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ABSTRACT

Aims. We report a new microscopic equation of state (EOS) of dense symmetric nuclear matter, pure neutron matter, and asymmetric
and β-stable nuclear matter at zero temperature using recent realistic two-body and three-body nuclear interactions derived in the
framework of chiral perturbation theory (ChPT) and including the ∆(1232) isobar intermediate state. This EOS is provided in tabular
form and in parametrized form ready for use in numerical general relativity simulations of binary neutron star merging. Here we use
our new EOS for β-stable nuclear matter to compute various structural properties of non-rotating neutron stars.
Methods. The EOS is derived using the Brueckner–Bethe–Goldstone quantum many-body theory in the Brueckner–Hartree–Fock
approximation. Neutron star properties are next computed solving numerically the Tolman–Oppenheimer–Volkov structure equations.
Results. Our EOS models are able to reproduce the empirical saturation point of symmetric nuclear matter, the symmetry energy
Esym, and its slope parameter L at the empirical saturation density n0. In addition, our EOS models are compatible with experimental
data from collisions between heavy nuclei at energies ranging from a few tens of MeV up to several hundreds of MeV per nucleon.
These experiments provide a selective test for constraining the nuclear EOS up to ∼4n0. Our EOS models are consistent with present
measured neutron star masses and particularly with the mass M = 2.01 ± 0.04 M� of the neutron stars in PSR J0348+0432.
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1. Introduction

With central densities exceeding the density of atomic nuclei
(2.6× 1014 g/cm3) several times over, neutron stars (NSs) are the
densest macroscopic objects in the universe. They thus represent
incomparable natural laboratories that allow us to investigate the
constituents of matter and their interactions under extreme con-
ditions that cannot be reproduced in any terrestrial laboratory,
and to explore the phase diagram of quantum chromodynamics
(QCD) in a region that is presently inaccessible to numerical cal-
culations of QCD on a space–time lattice (D’Elia & Lombardo
2003; Gupta 2010; Fukushima & Hatsuda 2011).

The global properties of NSs (mass, radius, maximum mass,
maximum spin frequency, etc.) and their internal composition
(constituent particle species and possible different phases of mat-
ter) primarily depend on the equation of state (EOS) of strong in-
teracting matter (Prakash et al. 1997; Lattimer & Prakash 2016)
i.e., on the thermodynamical relation between the matter pres-
sure, energy density, and temperature. The EOS of dense matter
is also a basic ingredient for modeling various astrophysical phe-
nomena related to NSs, such as core-collapse supernovae (SNe;
Oertel et al. 2017) and binary neutron star (BNS) mergers.

Determining the correct EOS model that describes NSs is
a fundamental problem of nuclear and particle physics and of
astrophysics, and major efforts have been made during the last
few decades to solve it by measuring different NS properties us-
ing the data collected by various generations of X-ray and γ-ray
satellites and by ground-based radio telescopes.

The recent detection of four gravitational wave events
(Abbott et al. 2016a,b, 2017a,b) caused by binary black
hole mergers, but in particular the very recent detection
of gravitational wave signals from a binary neutron star
merger (Abbott et al. 2017c), is giving a big boost to
the research on dense matter physics. The gravitational
wave signal, especially from the BNS post-merger phase,
offers a unique opportunity to test different dense matter
EOS models (Shibata et al. 2005; Bauswein & Janka 2012;
Takami et al. 2014; Bernuzzi et al. 2015; Sekiguchi et al. 2016;
Rezzolla & Takami 2016; Bauswein et al. 2016; Endrizzi et al.
2016; Maione et al. 2016; Ciolfi et al. 2017; Radice et al. 2017;
Piro et al. 2017). Thus, gravitational wave astronomy will open
a new window to explore matter under extreme conditions.

As mentioned before, due to their large central den-
sities, various “exotic” constituents, for example hyperons
(Glendenning 1985; Vidaña et al. 2011a; Chatterjee & Vidaña
2016; Haidenbauer et al. 2017) or a quark deconfined phase
of matter (Glendenning 1996; Bombaci et al. 2008, 2016;
Logoteta et al. 2012; Bombaci & Logoteta 2013), are expected
in neutron star interiors.

In the present work, we consider the more traditional view
where the core of a NS is modeled as a uniform charge-neutral
fluid of neutrons, protons, electrons, and muons in equilibrium
with respect to the weak interaction (β-stable nuclear matter).
Even in this “simplified” picture, the determination of the EOS
from the underlying nuclear interactions remains a challenging
theoretical problem. In fact, it is necessary to calculate the EOS
to extreme conditions of high density and high neutron-proton
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asymmetry, i.e., in a regime where the EOS is poorly con-
strained by nuclear data and experiments. The nuclear sym-
metry energy is thus one of the most important quantities that
controls the composition and the pressure of β-stable nuclear
matter (Bombaci & Lombardo 1991; Zuo et al. 2014), and con-
sequently many NS attributes such as the radius, moment of in-
ertia, and crustal properties (Lattimer 2014; Lattimer & Prakash
2016).

Another important issue is related to the role of three-
nucleon forces (TNFs) on the EOS, particularly at high den-
sity. In fact, it is well known that TNFs are essential in order
to reproduce the experimental binding energy of few-nucleon
systems (A = 3, 4) and the empirical saturation point (n0 =
0.16 ± 0.01 fm−3, E/A|n0 = −16.0 ± 1.0 MeV) of symmet-
ric nuclear matter. As shown by several microscopic calcula-
tions (Wiringa et al. 1988; Baldo et al. 1997; Akmal et al. 1998;
Li & Schulze 2008) of the EOS of β-stable nuclear matter based
on realistic nucleon-nucleon (NN) interactions supplemented
with TNFs, it is possible to obtain NSs with maximum mass1

Mmax ∼ 2 M�, thus in agreement with currently measured
masses. However, the value of Mmax depends in a sensitive man-
ner on the TNFs strength at high density (Li & Schulze 2008),
thus indicating that the properties of few-body nuclear systems
and of nuclear matter saturation cannot be used to constrain
TNFs at high density.

Recent years have witnessed a significant progress in the
description of nuclear interactions. In fact, the chiral effective
field theory (ChEFT) has opened a new avenue for the de-
scription of nuclear interactions (Weinberg 1979, 1990, 1991,
1992; Epelbaum et al. 2009; Machleidt & Entem 2011) and nu-
clear systems consistent with QCD, the fundamental theory of
the strong interaction. The significant advantage of using this
method consists in the fact that two-body, three-body, and even
many-body nuclear interactions can be calculated perturbatively,
i.e., order by order, according to a well-defined scheme based on
a low-energy effective QCD Lagrangian that retains the symme-
tries of QCD and in particular the approximate chiral symmetry.
Within this chiral perturbation theory (ChPT) the details of the
QCD dynamics are contained in parameters known as the low-
energy constants (LECs), which are fixed by low-energy experi-
mental data.

Recently, Piarulli et al. (2016) have formulated a fully local
in coordinate-space two-nucleon chiral potential which in-
cludes the ∆(1232) isobar (hereafter the ∆ isobar) interme-
diate state. This new potential represents the fully local ver-
sion of the minimally non-local chiral interaction reported
in Piarulli et al. (2015). It has been pointed out by various
authors (Kaiser et al. 1998; Krebbs et al. 2007) that a ∆-full
ChPT has an improved convergence with respect to the ∆-less
ChPT. In addition, the ∆-full ChPT naturally leads to TNFs
induced by two-pion exchange with excitation of an interme-
diate ∆, the celebrated Fujita–Miyazawa three-nucleon force
(Fujita & Miyazawa 1957).

In this work, we present a new microscopic EOS of
dense symmetric nuclear matter (SNM), pure neutron matter
(PNM), and asymmetric and β-stable nuclear matter at zero
temperature using the local chiral potential by Piarulli et al.
(2016) supplemented with TNFs (Logoteta et al. 2016b) and
employing the Brueckner–Bethe–Goldstone (BBG; Day 1967;
Baldo & Burgio 2012) many-body theory within the Brueckner–
Hartree–Fock (BHF) approximation. This zero temperature EOS
is provided both in tabular form and in parametrized form

1 Stellar masses are given in units of solar mass M� = 1.989 × 1033 g.

ready for use in numerical general relativity simulations of
binary neutron star merging after being supplemented by a
thermal contribution as described in e.g., Shibata et al. (2005),
Bauswein & Janka (2012), Takami et al. (2014), Bernuzzi et al.
(2015), Rezzolla & Takami (2016), Bauswein et al. (2016),
Endrizzi et al. (2016), Maione et al. (2016), Ciolfi et al. (2017).

In addition, we use our new EOS for β-stable nuclear mat-
ter to compute various structural properties of non-rotating neu-
tron stars. The present work represents a development and an
extension to high nuclear baryon densities (n > 2.5n0) relevant
for astrophysical applications with respect to our previous works
(Logoteta et al. 2015, 2016a,b) where ChPT nuclear interactions
are used in BHF calculations of nuclear matter properties around
the empirical saturation density.

The paper is organized as follows: in Sect. 2 we present the
nuclear interactions we have considered; in Sect. 3 we describe
the BBG many-body theory and discuss the inclusion of TNFs
in this framework; in Sect. 4 we present our results for the EOS
of SNM and PNM; in Sect. 5 we report the calculated symmetry
energy and the EOS for asymmetric and β-stable nuclear matter;
in Sect. 6 we present various neutron star properties, as calcu-
lated with our new EOS; in the last section we summarize our
main results.

2. Nuclear interactions in chiral perturbation theory

In this section we briefly describe the specific interactions we
have employed in the present work. Among the wide variety of
nuclear interactions derived in the framework of ChPT, for the
two-body nuclear interaction, we have used the fully local chiral
potential at the next-to-next-to-next-to-leading-order (N3LO) of
ChPT, including ∆ isobar excitations in intermediate state (here-
after N3LO∆) recently proposed by Piarulli et al. (2016). This
potential was originally presented in Piarulli et al. (2015) in a
minimal non-local form. We note that Piarulli et al. (2016) report
different parametrizations of the local potential obtained by fit-
ting the low-energy NN experimental data using different long-
and short-range cutoffs. In the calculations presented in this
work, we use the model b described in Piarulli et al. (2016; see
their Table II), which fits the Granada database (Navarro et al.
2013) of proton-proton (pp) and neutron-proton (np) scattering
data up to an energy of 125 MeV in the laboratory reference
frame and has a χ2/datum ∼ 1.07.

There is a great deal of experimental evidence that the ∆ iso-
bar plays an important role in nuclear processes. For instance the
excitation of the ∆ isobar is needed to reproduce the observed en-
ergy spectra of low-lying states in s- and p-shell nuclei and to re-
produce the correct spin-orbit splitting of P-wave resonances in
low-energy n-α scattering (Pieper et al. 2001; Nollett et al. 2007;
Carlson et al. 2015). It is consequently very important to test this
new chiral nuclear potential (Piarulli et al. 2016) also in nuclear
matter calculations at high density for astrophysical applications.

For the TNF, we have used the potential by Epelbaum et al.
(2002) calculated at the next-to-next-to-leading-order (N2LO) of
ChPT in its local version given by Navratil (2007). The N2LO
TNF depends on the parameters c1, c3, c4, cD, and cE , i.e., the
LECs. The N2LO three-nucleon interaction keeps the same op-
eratorial structure, including or not the ∆ degrees of freedom
(Krebbs et al. 2007). We note that the constants c1, c3, and c4
are already fixed at the two-body level by the N3LO interaction.
However, when including the ∆ isobar in the three-body poten-
tial, the parameters c3 and c4 take additional contribution from
the Fujita–Miyazawa diagram. This diagram appears at the next-
to-leading-order (NLO) of ChPT and it is clearly not present in
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Table 1. Values of the low-energy constants (LECs) of the TNF models
used in the present calculations.

cD cE c1 c3 c4

N2LO∆1 –0.10 1.30 –0.057 –3.63 3.14
N2LO∆2 –4.06 0.37 –0.057 –3.63 3.14

Notes. In the first and second rows, we list the parametrizations of the
N2LO three-body force with the ∆ isobar excitations. The values c1, c3,
and c4 have been kept fixed. The LECs c1, c3, and c4 are expressed in
GeV−1, whereas cD and cE are dimensionless.

the theory without the ∆ (see discussion in Logoteta et al. 2016b
for more details).

The values of the LECs ci in the TNF used in the present
work are reported in Table 1 for two different parametrizations.
As mentioned previously, the parameters c1, c3, and c4 are al-
ready fixed by the NN and πN (pion–nucleon) interaction, while
the parameters cD and cE are not determined at the two-body
level and thus have to be set by reproducing some specific ob-
servable of few-body nuclear systems or by reproducing the em-
pirical saturation point of SNM.

The first TNF parametrization (hereafter N2LO∆1) was de-
termined in Logoteta et al. (2016b), fitting the LECs cD and
cE to get a good saturation point for SNM. For the second
TNF parametrization (hereafter N2LO∆2) the values of cD
and cE were set in order to reproduce the 3H binding energy
(Logoteta et al. 2016b).

3. The Brueckner–Bethe–Goldstone many-body
theory

The Brueckner–Bethe–Goldstone (BBG) many-body theory is
based on a linked cluster expansion (the hole-line expansion) of
the energy per nucleon Ẽ ≡ E/A of nuclear matter. The var-
ious terms of the expansion can be represented by Goldstone
diagrams grouped according to the number of independent hole-
lines (i.e., lines representing empty single particle states in the
Fermi sea). The basic ingredient in this approach is the Brueck-
ner reaction matrix G, which sums, in a closed form, the infinite
series of the so-called ladder-diagrams and takes into consid-
eration the short-range strongly repulsive part of the nucleon-
nucleon interaction.

In the general case of asymmetric nuclear matter with neu-
tron number density nn, proton number density np, total nucleon
number density n = nn + np, and isospin asymmetry (asymmetry
parameter),

β =
nn − np

n
, (1)

the reaction matrix depends on the isospin 3rd components τ
and τ′ of the two interacting nucleons. Thus, there are differ-
ent G-matrices describing the nn, pp, and np in medium effec-
tive interactions. They are obtained by solving the generalized
Bethe–Goldstone equations

Gττ′ (ω) = v + v
∑
ka,kb

| ka, kb〉Qττ′ 〈ka, kb |

ω − ετ(ka) − ετ′ (kb) + iη
Gττ′ (ω), (2)

where v is the bare NN interaction (or a density dependent
two-body effective interaction when three-nucleon forces are
introduced; see next section) and the quantity ω is the so-called
starting energy. In the present work we consider spin unpolarized

nuclear matter, thus in Eq. (2) and in the following equations
we drop the spin indices to simplify the formalism2. The opera-
tor |ka, kb〉Qττ′〈ka, kb| (Pauli operator) projects on intermediate
scattering states in which the momenta ka and kb of the two
interacting nucleons are above their respective Fermi momenta
k[τ]

F and k[τ′]
F since states with momenta smaller that these values

are occupied by the nucleons of the nuclear medium. Thus the
Bethe–Goldstone equation describes the scattering of two nu-
cleons in the presence of other nucleons, and the Brueckner G
matrix represents the effective interaction between two nucleons
in the nuclear medium and properly takes into account the short-
range correlations arising from the strongly repulsive core in the
bare NN interaction.

The single-particle energy ετ(k) of a nucleon (τ = n, p) with
momentum k and mass mτ is given by

ετ(k) =
~2k2

2mτ
+ Uτ(k), (3)

where Uτ(k) is a single-particle potential that represents the
mean field felt by a nucleon due to its interaction with the other
nucleons of the medium. In the BHF approximation of the BBG
theory, Uτ(k) is calculated through the real part of the on-energy-
shell G-matrix (Bethe et al. 1963; Hüfner & Mahaux 1972) and
is given by

Uτ(k) =
∑
τ′

∑
k′≤k[τ′ ]

F

Re 〈k, k′ | Gττ′ (ω∗) | k, k′〉a, (4)

where the sum runs over all neutron and proton occupied states,
ω∗ = ετ(k) + ετ′ (k′), and the matrix elements are properly anti-
symmetrized. We make use of the so-called continuous choice
(Jeukenne et al. 1976; Grangè et al. 1987; Baldo et al. 1990,
1991) for the single-particle potential Uτ(k) when solving the
Bethe–Goldstone equation. As shown by Song et al. (1998) and
Baldo et al. (2000), the contribution of the three-hole-line dia-
grams to the energy per nucleon E/A is minimized in this pre-
scription and a faster convergence of the hole-line expansion for
E/A is achieved with respect to the gap choice for Uτ(k).

In this scheme Eqs. (2)–(4) have to be solved self-
consistently using an iterative numerical procedure. Once a self-
consistent solution is achieved, the energy per nucleon of asym-
metric nuclear matter is

Ẽ(n, β) = Ẽkin(n, β) + Ṽ(n, β) , (5)

where

Ẽkin(n, β) =
1
A

∑
τ

∑
k≤k[τ]

F

~2k2

2mτ

= Ẽkin
0 (n)

1
2

{mp

m
(1 + β)5/3 +

mn

m
(1 − β)5/3

}
(6)

is the total kinetic energy per nucleon. In the previous expres-
sion, mn and mp respectively denote the neutron and proton
masses, m = (mn + mp)/2 the average nucleon mass, and

Ẽkin
0 (n) ≡ Ẽ(n, β = 0) =

3
5
~2

4µ

(
3π2

2

)2/3

n2/3 (7)

the kinetic energy per nucleon of SNM, with µ = mnmp/(mn +
mp) being the reduced nucleon mass. The second term in Eq. (5)

2 Spin polarized nuclear matter within the BHF approach has been con-
sidered by, e.g., Vidaña & Bombaci (2002) and Bombaci et al. (2006).
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gives the potential energy contribution to total energy per nu-
cleon. In the BHF approximation it can be written as

Ṽ(n, β) =
1
2

1
A

∑
τ

∑
k≤k[τ]

F

Uτ(k) . (8)

In this approach the two-body interaction v is the only physical
input for the numerical solution Bethe–Goldstone equation.

As is well known, within the most advanced non-relativistic
quantum many-body approaches it is not possible to reproduce
the empirical saturation point of symmetric nuclear matter when
using two-body nuclear interactions only. In fact, the saturation
points obtained using different NN potentials lie within a narrow
band called the Coester band (Coester et al. 1970; Day 1981),
with either a too large saturation density or a too small bind-
ing energy (B = −E/A) compared to the empirical values. In
particular, SNM turns out to be overbound with a too large satu-
ration density when using modern high-precision NN potentials,
fitting NN scattering data up to energy of 350 MeV, with a χ2 per
datum next to 1 (Li et al. 2006). As in the case of few-nucleon
systems (Kalantar-Nayestanak et al. 2012; Hammer et al. 2013;
Binder et al. 2016) and also for the nuclear matter case, TNFs
are considered to be the missing physical effect of the whole
picture. The inclusion of TNF is thus required in order to re-
produce a realistic saturation point (Friedman & Pandharipande
1981; Baldo et al. 1997; Akmal et al. 1998; Li et al. 2008;
Taranto et al. 2013; Zuo et al. 2014). In addition, TNFs are cru-
cial in the case of dense β-stable nuclear matter to obtain a stiff
EOS (Baldo et al. 1997; Akmal et al. 1998; Li & Schulze 2008;
Chamel et al. 2011) compatible with the measured masses M =
1.97 ± 0.04 M� (Demorest et al. 2010) and M = 2.01 ± 0.04 M�
(Antoniadis et al. 2013) of the neutron stars in PSR J1614–2230
and PSR J0348+0432, respectively.

Within the BHF approach TNFs cannot be used directly in
their original form because it would be necessary to solve three-
body Faddeev equations in the nuclear medium (Bethe–Faddeev
equations; Bethe 1965; Rajaraman & Bethe 1967), and currently
this is a task still far from being achieved. To circumvent this
problem an effective density dependent two-body force veff

NN(n)
is built starting from the original three-body force by averaging
over one of the three nucleons (Loiseau et al. 1971; Grangé et al.
1989).

In the present work, following Holt et al. (2010), we de-
rive a density dependent effective NN force averaging the chi-
ral N2LO∆1 and N2LO∆2 TNFs in the nuclear medium, as de-
scribed in more detail in Logoteta et al. (2016b).

The Bethe–Goldstone Eq. (2) is then solved adding this ef-
fective density dependent two-body force to the bare NN inter-
action (the N3LO∆ interaction in our case). It is important to
note that when the original N2LO∆1 and N2LO∆2 TNFs are
reduced to an effective density dependent two-body interaction
veff

NN(n), the only terms that survive in PNM after the average are
those proportional to the LECs c1 and c3 (Logoteta et al. 2016b).
Thus, the calculations using the models N3LO∆+N2LO∆1 and
N3LO∆+N2LO∆2 give the same results in PNM because they
are not affected by the values of the LECs cD and cE , and they
have the same values for the LECs c1 and c3 (see Table 1).

4. Equation of state for symmetric nuclear matter
and pure neutron matter

In this section we present and discuss the results of our calcula-
tions for the equation of state, i.e., the energy per nucleon E/A as
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Fig. 1. Energy per particle of pure neutron matter (triangles) and sym-
metric nuclear matter (squares and circles) as a function of the nucleon
number density for the interaction models considered in this work. The
various symbols represent the results of our microscopic BHF calcula-
tions, whereas the lines represent the energy per particle obtained using
the parametrization given by Eqs. (18) and (19) for the potential energy
contribution to E/A for SNM and PNM.

a function of the baryon number density n, for SNM (β = 0) and
PNM (β = 1) using the chiral nuclear interaction models and the
BHF approach described in the previous pages. In this section of
our work, we extend the nuclear matter calculations reported in
Logoteta et al. (2016b) to high nucleon densities (n > 0.4 fm−3)
relevant for neutron star physics, binary neutron star merging,
and core-collapse supernovae.

We note that we have to solve the general Eqs. (2)–(4)
even when we consider the case of SNM since the N3LO∆
two-nucleon interaction contains charge-independence breaking
(CIB) and charge-symmetry breaking (CSB) terms (for a review,
see, e.g., Miller et al. 2006) and since we consider the experi-
mental values of the neutron and proton masses, i.e., we do not
consider the approximation mn = mp.

Making the usually adopted angular average of the Pauli
operator and of the energy denominator (Grangè et al. 1987;
Baldo et al. 1991), the Bethe–Goldstone Eq. (2) can be expanded
in partial waves. In all the calculations performed in the present
work, we have considered partial wave contributions up to a to-
tal two-body angular momentum Jmax = 8. We have verified that
the inclusion of partial waves with Jmax > 8 does not appreciably
change our results. For example, the relative change in the cal-
culated BHF potential energy per nucleon (Eq. (8)) in SNM at
density n = 1.0 fm−3 when including partial wave contributions
up to Jmax = 10 is (ṼJmax=10 − ṼJmax=8)/ṼJmax=8 = 0.0035.

In Fig. 1 we show the energy per nucleon of SNM ob-
tained using the two parametrizations (see Table 1) of the chiral
N2LO∆ TNF, namely N2LO∆1 (squares) and N2LO∆2 (circles).
The different symbols represent the results of our microscopic
BHF calculations, whereas the lines represent the energy per
particle obtained using the parametrization given by Eqs. (18)
and (19) for the potential energy contribution to E/A for SNM
and PNM discussed in the next section. It is apparent that at low
density (n < 0.3 fm−3) the two models produce almost identical
results. At n = 0.4 fm−3 the difference between the energy per
nucleon originating from the two TNF models is ∼3 MeV. This
energy difference increases for increasing nucleon densities and
is equal to ∼41.5 MeV at n = 1.0 fm−3. In the case of PNM the
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Table 2. Properties of nuclear matter for the interaction models used in this work.

Model n0(fm−3) E/A (MeV) Esym (MeV) L (MeV) K∞ (MeV)
N3LO∆+N2LO∆1 0.171 –15.23 35.39 76.0 190
N3LO∆+N2LO∆2 0.176 –15.09 36.00 79.8 176

Notes. Saturation density n0 (Col. 2) and corresponding energy per nucleon E/A (Col. 3) for symmetric nuclear matter; symmetry energy Esym
(Col. 4); its slope parameter L (Col. 5) and incompressibility K∞ (Col. 6) at the calculated saturation density.

energy per particle (triangles in Fig. 1) for the two TNF models
coincide because, as discussed in the previous section, neutron
matter is not affected by terms proportional to the LECs cE and
cD.

In Table 2 we list the calculated values of the saturation
points of SNM for the two interaction models considered in the
present work. As we can see, the empirical saturation point of
SNM, n0 = 0.16 ± 0.01 fm−3, E/A|n0 = −16.0 ± 1.0 MeV,
is fairly well reproduced by our microscopic calculations. In
Table 2 we also report the nuclear symmetry energy, calculated
as Esym(n) = Ẽ(n, β = 1)− Ẽ(n, β = 0), and the symmetry energy
slope parameter,

L = 3n0
∂Esym(n)

∂n

∣∣∣∣
n0
, (9)

at the calculated saturation density n0 (Col. 2 in Table 2).
Our calculated Esym(n0) and L are in a satisfactory agreement
with the values obtained by other BHF calculations with two-
and three-body interactions (Li et al. 2006; Li & Schulze 2008;
Vidanã et al. 2009, 2011b) and with the values extracted from
various nuclear experimental data (Lattimer 2014).

The incompressibility of SNM

K∞ = 9n2
0
∂2E/A
∂n2

∣∣∣∣
n0
, (10)

at the calculated saturation point for the interaction models used
in the present work is given in the last column of Table 2.
Our calculated values for K∞ underestimate the empirical value
K∞ = 210 ± 30 MeV (Blaizot et al. 1976) or more recently
K∞ = 240± 20 MeV (Shlomo et al. 2006) extracted from exper-
imental data of giant monopole resonance energies in medium-
mass and heavy nuclei. This is a common feature with many
other BHF nuclear matter calculations with two- and three-body
nuclear interactions (Li & Schulze 2008; Vidanã et al. 2009).

In addition to the empirical constraints at density around the
saturation density n0, the nuclear EOS can be tested using exper-
imental data from collisions between heavy nuclei at energies
ranging from a few tens of MeV up to several hundreds of MeV
per nucleon. These collisions can compress nuclear matter up to
∼4n0, thus giving valuable empirical information on the nuclear
EOS at these supranuclear densities. Based on numerical sim-
ulations that reproduce the measured elliptic flow of matter in
collision experiments between heavy nuclei, Danielewicz et al.
(2002) have been able to obtain a region in the pressure–density
plane for SNM which is consistent with these elliptic flow ex-
perimental data. This region is represented by the red hatched
area in Fig. 2. These collision experiments between heavy nuclei
thus provide a selective test for constraining the nuclear EOS up
to ∼4n0. In the same figure, we show the pressure for our two
EOS models for SNM obtained from the calculated energy per
nucleon and using the standard thermodynamical relation

P(n) = n2 ∂(E/A)
∂n

∣∣∣∣
A
· (11)
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Fig. 2. Pressure of symmetric nuclear matter for the two interaction
models used in this work. The red hatched area represents the region in
the pressure–density plane for SNM which is consistent with the mea-
sured elliptic flow of matter in collision experiments between heavy
atomic nuclei (Danielewicz et al. 2002).

As we can see our results are fully compatible with the empirical
constraints given by Danielewicz et al. (2002).

We want to emphasize that our BHF code, when used
in conjunction with the N3LO∆ NN interaction plus our two
parametrizations of the N2LO∆ TNF, reaches numerical conver-
gence in the self-consistent scheme within a reasonable number
of iterations (between ∼7 and 14) and up to the largest densities
(n ∼ 1.2 fm−3) typical of neutron star maximum mass config-
urations. Thus, the nuclear matter EOS can be calculated fully
microscopically up to these large densities. On the other hand,
our BHF code does not reach convergence, already at density
∼0.5 fm−3, when used in conjunction with other interaction mod-
els derived at the same order of the ∆-less ChPT (Logoteta et al.
2016b). Thus, in order to use these other interaction models for
neutron star structure calculations, it is necessary to make a ques-
tionable extrapolation of the EOS to large densities.

This important difference in the convergence of the BHF
scheme with chiral interactions is related to the inclusion of the ∆
isobar both in the two- and three-nucleon potentials used in our
present calculations. In fact, the ∆-full ChPT has an improved
convergence (Kaiser et al. 1998; Krebbs et al. 2007) with respect
to the ∆-less ChPT.

5. Symmetry energy and EOS for asymmetric
and β-stable nuclear matter

The EOS of asymmetric nuclear matter can be calculated solv-
ing numerically Eqs. (2)–(4) and (8) for various values of the
asymmetry parameter (0 ≤ β ≤ 1) and for various densities
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(0.5 ≤ n/n0 ≤ 8). These systematic calculations are not partic-
ularly demanding from a computational point of view; however,
the use of these EOS tables is not ideal for applications to numer-
ical simulations in general relativistic hydrodynamics. Thus, in
the present work, in addition to providing EOS in tabular forms,
we derive an EOS for asymmetric and β-stable nuclear matter
at zero temperature in parametrized forms ready to be used in
numerical simulations of binary neutron star merging.

To this end, instead of using the general expression given in
Eq. (8) for the BHF potential energy contribution Ṽ(n, β) to the
energy per nucleon of asymmetric nuclear matter, we employ the
so-called parabolic approximation in the asymmetry parameter β
(Bombaci & Lombardo 1991)

Ṽ(n, β) = Ṽ0(n) + Epot
sym(n) β2 , (12)

with Ṽ0(n) ≡ Ṽ0(n, β = 0) and Epot
sym(n) being the potential energy

contribution to the energy per nucleon of SNM and to the total
symmetry energy Esym, respectively. Using Eq. (12), Epot

sym can be
written as the difference between the potential energy contribu-
tion to the energy per nucleon of PNM and SNM, i.e.,

Epot
sym(n) = Ṽ(n, β = 1) − Ṽ(n, β = 0). (13)

It is important to note that the presence of tiny CSB and CIB
terms in the nuclear interaction used in the present calcula-
tions could invalidate Eq. (12). For example, a CSB compo-
nent in the NN interaction produces a linear (and more gener-
ally odd-power) β-term in Eq. (12) (Haensel 1997). We have
numerically checked the accuracy of Eq. (12) for the N3LO∆
nucleon-nucleon interaction up to the high densities considered
in the present calculations. Thus, in agreement with the results of
Haensel (1997) and Müther et al. (1999), the effects on the EOS
of asymmetric nuclear matter and on the nuclear symmetry en-
ergy of CSB and CIB terms in the NN interaction are essentially
negligible.

The nucleon chemical potentials µτ (τ = n, p), inclusive of
the rest mass of the particle, can be thus written as

µτ(n, β) =
∂εN

∂nτ
= µkin

τ (n, β) + µ
pot
τ (n, β) + mτc2 , (14)

with

µkin
τ (n, β) =

~2

2mτ

(3π2

2

)2/3
n2/3

(
1 ± β

)2/3
, (15)

µ
pot
τ (n, β) = Ṽ0(n)+n

∂Ṽ0

∂n
±2Epot

sym(n) β+

[
n
∂Epot

sym(n)
∂n

−Epot
sym(n)

]
β2 ,

(16)

where the partial derivatives of the nucleonic energy density

εN(n, β) = nẼ(n, β) + mnnn + mpnp, (17)

are taken at zero temperature and constant volume, and the up-
per and lower sign in Eqs. (15) and (16) refers to neutrons and
protons, respectively.

Subsequently, we parametrize the potential energy contribu-
tion to the energy per nucleon of SNM and PNM as

Ṽ0(n) = Ṽ(n, β = 0) = a0n + b0nγ0 + d0, (18)

Ṽ1(n) = Ṽ(n, β = 1) = a1n + b1nγ1 + d1. (19)

Table 3. Coefficients of the parametrization for the equation of state for
symmetric nuclear matter (Eq. (18)) and for pure matter (Eq. (19)).

Model (SNM) d0 a0 b0 γ0

N3LO∆+N2LO∆1 –9.22741 –283.58 406.625 1.71844
N3LO∆+N2LO∆2 –8.62944 –311.279 392.288 1.58626

Model (PNM) d1 a1 b1 γ1

N3LO∆+N2LO∆1 –0.877941 –208.176 496.125 1.81656
N3LO∆+N2LO∆2 –0.877941 –208.176 496.125 1.81656

Notes. The coefficients d0, d1 are given in MeV; a0, a1 in MeV fm3; and
b0, b1 in MeV fm3γ0 and MeV fm3γ1 respectively.

We have fixed the values of the coefficients in Eqs. (18) and (19)
fitting the results of our microscopic BHF calculations for SNM
and PNM in the density range 0.10–1.20 fm−3. The coefficients
given in Table 3 fit the BHF results with a root mean square
relative error (RMSRE) = 0.0069 for both interactions in the
case of SNM, and RMSRE = 0.0104 in the case of PNM. The
energy per particle E/A corresponding to this parametrization is
represented by the different lines in Fig. 1.

Thus, using Eq. (13) the potential part of the symmetry en-
ergy can be written as

Epot
sym(n) = (a1 − a0)n + b1nγ1 − b0nγ0 + d1 − d0. (20)

Equations (12), (18), and (20), together with Eqs. (6) and (7)
giving the kinetic energy per nucleon, provide our parametrized
EOS for asymmetric nuclear matter.

We next calculate the composition of β-stable nuclear matter,
solving the equations for chemical equilibrium in neutrino-free
matter (µνe = µν̄e = µνµ = µν̄µ ) (Prakash et al. 1997) at a given
total nucleon density n

µn − µp = µe , µe = µµ (21)

and for charge neutrality

np = ne + nµ, (22)

with electrons and muons treated as relativistic ideal Fermi
gases.

The potential energy contribution to the nucleon chemical
potential can thus be written as

µ
pot
τ = 2a0n + (γ0 + 1)b0nγ0 + d0 ± 2Epot

sym(n)β

+ [(γ1 − 1)b1nγ1 − (γ0 − 1)b0nγ0 − (d1 − d0)]β2 , (23)

where the upper and lower sign refers to neutrons and protons,
respectively. Consequently, the difference between the neutron
and proton chemical potentials entering in the β-equilibrium
condition (21) can be written as

µn − µp =
~2

2m

(3π2

2

)2/3
n2/3

{ m
mn

(
1 + β

)2/3
−

m
mp

(
1 − β

)2/3
}

+ 4Epot
sym(n)β + (mn − mp)c2 . (24)

The composition of β-stable matter, i.e., the particle fractions
xi = ni/n (with i = n, p, e−, µ−) calculated using the
parametrization (18) and (19) of our microscopic calculations,
is shown in Fig. 3. The continuous (dashed) lines refer to the
model N3LO∆+N2LO∆1 (N3LO∆+N2LO∆2). These results
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Fig. 3. Particle fractions of β-stable nuclear matter for the models de-
scribed in the text.

Table 4. Threshold values for the occurrence of direct URCA processes
in dense β-stable nuclear matter.

Model ndurca (fm−3) xp(ndurca) Mdurca/M�

N3LO∆+N2LO∆1 0.361 0.1347 0.961
N3LO∆+N2LO∆2 0.345 0.1343 0.862

Notes. Threshold baryon density ndurca (given in fm−3), proton fraction
xp(ndurca), and neutron star gravitational mass Mdurca = M(ndurca) for the
considered EOS models.

are in agreement with various other microscopic BHF calcula-
tions based on realistic nuclear interactions (Baldo et al. 1997;
Burgio et al. 2011).

When the proton fraction xp = np/n is larger than a threshold
value, denoted as xdurca

p , the direct URCA processes n→ p + e−+
ν̄e , p + e− → n + νe can occur in neutron star matter (Lattimer
et al. 1991).

In β-stable nuclear matter we can easily show that

xdurca
p =

1

1 +
(
1 + Y1/3

e
)3 , (25)

where Ye = ne/(ne + nµ) is the leptonic electron fraction.
The threshold proton fraction for direct URCA processes is

depicted in Fig. 3 by the continuous line labeled xdurca
p . Below

the muon threshold density xdurca
p = 1/9.

The calculated values for the threshold nucleon number den-
sity ndurca for the occurrence of direct URCA processes, for the
corresponding proton fraction xp(ndurca) together with the cor-
responding neutron star gravitational mass Mdurca = M(nc =
ndurca) are reported in Table 4.

Once we have determined the particle fractions xi(n) in β-
stable matter, the corresponding nucleonic contribution εN(n) to
the total energy density ε(n) = εN(n) + εL(n) can be obtained
using Eq. (17). In addition, the nucleonic contribution PN(n) to
the total pressure P(n) = PN(n) + PL(n) can be calculated using
the thermodynamic relation

PN = µnnn + µpnp − εN . (26)

Table 5. Coefficients of the parametrization for the equation of state for
β-stable nuclear matter (Eqs. (27) and (29)).

Model a b Γ

N3LO∆+N2LO∆1 945.199 293.551 2.82302
N3LO∆+N2LO∆2 942.832 259.852 2.67041

Notes. The parameter a is given in MeV, whereas the parameter b is
given in MeV fm3(Γ−1).

Finally, the leptonic contributions εL and PL to the total en-
ergy density and total pressure, respectively, are computed us-
ing the expressions for relativistic ideal Fermi gases with me =
0.511 MeV/c2 and mµ = 105.658 MeV/c2.

The resulting EOS for β-stable matter for the two considered
nuclear interaction models is shown in Fig. 4. These results are
consistent with those reported in Fig. 1.

The EOS for β-stable matter is also reported in tabular form
in the Appendix, where in addition to the baryon number density,
energy density, and pressure, we also list the proton fraction xp
and the electron fraction xe. The muon fraction is given by xµ =
xp − xe.

Our tabular EOS for β-stable matter can be reproduced in
a simple and very accurate parametrized form. To this end
we parametrize the total energy density ε (second column in
Tables A.1 and A.2) as a function of the nucleon number den-
sity n using the simple equation

ε = an + bnΓ. (27)

Then the total pressure can be deduced using the thermodynam-
ical relation

P = n
∂ε

∂n
− ε, (28)

and is given by the polytrope

P = (Γ − 1)bnΓ = KρΓ
rm, (29)

where ρrm = (a/c2)n is the rest-mass density (c is the speed of
light) and

K = (Γ − 1)
b

(a/c2)Γ
· (30)

The energy density can thus be written as

ε = ρrmc2 +
K

Γ − 1
ρΓ

rm. (31)

The coefficients reported in Table 5 fit the tabular EOS for
β-stable matter in the density range 0.08–1.30 fm−3 with a
RMSRE = 0.00018 in the case of the N3LO∆+N2LO∆1
interaction and RMSRE = 0.00047 in the case of the
N3LO∆+N2LO∆2 interaction. The curves representing these
parametrized EOS in Fig. 4 are indistinguishable from those ob-
tained from the tabular EOS reported in the Appendix.

In Fig. 5 we plot the speed of sound vs in β-stable matter as
a function of the baryon number density n. The plotted curves
were obtained performing the numerical derivative of our tab-
ular EOS according to the definition vs/c = (dP/dε)1/2. Using
our parametrization (Eqs. (27) and (29)) for the EOS of β-stable
matter, we obtain(
vs

c

)2
=

Γ(Γ − 1)bnΓ−1

a + ΓbnΓ−1 =
ΓP
ε + P

· (32)
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Fig. 4. Equation of state of β-stable nuclear matter for the models de-
scribed in the text.
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Fig. 5. Speed of sound vs/c (in units of the speed of light c) in β-stable
nuclear matter as a function of the baryon number density n. The heavy
dots on the two curves represent the central density of the neutron star
maximum mass configuration for the corresponding EOS model.

The corresponding curves in Fig. 5 are indistinguishable from
those obtained using the the numerical derivative from the tabu-
lar EOS. The heavy dots on both curves in Fig. 5 represent the
central density of the neutron star maximum mass configuration
for the corresponding EOS model (see next section). Thus, our
EOS models fulfill the causality condition vS /c < 1 up to the
highest densities reached in the corresponding neutron star con-
figurations (see next section).

6. Neutron star structure

The structural properties of non-rotating neutron stars can
be obtained integrating numerically the equation for hy-
drostatic equilibrium in general relativity (Tolman 1934;
Oppenheimer & Volkoff 1939)

dP
dr

= −G
m(r)ε(r)

c2r2

(
1 +

P(r)
ε(r)

) (
1 +

4πr3P 3(r)
c2m(r)

) (
1−

2Gm(r)
c2r

)−1

,

(33)
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Fig. 6. Mass–radius relationship (panel a) and mass–central baryon
density relationship (panel b) for the two nuclear interaction models
considered in this work. The hatched region in panel a represents the
mass–radius constraints obtained by Steiner et al. (2010, 2013b). The
strip with boundaries marked with orange lines stands for the measured
mass M = 2.01 ± 0.04 M� (Antoniadis et al. 2013) of the neutron stars
in PSR J0348+0432.

and

dm(r)
dr

=
4π
c2 r2ε(r), (34)

where G is the gravitational constant and m(r) is the gravitational
mass enclosed within a sphere of radial coordinate r (surface
area 4πr2).

Starting with a central energy density εc ≡ ε(r = 0), we in-
tegrate out Eqs. (33) and (34) until the energy density equals the
one corresponding to the density of iron εsurf/c2 = 7.86 g/cm3.
This condition determines the stellar surface and specifies the
neutron star radius R (through the surface area 4πR2) and the
stellar gravitational mass

M ≡ m(R) =
4π
c2

∫ R

0
dr r2ε(r). (35)

The total baryon number of a star with central baryon density
nc = n(r = 0) is given by

NB = 4π
∫ R

0
dr r2n(r)

(
1 −

2Gm(r)
c2r

)−1/2

, (36)

and the baryonic mass (or “rest mass”) of the neutron star is

MB = muNB, (37)

where mu is a baryonic mass unit that we take equal to mu =
m(12C)/12 = 1.6605 × 10−24 g. Other choices for mu are some-
times used in the literature as mu = mn or mu = m(56Fe)/56.
These choices for mu only make small changes in the calculated
stellar binding energy since ∆Ebind/(MBc2) ∼ 0.01.

The total binding energy of the star is thus

Ebind = (MB − M)c2, (38)

which represents the total energy liberated during the neutron
star’s birth.

The stellar structure Eqs. (33), (34), and (36) have been
integrated using the microscopic EOS (in tabular form) for
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Table 6. Maximum mass configuration properties for the interaction
models considered in this work.

Model M (M�) R (km) nc (fm−3) MB (M�)
N3LO∆+N2LO∆1 2.08 10.26 1.156 2.45
N3LO∆+N2LO∆2 1.96 10.04 1.242 2.29

Notes. Stellar gravitational maximum mass M, corresponding radius R,
central baryon number density nc, and baryonic maximum mass MB.
Stellar masses are given in units of the solar mass M� = 1.989× 1033 g.
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Fig. 7. Gravitational redshift at the neutron star surface as a function
of the stellar gravitational mass for the two considered EOS mod-
els. The horizontal lines represent the measured gravitational redshift
z = 0.35 for the X-ray burst source in the low-mass X-ray binary
EXO 07482−676 (Cottam et al. 2002) and z = 0.205+0.006

−0.003 for the iso-
lated neutron star RX J0720.4−3125 (Hambaryan et al. 2017).

β-stable nuclear matter described in the previous sections
to model the neutron star core, whereas to model the stel-
lar crust (i.e., for nucleonic density ≤0.08 fm−3) we have
used the Baym–Pethick–Sutherland (Baym et al. 1971) and the
Negele & Vautherin (1973) EOS. The results are shown in Fig. 6,
where we plot the mass-radius (panel (a)) and mass-central den-
sity (panel (b)) relations for the considered EOS models. We
note that our EOS models are both compatible with current
measured neutron star masses and particularly with the mass
M = 2.01 ± 0.04 M� (Antoniadis et al. 2013) of the neutron stars
in PSR J0348+0432. The hatched regions in Fig. 6 represent the
mass–radius constraints based on the analysis of recent obser-
vations of both transiently accreting and bursting X-ray sources
obtained by Steiner et al. (2010, 2013b). Manifestly, the neutron
star configurations calculated with our EOS models are able to
fulfill these empirical constraints on the mass–radius relation-
ship.

Various structural properties of the maximum mass configu-
ration for the two considered EOS models are listed in Table 6.
Our present results are in good agreement with the results of
other calculations (Baldo et al. 1997; Akmal et al. 1998) based
on microscopic approaches.

The gravitational redshift of a signal emitted from the stellar
surface is

zsurf =

(
1 −

2GM
c2R

)−1/2

− 1. (39)
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Fig. 8. Neutron star binding energy versus the stellar gravitational mass
(left panel) and fractional binding energy Ebind/(Mc2) = (MB − M)/M
as a function of the surface gravitational redshift zsurf (right panel) for
the two considered EOS models.

Thus, measurements of zsurf of spectral lines can give direct in-
formation on the stellar compactness parameter

xGR =
2GM
c2R

, (40)

and consequently can place limits on the EOS for dense matter.
The surface gravitational redshift calculated for our two EOS
models is presented in Fig. 7. The two horizontal lines in the
same figure represent the measured gravitational redshift z =
0.35 for the X-ray bursts source in the low-mass X-ray binary
EXO 07482−676 (Cottam et al. 2002) and z = 0.205+0.006

−0.003 for
the isolated neutron star RX J0720.4−3125 (Hambaryan et al.
2017).

In Fig. 8 (left panel) we plot the binding energy Ebind ver-
sus the stellar gravitational mass M. Various empirical for-
mulae have been given to describe the dependence Ebind(M)
or Ebind(MB) (Lattimer & Yahil 1989; Prakash et al. 1997;
Lattimer & Prakash 2001). In particular many numerical calcu-
lations have shown that there is a narrow band of possible values
of the stellar binding energy for a given mass implying the exis-
tence of a universal relation Ebind(M) or Ebind(MB).

Our calculated binding energy for neutron stars in the mass
range 1.0 M� ≤ M ≤ Mmax can be fitted with very high accuracy
using the simple relation

Ebind = abind(M/M�)5/2, (41)

with abind = 1.055 × 1053 erg (abind = 1.073 × 1053 erg) for the
N3LO∆+N2LO∆1 (N3LO∆+N2LO∆2) EOS model.

Next, in Fig. 8 (right panel) we plot the quantity Ebind/(Mc2)
as a function of the surface gravitational redshift zsurf . The results
for the stellar binding energy from the numerical integration of
the TOV equation for neutron stars in the mass range 1.0 M� ≤
M ≤ Mmax can be fitted with very high accuracy using the simple
relation

Ebind

Mc2 =
MB − M

M
= t1 zsurf + t3 z3

surf , (42)

with t1 = 0.4505 (t1 = 0.4509) and t3 = −0.4207 (t3 = −0.4832)
for the N3LO∆+N2LO∆1 (N3LO∆+N2LO∆2) EOS model.

The binding energy of a neutron star could be deduced from
the detection of neutrinos from a nearby supernova. In addition,
a possible measurement of zsurf for the neutron star left behind by
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the same supernova event will give very strong constraints on the
EOS of stellar matter. We note that a few minutes after its birth a
neutron star can be described using the EOS of cold (i.e., at zero
temperature) and neutrino-free matter (Prakash et al. 1997).

7. Summary

In this work we derived a new microscopic EOS of dense SMN,
PNM, as well as asymmetric and β-stable nuclear matter at
zero temperature using modern two-body and three-body nuclear
forces determined in the framework of chiral perturbation theory
and including the ∆ isobar intermediate state. To this end, we em-
ployed the BHF many-body approach, which properly takes into
account the short-range correlations arising from the strongly
repulsive core in the bare NN interaction. This feature is par-
ticularly relevant in the case of matter at supranuclear densities.
Our EOS models are able to reproduce the empirical saturation
point of symmetric nuclear matter, the symmetry energy Esym,
and its slope parameter L at the empirical saturation density n0
and are compatible with experimental data from collisions be-
tween heavy nuclei at energies ranging from a few tens of MeV
up to several hundreds of MeV per nucleon. We used our EOS
for β-stable nuclear matter to compute various structural prop-
erties of non-rotating neutron stars. The calculated neutron star
configurations are consistent with present measured neutron star
masses and particularly with the mass M = 2.01 ± 0.04 M� of
the neutron stars in PSR J0348+0432.

We provided our new EOS both in tabular form and in
parametrized form ready to be used in numerical general relativ-
ity simulations of binary neutron star merging. To this purpose
our zero temperature EOS needs to be supplemented by a ther-
mal contribution that accounts for the sizeable increase in the
internal energy at the merger. This is usually done by adding an
ideal-fluid component to the zero temperature EOS, which ac-
counts for the shock heating (Rezzolla & Zanotti 2013).

In a more consistent thermodynamical approach the EOS
relevant for core-collapse SNe and BNS mergers simulations
should be derived within a finite temperature many-body ap-
proach (Shen et al. 1998; Hempel & Schaffner-Bielich 2010;
Steiner et al. 2013a; Oertel et al. 2017; Togashi et al. 2017). We
are presently working on the extension of our microscopic nu-
clear matter EOS based on nuclear chiral interactions to the case
of finite temperature for applications to numerical simulations of
the above-mentioned astrophysical phenomena.

In future studies we also plan to extend our present cal-
culations to the case of β-stable hyperonic matter, based
on nucleon-hyperon (Haidenbauer et al. 2013), and hyperon-
hyperon (Haidenbauer et al. 2016) interactions derived in the
framework of ChPT, and to include hyperonic three-body inter-
actions within this formalism.
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Appendix A: Tables for the equation of state of β-stable matter

Table A.1. Equation of state for β-stable matter. Model N3LO∆+N2LO∆1.

n (fm−3) ε (MeV/fm3) P (MeV/fm3) xp xe

8.0000E–02 7.5863E+01 5.1039E–01 3.483E–02 3.483E–02
8.5701E–02 8.1308E+01 5.9983E–01 3.590E–02 3.590E–02
9.1402E–02 8.6760E+01 7.0057E–01 3.701E–02 3.701E–02
9.7103E–02 9.2219E+01 8.1342E–01 3.815E–02 3.815E–02
1.0280E–01 9.7684E+01 9.3919E–01 3.932E–02 3.932E–02
1.0850E–01 1.0316E+02 1.0787E+00 4.051E–02 4.051E–02
1.1421E–01 1.0864E+02 1.2327E+00 4.173E–02 4.173E–02
1.1991E–01 1.1413E+02 1.4019E+00 4.296E–02 4.296E–02
1.2561E–01 1.1962E+02 1.5844E+00 4.452E–02 4.412E–02
1.3131E–01 1.2513E+02 1.7805E+00 4.635E–02 4.521E–02
1.3701E–01 1.3064E+02 1.9922E+00 4.832E–02 4.626E–02
1.4271E–01 1.3617E+02 2.2203E+00 5.036E–02 4.730E–02
1.4841E–01 1.4170E+02 2.4658E+00 5.247E–02 4.833E–02
1.5411E–01 1.4724E+02 2.7293E+00 5.462E–02 4.934E–02
1.5981E–01 1.5280E+02 3.0116E+00 5.680E–02 5.036E–02
1.6551E–01 1.5836E+02 3.3134E+00 5.901E–02 5.136E–02
1.7121E–01 1.6393E+02 3.6353E+00 6.124E–02 5.237E–02
1.7692E–01 1.6952E+02 3.9782E+00 6.347E–02 5.338E–02
1.8262E–01 1.7511E+02 4.3425E+00 6.572E–02 5.438E–02
1.8832E–01 1.8072E+02 4.7290E+00 6.798E–02 5.539E–02
1.9402E–01 1.8634E+02 5.1383E+00 7.024E–02 5.639E–02
1.9972E–01 1.9198E+02 5.5710E+00 7.250E–02 5.739E–02
2.0542E–01 1.9762E+02 6.0277E+00 7.476E–02 5.839E–02
2.1112E–01 2.0328E+02 6.5091E+00 7.703E–02 5.940E–02
2.1682E–01 2.0895E+02 7.0158E+00 7.930E–02 6.040E–02
2.2252E–01 2.1464E+02 7.5482E+00 8.156E–02 6.140E–02
2.2822E–01 2.2034E+02 8.1071E+00 8.382E–02 6.241E–02
2.3393E–01 2.2605E+02 8.6930E+00 8.608E–02 6.341E–02
2.3963E–01 2.3178E+02 9.3065E+00 8.834E–02 6.441E–02
2.4533E–01 2.3752E+02 9.9481E+00 9.059E–02 6.541E–02
2.5103E–01 2.4328E+02 1.0618E+01 9.284E–02 6.641E–02
2.5673E–01 2.4905E+02 1.1318E+01 9.508E–02 6.741E–02
2.6243E–01 2.5484E+02 1.2047E+01 9.732E–02 6.841E–02
2.6813E–01 2.6065E+02 1.2807E+01 9.955E–02 6.941E–02
2.7383E–01 2.6647E+02 1.3598E+01 1.018E–01 7.041E–02
2.7953E–01 2.7231E+02 1.4420E+01 1.040E–01 7.140E–02
2.8523E–01 2.7817E+02 1.5274E+01 1.062E–01 7.240E–02
2.9093E–01 2.8404E+02 1.6161E+01 1.084E–01 7.339E–02
2.9664E–01 2.8993E+02 1.7081E+01 1.106E–01 7.438E–02
3.0234E–01 2.9584E+02 1.8034E+01 1.128E–01 7.537E–02
3.0804E–01 3.0177E+02 1.9021E+01 1.150E–01 7.636E–02
3.1374E–01 3.0771E+02 2.0043E+01 1.172E–01 7.734E–02
3.1944E–01 3.1368E+02 2.1100E+01 1.194E–01 7.832E–02
3.2514E–01 3.1966E+02 2.2193E+01 1.215E–01 7.930E–02
3.3084E–01 3.2567E+02 2.3322E+01 1.237E–01 8.028E–02
3.3654E–01 3.3169E+02 2.4487E+01 1.258E–01 8.126E–02
3.4224E–01 3.3774E+02 2.5689E+01 1.280E–01 8.223E–02
3.4794E–01 3.4380E+02 2.6929E+01 1.301E–01 8.320E–02
3.5364E–01 3.4988E+02 2.8208E+01 1.322E–01 8.417E–02
3.5935E–01 3.5599E+02 2.9524E+01 1.343E–01 8.513E–02
3.6505E–01 3.6212E+02 3.0880E+01 1.364E–01 8.609E–02
3.7075E–01 3.6826E+02 3.2276E+01 1.385E–01 8.705E–02
3.7645E–01 3.7443E+02 3.3711E+01 1.406E–01 8.800E–02
3.8215E–01 3.8063E+02 3.5187E+01 1.427E–01 8.895E–02
3.8785E–01 3.8684E+02 3.6704E+01 1.447E–01 8.990E–02
3.9355E–01 3.9308E+02 3.8263E+01 1.468E–01 9.084E–02

Notes. The different entries in the table from Col. 1 to Col. 5 are respectively the baryon number density n, the total energy density ε, the total
pressure P, the proton fraction xp, and the electron fraction xe. The muon fraction is given by xµ = xp − xe.
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Table A.1. continued.

n (fm−3) ε (MeV/fm3) P (MeV/fm3) xp xe

3.9925E–01 3.9934E+02 3.9863E+01 1.489E–01 9.178E–02
4.0495E–01 4.0562E+02 4.1506E+01 1.509E–01 9.272E–02
4.1065E–01 4.1193E+02 4.3192E+01 1.529E–01 9.365E–02
4.1636E–01 4.1826E+02 4.4921E+01 1.549E–01 9.458E–02
4.2206E–01 4.2461E+02 4.6694E+01 1.569E–01 9.550E–02
4.2776E–01 4.3099E+02 4.8511E+01 1.589E–01 9.642E–02
4.3346E–01 4.3739E+02 5.0373E+01 1.609E–01 9.734E–02
4.3916E–01 4.4382E+02 5.2281E+01 1.629E–01 9.825E–02
4.4486E–01 4.5027E+02 5.4234E+01 1.649E–01 9.916E–02
4.5056E–01 4.5675E+02 5.6233E+01 1.668E–01 1.001E–01
4.5626E–01 4.6325E+02 5.8279E+01 1.688E–01 1.010E–01
4.6196E–01 4.6978E+02 6.0373E+01 1.707E–01 1.019E–01
4.6766E–01 4.7634E+02 6.2513E+01 1.726E–01 1.027E–01
4.7336E–01 4.8292E+02 6.4702E+01 1.745E–01 1.036E–01
4.7907E–01 4.8953E+02 6.6939E+01 1.764E–01 1.045E–01
4.8477E–01 4.9617E+02 6.9225E+01 1.783E–01 1.054E–01
4.9047E–01 5.0283E+02 7.1561E+01 1.802E–01 1.063E–01
4.9617E–01 5.0952E+02 7.3947E+01 1.821E–01 1.071E–01
5.0187E–01 5.1624E+02 7.6382E+01 1.839E–01 1.080E–01
5.0757E–01 5.2298E+02 7.8869E+01 1.858E–01 1.088E–01
5.1327E–01 5.2976E+02 8.1407E+01 1.876E–01 1.097E–01
5.1897E–01 5.3656E+02 8.3996E+01 1.894E–01 1.105E–01
5.2467E–01 5.4339E+02 8.6638E+01 1.913E–01 1.114E–01
5.3037E–01 5.5025E+02 8.9332E+01 1.931E–01 1.122E–01
5.3607E–01 5.5714E+02 9.2080E+01 1.948E–01 1.131E–01
5.4178E–01 5.6406E+02 9.4881E+01 1.966E–01 1.139E–01
5.4748E–01 5.7101E+02 9.7736E+01 1.984E–01 1.147E–01
5.5318E–01 5.7799E+02 1.0064E+02 2.002E–01 1.155E–01
5.5888E–01 5.8500E+02 1.0361E+02 2.019E–01 1.163E–01
5.6458E–01 5.9203E+02 1.0663E+02 2.036E–01 1.172E–01
5.7028E–01 5.9911E+02 1.0970E+02 2.054E–01 1.180E–01
5.7598E–01 6.0621E+02 1.1284E+02 2.071E–01 1.188E–01
5.8168E–01 6.1334E+02 1.1602E+02 2.088E–01 1.195E–01
5.8738E–01 6.2050E+02 1.1927E+02 2.105E–01 1.203E–01
5.9308E–01 6.2770E+02 1.2257E+02 2.122E–01 1.211E–01
5.9879E–01 6.3493E+02 1.2593E+02 2.138E–01 1.219E–01
6.0449E–01 6.4219E+02 1.2935E+02 2.155E–01 1.227E–01
6.1019E–01 6.4948E+02 1.3283E+02 2.171E–01 1.234E–01
6.1589E–01 6.5681E+02 1.3637E+02 2.188E–01 1.242E–01
6.2159E–01 6.6416E+02 1.3997E+02 2.204E–01 1.250E–01
6.2729E–01 6.7156E+02 1.4362E+02 2.220E–01 1.257E–01
6.3299E–01 6.7898E+02 1.4734E+02 2.236E–01 1.265E–01
6.3869E–01 6.8644E+02 1.5112E+02 2.252E–01 1.272E–01
6.4439E–01 6.9393E+02 1.5496E+02 2.268E–01 1.280E–01
6.5009E–01 7.0146E+02 1.5887E+02 2.284E–01 1.287E–01
6.5579E–01 7.0902E+02 1.6283E+02 2.299E–01 1.294E–01
6.6150E–01 7.1662E+02 1.6686E+02 2.315E–01 1.301E–01
6.6720E–01 7.2425E+02 1.7095E+02 2.330E–01 1.309E–01
6.7290E–01 7.3192E+02 1.7511E+02 2.345E–01 1.316E–01
6.7860E–01 7.3962E+02 1.7933E+02 2.361E–01 1.323E–01
6.8430E–01 7.4736E+02 1.8361E+02 2.376E–01 1.330E–01
6.9000E–01 7.5513E+02 1.8796E+02 2.391E–01 1.337E–01
6.9570E–01 7.6294E+02 1.9238E+02 2.406E–01 1.344E–01
7.0140E–01 7.7079E+02 1.9686E+02 2.420E–01 1.351E–01
7.0710E–01 7.7867E+02 2.0141E+02 2.435E–01 1.358E–01
7.1280E–01 7.8659E+02 2.0603E+02 2.450E–01 1.365E–01
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Table A.1. continued.

n (fm−3) ε (MeV/fm3) P (MeV/fm3) xp xe

7.1850E–01 7.9455E+02 2.1071E+02 2.464E–01 1.371E–01
7.2421E–01 8.0254E+02 2.1546E+02 2.478E–01 1.378E–01
7.2991E–01 8.1058E+02 2.2028E+02 2.493E–01 1.385E–01
7.3561E–01 8.1865E+02 2.2517E+02 2.507E–01 1.391E–01
7.4131E–01 8.2676E+02 2.3012E+02 2.521E–01 1.398E–01
7.4701E–01 8.3490E+02 2.3515E+02 2.535E–01 1.404E–01
7.5271E–01 8.4309E+02 2.4025E+02 2.549E–01 1.411E–01
7.5841E–01 8.5131E+02 2.4541E+02 2.563E–01 1.417E–01
7.6411E–01 8.5958E+02 2.5065E+02 2.576E–01 1.424E–01
7.6981E–01 8.6788E+02 2.5596E+02 2.590E–01 1.430E–01
7.7551E–01 8.7622E+02 2.6134E+02 2.603E–01 1.436E–01
7.8121E–01 8.8461E+02 2.6679E+02 2.617E–01 1.443E–01
7.8692E–01 8.9303E+02 2.7232E+02 2.630E–01 1.449E–01
7.9262E–01 9.0149E+02 2.7792E+02 2.643E–01 1.455E–01
7.9832E–01 9.0999E+02 2.8359E+02 2.656E–01 1.461E–01
8.0402E–01 9.1854E+02 2.8934E+02 2.669E–01 1.467E–01
8.0972E–01 9.2712E+02 2.9516E+02 2.682E–01 1.473E–01
8.1542E–01 9.3575E+02 3.0106E+02 2.695E–01 1.479E–01
8.2112E–01 9.4442E+02 3.0703E+02 2.708E–01 1.485E–01
8.2682E–01 9.5313E+02 3.1308E+02 2.720E–01 1.491E–01
8.3252E–01 9.6188E+02 3.1920E+02 2.733E–01 1.497E–01
8.3822E–01 9.7067E+02 3.2540E+02 2.745E–01 1.503E–01
8.4393E–01 9.7951E+02 3.3168E+02 2.757E–01 1.509E–01
8.4963E–01 9.8839E+02 3.3803E+02 2.770E–01 1.514E–01
8.5533E–01 9.9731E+02 3.4447E+02 2.782E–01 1.520E–01
8.6103E–01 1.0063E+03 3.5098E+02 2.794E–01 1.526E–01
8.6673E–01 1.0153E+03 3.5757E+02 2.806E–01 1.531E–01
8.7243E–01 1.0243E+03 3.6424E+02 2.818E–01 1.537E–01
8.7813E–01 1.0334E+03 3.7098E+02 2.830E–01 1.542E–01
8.8383E–01 1.0426E+03 3.7781E+02 2.841E–01 1.548E–01
8.8953E–01 1.0518E+03 3.8472E+02 2.853E–01 1.553E–01
8.9523E–01 1.0610E+03 3.9171E+02 2.865E–01 1.559E–01
9.0093E–01 1.0703E+03 3.9879E+02 2.876E–01 1.564E–01
9.0664E–01 1.0796E+03 4.0594E+02 2.888E–01 1.570E–01
9.1234E–01 1.0889E+03 4.1318E+02 2.899E–01 1.575E–01
9.1804E–01 1.0983E+03 4.2050E+02 2.910E–01 1.580E–01
9.2374E–01 1.1078E+03 4.2790E+02 2.921E–01 1.585E–01
9.2944E–01 1.1173E+03 4.3538E+02 2.932E–01 1.591E–01
9.3514E–01 1.1268E+03 4.4295E+02 2.943E–01 1.596E–01
9.4084E–01 1.1364E+03 4.5061E+02 2.954E–01 1.601E–01
9.4654E–01 1.1461E+03 4.5835E+02 2.965E–01 1.606E–01
9.5224E–01 1.1558E+03 4.6617E+02 2.976E–01 1.611E–01
9.5794E–01 1.1655E+03 4.7408E+02 2.987E–01 1.616E–01
9.6364E–01 1.1753E+03 4.8208E+02 2.997E–01 1.621E–01
9.6935E–01 1.1851E+03 4.9016E+02 3.008E–01 1.626E–01
9.7505E–01 1.1950E+03 4.9833E+02 3.018E–01 1.631E–01
9.8075E–01 1.2049E+03 5.0659E+02 3.029E–01 1.636E–01
9.8645E–01 1.2149E+03 5.1493E+02 3.039E–01 1.640E–01
9.9215E–01 1.2249E+03 5.2337E+02 3.049E–01 1.645E–01
9.9785E–01 1.2350E+03 5.3189E+02 3.059E–01 1.650E–01
1.0036E+00 1.2451E+03 5.4050E+02 3.069E–01 1.655E–01
1.0093E+00 1.2553E+03 5.4920E+02 3.079E–01 1.659E–01
1.0150E+00 1.2655E+03 5.5800E+02 3.089E–01 1.664E–01
1.0207E+00 1.2757E+03 5.6688E+02 3.099E–01 1.669E–01
1.0264E+00 1.2861E+03 5.7585E+02 3.109E–01 1.673E–01
1.0321E+00 1.2964E+03 5.8491E+02 3.119E–01 1.678E–01
1.0378E+00 1.3069E+03 5.9407E+02 3.128E–01 1.682E–01
1.0435E+00 1.3173E+03 6.0332E+02 3.138E–01 1.687E–01
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Table A.1. continued.

n (fm−3) ε (MeV/fm3) P (MeV/fm3) xp xe

1.0492E+00 1.3278E+03 6.1266E+02 3.147E–01 1.691E–01
1.0549E+00 1.3384E+03 6.2209E+02 3.157E–01 1.696E–01
1.0606E+00 1.3490E+03 6.3162E+02 3.166E–01 1.700E–01
1.0663E+00 1.3597E+03 6.4124E+02 3.175E–01 1.704E–01
1.0720E+00 1.3704E+03 6.5095E+02 3.185E–01 1.709E–01
1.0777E+00 1.3812E+03 6.6076E+02 3.194E–01 1.713E–01
1.0834E+00 1.3920E+03 6.7067E+02 3.203E–01 1.717E–01
1.0891E+00 1.4029E+03 6.8067E+02 3.212E–01 1.721E–01
1.0948E+00 1.4138E+03 6.9076E+02 3.221E–01 1.726E–01
1.1005E+00 1.4248E+03 7.0096E+02 3.230E–01 1.730E–01
1.1062E+00 1.4359E+03 7.1124E+02 3.239E–01 1.734E–01
1.1119E+00 1.4470E+03 7.2163E+02 3.248E–01 1.738E–01
1.1176E+00 1.4581E+03 7.3211E+02 3.256E–01 1.742E–01
1.1233E+00 1.4693E+03 7.4270E+02 3.265E–01 1.746E–01
1.1290E+00 1.4806E+03 7.5338E+02 3.274E–01 1.750E–01
1.1347E+00 1.4919E+03 7.6416E+02 3.282E–01 1.754E–01
1.1404E+00 1.5032E+03 7.7503E+02 3.291E–01 1.758E–01
1.1461E+00 1.5146E+03 7.8601E+02 3.299E–01 1.762E–01
1.1518E+00 1.5261E+03 7.9709E+02 3.307E–01 1.766E–01
1.1575E+00 1.5376E+03 8.0827E+02 3.316E–01 1.770E–01
1.1632E+00 1.5492E+03 8.1955E+02 3.324E–01 1.774E–01
1.1689E+00 1.5609E+03 8.3093E+02 3.332E–01 1.777E–01
1.1746E+00 1.5726E+03 8.4241E+02 3.340E–01 1.781E–01
1.1803E+00 1.5843E+03 8.5400E+02 3.348E–01 1.785E–01
1.1860E+00 1.5961E+03 8.6568E+02 3.356E–01 1.789E–01
1.1917E+00 1.6080E+03 8.7748E+02 3.364E–01 1.793E–01
1.1974E+00 1.6199E+03 8.8937E+02 3.372E–01 1.796E–01
1.2031E+00 1.6319E+03 9.0137E+02 3.380E–01 1.800E–01
1.2088E+00 1.6439E+03 9.1347E+02 3.388E–01 1.804E–01
1.2145E+00 1.6560E+03 9.2568E+02 3.396E–01 1.807E–01
1.2202E+00 1.6681E+03 9.3799E+02 3.403E–01 1.811E–01
1.2259E+00 1.6803E+03 9.5040E+02 3.411E–01 1.814E–01
1.2316E+00 1.6926E+03 9.6293E+02 3.419E–01 1.818E–01
1.2373E+00 1.7049E+03 9.7556E+02 3.426E–01 1.821E–01
1.2430E+00 1.7173E+03 9.8829E+02 3.434E–01 1.825E–01
1.2487E+00 1.7297E+03 1.0011E+03 3.441E–01 1.828E–01
1.2544E+00 1.7422E+03 1.0141E+03 3.448E–01 1.832E–01
1.2601E+00 1.7548E+03 1.0271E+03 3.456E–01 1.835E–01
1.2658E+00 1.7674E+03 1.0403E+03 3.463E–01 1.839E–01
1.2715E+00 1.7801E+03 1.0536E+03 3.470E–01 1.842E–01
1.2772E+00 1.7928E+03 1.0670E+03 3.478E–01 1.845E–01
1.2829E+00 1.8056E+03 1.0805E+03 3.485E–01 1.849E–01
1.2886E+00 1.8185E+03 1.0941E+03 3.492E–01 1.852E–01
1.2943E+00 1.8314E+03 1.1078E+03 3.499E–01 1.855E–01
1.3000E+00 1.8444E+03 1.1216E+03 3.506E–01 1.858E–01
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Table A.2. Equation of state for β-stable matter. Model N3LO∆+N2LO∆2.

n (fm−3) ε (MeV/fm3) P (MeV/fm3) xp xe

8.0000E–02 7.5865E+01 5.1139E–01 3.403E–02 3.403E–02
8.5701E–02 8.1311E+01 6.0107E–01 3.512E–02 3.512E–02
9.1402E–02 8.6763E+01 7.0203E–01 3.624E–02 3.624E–02
9.7103E–02 9.2222E+01 8.1505E–01 3.738E–02 3.738E–02
1.0280E–01 9.7688E+01 9.4093E–01 3.855E–02 3.855E–02
1.0850E–01 1.0316E+02 1.0804E+00 3.975E–02 3.975E–02
1.1421E–01 1.0864E+02 1.2343E+00 4.098E–02 4.098E–02
1.1991E–01 1.1413E+02 1.4033E+00 4.223E–02 4.223E–02
1.2561E–01 1.1963E+02 1.5862E+00 4.370E–02 4.343E–02
1.3131E–01 1.2513E+02 1.7821E+00 4.551E–02 4.456E–02
1.3701E–01 1.3065E+02 1.9930E+00 4.748E–02 4.564E–02
1.4271E–01 1.3617E+02 2.2198E+00 4.955E–02 4.672E–02
1.4841E–01 1.4171E+02 2.4635E+00 5.169E–02 4.778E–02
1.5411E–01 1.4725E+02 2.7246E+00 5.389E–02 4.884E–02
1.5981E–01 1.5280E+02 3.0039E+00 5.612E–02 4.990E–02
1.6551E–01 1.5836E+02 3.3018E+00 5.839E–02 5.096E–02
1.7121E–01 1.6394E+02 3.6191E+00 6.069E–02 5.202E–02
1.7692E–01 1.6952E+02 3.9563E+00 6.301E–02 5.308E–02
1.8262E–01 1.7512E+02 4.3139E+00 6.535E–02 5.415E–02
1.8832E–01 1.8073E+02 4.6924E+00 6.771E–02 5.522E–02
1.9402E–01 1.8634E+02 5.0924E+00 7.008E–02 5.629E–02
1.9972E–01 1.9198E+02 5.5144E+00 7.246E–02 5.737E–02
2.0542E–01 1.9762E+02 5.9588E+00 7.485E–02 5.845E–02
2.1112E–01 2.0328E+02 6.4262E+00 7.726E–02 5.953E–02
2.1682E–01 2.0894E+02 6.9169E+00 7.967E–02 6.062E–02
2.2252E–01 2.1463E+02 7.4315E+00 8.209E–02 6.172E–02
2.2822E–01 2.2032E+02 7.9704E+00 8.451E–02 6.281E–02
2.3393E–01 2.2603E+02 8.5339E+00 8.694E–02 6.391E–02
2.3963E–01 2.3176E+02 9.1225E+00 8.938E–02 6.502E–02
2.4533E–01 2.3749E+02 9.7367E+00 9.182E–02 6.612E–02
2.5103E–01 2.4325E+02 1.0377E+01 9.426E–02 6.723E–02
2.5673E–01 2.4901E+02 1.1043E+01 9.670E–02 6.834E–02
2.6243E–01 2.5480E+02 1.1736E+01 9.915E–02 6.946E–02
2.6813E–01 2.6059E+02 1.2456E+01 1.016E–01 7.057E–02
2.7383E–01 2.6641E+02 1.3204E+01 1.040E–01 7.169E–02
2.7953E–01 2.7224E+02 1.3979E+01 1.065E–01 7.281E–02
2.8523E–01 2.7808E+02 1.4782E+01 1.089E–01 7.393E–02
2.9093E–01 2.8394E+02 1.5614E+01 1.114E–01 7.506E–02
2.9664E–01 2.8982E+02 1.6474E+01 1.138E–01 7.618E–02
3.0234E–01 2.9572E+02 1.7364E+01 1.163E–01 7.730E–02
3.0804E–01 3.0163E+02 1.8283E+01 1.187E–01 7.843E–02
3.1374E–01 3.0756E+02 1.9231E+01 1.212E–01 7.955E–02
3.1944E–01 3.1351E+02 2.0210E+01 1.236E–01 8.067E–02
3.2514E–01 3.1947E+02 2.1219E+01 1.260E–01 8.180E–02
3.3084E–01 3.2545E+02 2.2259E+01 1.285E–01 8.292E–02
3.3654E–01 3.3145E+02 2.3330E+01 1.309E–01 8.404E–02
3.4224E–01 3.3747E+02 2.4432E+01 1.333E–01 8.516E–02
3.4794E–01 3.4351E+02 2.5565E+01 1.357E–01 8.628E–02
3.5364E–01 3.4957E+02 2.6730E+01 1.381E–01 8.740E–02
3.5935E–01 3.5564E+02 2.7928E+01 1.405E–01 8.851E–02
3.6505E–01 3.6174E+02 2.9157E+01 1.429E–01 8.962E–02
3.7075E–01 3.6785E+02 3.0420E+01 1.453E–01 9.073E–02
3.7645E–01 3.7399E+02 3.1715E+01 1.477E–01 9.184E–02
3.8215E–01 3.8014E+02 3.3043E+01 1.501E–01 9.295E–02
3.8785E–01 3.8631E+02 3.4405E+01 1.524E–01 9.405E–02
3.9355E–01 3.9251E+02 3.5801E+01 1.548E–01 9.515E–02
3.9925E–01 3.9872E+02 3.7231E+01 1.571E–01 9.624E–02

Notes. Table entries as in the previous table.
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Table A.2. continued.

n (fm−3) ε (MeV/fm3) P (MeV/fm3) xp xe

4.0495E–01 4.0496E+02 3.8695E+01 1.595E–01 9.733E–02
4.1065E–01 4.1121E+02 4.0194E+01 1.618E–01 9.842E–02
4.1636E–01 4.1749E+02 4.1727E+01 1.641E–01 9.950E–02
4.2206E–01 4.2379E+02 4.3296E+01 1.664E–01 1.006E–01
4.2776E–01 4.3011E+02 4.4900E+01 1.687E–01 1.017E–01
4.3346E–01 4.3645E+02 4.6539E+01 1.710E–01 1.027E–01
4.3916E–01 4.4281E+02 4.8215E+01 1.733E–01 1.038E–01
4.4486E–01 4.4920E+02 4.9926E+01 1.755E–01 1.048E–01
4.5056E–01 4.5561E+02 5.1674E+01 1.778E–01 1.059E–01
4.5626E–01 4.6204E+02 5.3459E+01 1.800E–01 1.070E–01
4.6196E–01 4.6849E+02 5.5281E+01 1.823E–01 1.080E–01
4.6766E–01 4.7496E+02 5.7140E+01 1.845E–01 1.090E–01
4.7336E–01 4.8146E+02 5.9036E+01 1.867E–01 1.101E–01
4.7907E–01 4.8798E+02 6.0970E+01 1.889E–01 1.111E–01
4.8477E–01 4.9453E+02 6.2942E+01 1.910E–01 1.121E–01
4.9047E–01 5.0110E+02 6.4953E+01 1.932E–01 1.131E–01
4.9617E–01 5.0769E+02 6.7002E+01 1.954E–01 1.142E–01
5.0187E–01 5.1430E+02 6.9090E+01 1.975E–01 1.152E–01
5.0757E–01 5.2094E+02 7.1217E+01 1.996E–01 1.162E–01
5.1327E–01 5.2760E+02 7.3383E+01 2.017E–01 1.172E–01
5.1897E–01 5.3429E+02 7.5589E+01 2.038E–01 1.181E–01
5.2467E–01 5.4100E+02 7.7835E+01 2.059E–01 1.191E–01
5.3037E–01 5.4774E+02 8.0120E+01 2.080E–01 1.201E–01
5.3607E–01 5.5450E+02 8.2447E+01 2.101E–01 1.211E–01
5.4178E–01 5.6129E+02 8.4814E+01 2.121E–01 1.220E–01
5.4748E–01 5.6810E+02 8.7222E+01 2.141E–01 1.230E–01
5.5318E–01 5.7494E+02 8.9671E+01 2.162E–01 1.239E–01
5.5888E–01 5.8180E+02 9.2162E+01 2.182E–01 1.249E–01
5.6458E–01 5.8868E+02 9.4695E+01 2.202E–01 1.258E–01
5.7028E–01 5.9560E+02 9.7270E+01 2.221E–01 1.267E–01
5.7598E–01 6.0254E+02 9.9887E+01 2.241E–01 1.277E–01
5.8168E–01 6.0950E+02 1.0255E+02 2.260E–01 1.286E–01
5.8738E–01 6.1650E+02 1.0525E+02 2.280E–01 1.295E–01
5.9308E–01 6.2351E+02 1.0800E+02 2.299E–01 1.304E–01
5.9879E–01 6.3056E+02 1.1078E+02 2.318E–01 1.313E–01
6.0449E–01 6.3763E+02 1.1362E+02 2.337E–01 1.322E–01
6.1019E–01 6.4473E+02 1.1649E+02 2.356E–01 1.331E–01
6.1589E–01 6.5185E+02 1.1942E+02 2.374E–01 1.339E–01
6.2159E–01 6.5901E+02 1.2238E+02 2.393E–01 1.348E–01
6.2729E–01 6.6619E+02 1.2539E+02 2.411E–01 1.357E–01
6.3299E–01 6.7340E+02 1.2845E+02 2.429E–01 1.365E–01
6.3869E–01 6.8063E+02 1.3155E+02 2.447E–01 1.374E–01
6.4439E–01 6.8789E+02 1.3470E+02 2.465E–01 1.382E–01
6.5009E–01 6.9519E+02 1.3789E+02 2.483E–01 1.391E–01
6.5579E–01 7.0251E+02 1.4113E+02 2.501E–01 1.399E–01
6.6150E–01 7.0985E+02 1.4442E+02 2.518E–01 1.407E–01
6.6720E–01 7.1723E+02 1.4775E+02 2.536E–01 1.415E–01
6.7290E–01 7.2464E+02 1.5113E+02 2.553E–01 1.424E–01
6.7860E–01 7.3207E+02 1.5456E+02 2.570E–01 1.432E–01
6.8430E–01 7.3953E+02 1.5803E+02 2.587E–01 1.440E–01
6.9000E–01 7.4702E+02 1.6156E+02 2.604E–01 1.447E–01
6.9570E–01 7.5455E+02 1.6513E+02 2.620E–01 1.455E–01
7.0140E–01 7.6210E+02 1.6875E+02 2.637E–01 1.463E–01
7.0710E–01 7.6968E+02 1.7242E+02 2.653E–01 1.471E–01
7.1280E–01 7.7729E+02 1.7614E+02 2.669E–01 1.478E–01
7.1850E–01 7.8493E+02 1.7990E+02 2.685E–01 1.486E–01
7.2421E–01 7.9260E+02 1.8372E+02 2.701E–01 1.494E–01
7.2991E–01 8.0030E+02 1.8759E+02 2.717E–01 1.501E–01
7.3561E–01 8.0803E+02 1.9151E+02 2.733E–01 1.508E–01
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Table A.2. continued.

n (fm−3) ε (MeV/fm3) P (MeV/fm3) xp xe

7.4131E–01 8.1579E+02 1.9548E+02 2.749E–01 1.516E–01
7.4701E–01 8.2359E+02 1.9950E+02 2.764E–01 1.523E–01
7.5271E–01 8.3141E+02 2.0357E+02 2.779E–01 1.530E–01
7.5841E–01 8.3926E+02 2.0769E+02 2.794E–01 1.537E–01
7.6411E–01 8.4715E+02 2.1186E+02 2.810E–01 1.544E–01
7.6981E–01 8.5507E+02 2.1609E+02 2.824E–01 1.551E–01
7.7551E–01 8.6301E+02 2.2037E+02 2.839E–01 1.558E–01
7.8121E–01 8.7099E+02 2.2470E+02 2.854E–01 1.565E–01
7.8692E–01 8.7901E+02 2.2908E+02 2.868E–01 1.572E–01
7.9262E–01 8.8705E+02 2.3352E+02 2.883E–01 1.579E–01
7.9832E–01 8.9513E+02 2.3801E+02 2.897E–01 1.586E–01
8.0402E–01 9.0323E+02 2.4255E+02 2.911E–01 1.592E–01
8.0972E–01 9.1137E+02 2.4715E+02 2.925E–01 1.599E–01
8.1542E–01 9.1955E+02 2.5181E+02 2.939E–01 1.605E–01
8.2112E–01 9.2775E+02 2.5651E+02 2.953E–01 1.612E–01
8.2682E–01 9.3599E+02 2.6128E+02 2.967E–01 1.618E–01
8.3252E–01 9.4426E+02 2.6609E+02 2.980E–01 1.625E–01
8.3822E–01 9.5257E+02 2.7097E+02 2.994E–01 1.631E–01
8.4393E–01 9.6091E+02 2.7590E+02 3.007E–01 1.637E–01
8.4963E–01 9.6928E+02 2.8088E+02 3.020E–01 1.644E–01
8.5533E–01 9.7768E+02 2.8592E+02 3.034E–01 1.650E–01
8.6103E–01 9.8612E+02 2.9102E+02 3.047E–01 1.656E–01
8.6673E–01 9.9460E+02 2.9618E+02 3.059E–01 1.662E–01
8.7243E–01 1.0031E+03 3.0139E+02 3.072E–01 1.668E–01
8.7813E–01 1.0116E+03 3.0666E+02 3.085E–01 1.674E–01
8.8383E–01 1.0202E+03 3.1199E+02 3.097E–01 1.680E–01
8.8953E–01 1.0288E+03 3.1738E+02 3.110E–01 1.685E–01
8.9523E–01 1.0375E+03 3.2282E+02 3.122E–01 1.691E–01
9.0093E–01 1.0462E+03 3.2833E+02 3.134E–01 1.697E–01
9.0664E–01 1.0549E+03 3.3389E+02 3.147E–01 1.703E–01
9.1234E–01 1.0636E+03 3.3951E+02 3.159E–01 1.708E–01
9.1804E–01 1.0724E+03 3.4519E+02 3.170E–01 1.714E–01
9.2374E–01 1.0812E+03 3.5093E+02 3.182E–01 1.719E–01
9.2944E–01 1.0901E+03 3.5673E+02 3.194E–01 1.725E–01
9.3514E–01 1.0990E+03 3.6260E+02 3.206E–01 1.730E–01
9.4084E–01 1.1079E+03 3.6852E+02 3.217E–01 1.736E–01
9.4654E–01 1.1169E+03 3.7450E+02 3.228E–01 1.741E–01
9.5224E–01 1.1259E+03 3.8055E+02 3.240E–01 1.746E–01
9.5794E–01 1.1349E+03 3.8665E+02 3.251E–01 1.752E–01
9.6364E–01 1.1440E+03 3.9282E+02 3.262E–01 1.757E–01
9.6935E–01 1.1531E+03 3.9905E+02 3.273E–01 1.762E–01
9.7505E–01 1.1622E+03 4.0534E+02 3.284E–01 1.767E–01
9.8075E–01 1.1714E+03 4.1170E+02 3.295E–01 1.772E–01
9.8645E–01 1.1806E+03 4.1812E+02 3.306E–01 1.777E–01
9.9215E–01 1.1899E+03 4.2460E+02 3.316E–01 1.782E–01
9.9785E–01 1.1992E+03 4.3114E+02 3.327E–01 1.787E–01
1.0036E+00 1.2085E+03 4.3775E+02 3.337E–01 1.792E–01
1.0093E+00 1.2179E+03 4.4443E+02 3.348E–01 1.797E–01
1.0150E+00 1.2273E+03 4.5116E+02 3.358E–01 1.802E–01
1.0207E+00 1.2368E+03 4.5796E+02 3.368E–01 1.806E–01
1.0264E+00 1.2462E+03 4.6483E+02 3.378E–01 1.811E–01
1.0321E+00 1.2558E+03 4.7176E+02 3.388E–01 1.816E–01
1.0378E+00 1.2653E+03 4.7876E+02 3.398E–01 1.820E–01
1.0435E+00 1.2749E+03 4.8582E+02 3.408E–01 1.825E–01
1.0492E+00 1.2846E+03 4.9295E+02 3.418E–01 1.829E–01
1.0549E+00 1.2942E+03 5.0015E+02 3.427E–01 1.834E–01
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n (fm−3) ε (MeV/fm3) P (MeV/fm3) xp xe

1.0606E+00 1.3040E+03 5.0741E+02 3.437E–01 1.838E–01
1.0663E+00 1.3137E+03 5.1474E+02 3.446E–01 1.843E–01
1.0720E+00 1.3235E+03 5.2214E+02 3.456E–01 1.847E–01
1.0777E+00 1.3333E+03 5.2960E+02 3.465E–01 1.852E–01
1.0834E+00 1.3432E+03 5.3713E+02 3.474E–01 1.856E–01
1.0891E+00 1.3531E+03 5.4473E+02 3.484E–01 1.860E–01
1.0948E+00 1.3631E+03 5.5240E+02 3.493E–01 1.864E–01
1.1005E+00 1.3731E+03 5.6013E+02 3.502E–01 1.869E–01
1.1062E+00 1.3831E+03 5.6794E+02 3.511E–01 1.873E–01
1.1119E+00 1.3932E+03 5.7581E+02 3.519E–01 1.877E–01
1.1176E+00 1.4033E+03 5.8375E+02 3.528E–01 1.881E–01
1.1233E+00 1.4135E+03 5.9176E+02 3.537E–01 1.885E–01
1.1290E+00 1.4237E+03 5.9985E+02 3.546E–01 1.889E–01
1.1347E+00 1.4339E+03 6.0800E+02 3.554E–01 1.893E–01
1.1404E+00 1.4442E+03 6.1622E+02 3.563E–01 1.897E–01
1.1461E+00 1.4545E+03 6.2451E+02 3.571E–01 1.901E–01
1.1518E+00 1.4649E+03 6.3288E+02 3.580E–01 1.905E–01
1.1575E+00 1.4753E+03 6.4131E+02 3.588E–01 1.909E–01
1.1632E+00 1.4857E+03 6.4982E+02 3.596E–01 1.913E–01
1.1689E+00 1.4962E+03 6.5840E+02 3.604E–01 1.916E–01
1.1746E+00 1.5067E+03 6.6705E+02 3.612E–01 1.920E–01
1.1803E+00 1.5173E+03 6.7577E+02 3.620E–01 1.924E–01
1.1860E+00 1.5279E+03 6.8457E+02 3.628E–01 1.928E–01
1.1917E+00 1.5386E+03 6.9343E+02 3.636E–01 1.931E–01
1.1974E+00 1.5493E+03 7.0237E+02 3.644E–01 1.935E–01
1.2031E+00 1.5600E+03 7.1139E+02 3.652E–01 1.939E–01
1.2088E+00 1.5708E+03 7.2047E+02 3.659E–01 1.942E–01
1.2145E+00 1.5816E+03 7.2964E+02 3.667E–01 1.946E–01
1.2202E+00 1.5925E+03 7.3887E+02 3.675E–01 1.949E–01
1.2259E+00 1.6034E+03 7.4818E+02 3.682E–01 1.953E–01
1.2316E+00 1.6144E+03 7.5756E+02 3.690E–01 1.956E–01
1.2373E+00 1.6254E+03 7.6702E+02 3.697E–01 1.959E–01
1.2430E+00 1.6364E+03 7.7656E+02 3.704E–01 1.963E–01
1.2487E+00 1.6475E+03 7.8617E+02 3.712E–01 1.966E–01
1.2544E+00 1.6586E+03 7.9585E+02 3.719E–01 1.970E–01
1.2601E+00 1.6698E+03 8.0561E+02 3.726E–01 1.973E–01
1.2658E+00 1.6810E+03 8.1545E+02 3.733E–01 1.976E–01
1.2715E+00 1.6923E+03 8.2536E+02 3.740E–01 1.979E–01
1.2772E+00 1.7036E+03 8.3535E+02 3.747E–01 1.983E–01
1.2829E+00 1.7150E+03 8.4542E+02 3.754E–01 1.986E–01
1.2886E+00 1.7264E+03 8.5556E+02 3.761E–01 1.989E–01
1.2943E+00 1.7378E+03 8.6578E+02 3.768E–01 1.992E–01
1.3000E+00 1.7493E+03 8.7608E+02 3.774E–01 1.995E–01
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