condition, while the pile group is fixed-head.

The reader should note that in [4] and in [56] the load of 1462 kN was considered as the lateral
load corresponding to the first cracking bending moment based on back-analysis results.

For this reason, in [4] and more recently in [56] a reduced bending stiffness was set to the relevant
section of the piles to consider cracking.

The computer codes used in [4] and [56] were LPILE [57] and VERSAT-P3D [58], respectively.
The proposed BEM approach, instead, automatically updates each pile-block bending stiffness according
to the “average moment-curvature” relationship obtained from the actual pile section properties.

With the proposed method, the analysis to obtain the bored pile group results requires less than
10 min to compute the entire lateral load-deflection curve on a laptop with an Intel Core i7 CPU
processor (2.20 GHz). Analyses of similar problems by VERSAT-P3D [58] using a coarse finite element
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mesh requires about 20 min to calculate the displacement for a single point on the load-deflection
curve, while FLAC-3D takes about 6 h [59].

4. Conclusions

A pile group subjected to horizontal load is a complex soil-structure interaction (SSI) problem
affected by pile and soil non-linear behavior. Even nowadays, this specific SSI problem cannot be
easily solved, especially because most of the computer codes are specialized to solve/study either
structural or geotechnical issues.

One of the key aspects of the pile group lateral behavior is the continuous pile-soil relative stiffness
variation, while a horizontal load is applied.

To capture the latter, a new BEM-based approach for the analysis of laterally loaded pile group
has been developed and validated. Herein, the solution system of the proposed method is fully
presented for the free-head and fixed-head pile group cases, however a different restraint condition
can be considered.

The proposed BEM approach is innovative because can take into account for the highly non-linear
behavior of reinforced concrete piles, considering also the tension stiffening effect. Moreover, the influence
of suction in the upper soil layers, is also considered, by means of the Modified-Kovacs Model.

The method developed herein presents two significant merits compared to some FDM, FEM
and quasi-3D FEM codes: the reduction of computation (or running) time, and the easiness in the
selection/definition of the input parameters to perform the analyses.

The reliability of the proposed BEM method was tested by comparing computed and experimental
data from full scale and centrifuge tests on 15 pile groups, retrieved from the available technical
literature about this topic. The results presented herein have shown the capability of the BEM method to
provide a good prediction both qualitatively and quantitatively of the relevant aspects of the pile group
horizontal behavior. The prediction errors are lower than 30% for most of the case histories studied.

Finally, for comparison purpose, the proposed method was used to analyze a specific pile group
horizontally loaded in a full-scale test program realized in Taiwan in 2001.
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