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Abstract
We use an extended elastic impedance (EEI) inversion for quantitative reservoir characterization.
The EEI approach is applied to both on-shore and off-shore seismic data where target reservoirs
are gas-bearing sands located in sand-shale sequences. The workflow we adopt can be divided
into three phases. The starting point is a petrophysical analysis in which the relationships
between petrophysical and elastic properties are analyzed. The second step of EEI analysis uses a
cross-correlation procedure to determine the best chi (χ) projection angles for the petrophysical
parameters of interest (i.e. porosity, water saturation and shaliness). In the final step, pre-stack
seismic data are simultaneously inverted into P-wave velocity, acoustic, and gradient
impedances, and the last two elastic volumes are finally projected to χ angles corresponding to
the target petrophysical parameters. The estimated porosity, water saturation, and shaliness
values reveal a proper match at blind well locations. This work shows that EEI is an effective
tool for lithology and fluid prediction in clastic reservoirs. The output of this work can be
beneficial for static reservoir model building and volumetric calculation and can be also used to
determine new potential drilling locations.
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Introduction

A robust estimation of petrophysical parameters such as
shaliness (Sh), water saturation (Sw), and porosity (j) around
the investigated reservoir zone is of utmost importance
mainly for three objectives: static geological model building,
volumetric reserve estimation, and overall field development
planning. Many studies in the literature discuss the transfor-
mation of band-limited seismic data into reservoir properties.
One of the most common inversion approaches consists of
first inverting seismic data into elastic parameters, and then
converting the estimated elastic attributes into petrophysical
reservoir properties through a rock-physics model or statis-
tical relationships between the petrophysical and elastic
parameters derived at well control points (Dubucq et al 2001,

Vernik et al 2002, Avseth et al 2010, Chatterjee et al 2013,
Aleardi and Ciabarri 2017a, Aleardi 2018). However, to deal
with the ill-posedness of such seismic-petrophysical inver-
sion, regularization strategies are usually introduced into the
inversion kernel (Doyen 1988, Bachrach 2006, Sengupta and
Bachrach 2007, Grana and Della Rossa, 2010, Sams
et al 2011, Aleardi and Ciabarri 2017b, Aleardi et al 2017).

In addition to the seismic-petrophysical inversion, the
extended elastic impedance (EEI; Whitcombe et al 2002)
inversion has also been established as a key technology
solution for lithology and fluid prediction in the exploration
and production industry (Shi et al 2014, Samba et al 2017).
This technology started with Connolly (1999), who, basing it
on linearization of the Zoeppritz equations, defined the elastic
impedance (EI) as the equivalent of acoustic impedance (AI)
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at non-zero angles. This opened a new dimension of utiliza-
tion of AI–EI pairs for lithology and fluid discrimination.
While Connolly’s work provides good results and useful
guides for enhanced reservoir characterization, restriction of
incident angles was a serious challenge. An additional pro-
blem is that EI has strange unit and dimensions and its values
do not scale correctly for different angles. This last EI lim-
itation was overcome by Whitcombe et al (2002) who mod-
ified the Connolly formula by introducing three normalizing
constants which represent average values of velocities and
densities over the zone of interest. These normalizing con-
stants remove the variable dimensionality and provide the EI
with the same dimensionality and scale of AI. Whitcombe
et al (2002) further introduced the EEI approach to overcome
the limitation concerning the incidence angles. In fact, he
broadened the definition of EI to remove the dependence of
its dimensionality on the incidence angle. He recognized that
some rock properties cannot be predicted from existing seis-
mic gathers due to limitation on the incidence angle range
(usually 0°–30°). That is to say, the squared sinus of the
incidence angle (θ) needs to exceed unity to make the esti-
mation of key petrophysical properties possible. To solve this
problem Whitcombe et al (2002) introduced the EEI concept
by substituting the squared sinus of the incidence angle with
the tangent of chi (χ), with χ varying between −90° and 90°.
In the context of reservoir characterization, it has been
demonstrated that the EEI at optimized χ angles correlates
well with elastic and reservoir properties.

The key step of the EEI method is to use a data-driven
approach to determine the best projection χ angles for target
well logs representing sought parameters. The target logs can
be given elastic properties (i.e. Vp/Vs ratio, bulk modulus,
Lamé constants, seismic-impedances) or petrophysical rock
properties (i.e. porosity, water saturation, shaliness). To
determine the best χ angles, the EEI log spectrum can be
used. This method first generates the EEI log spectrum by
making use of logged velocity and density values and then
cross-correlates the obtained EEI spectrum at different χ

angles with the sought parameters in order to give an estimate
of the optimum angles to use. Depending on the quality of
well log data, one can expect to see a perfect correlation
between the EEI log and reservoir properties such as porosity,
clay content, and water saturation. It is worth stating that
factors like depth trend (Ball et al 2013, 2014, Thomas
et al 2013), compaction trend (Avseth et al 2013), thickness,
and lithology influence the quality of the correlation.
Recently, Thomas et al (2013) have recommended the use of
the natural logarithm of EEI (ln EEI) instead of the full EEI
during the correlation analysis between reservoir properties
and EEI logs to avoid statistical biases and loss of parity with
reflection. Once the best projection angles have been esti-
mated for the rock properties we are interested in, a pre-stack
seismic inversion can be performed to infer the EEI values
away from well locations. Then, the inverted EEI volumes
can be projected onto the subsurface properties of interest by
exploiting the optimal χ angles.

This paper is mainly aimed at illustrating the reliability
and the suitability of the EEI method for reservoir

characterization in clastic reservoirs located in shale-sand
sequences. In particular, we use the concept of EEI to derive
three petrophysical properties (porosity, water saturation and
shaliness) for two different gas-saturated reservoirs. We use
the estimated optimal χ angles to convert the inverted
acoustic and gradient impedance (GI) cubes into the petro-
physical properties of interest. The first part of the paper
discusses the theory behind the EEI method and describes the
inversion approach we use. In the second part, the metho-
dology is applied to two seismic datasets acquired on-shore
and off-shore.

The method

Whitcombe et al (2002) defined the EEI as follows:
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where ρ is the density, ρ0, Vp0 and Vs0 are normalizing
constants for Vp, Vs and density, respectively, and K is the
average squared Vs/Vp ratio over the target depth interval.
Obtaining EEI reflectivity volumes at χ=0 and χ=90
degrees so that they can be transformed into AI and GI,
respectively, was one of the reasons leading to the develop-
ment of the EEI approach. To this aim, equation (1) can be
also rewritten as follows:
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where AI0 is the normalization factor for AI. If we consider
the two term Shuey approximation to the Zoeppritz equations
(Shuey 1985), χ can be considered as the rotational angle in
the intercept-gradient plane that is related to the angle of
incidence θ as follows:

tan sin . 32c q= ( )

It can be noted that equation (3) extends the range of mea-
sured data imposed by sin2 θ (0<sin2 θ<1) to minus and
plus infinities.

From the previous equations it emerges that the AI and
GI values are needed to infer the EEI values for different χ
angles away from well locations. The AI and GI values can be
estimated through a pre-stack inversion of seismic data. To
this end we implement a simultaneous inversion that is a
modification of the amplitude versus angle (AVA) inversion
algorithm proposed by Hampson et al (2005).

By convolving the AVA equation given by Wiggins et al
(1983) with the angle-dependent source wavelet W(θ), the
synthetic seismic trace for a given incidence angle can be
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defined as:
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where Δ expresses the sample-by-sample contrasts, δ are the
deviations from a linear trend (see below), whereas the
numerical coefficients a, b and c are defined by:
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In equation (5.1) αGI is the gradient coefficient of the
linear equation ln(GI) versus ln(AI):

kln GI ln AI ln GI , 6GI GIa d= + +( ) ( ) ( ) ( )

where kGI is the intercept term and the δln(GI) term defines
the deviations away from the linear equation (6). Similarly, in
equation (5.1) αVp is the gradient coefficient of the linear
equation ln(Vp) versus ln(AI):

Vp k Vpln ln AI ln , 7Vp Vpa d= + +( ) ( ) ( ) ( )

where kVp is the intercept term and δln(Vp) defines the
deviations away from the linear equation (7). Equations (6)
and (7) can be defined making use of an optimization pro-
cedure driven by available well log data. Note from
equation (4) that we are mainly looking for deviations away
from a linear fit in natural logarithmic space.

In matrix notation, the linear forward modeling of
equation (4) can be written as follows:

where N is the total number of incidence angles we consider,
and D is the numerical differential operator; W is a banded
matrix composed of extracted wavelets per partial angle stack,
whereas Spp is the data column vector containing samples of
partial angle stack for each considered incidence angle.

In particular, in our implementation we stabilize the
inversion procedure by adding a priori information about the
mutual correlation and the vertical variability of the con-
sidered elastic properties. This a priori information can be
derived from available well log data. More in detail,
equation (8) can be written as follows:

d Gm, 9= ( )

where d represents the observed data vector, G is the linear
forward model and m is the model vector. In solving

equation (8) we minimize the following error function:
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where mprior is the prior model, Cd is the data covariance
matrix describing the noise affecting the observed data, and
Cm is the a priori model covariance matrix expressing both
the mutual correlation of elastic properties and their vertical
variability. The matrix Cm can be obtained by a Kronecker
product between a stationary correlation matrix expressing the
mutual correlation of elastic properties and a vertical corre-
lation function coding the vertical variability of elastic
properties. In particular, following Buland and Omre (2003)
such vertical correlation can be expressed by a second-order

exponential function that approximates the actual vertical
variability of elastic properties.

Under the assumption of Gaussian statistic, the least-
square solution of equation (10), can be derived as follows:

m G C G C G C d C m . 11T
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T
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For computational feasibility reasons, we solve equation (11)
iteratively (i.e. employing the conjugate gradient method) by
starting the inversion from an initial model and then iterate
toward the final solution until the desired data-misfit value is
attained. We invert each seismic gather separately, thus
overlooking the spatial correlation of elastic attributes.
However, we point out that the lateral continuity of our results
is imposed by the lateral correlation of seismic data that
depends on the migration operator.

Figure 1. Schematic representation of the workflow of the
methodology.
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Field case applications

We now describe the results obtained in two applications of
the EEI method for reservoir characterization on on-shore and
off-shore data. In both cases the targets of the investigation
are gas-saturated clastic reservoirs located in shale-sand
sequences. Figure 1 shows the workflow of the methodology
used in this study. It starts from well log data, previously
analyzed and quality controlled to ensure that the required
data are available and physically reasonable. Then, we com-
pute the EEI logs for different χ angles using equations (1) or
(2) and we estimate the optimum angles that give the best
correlation (positive or negative) between the EEI and the
petrophysical target logs (porosity, shaliness, and water
saturation). Then, we perform a quality control, conditioning
and simultaneous inversion of pre-stack time-migrated data
with the aim to estimate P-wave velocity, acoustic, and GIs.
In this inversion, a priori information derived from available
well log data are included to attenuate the ill-conditioning of
the inverse problem. We compute the equivalent EEI volume
through equation (2) and we finally transform such EEI
volume into quantitative petrophysical properties.

Determining the optimum χ angle for a target reservoir
property is the primary base to a successful application of the
proposed technique. Hence, high quality well log data are
needed for the computation of EEI as well as for the correlation
analysis. A set of EEI logs ranging from χ=−90° to χ=90°
was then computed by means of equation (1). The normalization
constants have been estimated by averaging logged velocity and
density values around the target interval. In the computation of
the optimal χ angles we follow the guidelines proposed by
Thomas et al (2013). They suggested performing an accurate

Figure 2. Rock-physics templates showing the influence of each
petrophysical parameter on the acoustic impedance (AI) and gradient
impedance (GI). The influences of water saturation, porosity and
shaliness are represented from top to bottom.

Figure 3. Example of EEI log spectrum obtained by applying
equation (1) to logged Vp, Vs and density values.

Figure 4. Cross-correlation analysis for the investigated reservoir
located off-shore.

2082

J. Geophys. Eng. 15 (2018) 2079 M Aleardi



Figure 5. Example of stack section along an in-line direction extracted from the 3D seismic volume. The yellow rectangle delimits the target
zone, while the black arrow points toward the top reflection of the reservoir layer.

Figure 6. Cross-plots of ln(AI) versus ln(GI) (part (a)) and ln(AI) versus ln(Vp) (part (b)), together with the resulting linear fits. Blue dots
represent well log samples, while the red lines show the estimated linear regressions.

Figure 7. Inversion results for the seismic gather closest to the blind well. (a)–(d) Represent the seismic data, the acoustic impedance, the δln
(GI) and the δln(Vp), respectively. In (b)–(d) the red, green and black lines show the true, the initial, and the final predicted models,
respectively. The amplitude anomaly at 2.45 s identifies the reservoir reflection.
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outlier removal procedure from well log data, the use of the
natural logarithm of EEI in the correlation analysis instead of
full EEI, and the use of the detrended target petrophysical
curves and detrended ln(EEI) curves when performing the
correlation analysis. Indeed, well logs are generally trended, and
the trends associated with ln(EEI) logs are function of the χ

angle. It is well documented that spurious correlation coeffi-
cients may result by correlating two trended data (Ball
et al 2013, 2014). Following Ball et al (2014), each single
ln(EEI) curve and the petrophysical target log were decomposed
into the background trend and the relative components before
determining the optimum angle. The correlation analysis is then
carried out between the two relative components.

Depending on the quality of the well log data, the cor-
relation coefficient versus χ angle may show a maximum/
minimum peak or a plateau. In case of a plateau, one of the
values along the plateau or its center could be considered to
be optimal (Thomas et al 2013). Once the correlation between
the target log and ln(EEI) logs for each χ angle was obtained,
the maximum (positive) or minimum (negative) correlation
was identified together with the corresponding χ angle. This
procedure identifies the optimal angle for a given target log,
while the correlation value indicates the reliability with which
a given petrophysical property can be predicted.

After the cross-correlation analysis, quality control and
conditioning of available seismic data is performed with the

Figure 8. Petrophysical properties estimated for the seismic gather closest to the blind well. (a)–(d) Represent the seismic data, water
saturation, porosity and shaliness, respectively. In (b)–(d) the black and red lines represent the true and the final predicted models,
respectively. As in figure 7(a), the amplitude anomaly at 2.45 s identifies the reservoir reflection.

Figure 9. (a) and (b) Show the AI and GI values estimated within the yellow rectangle represented in figure 5. The red rectangles enclose the
target reservoir characterized by low AI and GI values.
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aim to detect and fix potentials problems and thus prepare the
seismic data for quantitative AVA studies. Accurate ampl-
itude-preserving processing, seismic-well tie, events align-
ment for optimal AVA response, zero-phase deconvolution,
and pre-stack time-migration, have been performed before
inversion. Individual wavelets estimated from well-to-seismic
tie were used in zero phasing to match the spectral component
with reference angle stack. If needed, amplitude balancing,
band pass filter and offset dependent scaling could be applied
to maintain consistency between well and seismic AVA
responses.

For what concerns the inversion approach we apply a
deterministic inversion based on equations (8), (10), and (11).
In this type of inversion, an initial AI model is modified
iteratively to improve its fit with the observed seismic data.
To define the initial impedance model available well log data
have been used.

Field case 1: reservoir characterization on off-shore
seismic data

In this investigated field, the targets are gas-bearing sands at
the depth range of 2300–2700 m. Layering is typically on the
centimeter scale, and the reservoir mainly consists in rather
clean-sand layers interbedded with laminated non-permeable
shales, whereas in localized portions the sand bodies are
characterized by a negligible amount of limestone and
anhydrite. Eleven out of twelve wells drilled through the
target interval, provide elastic and petrophysical properties

needed to determine the optimal χ angles and to define the
a priori information to be inserted into the inversion kernel.
The remaining well has been used as a blind test to check the
reliability of our results and to determine the prediction
capability of the method for the investigated reservoir.
Additional information about the petrophysical characteristics
of this area can be found in Aleardi and Ciabarri (2017a).

We first analyze the rock-physics template showing the
influence of each petrophysical property of interest on the AI
and GI values (figure 2). As expected, we observe a decrease
of AI and GI as the water saturation and shaliness decrease
and as the porosity increases.

Figure 3 shows an example of EEI log spectrum obtained
by applying equation (1) to the logged elastic properties
extracted from available well log data. In the following step,
we perform a correlation analysis in which the EEI curve
obtained for each χ angle is correlated with each sough pet-
rophysical parameter. This gives the EEI angle correlation
curves shown in figure 4.

For a χ angle equal to −90, the porosity shows a very
strong positive correlation with ln(EEI), whereas for the same
angle the shaliness shows a strong negative correlation
coefficient. These characteristics evidence the cross-talk, or in
other words the negative correlation, between porosity and
shaliness. Differently water saturation gives the highest cor-
relation with ln(EEI) for a χ angle equal to 27°. Therefore, the
EEI log at χ=−90 is an extremely good predictor for both
porosity and shaliness, whereas the EEI log at χ=27 offers a
satisfactory prediction of water saturation.

Figure 10. Petrophysical properties estimated within the yellow rectangle represented in figure 5. (a)–(c) Refer to water saturation, porosity
and shaliness, respectively. The red rectangles enclose the investigated reservoir characterized by high porosity and low water saturation and
shaliness values.
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Figure 5 shows an in-line section extracted from the 3D
seismic volume. The yellow rectangle encloses the area that
will be considered in the following inversion, whereas the
black arrow points to the top reflection of the target reservoir
layer. Note the strong amplitude anomaly marking the
transition from the cap-rock shale to the reservoir, gas-satu-
rated, sand.

As an example, figure 6 illustrates cross-plots derived
from well log data of ln(AI) versus ln(GI) and ln(AI) versus
ln(Vp), together with the resulting linear least-squares fits (see
equations (6) and (7)). The slopes of the red lines shown in
figures 6(a) and (b) have been used to derive the numerical
coefficients αGI and αVp in equation (5.1), respectively. In this
work we are limited to a linear inversion and for this reason
we are forced to perform a linear fitting in the ln(AI)–ln(GI)
and ln(AI)–ln(Vp) planes. Other more accurate nonlinear fit-
ting procedures will make the forward modeling not linear,
thus increasing the computational cost of the inversion

procedure. However, note that the accuracy of the fitting is
not a major issue in our case. Indeed, we define (assume)
linear relations between ln(AI)–ln(GI) and ln(AI)–ln(Vp) and,
then we invert to infer the deviations from such linear trends.
This peculiar parameterization (in terms of deviations from
assumed linear trends) is able to provide accurate predictions
even if the linear equations do not fully describe the relations
between the considered elastic properties (ln(AI)–ln(GI) and
ln(AI)–ln(Vp)).

Figure 7 displays the elastic properties predicted for the
CMP gather located in correspondence of the blind well. In
figure 7(a) note the clear class III AVA anomaly (according to
Castagna and Swan 1997) at 2.45 s that characterizes the
reservoir reflection. Figures 7(b)–(d) point out the good
accordance between estimated and true properties. Note that
we assume null initial models for δln(GI) and δln(Vp), that
correspond to initial models that exactly follow the linear
relations of equations (6) and (7).

Figure 8 represents the comparison between true and
predicted petrophysical properties for the blind well. Again,
note that the predicted petrophysical curves show a close
match with actual well log data. This blind test proves the
applicability and the reliability of the implemented method for
reservoir characterization in the investigated area.

We now describe the AI and GI values estimated by the
implemented deterministic inversion within the yellow rec-
tangle shown in figure 5. In figure 9 the low AI and GI values
within the red rectangle identify the reservoir interval.
Figure 10 shows the predicted petrophysical properties within
the yellow rectangle shown in figure 5. Note the high porosity
and low water saturation and shaliness values associated with
the target interval, together with the complex geologic setting

Figure 11. Rock-physic templates showing the influence of each
petrophysical parameter on the acoustic impedance (AI) and gradient
impedance (GI). The influences of water saturation, porosity and
shaliness are represented from top to bottom.

Figure 12. Cross-correlation analysis for the investigated reservoir
located on-shore.
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of the investigated area characterized by many isolated and
interconnected sand channels surrounded by thick shale
sequences.

Field case 2: reservoir characterization on on-shore
seismic data

This second test concerns the application of the EEI method
to a clastic, gas-saturated reservoir, located on-shore. The
reservoir zone is constituted by gas-bearing sands at the depth
range of 900–1000 m. The reservoir sand is rather clean with
no cementation and low clay content; effective porosity ran-
ges from 0% to 35%, while gas saturation usually varies
between 0% and 80%. Borehole logs from 6 out of 7 wells
provide elastic and petrophysical information needed to fully
characterize the reservoir rocks in terms of Vp, Vs, density,
effective porosity, water saturation and shaliness. Similarly,
to the previous field test case, the seventh, remaining, well has

been used for a blind test to validate the final predictions.
More information about the rock-physics analysis for the
investigated zone can be found in Aleardi et al (2018).

Figure 11 represents the rock-physics template for the
investigated area in which the effects of water saturation, por-
osity and shaliness on the elastic properties of AI and GI are
displayed. Again, we observe the decrease of GI and AI as the
porosity increases and as the water saturation and shaliness
decrease. We can also observe that even slight variations in the
porosity exert a significant influence on the elastic properties,
whereas the shaliness, but particularly the water saturation, play
much minor roles in controlling the AI and GI values. For this
reason, we expect that the predicted porosity will be affected by
lower error than the estimated shaliness and the water saturation
values. In other words, we are more confident on the porosity
estimates than on the predicted water saturation values.

Figure 12 displays the EEI correlation graph for porosity,
water saturation, and shaliness for the investigated reservoir.
In this case, the porosity shows a strong negative correlation

Figure 13. Example of stack section along an in-line direction extracted from the 3D seismic volume. The yellow rectangle delimits the target
zone, while the black arrow points toward the top reflection of the reservoir.

Figure 14. Inversion results for the seismic gather closest to the blind well. (a)–(d) Represent the seismic data, the acoustic impedance, the δln
(GI) and the δln(Vp), respectively. In (b)–(d) the red, green and black lines show the true, the initial and the final predicted models,
respectively. The amplitude anomaly at 0.86 s identifies the reservoir layer.
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with EEI for a null χ angle. This means that AI correlates well
with porosity. Differently, water saturation and shaliness
show correlation maxima at χ angles of 32° and 40°,
respectively. Note that all the considered petrophysical
properties show correlation maxima around an absolute value
of 0.8. This evidences that the EEI method can be a valuable
tool for quantitative reservoir characterization in the investi-
gated area.

Figure 13 shows a close-up of a stack section extracted
from the 3D seismic volume along an in-line direction. Note
the high amplitude reflector associated with the top of the
reservoir (indicated by the black arrow). The yellow rectangle
encloses the reservoir zone investigated by the following
inversion.

Figure 14 represents the elastic properties predicted for the
CMP gather closest to the blind well. In figure 14(a) at 0.86 s
note the clear negative amplitude anomaly marking the trans-
ition from the overlying cap-rock to the underlying reservoir
layer. Figures 14(b)–(d) illustrate the close match between the
predicted elastic properties and the actual well log information.

The comparison between the true and predicted petro-
physical properties for the blind well shows satisfactory pre-
dictions (figure 15), that is the predicted properties correctly
capture the variability in the logs. Similarly to the previous field
application, these results prove the applicability and the relia-
bility of the implemented method for reservoir characterization
in the investigated on-shore reservoir. Figure 15 shows that the
error (that is the deviation from the actual petrophysical

Figure 15. Petrophysical properties estimated for the seismic gather closest to the blind well. (a)–(d) Represent the seismic data, water
saturation, porosity and shaliness, respectively. In (b)–(d) the black and red lines illustrate the true and the final predicted models,
respectively.

Figure 16. (a) and (b) Show the AI and GI values estimated within the yellow rectangle represented in figure 13. The red rectangles enclose
the target reservoir characterized by low AI and GI values.
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property values) affecting the estimated parameters is higher for
the shaliness, and particularly for the water saturation, whereas
it is lower for the porosity, which shows a closer match with the
actual well log information. This fact can be related to the
minor role played by the shaliness, but particularly by the water
saturation, in determining the elastic properties and then the
seismic response.

Figure 16 displays the AI and GI values predicted within
the yellow rectangle depicted in figure 13. As expected from
the petrophysical analysis shown in figure 11, very low AI
and GI values characterize the reservoir zone.

Finally, figure 17 illustrates the final predicted petro-
physical properties for the target interval. Note the high
porosity and low water saturation and shaliness values that
characterize the reservoir zone.

Conclusions

In this paper, we demonstrated the applicability of the EEI
method for quantitative reservoir characterization in two different
clastic reservoirs located on-shore and off-shore. In particular, we
showed that EEI at specific χ angles is characterized by high
correlation with the key reservoir properties of porosity, shali-
ness, and water saturation. The optimal χ angle for each reser-
voir property of interest should be established though appropriate
rock-physics analysis of well log data. Once the χ angles are
defined, the EEI volumes at estimated optimal χ angles can be
generated from the AI and GI values derived through pre-stack
AVA inversion. The so obtained EEI volumes can be considered
appropriate information support for reservoir characterization. As
EEI volumes have measurable high correlation with reservoir

properties, they can be easily integrated as secondary information
into the static reservoir model building to constrain properties in
the inter-well regions. In addition, the estimated petrophysical
volumes can be exploited to map favorable zones for future
drilling locations. Obviously, for a successful application of the
EEI method for reservoir characterization all the requirements for
AVA analysis must be met. In particular, care should be taken
during data processing and conditioning to ensure that the
reservoir AVA responses are preserved in the seismic data.

We are aware that the present paper cannot prove the
suitability of the EEI approach for reservoir characterization
in all the possible geologic scenarios that can be encountered
in hydrocarbon exploration. However, some conclusions we
drew, although specifically valid for the analyzed cases, could
reveal to be of practical utility in similar contexts (i.e. clastic
reservoirs hosted in shale-sand sequences). In different geo-
logic scenarios (i.e. non-clastic rocks, fractured rocks) the
complex interrelationships between petrophysical and elastic
parameters could make the EEI method inapplicable. In these
cases, the prediction of petrophysical parameters from seismic
data or elastic properties requires more sophisticated inver-
sion strategies based on tailored rock-physics models.
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Figure 17. Petrophysical properties predicted within the yellow rectangle represented in figure 13. (a)–(c) Refer to water saturation, porosity
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which is enclosed by the red rectangles.
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