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Abstract. In mini-invasive surgery and in endoscopic procedures, the surgeon 

operates without a direct visualization of the patient’s anatomy. In image-

guided surgery, solutions based on wearable augmented reality (AR) represent 

the most promising ones. The authors describe the characteristics that an ideal 

Head Mounted Display (HMD) must have to guarantee safety and accuracy in 

AR-guided neurosurgical interventions and design the ideal virtual content for 

guiding crucial task in neuro endoscopic surgery. The selected sequence of AR 

content to obtain an effective guidance during surgery is tested in a Microsoft 

Hololens based app. 
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1 Introduction  

During the last 15 years, neuronavigation has become an essential neurosurgical tool 

for pursuing minimal invasiveness and maximal safety [1]. Unfortunately, ergonomics 

of such devices are still not optimal [2]. The neurosurgeon has to look away from the 

surgical field at a dedicated workstation screen. Then, the operator is required to men-

tally transfer the information from the “virtual” environment of the navigation system 

to the real surgical field. The virtual environment includes virtual surgical instruments 

and patient-specific virtual anatomy details (generally obtained from pre-operative 3D 

images). 

Intraventricular endoscopy is a routine technique for the therapy of cerebral-spinal-

fluid (CSF) dynamic disorders such as hydrocephalus in which membranes are fenes-

trated in order to restore physiological CSF flow for the patient. Endoscopic interven-

tions are also the mainstay for the treatment of paraventricular cysts that may cause 



relevant mass effect: in this case an endoscopic fenestration may be required in order 

to re-establish regular CSF spaces or when paraventricular tumors need biopsy, which 

might also be accompanied by hydrocephalus treatment[3]. In this context, it is im-

portant to mention that endoscopy will be applied through one borehole as entry 

point. The determination of this entry point will impact the safety and efficacy of the 

procedure. Thus, endoscopic procedures have frequently been used together with 

navigation systems in order to apply these goals. Neurosurgical navigation enables, 

through the registration of the patient’s anatomy. the identification of instruments, 

endoscopes and microscopes in spatial relation to the patient’s anatomy [1, 2, 4, 5, 6, 

7, 8, 9, 10, 11]. 

 

In commercial neuronavigation systems the navigation information, also in the form 

of augmented views of external or endoscopic cameras, is normally presented on a 

stand-up monitor. This means that the practicing surgeon must turn away from the 

operation field for perceiving surgical navigation information [12, 13, 14, 15]. 

In order to allow an uninterrupted concentration on the area of intervention, wearable 

AR devices are starting to be tested to enter the surgical room  [11, 16]. 

 

The purpose of this paper is twofold: to lay down the technical specifications that an 

ideal Head Mounted Display (HMD) should have to guarantee safety and accuracy in 

AR-guided neurosurgical interventions, and to design the most suitable AR visualiza-

tion modality for the guidance of a crucial task in such surgery.  

 

2 Materials and Methods 

2.1 Design oh the HMD 

The design of the HMD started from a deep analysis of currently available HMD 

technologies.  

Existing wearable augmented reality displays can deploy Optical see-through (OST) 

or Video see-through (VST) approaches. Typically, in OST visors, the user’s direct 

view of the real world is augmented through the projection of the virtual content on a 

beam combiner and then into the user’s line of sight. The user sees the virtual infor-

mation displayed on a semi-transparent surface of projection (SSP). Differently, in 

VST visors the virtual content is merged with camera images captured by two exter-

nal cameras rigidly fixed on the visor [17].  

Both approaches have benefits and drawbacks depending on the task they are de-

signed for. In the context of image-guided surgery, the AR content offered may be 

simply informative (e.g., textual or numerical values relevant to what is under obser-

vation as patient data from the anesthesia monitor) or it may consist of three-

dimensional virtual objects inserted within the real environment in spatially defined 

positions. In the latter case, the virtual content seeks to provide a patient-specific vir-

tual representation of the hidden anatomy (obtained from diagnostic images as CT, 

MRI, 3DUS…) so as to guide the surgeon’s hand during precision tasks as tissue 



incisions or vessels isolation. Generally, the VST paradigm yields an accurate and 

robust alignment between virtual and real content at the expenses of a less realistic 

and authentic perception of the “real world”, being this affected by the intrinsic fea-

tures of  the camera and display; with OST there is an inevitable lag between real and 

virtual information and at the same time an accurate alignment between real scene and 

virtual content cannot be achieved without a specific, and often error-prone, eye-to-

display calibration routine. Nonetheless, the main benefit of OST visors is to maintain 

an unobstructed view of the real world. This is why, depending on the surgical task to 

be aided, a system that provided both the see-through mechanisms together with a 

switching mechanism allowing a transition between the two modalities could repre-

sent a disruptive asset in the context of AR-based neuronavigators. 

An AR HMD that addresses human factors issues towards the achievement of optimal 

ergonomics and perfect usability in surgery means to target at least the following: 

• To develop a new hybrid video-optical see through AR HMD that allows both the 

see-through modalities.  

• To develop a mechanism that manages the transition between occluded and non-

occluded view. The occluded view is used for the video see-through (VST) modali-

ty, whereas the non-occluded view is necessary for implementing the optical see-

through (OST) modality.  

• Integrate a real-time eye pose estimation routine (i.e. OST-to-eye calibration) 

whose goal is to achieve a geometrically consistent augmentation of the reality.  

• Design and develop a software framework capable of managing several video or 

optical see through-based surgical navigation applications. The application will 

have to be user-friendly, ergonomic and highly configurable so as to make it suita-

ble for many typologies of potential applications.  

 

This hardware developing phase is currently ongoing in an European project (H2020) 

coordinated by the authors whose aim is to design, develop and validate a wearable 

augmented reality (AR) microdisplay-based system to be used in the operating theatre 

[18, 19].  

The VOSTARS project aims to design, develop and validate an immersive and 

ground-breaking wearable augmented reality (AR) microdisplay-based system to act 

as surgical navigator. The new AR-based head mounted display (HMD) is bound to 

massively revolutionize the paradigms through which wearable AR HMD systems are 

commonly implemented. 

 

2.2 Design of the virtual content, presentation and interaction modality  

The definition of the virtual content that is intended to augment the surgical expe-

rience starts from the decomposition of the addressed intervention into surgical tasks 

[20].  

A major issue in the designing of AR-based surgical navigation system is related to 

the need of providing consistent visual cues for correct perception of depth and spatial 



relations in the augmented scene  [21, 22]. In fact, as showed by previous studies [11, 

23, 24, 25, 26, 27], the visualization of virtual content in AR applications are effective 

in aiding the surgeon executing a specific medical procedure only if they are strongly 

related to the task. For example, sometimes the superimposition of a semi-transparent 

virtual anatomy, albeit visually appealing, can be rather confusing for the surgeon. 

This is due to the surgeon’s limited perception of the relative distances between real 

and virtual elements within the AR scene and it may be affected by the presence of 

unnatural occlusions between real and virtual structures. Further, the presentation of a 

too detailed and complex virtual content, may confound the surgeon instead of being 

of assistance.  

 

Starting from the previous work [11], in this work the AR content was conceived 

together with a surgical team to aid the surgeon in planning the optimal trajectory for 

accessing the surgical target . The tasks selected for guidance in the OST modality 

are: craniotomies,  targeting of the entry point of the endoscope, trajectory alignment.  

The defined virtual content are represented by:  

 

● A viewfinder to clearly show the ideal entry point on the patient’s skull. This 

entry point would also allow the definition of a proper area for craniotomy.  

● The trajectory to be followed by the endoscope. 

● The virtual frustum of the endoscope; this would help the surgeon in as-

sessing the field of view covered by the endoscope in a specific position.   

● The targeted lesion and some anatomical landmarks (ventricles).  

 

Fig. 1. Virtual Planning of the intervention. The trajectory and the viewfinder are showed to-

gether with the patient anatomy.  



 

Considering that in the surgical room the surgeon could never violate the sterility of 

the surgical field, manual gesture interaction will be used to allow the user to interact 

with the AR application without the need for any sort of physical interface; moreover 

considering the need to keep hands within the surgical field, voice commands will be 

added to provide a hands-free interaction modality with the AR application. 

 

2.3 Evaluation Study 

To bring forward the assessment of the most effective AR visualization modality 

pending the development of a fully functional hybrid OST/VST HMD, we developed 

a Microsoft HoloLens based app. Microsoft Hololens was chosen as testing tool for 

assessing the ergonomics of the AR visualization modality. 

The HoloLens is a stand-alone OST HMD that provides unique features such as a 

high-resolution display, ability to spatially map objects, handle gesture interface, easy 

interaction through straight gaze-to-target cursor management and voice recognition 

control mechanism [28]; it has no physical tethering constrains which can limit the 

movements/gestures of the user during the simulation of the surgical tasks. MixedRe-

alityToolkit, a freely available collection of scripts and components, allows an easy 

and fast development of AR applications. 

Tests also required the fabrication of a physical simulator (i.e., patient specifichead 

mannequin) similar to that used in [11]; based on the 3D model of this mannequin,an 

expert surgeon planned the best entry point on the skull cap and the optimal endo-

scope trajectory for the simulated surgical case. 

Physical Simulator Development  

The phantom was built starting from an high resolution magnetic resonance imaging 

study (MRI) suitable for neuronavigation. The image sequence data set was used for 

volumetric reconstruction combined with thin sliced axial T2-weighted images. The 

ITK-Snap 5.1 with a custom modified plugin was used to segment ventricles and skull 

[29]. A simplified lesion model was added close to the ventricular area to simulate the 

target for endoscopy. The skull model, with the simulated lesion, were 3D printed 

using acrylonitrile butadiene styrene (ABS) (with a Dimension Elite 3D Printer). A 

silicone mixtures was used for the manufacturing of the scalp to improve the simula-

tion realism. 

A physical support for a registration target (a Vuforia[30] Image Target, as described 

in the following section), was rigidly anchored to the bone synthetic replica to allow 

the registration of the virtual content to the real scene. 

AR App Development.  

Unity3D (5.6.1f) was used to create the application. The MixedRealityToolkit 

(2017.1.2) script collection was used to interact with the virtual content by means of 



cursor management through gaze-to-target interaction, gesture (“air-tap”), and voice. 

As already said, the virtual environment include: the targeted lesion and ventricle 

models, and the preoperative plan (viewfinder and trajectory). A virtual cursor was 

added to the virtual scene to indicate the straight gaze direction, estimated from the 

position and orientation of the user’s head in the Microsoft HoloLens based app (the 

final hybrid OST/VST HMD will allow eye-tracking, thus the virtual cursor position 

will be fully controllable with eye movement). 

The detection and tracking functionalities offered by the Vuforia SDK were used for 

registration purposes. In particular, two Vuforia Image Targets were used to track in 

real-time the physical simulator and the endoscope. 

 

1 Results 

Several tests were conducted to evaluate the most ergonomic AR visualization se-

quence in function of the task to be accomplished. In this phase, experienced and 

young surgeons were asked to perform the percutaneous task wearing the Hololens 

with the AR app running(Fig.2).  

During the test they were requested to execute the craniotomy and reach the target 

with the endoscope maintaining the ideal trajectory. The testing phase was essential to 

define the exact sequence  to be used to visualize the AR content.  

The users were able to interact with the application via voice commands or hand 

gestures so to tailor the augmented experience to the user’s own needs. 

 

The testing phase confirmed that the visualized virtual elements are useful to ac-

complish the surgical target. It underlined that a correct sequencing is of outmost 

importance for a fruitful augmented experience: 

 

• Firstly, the surgeon can choose to visualize the target anatomy just for a 

rehearsal.  

• Only the viewfinder will be visualized to guide the craniotomy.  

• Once the surgical access is prepared the ideal trajectory is showed and the 

surgeon pivoting on the access point can align the endoscope to the trajec-

tory.  

• While entering the anatomy also the endoscope virtual frustum and the 

target anatomy are added to improve surgeon spatial awareness during the 

surgical task.  

 



 
Fig. 2. AR functionalities in neurosurgery - first row: concept; second row: early 

(Microsoft Hololens based) demo implementation to define surgical needs and study 

feasibility. a) viewfinder visualization b) endoscope trajectory and frustum towards 

anatomy, c) frustum and anatomy visualization 

 

2 Conclusion  

 

Clinical navigation systems are nowadays routinely used in a variety of surgical dis-

ciplines to assist surgeons with minimally invasive and open interventions for sup-

porting spatial orientation and targeting [31, 32, 33, 34, 35, 36, 37]. In surgical navi-

gators, AR-based techniques are often used for identifying the precise location of 

target lesions or body regions to improve the safety and accuracy of the interventions 

[16, 38, 39, 40, 41]. 

There is a growing interest on the use of AR systems as new surgical navigation 

systems. The introduction of AR in neurosurgery, both for training purposes [14, 42, 

43, 44, 45] and as surgical navigators, can lead to positive and encouraging results in 

terms of increased accuracy and reduced trauma to the patient.  

Wearable AR systems based on HMDs allows the surgeon to have an ergonomic 

viewpoint of the surgical field and of the patient’s anatomy and reduce the problems 

related to eye-hand coordination [24].  

When conceiving innovative navigation paradigm in terms of hardware and soft-

ware the way virtual content is provided to the user is highly impacting on the usabil-

ity of the wearable device in terms of ergonomics, effectiveness of the navigation 

experience, and confidence in the device.   
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