


1. Introduction

Recovery of the properties of a new object is a basic task in robot manipulation.

Properties of interest include object shape, texture, friction coe±cients, elasticity,

plasticity, etc. Because the object is initially unknown, the sensing strategy must be

active, i.e., the robot must adapt its sensing actions based on the results so far.

A popular modality for active sensing is vision. Active vision has been studied in

depth for the problem of shape and pose recovery for robot grasping.1–5 Humans,

however, also use active tactile sensing.6 There is a variety of work on tactile ex

ploration for robot manipulation.7–13 The goal of this paper is to extend the set of

available techniques for guiding tactile exploration to recover surface shape.

The requirements for active tactile perception were authoritatively spelled out by

Bajcsy and co workers14 in the 1980s. Early tactile perception algorithms date back

to the same period.15–18 Active touch, however, lags behind active vision for two

reasons. The ¯rst reason concerns robot hardware. Standardized touch sensors are

still not widely available and typically have to be handcrafted or modi¯ed for the

speci¯c robot and task. The second reason is intrinsic to touch itself, which requires

the mechanical interaction of the sensor and the object being perceived. This inev

itably leads to unexpected perturbations of the sensor and object, which in turn

require rather complex control of the ongoing movement of the sensor: a requirement

which is absent in vision.

In this paper, we suppose that vision has already provided some partial infor

mation about the shape of the object. Given this initial, incomplete, surface model,

our method plans a sequence of touches. The planning relies on the ability of the

robot to form hypotheses about the shape of the hidden parts of the object. The robot

then attempts to touch the surface, so as to re¯ne these hypotheses. Whether or not a

contact is made, the information gained improves the model of the object shape.

Tactile information is sparse, and so re¯ning beliefs about the shape must use

data e±cient inference. We follow others working on tactile estimation of surface

shape9,19,20 by employing Gaussian Process (GP) inference.21 This produces data

e±cient, nonlinear regression estimates of the object's surface shape. It also predicts

the variance in these surface estimates. The surface is implicitly de¯ned, being the

0 level set of an unknown function. This implicit surface representation is also well

established.

Given this combination of a representation and an inference method, the

remaining issue is how to explore the object surface so as to generate the data points.

The criterion that we use to drive exploration is reduction of uncertainty in object

shape, again similar to that deployed in the previous work.

Where we make our contribution is in the fact that where others de¯ne the

exploratory actions as poking or grasping actions de¯ned in an essentially two

dimensional (2D) workspace (pushing vertically down onto the object surface from

above; grasping while moving along the object's vertical axis; moving a ¯nger in the

2D plane to a touch point, or following an edge), we address the problem of following
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the object surface as it curves through three dimensional (3D) space. Thus, our

experimental scenario is to have a grasped object that must be explored on as many

sides as is kinematically feasible (Fig. 1). This ¯rst means planning poking actions

that have a full 6 degrees of freedom (DoF) (position and poke orientation relative to

the target touch point and surface normal). In addition, in our problem, the robot

can \trace" the surface, either by sliding, or by making a closely spaced series of

touches that follow the surface as it curves. This requires that we interpret the

implicit surface as a manifold, which constrains the con¯guration space. We then

build a tactile exploration planner using recent methods for sample based explora

tion on manifolds.22 The bene¯t of our approach is the ¯rst tactile exploration al

gorithm that can plan to cover the surface of a 3D object.a We also demonstrate a

real robot system that can perform this exploration while the object is being grasped

by a soft hand.

In more detail, to achieve this, given an implicitly de¯ned predicted surface, we

build a collection of charts (an atlas) that model the shape, and use these to perform

a search across the object, driven towards areas of high uncertainty in the implicit

surface. The construction of the atlas follows, as well as drives, the exploration.

Speci¯cally, we search for points on the estimated surface that have a variance larger

than some pre speci¯ed threshold. The expansion and planning process is repeated

after execution of each touch. By repeated touches, the robot will converge on an

estimated surface, such that any point on it has low variance. The terminating

condition is met when no candidate for the next best touch is found by the GP

AtlasRRT algorithm, which means that the object shape prediction meets the

requirement on variability. Naturally, the smaller the threshold (i.e., the more accurate

Fig. 1. (Left) The GPAtlasRRT strategy suggests touches (light green colored disks) on the predicted

surface. The blue points show the initial partial reconstruction from a depth camera that the robot uses to

guide tactile search. The predicted surface is also shown as points colored from green to red. Green
indicates high uncertainty in the surface prediction, and red indicates low uncertainty. (Right) Our Vito

robot executing a step of tactile exploration.

aAssuming that the object cannot be grasped two sides at a time on all parts of the object, as utilized by

Bjorkman et al.9
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the model is required to be), the higher the number of touches required to converge.

This threshold is the only input to the devised strategy, given either by a higher level

module or the user.

The structure of the paper is as follows. In Sec. 2, we ¯rst review the previous work

related to tactile exploration and object shape representation. In Sec. 3, we clearly

state the problem we aim to solve and in Sec. 4, we present the envisioned approach

for its solution. The experimental results and their discussion are presented in Sec. 5.

Finally, conclusions and points deserving further attention are given in Sec. 6.

2. Related Work

One of the ¯rst attempts to exploit active tactile exploration with passive stereo

vision for object recognition was proposed by Allen.23 In that paper, a rigid tactile

sensor was traced along the object's surface in pre de¯ned movements. The work was

later extended to develop di®erent exploratory procedures to acquire and interpret

3D information on the surface shape.24 The exploratory procedures were, however,

selected by a human. Single ¯nger tactile exploration strategies for recognizing

polyhedral objects have also been evaluated in simulation.25,26

Multiple ¯ngers have also been used for tactile sensing. Moll and Erdmann27

presented a method for reconstructing the shape and motion of an unknown convex

object using three sensorized ¯ngers. In that approach, the object's friction proper

ties must be known a priori and its surface must be smooth, lacking sharp edges and

corners.

Tactile sensing has been used for localization rather than surface recovery. Pet

rovskaya and Khatib11 used tactile exploration to localize an object of known shape.

Since full Bayesian estimation of the pose of a free body is computationally expen

sive, they approximated the posterior with particles. For a well constrained object

dataset, the approach performs pose estimation in under 1 s with high reliability.

Bayesian methods have also been employed in shape estimation. Meier et al.28

performed tactile shape reconstruction using a Kalman ¯lter. E±cient Bayesian

inference using GPs has been used by various authors. For example, Sommer et al.20

proposed a method for bimanual compliant tactile exploration that used the GP

representation to smooth the noisy point data, although they did not exploit the GP

representation to derive the exploratory strategy.

Dragiev et al.19 presented one of the ¯rst works to employ the GP Implicit Surface

(GPIS) representation for concurrent representation of the object shape and guidance

of grasping actions. However, that paper utilized only the maximum a posteriori

(MAP) estimate of the shape and thus did not utilize the ability of the GP to capture

the uncertainty in the surface estimate. Later work, by the same authors,29 o®ered a

way to prefer regions of the model with a particular certainty level in their shape

estimate and introduced the notion of explore grasp and exploit grasp primitives. In

other work,30 GPIS has been compared to a di®erent implicit surface model, showing

some of the disadvantages of GPIS when modeling features such as edges and corners.

C. Rosales et al.
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Algorithms for selecting the sequence of touches have been developed by various

authors. Bierbaum et al.31 guided the tactile exploration by using Dynamic Potential

Fields for motion guidance of the ¯ngers. They showed that grasp a®ordances can be

generated from geometric features extracted from the contact points.

Bjorkman et al.9 showed how to build object models with a small number of tactile

actions (each action involving multiple simultaneous touches by several tactile

arrays) with the aim of categorization, rather than shape recovery. They employed

the GPIS representation mentioned above, with the kernel used by the GP being the

thin plate covariance function derived by Williams.32 A set of prede¯ned tactile

glances are performed on the object: however, these are not updated as the object

model is re¯ned.

Bjorkman's approach is what we term global tactile exploration rather than local

tactile exploration. By local, we mean that the touch choices are constrained so that

subsequent touches are close to one another and to the already explored surface. The

area considered for exploration grows outwards until a suitably uncertain point is

found. This local exploration is very di®erent from a global exploration strategy, in

which any touch action can be considered. There is no inherent bene¯t to either

approach, but local exploration allows us to de¯ne a series of touches across a con

tiguous area of hypothesized surface. Local exploration is a strategy often employed

by humans. Both local and global strategies are important, and local tactile explo

ration has also been considered by others,33,34 but this is the ¯rst paper in which a

local exploration strategy is formulated for full exploration and recovery of a com

plete surface as it curves through 3D space.

There are also other smaller di®erences with Bjorkman's work: the space in which

the next best exploratory action is computed, the grain size to compute the predicted

shape, and the terminating condition for the overall algorithm. Bjorkman et al.9 for

example, drew the exploratory actions from a discretization of the vertical axis of the

workspace and the approach angle. This works because the objects are placed up

right on a table. But, it means that the actions are extrinsic to the shape model. This

is not suitable for exploration while the object is being held by the robot. Neither is

there any guarantee that the contact will be on a particular location on the object

surface. Moreover, since they are interested in a model that is useful for categori

zation, they proposed pointwise curvatures to make it a±ne invariant, for which a

¯ne grained explicit representation is required. We also compute the predicted shape

with a coarse grain for collision avoidance purposes, an issue that is not considered in

that work. Finally, the number of touches in Bjorkman's work is subject to an

absolute limit. The set is ordered according to the closest point on the implicit

function with high variance. In contrast, we set a maximum acceptable uncertainty

for the predicted shape. As a consequence, we can continue to explore until the shape

is su±ciently well known.

More recently, active touch using a GP model has been developed by Jamali

et al.35 That paper uses a combination of GP regression and GP classi¯cation to pick

the next best sample point for a ¯nger. This is driven to where the model has the

GPAtlasRRT: A Local Tactile Exploration Planner

1850014 5

In
t. 

J.
 H

um
an

. R
ob

ot
. 2

01
8.

15
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

 E
N

G
L

A
N

D
 o

n 
03

/0
6/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.



lowest con¯dence in its prediction. One di®erence with our approach is that the

sampling points are speci¯ed in the x; y plane and not in full 3D space. This some

what simpli¯es their path planning problem, as they do not have to calculate a path

over the surface. They also di®er in that they do not employ an implicit surface

model. In addition, their system is unimanual.

A similar approach is that of Yi et al., who used a single ¯nger probe to explore

objects that are ¯xed to a surface. The next best point is the one that has the greatest

variance in the height of the predicted object surface. This is similar to Jamali et al. if

the exploration was dominated by the GP regression model. Our method di®ers from

this work in a similar way to that in which it di®ers from Jamali et al.35 Our problem

is to plan an exploration path on a 3D surface involving a sequence of contacts at a

time, not to select a single next best touch point normal to a plane.

Finally, closer again to our approach is that of Matsubaru et al.33 In this, a GPIS

model is employed, together with a planner that accounts for the trade o® between

the travel distance between touches, and the uncertainty in the surface at the pro

posed touch location. Thus, it is the ¯rst example of an active touch planner that is

local while still being driven towards areas of uncertainty. The main restriction of

that work is its restriction to a 2D model of the 3D object shape (its projection in

the vertical plane). The former allows the use of a grid based discretization of the

workspace as the space within which touches are chosen. A similar approach to

the same problem has been taken by Tosi et al.,36 who pose the planning as a joint

optimization problem, again restricting shape recovery to the 2D outline of an object.

In our work, we instead focus on the problem of how to plan a path of touches for

the robot across a 3D surface. To solve this, we exploit rapidly exploring random

trees (RRT) based planning in continuous but constrained con¯guration spaces, and

approach which is arguably more scalable, although we do not make a comparison

here. Other work that employs local tactile exploration is,34,37 which uses a discrete

Bayesian model of the properties of edges of objects together with active exploration

to follow those edges, the most complex of which is arguably a volute ridge. It does

not, however, model a complete object surface.

3. Problem Statement

Knowledge of object shape is necessary for many manipulation tasks.18 The best

shape representation depends on the precise task, but there are many generally

desirable properties. These include, among others: accuracy, compactness, an intu

itive parametrization, local support, a±ne invariance, an ability to handle arbitrary

topologies, guaranteed continuity, e±cient rendering and support for e±cient colli

sion detection. Since we are concerned with shape recovery for arbitrary novel

objects, the capacity to represent an arbitrary topology while retaining guaranteed

continuity is desirable. Implicitly de¯ned surfaces have these properties.

There are several ways to de¯ne an implicitly de¯ned surface, e.g., via algebraic

equations, blobby models, or variational surfaces. These classical representations do
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not include any measure of shape uncertainty. There is where the work by Williams

and Fitzgibbon32 comes in, introducing the notion of a GPIS. This is not the only

representation to account for uncertainty, but it meets the requirements for a good

shape representation in robotics, as discussed above. Section 3.1 introduces the

notation for GPIS.

The surface estimate, when using GPIS, is simply the mean value of a GP, which

is the 0 level set of an implicitly de¯ned manifold. Henderson et al.38 provide a way

to recover the implicitly de¯ned surface via continuation techniques. That work has

been extended in a number of di®erent directions, including one of the particular

interests for local exploration. The AtlasRRT algorithm is a path planning method

for constrained manipulators.22 It combines continuation techniques for surface re

covery with RRT39 for path generation. This combination allows the computation of

paths in a constrained con¯guration space, i.e., a manifold (such as a surface) em

bedded in an ambient space (such as the workspace). However, the AtlasRRT, as

employed to date, makes no use of uncertainty in the manifold. By combining the

AtlasRRT algorithm with the concept of uncertainty as modeled with GPIS, we can

derive a powerful planner for traversing an uncertain surface. This is the central

technical contribution of this paper. Section 3.2 describes the basic idea behind the

AtlasRRT algorithm.

The ¯nal ingredient required for bimanual object exploration is the equipment

necessary to simultaneously grasp an object with one hand whilst exploring it with

the other. In Sec. 3.3, we enumerate the considerations for the hardware that is to

execute tactile exploration, as well as possible limitations. Finally, with all these

ingredients in mind, we formally de¯ne our problem in Sec. 4.

3.1. Gaussian process implicit surfaces

A surface embedded in a 3D Cartesian space can be regarded as the 0 level set of a

family of surfaces de¯ned by an implicit function Fðx; yÞ ¼ 0, where F : R3þ1 ! R,

with coordinates x 2 R3 and parameter y 2 R. Under the assumption that the im

plicit function theorem holds, it can be expressed, at least locally, as y ¼ f ðxÞ, with
Fðx; f ðxÞÞ ¼ 0. The surface of interest arises when we set y ¼ 0, i.e., when we de¯ne

the 0 level set. The value of f (i.e., y) is positive and increasing as we move outwards

from the surface (rF), and negative and decreasing as we move further inside the

object (�rF).

A GP \is a collection of random variables, any ¯nite number of which have a joint

Gaussian distribution".21 It is completely speci¯ed by a mean, mðxÞ ¼ E½f ðxÞ�, and a

covariance, kðx;x 0Þ ¼ E½ðf ðxÞ �mðxÞÞðf ðx 0Þ �mðx 0ÞÞ�, function, where Eð�Þ is the

expected value of a real process, such that we can write

f ðxÞ � GPðmðxÞ; kðx;x 0ÞÞ: ð1Þ

GPAtlasRRT: A Local Tactile Exploration Planner
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Now, let S be a set of tuples si ¼ ðxi; �i; yiÞ with i ¼ 1; . . . ; n. Here, the xi are points

in the Cartesian workspace, �i are corresponding noise parameters of the tactile

observations,b and yi is the target value for the implicit function (either �1, 0 or +1).

The set S constitutes the tactile observations that are used as the training set for the

GP. We specify mðxÞ ¼ 0 to yield the model

y � Nð0;KðX ;XÞ þ ¾>I¾Þ; ð2Þ
where Nð�; �Þ denotes a normal distribution parametrized by mean and variance; X
corresponds to the inputs from the training set S; Kð�; �Þ is the covariance matrix

formed from elements kij ¼ kðxi;xjÞ, for all pairs of input points i; j : xi;xj 2 X ; ¾ is

the n dimensional vector corresponding to the noise of the ith observation;c and

¯nally, y is the n dimensional vector of target outputs.

The purpose is to predict a vector of target values, y�, given test inputs X�. To
achieve this, Eq. (2) can be block expandedd ;21 to give

y
y�

� �
� N 0;

K þ ¾TI¾ K�
K >� K��

" #
:

 !
; ð3Þ

The two predictive equations can then be derived via algebraic manipulation:

y� ¼ K >
� ½K þ ¾TI¾� 1y; ð4Þ

Vðy�Þ ¼ K�� �K >
� ½K þ ¾TI¾� 1K�: ð5Þ

The ¯rst is the vector of predicted values of the implicit function, and the second is

the vector of the variances in those predictions. If we wish to make a prediction for a

single test input x�, we follow Ref. 21 in further simplifying the notation for the

covariances. In that case, there is a vector of covariances between the test point and

each of the training inputs, denoted kðX ;x�Þ. We will use this later on.

The key choice in using a GP is the choice of kernel for specifying the covariance

between two points in the input space. Intuitively if input points xi;xj are close

together then, in order to have a smooth function, they should strongly covary.

Conversely, as the distance between input points xi ;xj increases, their covariance

tends to zero. We utilize the idea, proposed byWilliams,32 to use the thin plate kernel

kðrÞ ¼ 2r 3 � 3Rr 2 þ R3; ð6Þ
with r ¼ jjx� x 0jj2 and R being the largest r in the training set. This training set only

consists of points on the object surface. To aid training of the implicit function, we

therefore extend the training set to be the composition three sets. First, there are points

on the surface S 0, with tuples of the form si ¼ ðxi; �i; 0Þ. Then, there are points outside
the surface, Sþ, with tuples of the form si ¼ ðxi; 0;þ1Þ and ¯nally there are points

bWe set this to 10mm for visual and 5mm for tactile sensing after experimentation.
cTherefore, I is an n � n identity matrix.
dFor simplicity, we drop the arguments of the matrices such that K KðX ;XÞ, K� KðX ;X�Þ and

K�� KðX�;X�Þ.
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inside the surface, S , with tuples of the form si ¼ ðxi; 0;�1Þ. Thus, the training set

S ¼ S 0 [ Sþ [ S .e

We are now able to predict the target y� ¼ f ðx�Þ and its variance V½ f ðx�Þ� for any
given test point x� in the workspace, given the training set S. To ¯nd the implicit

surface, we need to exhaustively evaluate y� for each point x� in a 3D box grid con

taining the object. The predicted surface points x� are those where y� ’ 0. Figure 2

shows a GPIS, for the pictured mug, sampled with a box grid evaluation. We can use

this to ¯nd candidate surface points for tactile exploration.

We must also ¯nd the best direction for the ¯nger to approach the surface. A good

choice is the predicted surface normal at the candidate point. In our case, the normal

is parallel to the gradient of the function. If we consider the posterior mean of the GP

given in Eq. (4) for a single test point, we have

f ðx�Þ ¼ kðX ;x�Þ>½K þ ¾TI¾Þ� 1y

¼ kðX ;x�Þ>®: ð7Þ
Note that the vector ® is constant for a given training set S, whereas the vector

kðX ;x�Þ gathers the covariance values between the test point and the training set being
the only term depending on the test point. Therefore, the gradient evaluated at x� is

@f ðx�Þ
@x�

¼ @kðx�;XÞ
@x�

®; ð8Þ

eWithout loss of generality, but with a slight gain in e±ciency and parameter tuning, we can also work in a
normalized and o®set-free space, using as scale the larger distance and the centroid from the training set.

This way, for instance, R becomes a ¯xed parameter, as well as the Sþ and S� sets, a trick also exploited in

Ref. 40. Of course, the model exploitation requires a re-scaling and re-centering processing step.

Fig. 2. Gaussian Implicit Surface, obtained from a mug (top-left corner) and sampled with a box-grid
evaluation with fairly high point density. Each point has a predicted target y� ’ 0 and is colored ac-

cordingly to its associated predicted variance, from red (high variance) to green (low variance).

GPAtlasRRT: A Local Tactile Exploration Planner
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which boils down to evaluating, for each combination of test and training point, the

derivative of the thin plate covariance function

@kðrÞ
@r

@r

@x�
¼ ½6rðr � RÞ� xi � x�

jjxi � x�jj2
;

@k�
@x�

¼ 6ðr � RÞðxi � x�Þ;
ð9Þ

for all i : xi 2 X . Consequently, thenormal at the test point,n�, is obtaineddividing the
gradient by its magnitude. Equation (8) is equivalent torf ðxÞ.

3.2. Defining an Atlas of an implicitly-defined surface

How might we represent the implicit surface in such a way that we can easily create

paths across it using standard path planning algorithms? The insight comes from the

fact that the surface is simply one example of a more general phenomenon: a smooth

manifold embedded in some higher dimensional space. Henderson38 gave a precise

method to model such manifolds via a collection of disks. Each disk lies on the

tangent plane to the manifold at some point on the manifold. In our case, the

manifold is the surface of the object, and it is embedded in the Cartesian workspace.

We also refer to the disks as charts, which we can later use for path planning, and

thus we also refer to a collection of disks covering the surface as an atlas. The creation

of the atlas starts with selection of an initial point, x 2 R3, known to be on the

surface, f ðxÞ ¼ 0 (or very close and projected onto it), which gives the center of the

¯rst disk. Adjoining disks are created from this ¯rst one. The method continues

iteratively until all disks are surrounded by neighbors, and the atlas thus provides a

complete coverage of the shape. This concept has been widely used, including

for obtaining representations of constrained con¯guration spaces,41 such as object

surfaces. We now give some details.

First, recall that our implicit surface is de¯ned by the equality constraint f that

holds for all points in the set X0 of points on the object surface

X0 ¼ fx 2 R
3 : f ðxÞ ¼ 0g: ð10Þ

For any point xi 2 X , we can ¯nd its tangent space, i.e., the tangent plane to the

surface at xi. The matrix ©i is the basis of the tangent space for xi . This therefore

de¯nes the mapping of points from this tangent space into R3. Matrix ©i satis¯es

rf ðxÞ
©>

i

� �
©i ¼

0

I

� �
; ð11Þ

where n ¼ 3 and k ¼ 2, hence I is the 2� 2 identity matrix, and©i is a 3� 2 matrix.

Now, let u be the coordinate of a point in the tangent space of xi. It can be mapped to

a point x 0
i 2 R3 as follows:

x 0
i ¼ xi þ©iui: ð12Þ

C. Rosales et al.
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Next, we ¯nd the orthogonal projection of x 0
i onto the object surface, giving xj .

This is achieved by solving the system

f ðxjÞ ¼ 0;

©>ðxj � x 0
iÞ ¼ 0;

�
ð13Þ

where the ¯rst equation compels the point xj to lie on the object surface, and the

second equation compels the projection from the tangent plane to the surface to be

orthogonal. We denote the solution to this system with the function xj ¼  iðuiÞ, and
we use a gradient descent like method to solve it. The new point xj is the surface

point de¯ning the center of the next disk.f

Thus, given a point xi 2 X , one can build a chart Ci that allows us to obtain a new

point xj 2 X . Then, this new point can be used to generate a new chart Cj , and so on. In
order to avoid the parametrization of areas already covered by other charts, they are

intersected according to their validity region, introducing the notion of bounded and

unbounded charts, depending on whether they have been intersected from all direc

tions or not. For instance, the initial chart is by de¯nition unbounded. This coordi

nation process yields the concept of an atlas A: a collection of properly coordinated

charts, that completely covers the manifold when there are no unbounded charts.

The manifold X is smooth everywhere, and without singularities. The target

function f ðxÞ also exists for any point in the ambient space and for any point in the

tangent spaces de¯ned by the Atlas.

Given this machinery, we are now able to compute an atlas A of an implicitly

de¯ned surface X0, given a single starting point xi that lies on the surface or is

su±ciently close to it. How do we determine the direction in which to expand the

initial chart Ci? If we are computing an exhaustive atlas, we may choose randomly.

However, if one wishes to traverse the surface of the object from one point xi 2 X to

some other point xj 2 X while always remaining in contact with the surface, then

there is no need to compute the full atlas, but only the parts covering a path that

connects them.

One way to ¯nd only the necessary charts is to adapt the work of Jaillet et al.,22

who successfully applied the RRT path planning technique to computing collision

free paths on manifolds. We extend this so as to use the RRT to drive exploration

toward uncertain regions. In other words, our atlas naturally grows towards regions

of the predicted surface that need to be improved via tactile exploration.

3.3. Equipment specification and limitations

We now quickly specify additional constraints on the solution entailed by a practical

hardware setup. We would like to recover the contact point on both ¯ngertip and

fThe region of a chart is de¯ned by the choice of u which is typically bounded using rules about the local
curvature of the manifold and the distance from the tangent space to the manifold. However, since these

features are not precisely known in our scenario, we instead employ a slightly di®erent criterion to bound

each chart. We describe this later on.

GPAtlasRRT: A Local Tactile Exploration Planner
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object and the contact normal. There are two main suitable sensor types: (1) tactile

arrays and (2) intrinsic tactile sensors.g The ¯rst type is composed of a grid of

pressure cells of ¯xed area, so the point resolution is limited to the quantization of the

array. This kind of sensor has been widely used due to its multi contact capability.

The second type is a six axis force–torque sensor mounted in a ¯ngertip, the shape of

which permits computation of the contact point and force in closed form.42 This is a

single contact sensor with the pose resolution being typically ¯ner than that of a

tactile sensor array.

A consideration for both types is that, for tactile exploration, they need to be

mounted on a robot with at least 6 DoF, to allow the exploration to happen in

di®erent orientations with respect to the explored object surface. The mobility can be

increased if the object is grasped by a second robot manipulator. The object is both

unknown in shape and yet requires a ¯rm grip to resist the forces made by the tactile

¯nger. This in turn requires that the gripper be adaptive to unexpected contacts, yet

¯rm when the grasp is achieved.

For either sensor type, the reachable space is limited by the size of the probe. With

the intrinsic tactile sensor, one can build a very small tip so as to reach small concave

spaces on the object.

4. GPAtlasRRT

In the preceding section, we described how an implicit surface representation can be

used to create an atlas of local charts. We also mentioned the existence of an algo

rithm for creating an atlas by using an RRT path planning algorithm. We now

continue with a description of how to bring these two elements together into what we

term the GPAtlasRRT strategy.

The method starts from an incomplete observation of the object surface with a

depth camera. To this end, we assume there is a way to segment the object from the

background scene.h The initial observations S 0 are used to infer the implicit surface

model, GP and to start to build the atlas. Algorithm 1 describes how the atlas is built

so as to generate candidate points for tactile exploration which will improve the

implicit surface model, GP, so as to a prede¯ned maximum variance, Vmax.

The ¯rst step is SELECTSURFACEPOINT (line 1) which randomly obtains a point

xi 2 X 0 on which the ¯rst chart will be centered, invoking the CREATECHART function

(line 2). The generated data structure for a chart contains: its center, xi; the or

thonormal tangent basis provided by (11) ©i; rf ðxÞ is equivalent to (8); its radius is

�i; and U i is a set of points in the tangent space. Two things di®erentiate this from

the original AtlasRRT algorithm. First, the size of a chart, also termed its validity

region, is inversely proportional to the variance at the chart center, namely,

�i / V½f ðxiÞ� 1: ð14Þ

gThere is also work reporting the use of a proprioceptive system.
hWe provide technical details of our approach in Sec. 5.1.

C. Rosales et al.
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�i is thus actually the radius of a ball centered at xi, whose intersection with the

tangent space yields the disk shaped chart. The motivation behind this choice is that

the more certain a point is to be on the surface, the larger the region of its chart on

the predicted shape, whereas if more uncertainty is associated with the center,

smaller exploratory steps will be preferred. Second, a number of points proportional

to the size of the chart are sampled from a random uniform density on an annulus of

the disk with internal and external radii 0:8� and �, respectively. The cardinality of

this point set in the tangent space is proportional to its size, namely,

#U i / �i: ð15Þ
This implies that the larger the chart, the more samples are needed to obtain a good

quantization of it.i

The ¯rst chart is the root node of an exploration tree (line 3). The question

whether an atlas ISEXPANDABLE or not (line 4) is answered by checking whether there

is at least one chart i with #U i 6¼ 0. If the predicted surface is completely covered

with charts, the while condition will fail and the algorithm terminates (line 12),

otherwise it loops. The ¯rst step selects a chart to expand (SELECTCHART, line 5) from

those charts i with a nonempty point set U i 6¼ ;. Tree expansion is either depth ¯rst

(selecting the most recently created chart), with probability p ¼ 0:4, or a randomized

Algorithm 1: GPAtlasRRT
P ← GPAtlasRRT(M, Vmax)
input: A GP model, M and the set of parameters Ω, defining criteria to

decide how to start, extend and end the exploration.
output: The best next action, P, in the form of a path, if any, or ∅

otherwise.
1 xi ← selectSurfacePoint(GP)
2 Ci ←createChart(xi, GP)
3 A ← addChart(Ci)
4 while isExpandable(A) do
5 Cj ←selectChart(A)
6 xk ←expandChart(Cj , GP)
7 Ck ← createChart(xk, GP)
8 A ←addChart(A, Ck)
9 if V[f(xk)] > Vmax then

10 P ← getPath(Ci, Ck)
11 return P
12 return ∅

iAnother advantage of working with a normalized and o®set-free set, as mentioned in Sec. 3.1, is that the

parameters that make the latter two expressions equal are tuned once, and remain ¯xed.

GPAtlasRRT: A Local Tactile Exploration Planner
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sample (across other charts), with probability 1� p. In the ¯rst iteration, Ci is the
only chart, and thus guaranteed to be expandable.

Next, the EXPANDCHART operation, on the selected chart s, (line 6) chooses, from

all the points j in its annulus us;j 2 Us, the point in the tangent plane u�
s;j with the

largest variance in the target function (when it is projected onto the object surface),

that is,

u�
s;j ¼ argmax

us;j2U
V½f ð sðus;jÞÞ�: ð16Þ

In the Cartesian space, this new surface point is xj ¼  sðu�
s;jÞ. A chart, Cj , is then

created, centered on this point and added to the atlas (lines 7–8). When the new

chart Cj is added, we must remove all the points in the annulus of every other chart Ci
that correspond to surface points which are also covered by the disk Cj .j

Finally, the expected variance of the center point of the most recent chart is

compared against the input threshold Vmax (line 8). If the variance is less than the

threshold, then atlas expansion continues. Otherwise, the best exploration path P is

returned (lines 10–11). Recall that this path lies on the predicted surface. Thus, the

controller to follow it must be compliant to avoid damage. The new tactile obser

vations increase the training set, S 0, reducing the uncertainty of the surface model.

Figures 3 and 4 show the AtlasRRT in the process of expansion on the implicit

Fig. 3. The AtlasRRT expanding across the implicit surfaces of a mug (left) and a colander (right). The
RRT used to create the atlas is marked in blue. The selected sequence of charts is highlighted in light green,

and the associated path is marked in red (it is slightly obscured in the right panel). The robot tries to touch

the object at the center of each chart in the sequence. Both objects are viewed from above.

jThis was not mentioned in the ¯rst call of the ADDCHART in line 3, because at that point, there is only the

root chart in the atlas.

C. Rosales et al.
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surfaces for two partially explored objects. The next section describes how the

GPAtlasRRT strategy is embedded in a tactile exploration scenario.

4.1. Tactile exploration using GPAtlasRRT

The GPAtlasRRT algorithm is the planner that drives tactile exploration. This must

be embedded in an overall execution and inference loop (Algorithm 2). The initial,

incomplete observation may be visual or tactile (lines to compute the model 2–5).

Given this, the robot plans a sequence of touches, P, (line 7), executes the next touch
and updates the GPIS model. We have now presented the inference and planning

components. Now, we present the execution component.

Several facts determine the di±culty of the problem and the shape of the solution

for execution. First, to enable autonomous acquisition of near complete object

models, the robot should ideally be able to reorientate the object to expose di®erent

surfaces. This requires that the object should be grasped by a second manipulator.

Second, to minimize data errors due to object movement during exploration, the

object must not move, so the grasp should be ¯rm. However, a second feature of the

problem is that the shape is not known. This makes obtaining a ¯rm grasp chal

lenging. We employed an underactuated manipulator (the Pisa/IIT soft hand43),

which is both powerful and copes well with unmodeled contacts.

There is then, however, a third problem. The view of the grasped object contains

not only the object but also the hand. So, the hand and object must be segmented

from one another. Since underactuated hands do not typically possess position

encoders, recovering the hand pose so as to segment the hand from the point cloud of

the grasped object is nontrivial (line 3).

To tackle this, we sensorized the soft hand using inertial measurement units

(IMUs)44 to recover the hand con¯guration. Using this information, together with

the arm con¯guration, we crop the scene point cloud to separate the points on the

Fig. 4. A funnel (left-upper corner) is ¯rst seen by a depth camera. The segmented 3D points are shown in

blue in the left ¯gure to form the training set S 0. The predicted shape by the GP on this set is shown in the
middle obtained via a marching cube sampling algorithm. However, the GPAtlasRRT strategy does not

require the explicit form of the predicted surface, as shown in the right ¯gure. It works with the implicit

form to devise the next best tactile exploration shown in brighter green.

GPAtlasRRT: A Local Tactile Exploration Planner
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object from those on the hand. The partial coverage of the object surface by the

grasping hand limits the extent of the tactile exploration. This would require a re

grasp maneuvre, which falls out of the scope of this paper.

Having grasped the object, segmented it, inferred the initial GP model, and

planned a sequence of touches, the robot ¯nger moves to a pose from which it can

initiate a movement to make the ¯rst touch (APPROACHTO). This must be a safe

distance from the predicted surface and normal to the target contact point. Since the

object shape representation captures its uncertainty, a coarse point cloud is com

puted from the GP model and used to build a probabilistic collision map. Then, the

robot moves to contact the surfacePROBEOBJECT, resulting in contact or noncontact.

There are two schemes, in one the probe touches each point in the path P. In the

other, only the ¯nal, high variance, point in P is touched.

The resulting position(s) xi and target(s) yi form a (series of) tuple(s) collected in

the observation set S 0þ (line 10). During touch motions, collision avoidance is dis

abled and the probe moves compliantly. Once the end of the path is reached, the

training set is updated (line 11). This is used to recompute a better model of the

object surface, GP (line 12). We then move the probe away (line 13). When the GP
model has a maximum variance of Vmax for any point on the implicit surface, that is,

V½ f ðxÞ� < Vmax; 8x 2 X , exploration terminates.

Algorithm 2: Surface modeling via GPAtlasRRT
TactileExploration(Z, Vmax)
input: An initial point cloud of the scene, Z, and the desired variance,

Vmax, for the overall surface prediction.
output: The object model as a GP, GP.

1 if isEmpty(Z) then
2 S0 ← naiveProbe()

3 else
4 S0 ← segmentObject(Z)

5 S ← generateTrainSet(S0) GP ←computeModel(S)
6 while true do
7 P ←GPAtlasRRT(GP, Vmax)
8 if P �= ∅ then
9 ApproachTo(P, GP)

10 S0+ ←probeObject(P)
11 S ← updateTrainSet(S, S0+)
12 GP ←computeModel(S)
13 MoveAway(GP)

14 else
15 return GP

C. Rosales et al.
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The next section presents two experimental studies, one in simulation, where

PROBEOBJECT is performed by raycasting on object meshes, and a real robot experi

ment.

5. Experimental Validation

To validate the approach, we ¯rst devised a simulation, where we performed tests

on nine everyday objects, represented as polygonal meshes of Fig. 5. These were

obtained using an RGBD sensor and a turntable. They are used as ground truth and

to create simulated depth images. Each trial iterated the GPATLASRRT algorithm,

Algorithm 1 in Sec. 4, until the shape was predicted with desired variance

Vmax ¼ 0:1. The selected tactile actions were simulated using raycasting. Rays are

uniquely de¯ned by a chart center, as pivot point, and its normal, as direction. Thus,

we can de¯ne ray–mesh intersections as touches, and nonintersections as points

outside the surface. We adopted three di®erent tactile schemes, thus forming three

conditions, for a total of 27 full shape reconstructions. These are as follows:

. Random Touch for the ¯rst condition: the robot just attempted to touch a

random point on the GP manifold. This repeated until the reconstructed shape

had a maximum variance of 0:1. This was our control condition or baseline. Test

results are shown in Table 1.

. Single Poke for the second condition: we used the GPATLASRRT by poking the

last chart in the path. The convergence criterion was the same as for the random

condition. Results in Table 1 show a signi¯cant reduction in the number of tactile

actions required to reach the requested shape uncertainty.

Fig. 5. Object meshes used as ground truth for our simulated tests. From top to bottom and from left to

right: bowl A, bowl B, container A, container B, jug, kettle, spoon, mug and pot. The typical maximum

dimension of each object is from 20 cm to 40 cm.

GPAtlasRRT: A Local Tactile Exploration Planner
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. Sliding Touch for the ¯nal condition: we used the full path generated by

GPAtlasRRT. Starting from the root chart, we made simulated touches and from

each one, re interpolated the path toward the next chart. This was repeated until

the tip of the atlas branch was reached. As the virtual probe moves across each

chart, many data points were gathered, in contrast to the single poke or random

conditions. We hypothesized that this condition would be the best performer in

terms of the quality of the reconstructed shape, and in terms of the number of

charts traversed. Table 1 shows this to be correct.

The three experiments clearly show the superiority of the single poke and sliding

touch methods in terms of number of required steps and in terms of quality of the

produced mesh. We performed Mann–Whitney tests to ¯nd the statistical signi¯

cance of the di®erence between each pair of algorithms, by ranking their perfor

mances.k For the number of separate touches until convergence, all pairs of

algorithms were signi¯cantly di®erent at p < 0:001 for a two tailed test. For the

quality of implicit surface estimation, the di®erence between the sliding condition

and the single poke was signi¯cant at p < 0:05 for a two tailed test.

As a ¯nal benchmark, Table 2 summarizes the comparison between the test

methods and Fig. 6 shows some of the GPAtlasRRT sliding touch reconstructed

shapes with the ground truth meshes next to them.l

5.1. Robot experiments

This section provides an empirical evaluation of Algorithm 2 on our real robotic

platforms. As mentioned in Sec. 4.1, we do not implement a regrasping maneuvre to

kDespite not exploiting the paired nature of the data, this is a good test to use in the instance, as it avoids
any assumptions about the underlying distribution of scores.

Table 1. Simulated results for all three conditions in terms of the

required number of actions (steps) and the root-mean-squared error

(RMSE) between the predicted shape and the ground truth mesh.
RMSE is in m.

Random poke Single poke Sliding

Object Steps RMSE Steps RMSE Steps RMSE

Bowl A 67 0.0025 27 0.0023 8 0.0015

Bowl B 38 0.0038 18 0.0036 5 0.0028
Container A 124 0.0033 20 0.0035 11 0.0028

Container B 68 0.0062 19 0.0043 8 0.0026

Jug 106 0.0027 20 0.003 9 0.0025
Kettle 98 0.0031 17 0.0032 9 0.0029

Spoon 35 0.0058 10 0.0055 8 0.0031

Mug 238 0.0017 28 0.0020 12 0.0018

Pot 33 0.0035 12 0.0032 6 0.0028

Mean ��90 0.0036 �19 0.0034 �8 0.0025

lAdditionally, we recorded videos of the shape reconstructions, see goo.gl/4GKYTp.

C. Rosales et al.
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overcome hand induced occlusions, and thus reconstructions in the real robot case

are incomplete, as we segment the grasped part of the object.m The technical details

are now given.

In this scenario, we employ our Vito and Boris robots. These are bimanual robots

equipped with two KUKA LWR 4+, one Pisa/IIT soft hand43 as one end e®ector,

and the intrinsic tactile sensor con¯guration as introduced in Ref. 46. With Vito, we

start a trial by handing the robot an object. Afterwards, the object is segmented with

the help of the recently developed IMU based glove by Santaera et al.44 to measure

the hand con¯guration, and we remove the entire robot body from the scene. Other

Table 2. Overall comparison: GPAtlasRRT

with sliding touch outperforms in terms of

e±ciency and accuracy. RMSE is in m.

Tests Mean steps Mean RMSE

Random touch 90 0.0036
Single poking 19 0.0034

Sliding touch 8 0.0025

Fig. 6. Comparison of reconstructed shapes (left) with the ground truth meshes (right), obtained with

our GPAtlasRRT via the sliding touch method.

mThe implementation is mixed open-source github.com/CentroEPiaggio/pacman-DR54, heavily based
on the Robot Operating System.45 The GPAtlasRRT (Algorithm 1) is a submodule github.com/pacman-

project/gaussian-object-modelling. As with the simulated results, we present an accompanying video

https://goo.gl/4GKYTp.

GPAtlasRRT: A Local Tactile Exploration Planner

1850014 19

In
t. 

J.
 H

um
an

. R
ob

ot
. 2

01
8.

15
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

 E
N

G
L

A
N

D
 o

n 
03

/0
6/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.



typical ¯lters such as pass through and downsampling were applied to speed up the

overall pipeline. The acquired cloud contained an incomplete view of the object and

constituted the initial training data for the GP, namely S 0. Figure 8 shows the initial

model. Then, a sequence of touches was performed. The experiments were performed

using the single poke condition.n Planning for the bimanual and unimanual setups

used MoveIt. We performed both IK solving and path planning using this, and

rejected tactile touches with unfeasible paths. In the event of path planning failure,

we simply restart the tactile exploration procedure.

The experimental results on Vito have shown that the grasping hand necessarily

prevents full completion of the model, so an additional terminating condition is

used.o On Boris, the object is not handed to the robot, but held by a clamp. Thus, we

only used Boris's arm with the intrinsic tactile sensor. This choice was made so

that ��� due to kinematic restrictions of this robot when operating bimanually

without re grasp ��� the robot can reach and touch as large a proportion of the

object's surface as possible, thus giving the most complete run of the tactile explo

ration algorithm. Figure 7 shows the setup.

On Boris, we ran the tactile exploration algorithm on a white plastic jug. Figure 9

shows the evolution of the estimated model against the number of touches. The color

of the points encodes the variance in the surface estimate, ranging from red (high

variance) to blue (low variance). Figure 9(a) presents the initial model obtained from

the point cloud. From left to right, the models are generated after, respectively, 5(b),

15(c), 25(d) and 32(e) touches. It is interesting to see that even after 15 touches, the

model is already close to the ¯nal shape estimate for the jug, but the GP is uncertain

Fig. 7. Real experimental setup. Boris explores an object ¯xed on the table.

nThe sliding condition requires more sophisticated impedance control than we had readily available. This

makes sliding with our method a good piece of future work.
oThis is a threshold for a number of failed consecutive attempts to execute a touch, and models the fact

that it is not possible to touch areas occluded by the hand.
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and so the procedure keeps exploring until the variance is reduced below the

threshold everywhere.

6. Conclusions and Future Work

This paper presented a method for exploring an object on all sides with a ¯nger. Key

to our approach was a combined shape representation and planning algorithm

Fig. 8. Our Vito robot performs a tactile exploration action using the proposed GPAtlasRRT strategy.

The per point color code is the same as in Fig. 1.

object (a) from vision (b) 5 t (c) 15 t (d) 25 t (e) 32 t

Fig. 9. Experiment on Boris. Left, the object and the initial GP model from the single view from the
depth camera. The model improvement as the number of touches increases from left to right. The colors

represent the variance from red (high variance) to blue (low variance). After 15 touches, the model already

converges to the shape of the jug. The handle is excluded from inference since it is grasped and thus not

explored. The GPAtlasRRT algorithm terminates after 32 touches.

GPAtlasRRT: A Local Tactile Exploration Planner
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(GPAtlasRRT). The planner allows the robot to estimate the location of unseen and

untouched surface. Together they allow planning of local tactile exploration of an

incompletely modeled object. We demonstrated the bene¯ts both in simulation, and

on a real robot. The real robot system also demonstrated the ability to grasp an

object with one hand, segment this hand from the object in an initial point cloud, and

then extend the model with touches guided by GPAtlasRRT.

This local tactile planning strategy required bringing together GPISs and the

determination of implicitly de¯ned manifolds via continuation techniques. This

exploited the ability of GPs to naturally represent model uncertainty.

The bene¯cial features of the approach are several. First, the planning method

does not require the computation of the explicit form of the entire predicted shape.

Second, the strategy makes no assumptions about the exploratory probe. Third, it

can plan sequences of tactile actions across a contiguous portion of the object surface,

thus providing a detailed surface reconstruction. Fourth, the robot implementation

allows the robot to explore an object as it holds it.

The proposed strategy was compared to a naive one, where touch rays were

directed randomly. Our strategy outperforms this, whether using a single touch, or a

touch sequence. The strategy was also tested successfully using our Vito and Boris

robots. The previously published methods simpli¯ed the setting by placing the object

on a table and then planning actions in a Cartesian space. This does not permit the

robot to plan to traverse to the unseen back surfaces of objects with a single ¯nger, or

to explore objects rotated as they held in the hand. Instead, by creating an object

centered representation, the method presented here is able to handle these cases,

which are the characteristics of human tactile exploration of objects.

Several points deserve further attention and future work. Perhaps most relevant

to this work is the consideration of gradient observations as described in Ref. 47,

especially due to our hardware setup. This feature has been presented in related

work but not previously exploited. Another interesting point arises when discussing

how to locally explore the model, that is, the direction to move within a chart. A

third interesting topic is the use of the proposed strategy to drive a control loop

where the controller command can be part, or even just the ¯rst single step, of the

exploratory path. According to our experience, this is a feasible and promising road

to explore. Implementation issues also lead to nontrivial scienti¯c problems. For

example, the problem of maintaining a stable grasp during bimanual exploration

needs to be more thoroughly addressed. We found that an underactuated hand

could maintain a ¯rm hold of the object, but movements of the object in hand could

seriously degrade the model quality. This could be addressed by re estimating the

object position in hand by best ¯tting its pose against the parts of the model that

are most certain. The problem can also be addressed by carefully controlling the

applied forces during exploration. We believe that position based planners are

inadequate for this task, and that various compliant/force control strategies could

be applied.
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