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Abstract
Non-Volatile Main Memory (NVMM) devices have been
integrated into general-purpose operating systems through
familiar file-based interfaces, providing efficient byte-
granularity access by bypassing page caches. To leverage
the unique advantages of these high-performance me-
dia, the storage stack is migrating from the kernel into
user-space. However, application performance remains
fundamentally limited unless network stacks explicitly
integrate these new storagemedia and follow themigration
of storage stacks into user-space. Moreover, we argue that
the storage and the network stacks must be considered
together when being designed for NVMM. This requires a
thoroughly new network stack design, including low-level
buffer management and APIs.
We propose PASTE, a new network programming in-

terface for NVMM. It supports familiar abstractions—
including busy-polling, blocking, protection, and run-to-
completion—with standard network protocols such as
TCP and UDP. By operating directly on NVMM, it
can be closely integrated with the persistence layer of
applications. Once data is DMA’ed from a network in-
terface card to host memory (NVMM), it never needs to
be copied again—even for persistence. We demonstrate
the general applicability of PASTE by implementing two
popular persistent data structures: a write-ahead log and
a B+ tree. We further apply PASTE to three applications:
Redis, a popular persistent key-value store, pKVS, our
HTTP-based key value store and the logging component of
a software switch, demonstrating that PASTE not only ac-
celerates networked storage but also enables conventional
networking functions to support new features.

1 Introduction

Non-volatile main memory (NVMMs) [49] has the po-
tential to change the way modern systems are designed
and implemented1. The memory hierarchy, with CPU
registers at the top and persistent storage at the bottom, has
changed little since the early 1970s. The media available
at the bottom of the hierarchy, i.e., block-based persistent
storage, has grown to offer a wider spectrum of choices,
but ephemeral DRAM has ruled supreme as main memory.
Durable main memory will precipitate sweeping

changes to how systems are designed end-to-end. The

1We define NVMM as byte-addressable memory that is persistent,
connected to the memory bus and directly addressable by the CPU.

entire processing cycle of an application will change. Stor-
age and networking, in the form of user-level libraries, will
become inextricably intertwined with application logic,
instead of maintaining the clean separation offered by the
kernel APIs today (e.g., POSIX).

This paper addresses this space by examining the ramifi-
cations of NVMM from the perspective of an application—
not the storage system—and offers a means of leveraging
NVMM from the earliest stage of a server’s request cycle.
In particular, this paper addresses the following question:
What should the end-to-end data path—across a NIC,
the network stack, an application and a persistent data
store—look like?

Consider a transactional data transfer. The NIC on the
receiver writes an incoming packet to main memory via a
DMA, then the kernel network stack processes the packet.
The application then reads the packet data (if the socket
API is used, this involves a data copy) and processes
it. Processing a transaction can result in side-effects to
persistent data structures (e.g., adding a row to a table).
The semantics typically require the application to accept
and persist a transaction prior to acknowledging it as
successful. As persistence is required, and updating the
primary data structure on disk (e.g., in a database table)
is very slow, it is common practice to use a write-ahead
log to speed up transaction processing. Using Write-
ahead logs is much faster than updating a primary data
structure, as it simply involves serially appending to a log
of accepted transactions. The primary data structure is
persisted periodically and corresponding log entries are
discarded. Accepting a transaction thus involves updating
the primary data structure in memory (but not pushing it
to disk) and copying data to a write-ahead log.
Today, since the end-to-end latencies of transactional

data transfers are dominated by slow block-device I/O
(even for NVMe-attached SSDs), the impact of network
stack performance is negligible. However, when applica-
tions store their data on NVMM, the time scales are such
that they become sensitive to both networking and storage
stack performance (see Section 2).

With NVMM, a transaction could in principle become
durable when the NIC DMAs data to host memory, rather
than after an explicit data copy to a write-ahead log by
the application. The data copy is particularly problematic
in systems with NVMM, because it introduces latency
and pollutes the CPU caches. Further, because of low-
latency random access on durably-stored data, NVMMs
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Figure 1: Today’s OS organization: No integration be-
tween network stack and NVMM abstractions. A light
gray arrow indicates path of data from NIC to NVMM.

could even obviate write-ahead logging depending on
the primary database—creating a new opportunity of
organizing primary data structures with packet buffers
to which the NIC DMAs. However, since there is no
integration between NVMM abstractions and the network
stack, packet data and persistent data are treated separately.
This leads to superfluous copying by applications (see
Figure 1).

This paper proposes a fast new networking interface for
persistent data on NVMMs, which we call PAcket STorE
(PASTE). It allows applications to organize persistent data
structures directly with network buffers, eliminating the
superfluous data copies inherent in today’s transactional
systems. PASTE places static packet buffers into an
NVMM region, statically named by a file so that they can
be located across OS reboots. Therefore, applications can
locate packet buffers across reboots using private metadata
that points to arbitrary packet data. Network buffers are not
recycled by the network stack until the owning application
gives the stack permission. We implement PASTE as
a Linux kernel module by extending the netmap [58]
framework and exploiting the OS NVMM abstraction.

Our microbenchmarks that involve persistent data show
PASTE outperforms a well-tuned Linux stack by up to
108% in throughput and by up to 51% in latency; It
outperforms StackMap [68], the state-of-the art network
stack by up to 43% in throughput and 30% in latency.

We apply PASTE to three applications: Redis, a popular
persistent key-value store (up to 133% improvement),
pKVS, our custom key value store that runs over HTTP
(up to 56% improvement), and the logging component
of software switch (up to 50% improvement), in order to
demonstrate that PASTE not only accelerates networked
storage systems but also enables traditional networking
functions to support new features.
The remainder of this paper is organized as follows:

Section 2 describes background and analyzes the costs
of durably storing data from an end-to-end perspective;
Section 3 describes design and implementation of PASTE.
Section 4 evaluates PASTE; Section 5 shows PASTE’s
use cases of key-value stores and software switch. Sec-
tion 6 discusses PASTE’s applicability and future work.
Section 7 describes related work, and the paper concludes

with Section 8. Appendix A provides supplemental infor-
mation and advanced experiment results.

2 Motivation

To motivate the proposed reorganization of the network
stack, this section briefly reviews literature around per-
sistent data. We then perform case studies to see what
happens in reality.

2.1 Background
A transactional data transfer is an essential operation in
many networked storage systems, such as blob stores [7,
48, 51], key-value stores [13, 37] and databases [1, 8, 26].
A general transactional data transfer consists of following
steps:
1. A client transmits data to a server.
2. The server receives packets at a NIC.
3. The NIC DMAs the packets to memory.
4. The packets are processed by the network stack.
5. A server application reads the data.
6. The server application durably stores a record of the

transaction (e.g., on an SSD).
7. The server application replies to the client; the client

now knows the transaction has been accepted and
persisted.

Step 6 is where the largest contribution to end-to-end
latency comes from (e.g., on the order ofmilliseconds). As
discussed above, applications frequently use a write-ahead
log to speed up transaction persistence instead of directly
updating primary data structures, such as a B tree, which
involves durably updating multiple blocks and hence many
random seeks. The client-perceived transaction commit
time is thus increased. Today, logs are implemented
as files and are updated with the write() followed by
fsync() or fdatasync() system calls (the latter differs
only in that it does not update file metadata, so is faster).
As NVMM becomes available, applications will mi-

grate away from using system calls and access persistent
NVMM directly (a black arrow in Figure 1). It should
be emphasized that NVMM DIMMs are expected within
months. While they will be more expensive than NAND
Flash, they are expected to be cheaper than DRAM;
DRAM is what they will be replacing so adoption is ex-
pected to be rapid and wide-spread. File systems can be
put on top of NVMM much as they are today for RAM
disks—except the contents will survive reboots and power
failures. Applications can mmap() files into their address
space, without a buffer cache interposed, and access their
data directly with unprivileged CPU load and store instruc-
tions. System calls will be far too slow in comparison,
so applications will just flush data from CPU caches into
NVMM, typically using the clflush instruction. Thus,
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Memory Measurement Time [µs]

— Network only (H/W, stack, HTTP) 23.32

NVMM
Network + memcpy() 25.57
Network + memcpy()/clflush 27.17
Network + read()/clflush 27.41

SSD

Network + memcpy()/msync() 1320.00
Network + read()/msync() 1300.00
Network + write()/fdatasync() 1370.00
Network + write()/fsync() 3490.00

Table 1: End-to-end transaction latency with various
persistence methods: NVMM dramatically reduces end-
to-end latency and data copy comes at a significant cost.

accessing storage in this new world will be two to three
orders of magnitude faster than it is today.

2.2 End-to-End Transaction Latencies
To better understand the impact of logging on end-to-end
latency, we wrote a simple HTTP server that implements
three methods to durably log data. In all three cases, data
arrives on a socket and is read by the server into a buffer.
The methods of logging the data are:
(i) write() the buffer to a file, followed by either
fsync() or fdatasync().

(ii) memcpy() the buffer to a mmap()-ed file, followed
by msync() for SSD or clflush for NVMM.

(iii) Pass the address of a mmap()-ed file to read() for
use as the buffer, followed by msync() for SSD or
clflush for NVMM.

The last method merges steps 5 and 6 of the general
transactional data transfer (see Section 2.1), avoiding
one of the two data copies that would occur otherwise.
The data movement is depicted as a light gray arrow in
Figure 1.
We examine two types of persistent media: a PCIe-

attached SSD (Samsung 950 Pro, 256GB) and an NVMM
(HPE, 8GB NVDIMM) attached to a DIMM slot. Both
are formatted with the XFS file system that supports the
Linux page-cache bypassmechanism, DAX [44] (“NVMM
absts.” in Figure 1). This NVMM has been available since
early 2016, and costs approximately $900 for 8GB [22].
On the client, we instrument wrk, a popular HTTP

benchmark tool, to send 1412B HTTP POSTs. The
HTTP OK returned by the server is 127B long. The
server and client setup is described in Section 4.1.
Table 1 shows end-to-end transaction latencies that

wrk reports. Storing data on NVMM is almost two
orders of magnitude faster than on SSD. An interesting
artifact is observed when comparing time to persist of
the read()/clflush (4.09 µs) and memcpy()/clflush
(3.85 µs) cases. Contrary to intuition, reading data directly
into a mmap()’ed area is slower. This is because this case
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Figure 2: Throughput (left) and transaction latency (right)
for concurrent requests and connections: Durably storing
data still significantly reduces throughput and increases
end-to-end transaction latency.

is more likely to require full virtual to physical address
translation, so it is slower than reading into a temporary
buffer; the same temporary buffer is used every time so
the CPU cache has the physical addresses already. Further,
memcpy()moves data into the log using SSE instructions.
In the later discussion, we focus on the variant that uses
memcpy(), also because it is more realistic, e.g., it applies
to user-level NVMM management systems [10, 67].
The majority of costs to durably store data stem from

the data copy. We ran the same measurements without
flushing data after copying it (the Network + memcpy()
row in Table 1), which exhibits 1.6 µs lower latency. This
is because the access latency with our NVDIMM is almost
the same as for DRAM, which is on the order of tens
of nanoseconds. Since we flush 1412B—or 23 cache
lines—in a write-through manner, we expect a latency
around 1 to 2 µs, which matches out measurement result
rather well.

2.3 Implications
We claim that these costs of durably storing data should be
regarded as high because of two reasons. First, we expect
that network stacks will become faster, as demonstrated by
mTCP [30], IX [4] and StackMap [68], which could further
emphasize the costs of durably storing data. Second,
increased latencies—which we have already observed in a
single request-response transaction—amplify in realistic
scenarios, because server applications typically serve a
large number of clients.
Figure 2 plots throughputs and transaction latencies

over concurrent requests over parallel TCP connections.
We confirm these reduced throughputs and increased
transaction latencies as the number of concurrent requests
increases. Note that while our experiments are using a
single CPU core, real deployments could serve similar or
larger numbers of connections or requests on each core.
We think that these costs are unavoidable as long as

we design storage and network stacks in isolation. For
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example, Decibel [50] leverages DPDK for the network
stack and SPDK for the storage stack, but it needs to move
data between them, experiencing similar costs to those we
identified above.

3 PASTE

In this section we describe PASTE, our integrated network
and storage (in the form of NVMM) stack and API.

3.1 Design Principles
The persistence tier has been literally secondary storage,
due to the costs of durably storing data on disks or SSDs,
which we have quantified in the last section. NVMMs
provide persistence primitives at the speed and with an
interface comparable to main memory, and we envision
ubiquitous deployment of them across many different
applications. This includes not only storage systems, but
also, for example, software switches and middleboxes for
fault tolerance and fine-grained real-time monitoring, and
different contexts, such as bare-metal servers in private
data centres or virtual machines in the cloud 2. For
broadest deployability of PASTE,we do not rely onRDMA
networking (we discuss it in Section 6.1).
PASTE is a new network programming interface for

persistent data on NVMMs. There are a number of
requirements for networking and persistent storage APIs,
including blocking for efficiency and scalability, busy-
polling for low latency and fault isolation between the stack
and applications, which are benefits provided by the socket
APIs today. In addition to these general requirements,
PASTE achieves the following properties that concern
applications:
Persisting data without a copy: This is essential, as

in the previous subsection we identified that data copies
to durably store data come at significant costs.
Crash recovery and consistency: Data must be ran-

domly accessible from applications over reboots, other-
wise persisting it is useless. Further, applications must be
able to write and recover data consistently, so that they
can reason about the validity of data and the metadata
accompanying it (e.g., pointers and extent information)
after system crash.
Avoiding unnecessary data persistence: Most net-

work service also offer idempotent operations, some form
of read. As seen above, persisting data is expensive so
only mutable requests should be persisted.
Support for large data stores: Large capacity

NVMMs are expected to store even a primary database [10,
40, 66] as opposed to fast, lower-capacity NVMMs that

2Virtualization and pass-through of NVMMs are active topics in
both academia and industry [33, 63]

Figure 3: PASTE architecture: Packet buffers are named
by a file backed by NVMM and pointed to by private
application metadata.

are expected to store logs or journals [15, 36]. Therefore,
we must design a networking framework that can manage
large persistent data stores.

Support for network protocols: Applications must
be able to use existing and new network protocols such
as IP, UDP, TCP and NDP [20] for reliability, congestion
control and/or compatibility with remote end systems.

Obviating serialization of application state: In gen-
eral, applications have to maintain two forms of state: their
in-memory state and their persistent state on disk/SSD.
They are different, because DRAM is byte-addressable
and exacts only minor performance penalties for random
accesses whereas disks/SSDs offer awful random access
performance. These conflicting characteristics lead to
different interfaces that leads to different formats. The
process of converting between the states is serialization [5,
6, 21, 59]. The DRAM image is the state that application
actually wants, as that is the state that it actually computes
with. Serialization leads to data corruptions bugs and
performance problems. NVMM offers the opportunity to
dispense with serialization where applications only need
1 state with NVMM, their in-memory state.

We describe details next, then show how useful these
features are in building applications in the later section.

3.2 Architecture
PASTE is designed to execute NIC I/O, protocol stack
processing and application logic synchronously in a batch,
so called run-to-completion. This model is familiar and
used by some recent systems such as Seastar [9], Sand-
storm [42], IX [4] and StackMap [68], but PASTE extends
it to accelerate persistence in cooperation with NVMM
abstractions and provides suitable APIs for it. Figure 3
illustrates the PASTE architecture with its building blocks.

DMA into NVMM: First and foremost, we must avoid
superfluous copying of data, as we have observed there are
significant costs attached to such operations, which points
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towards performing DMA directly into NVMM. However,
this is just a starting point. We must leverage the fact that
NVMM is persistent, and moving data from the NIC to
NVMM introduces the opportunity to avoid later copies
for persistence. Today’s network stacks dynamically
allocate packet buffers from a kernel pool of dynamic
memory, which are thus anonymous. If the packet buffers
themselves are to become the persistent version of data,
then the first requirement is to ensure that such buffers
can be found across system reboots and crashes.
Named packet buffers: To that end, packet buffers

must become named; we use the well understood and
supported file abstraction for this purpose. Using files is
muchmore convenient compared to managing the physical
addresses of NVMMs directly. This means that a file must
be created and NVMM pages are allocated for its contents.
The network stack must then statically allocate its packet
buffers in the physical pages that the file contains.
Further, since the application needs to manage and

access packet data with its private metadata, the network
stack must provide a good representation of individual
packet buffers. PASTE uses fixed-size packet buffers
that are indexed by 32-bit integers, supporting several
TB of data using 2 kB buffers. Hence, an application
can represent data in its private data structures (Plog
in Figure 3) by a simple tuple of a 32-bit buffer index,
length and offset, which are 16-bit each in size (enough to
accommodate an Ethernet jumbo frame).
PASTE initializes Ppool (see Figure 3) deterministi-

cally for a given memory region, which is “pinned” by a
file. Hence, Plog and Pbufs are consistent over reboots.

Selective persistence: A quick digression into modern
DMA is required to understand this issue. Modern NICs
DMA packets into main memory logically, physically
they are placed into the lowest-level CPU cache. Even
if NVMM is backing the physical DMA target address,
the contents of a packet are not persistent after a DMA.
Thus, PASTE must explicitly push a packet to NVMM
after a DMA to be certain that it is made persistent. Since
this operation is costly, we do not want to perform it
for every packet. Instead, the application examines a
packet first while the packet is still in the CPU cache
(applications are oblivious to this as the CPU manages
its cache transparently). Only if the application decides
that the packet needs to be persisted is the packet moved
to NVMM. On the current generation of Intel CPUs, this
can be done with the clflush(opt) machine instruction.
Applications must distinguish between request data

that should be persisted and request data that may remain
ephemeral. Requests that are idempotent, such as SQL
select queries, do (by definition) not have side-effects
and need not be persisted. Mutable transactions that must
be logged must be persisted (e.g., inserting a row in a
table). When an application identifies such a transaction,

portions of the packets (bytes in the TCP stream) are
pushed to NVMM and made persistent.

Lightweight ordered journaling: It is trivial to im-
plement a log or journal [18] based on this primitive.
A linked list with entries pointing to requests inside the
packet buffer can be superimposed onto them. The result
is a log that is temporally ordered and serves the same
purpose as the journals stored on block devices today—but
in a much faster fashion.
Applications can store their own log in their own

NVMM-backed file (/mnt/pm/plog in Figure 3). In
our example, the nodes of the linked list that comprise the
log can be stored in said file, while the data they point to
are in /mnt/pm/pp0.

Journaling with PASTE can be done as follows (see the
pseudo-code in Figure 4, line 1–6): First, the application
flushes buffer contents (lines 2–4), then durably writes
a buffer extent that is a tuple of buffer index, offset and
length (lines 5–6). The order ensures consistency against
system failures. We analyse data integrity in detail in
Appendix A.1.

Applications can perform each step overmultiple buffers
to journal long data. Since a tuple of buffer index, offset
and length is 8 B in size, and Intel CPUs write an entire
cache line of 64 B, it is possible to atomically commit up
to eight entries. For longer data, the applications may put
logs between additional “begin” and “end” entries like in
conventional transaction logging.

Copy-on-write style free-space management: Com-
mitted buffers and logs comprise either write-ahead logs
or primary data structures, such as a B+ tree. In either
case, persisted buffers need to be moved out of the NIC
ring (i.e., DMA target) so that buffers containing live
data are not over-written. Since the Pring (in Figure 3)
contains only slots—each of which includes a buffer index,
length and offset (i.e., pointers to buffers)— this can be
easily done by swapping buffers containing data with new
empty ones outside the ring. The new empty buffers are
thus attached to the slots of the ring and returned to the
kernel to be eventually used as DMA targets.
The pseudo-code in lines 8–19 of Figure 4 shows the

typical workflow. The application poll()s the receive
ring for incoming requests (line 11); when it returns, it
examines and generates a reply to each request (lines 12–
19). Whenever it receives an update request (test at line
14) it also permanently stores the buffer containing data
(lines 15–16) and then replaces it with a free one (lines
17–18) to preserve it. Buffers containing read requests
are simply left in the receive ring to be reused. Responses
are sent to the network in a batch at the next poll() (line
11).

Figure 3 illustrates an example. Initially, the Pring
slots 0–7 pointed to buffers 0–7. Assume that the NIC has
received packets on buffers 0–6 and the application has
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1 flush_buf(buf, off, len, buf_idx, *log)
2 buf += off;
3 for (int i = 0; i < len; i += CACHE_LINE_SIZE)
4 clflush(buf + i);
5 *log = buf_idx << 32 | off << 16 | len;
6 clflush(log);
7
8 paste_eventloop(nmd, plog, plogsiz)
9 rx, tx = get_netmap_rings(nmd);
10 for (;;)
11 poll(/* on the rx ring */);
12 for each new slot s in rx
13 char *buf = get_netmap_buf(s, rx);
14 if (is_write_request(buf))
15 uint64_t *log = next_log(rx, plog, plogsiz);
16 flush_buf(buf, s->offset, s->len-s->offset,

s->buf_idx, log);
17 netmap_slot *extra = next_free_buf();
18 swap(s, extra); // swap buffer indices
19 write_response(tx);
20
21 main(pm_file, size, plog_file, plog_size, netmap_port)
22 fd = open(pm_file); // Ppool
23 p = mmap(fd, size);
24 netmap_pools_info *pi = p;
25 pi->memsize = size;
26 pi->buf_pool_objtotal = HOW_MANY_BUFFERS;
27 nmreq nmr = { .cmd = POOLS_CREATE, .extm = pi };
28 nm_desc *nmd = nm_open(netmap_port, &nmr);
29 plog_fd = open(plog_file);
30 plog_map = mmap(plog_fd, plog_size);
31 paste_event_loop(nmd, plog_map, plog_size);

Figure 4: Durably writing data and log in flush_buf(),
event loop in paste_eventloop() and Ppool initializa-
tion in main(). Figure 12 in Appendix A.1 illustrates
buffer state over time.

consumed them (indicated by advancing the “cur” ring
pointer from slot 0 to 6) and persisted and logged buffers
1, 2 and 6 (the gray ones in the Ppool). The application
thus has swapped the persisted buffers with free ones: in
the example, these are the buffers 8, 9 and 10, respectively.

Although the Plog is depicted as an array of tuples for
simplicity, it can be of an arbitrary form, such as a B+ tree
accompanying more structured metadata (e.g., sorted by
keys), as long as a single buffer extent can still be flushed
atomically, thus ensuring consistency.
As it turns out, PASTE is suitable for copy-on-write

operations, as opposed to in-place updates, because new
data is always (DMA-)written to free space. Further,
when data is stored in the primary database as with B+tree,
since new data is written prior to logging, PASTE achieves
write-behind logging [2].
If PASTE is used only for logging, primary data struc-

tures (not shown in Figure 3), such as a database table,
may also be stored in NVMM, or stored on a block device
(at much lower cost per byte) and updated at leisure (one
of the purposes of a write-ahead log is to mask the cost of
updating a primary data structure and permitting faster re-
sponses to waiting clients). Periodically, the primary data
structure is updated to reflect the write-ahead log and the
log contents can be safely discarded. The corresponding
buffers can now be returned to the free pool.

Network protocols: A protocol suite operates directly
on Pbufs where the NIC or application reads or writes.
On RX, the protocol suite sets only buffers whose data are
ready (e.g., in-order TCP segments) to the application ring
(Pring) with providing application data offset, so that the
application can see useful data only. PASTE can hold
non-ready data packets (e.g., out-of-order TCP segments)
out of the NIC’s DMA target, which are inserted to the
Pring when the protocol suite indicates they are ready.

To exploit system call and I/O batching, a Pring multi-
plexes multiple streams (e.g., TCP connections); PASTE
thus sets a file descriptor to each ring slot such that the
application can distinguish them.

Protection: To be a generic programming interface,
fault isolation is an essential property. Despite of the
direct access to NVMM, PASTE only exposes data buffers
to applications using the shared memory primitive in the
kernel; it does not expose NIC registers or data structures
managed by file systems or network protocols. When an
application crashes, the rest of the system is unaffected.

3.3 API
In order to promote wide deployment, PASTE is designed
to smoothly integrate with the netmap framework [58]; it
runs in the kernel and mediates physical or virtual NIC
ring(s) and applications via shared memory in which
kernel- and user-owned regions are synchronized by
poll() (blocking or non-blocking) or ioctl() (non-
blocking) system calls. Therefore, PASTE inherits most
parts of the netmap API.
Data semantics contained in ring slots depend on port

types. When PASTE is used with the kernel TCP/IP
implementation, each ring slot points to a buffer that
contains an in-order TCP segment with offsets to payload
data and a file descriptor as a ring may contain data from
multiple TCP connections. On RX, buffers that belong
to the same descriptor are grouped in the ring, so that the
application needs to process each descriptor only once
in an event loop. TX is opposite. The application puts
data on Pbufs pointed by available slots (or sets existing
Pbufs to the slots, avoiding data copy) with providing
a file descriptor and headroom for protocol headers to
each of them. PASTE relies on regular socket APIs (e.g.,
socket(), bind(), listen(), accept() ) for control
operations. When PASTE is used for a user-level TCP/IP
implementation or a middlebox that perform raw packet
I/O, a ring is just a replica of the physical or virtual NIC
ring where packets are placed in arrival order.
To (re)initialize the Ppool (which also includes all

packet buffers), an application first open()s and mmap()s
a file backed by NVMM (lines 22–23 in Figure 4). If this
is the first time the file is opened, the application initializes
a header that describes how the memory region should be
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organized (lines 24–26). In any case, it prepares a netmap
request pointing at the memory region (line 27) and then
opens the netmap port, binding it to the region (line 28).
The kernel validates the user-space virtual addresses and
obtains the corresponding kernel-space virtual address,
then initializes the Ppool using them.
Recovery: PASTE deterministically initializes Ppool

for the given NVMM region. Therefore, after reboot,
the application can restore previous buffers by simply
re-initializing Ppool with nm_open(), and reason about
application-specific organization of these buffers using
Plog which can be a write-ahead log or a primary data
structure like B+ tree. In Figure 4, lines 29–30, the Plog
is also allocated on the NVMM, in a separate file.

3.4 Implementation
We implemented PASTE by heavily extending netmap,
inserting approximately 4K lines of code and removing ap-
proximately 0.4K, which also contains the kernel TCP/IP
support and software switch extension which we explain
in Section 5.2. PASTE is a loadable kernel module and
it supports Linux kernel versions of 4.6–4.12 (the latest
version at the time of this writing). No modification to
the main Linux kernel is needed.
We rely on the Linux NVMM kernel subsystem that

provides standard NVMMabstractions [62], such as pages,
namespaces [28] and DAX [44], a file system interface to
access a physical NVMM device without buffer caches.
Thus, applications can create their packet buffers, journals,
data structures on their favorite file systems, including ones
whose file operations (e.g., directory scan) are optimized
for NVMMs [66].
PASTE is open source and under active development.

It is available at https://github.com/luigirizzo/netmap/
tree/paste with all the PASTE applications we use for
experiments. We also provide some implementation
details in Appendix A.4.

4 Evaluation

We begin with microbenchmarking PASTE in comparison
to state-of-the art systems. We evaluate PASTE with more
realistic applications in Section 5.

4.1 Hardware and Software Setup
We use two machines connected back-to-back with two
Intel X540-T2 10Gbit/s NICs and a direct attached cable.
The server machine that runs PASTE has two Intel Xeon
E5-2640v4 processors clocked at 2.4GHz. For NVMM,
we use an HPE 8GB NVDIMM and format it with XFS
with DAX enabled (See Figure 1 for an architecture dia-
gram.) The client machine has an Intel Xeon E5-2690v4

64B 256B 768B 1280B 2560B

Net. only 22.2 22.9 23.9 24.7 28.0
σ = 1.4 σ = 1.1 σ = 1.2 σ = 1.2 σ = 1.2

Linux 21.5 22.8 25.0 27.2 33.1
σ = 3.5 σ = 5.7 σ = 8.9 σ = 11.0 σ = 14.1

StackMap 22.7 23.9 26.2 28.4 31.6
σ = 3.6 σ = 5.7 σ = 8.8 σ = 10.9 σ = 10.7

PASTE 22.6 23.2 24.7 26.4 29.4
σ = 1.9 σ = 1.9 σ = 2.1 σ = 1.8 σ = 2.1

Table 2: Mean roundtrip latencies in µs with standard
deviations σ for WAL without concurrent requests.

processor. Both the server and the client disable “turbo
boost”, hyper-threading and all the C-states. They both
run Linux kernel 4.11 and compiled with gcc version 6.3.
Unless otherwise stated, we use a single CPU core at the
server and the wrk HTTP benchmark tool with fourteen
CPU cores at the client to saturate the server. Unless
otherwise stated, we use busy-wait and TCP on all the
systems except for Section 5.2.

4.2 Methodology
We compare PASTE against a well-tuned Linux stack and
StackMap, which is the state-of-the art network stack that
achieves comparable performance to user-space network
stacks while using the feature-rich kernel TCP/IP imple-
mentation [68]. We refer to a version of PASTE that
uses a DRAM region organized by the regular netmap
as StackMap, because it resembles the architecture while
details differ (e.g., PASTE does not modify the kernel,
scales better to multiple cores and offers simpler API).
PASTE’s improvements over this StackMap thus indicates
effect of reduction of data copy to persist data.
In the end, comparing Linux, StackMap and PASTE,

which all use the same TCP/IP implementation, precisely
exposes the stack architecture differences without any
performance difference that could arise from different
TCP/IP protocol implementations, which is (only) a sub-
set of the network stack. This is important, because
TCP/IP implementations have largely different features
and supported protocol extensions, and adopt different
software architectures to implement them.

4.3 Microbenchmarks
4.3.1 Write-Ahead Log

Write-ahead logs (WALs) are the simplest data structure
to persist data in practice. We arrange the NVMM to
accommodate as many WAL entries and packet buffers,
which amount to roughly 3.5 million entries and buffers.
The client continually generates a fixed-size HTTP POST
on each experiment.

Table 2 and Figure 5 shows end-to-end throughput and
mean latency of Linux, StackMap and PASTE. To see how
each method compares to a networking-only performance
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Figure 5: Write throughput and mean latency with WAL. Latency plots have standard deviations of at most 20%,
43%, 46% and 9% in No Data Persist, Linux, StackMap and PASTE, respectively.

baseline, we also plot PASTE without any persisting of
data (it simply discards received messages and returns
“HTTP OK” as if the transaction had been recorded).

For 64 to 1280B message sizes, PASTE increases
throughput by up to 108% over Linux, and by up to
43% over StackMap; it reduces latency by up to 51%
over Linux, and by up to 30% over StackMap. In each
method, throughput stays at almost flat on and after 25
parallel connections while latency keeps increasing. This
is because the server (i.e. consumer) always has backlog
requests to process. We observe improvements over
StackMap by larger margins with increased message sizes.
This is expected, because the cost of a data copy is small
when messages are small. Latencies for the 2560B case
have different characteristics from the others, because each
request now consists of two packets. In StackMap and
PASTE, the lower latencies compared to that of smaller
message cases is because queueing latency at the server
becomes much lower due to decreased packet rates.

4.3.2 B+ Tree

Having identified that PASTE speeds up transactions to a
write-ahead log, which is a temporary data structure, we
now evaluate if PASTE can accelerate the case in which
the data are directly stored in a primary database. We
implement aB+ tree as aPlog onNVMM(Figure 3), a self-
balanced, ordered tree which is widely used to organize
primary data structures of file systems and databases. We
instrument the B+ tree to store a Plog entry whose format
is the same as in the WAL case (i.e., a tuple of buffer
index, offset and length) as a value for a key. Recall from
Section 3.2, the server flushes data for a network buffer
prior to inserting the entry for this buffer to the B+tree.
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Figure 6: Write throughput and mean latency with a
B+ tree. Latency plots have standard deviations of at most
39%, 39% and 7% for in Linux, StackMap and PASTE
respectively.

Figure 6 shows throughput and latency of Linux,
StackMap and PASTE. The client continually transmits
an “HTTP POST” message whose first 8 bytes indicate
a “key” used by the B+ tree which contains 1 million
random values. In the Linux and StackMap cases, the
B+tree contains entire values copied from the network
buffers. All the POST messages are served as insert or
update. We test 64B and 1280B value cases.
While peak throughput is lower than in the WAL case

because of tree traversal operations, we observe that
PASTE improves throughput by up to 65% over Linux
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and up to 28% over StackMap, as well as reducing latency
by up to 39% over Linux and 23% over StackMap.

For 64 B writes we see improvements by larger margins
than WAL cases, because a B+tree is more memory
intensive and the effect of reducingmemory traffic is larger.
We conclude that PASTE improves not only ephemeral
persistent data structures, but also more complex primary
data structures. In Section 5.1.1, we extend this PASTE
B+ tree to a realistic key-value store that also serves read
requests efficiently.

4.4 Multicore Scalability
Next, we evaluate PASTE’s scalability to multiple CPU
cores. We dedicate a single thread to each CPU core,
and the NIC is configured to have one TX/RX pair of
rings per core. Each thread independently processes a
single pair of rings (Prings in Figure 3) with the poll()
loop in Figure 4. It also persists data in its own Plog of
WAL. The rings are mapped to the NIC rings, to which
TCP connections are balanced by the NIC based on the
connection hash value or the tuple of source-destination
addresses and ports. All the rings share the same packet
buffer pool or Ppool on NVMM. To saturate the server,
we use an additional identical client machine. We use a
ratio of 25 TCP connections to the number of cores.

PASTE reasonably increases throughout with additional
cores. It reaches the 10Gbit/s line rate at 8 and 6 cores
with 256 and 768B data, respectively.

5 Use Cases

In order to demonstrate how PASTE accelerates realistic
applications and provides new opportunities, we have built
three applications with it.

5.1 Key-Value Store
A popular use case is a key-value store (KVS) with dura-
bility support. The performance of a KVS is usually con-
strained by the network, because of lightweight put/get
operations as opposed to relational databases, which re-
quire more computation to process client requests. While
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Latency plots have standard deviations at most 30%
(Linux), 17% (StackMap) and 11% (PASTE).

joint-optimization of the network stack and volatile main-
memory management has been explored (see Section 7),
efficiently supporting data durability requires PASTE.

5.1.1 pKVS

pKVS is our custom KVS, which builds on top of PASTE
and organizes data in a B+ tree. It uses HTTP as a com-
munication protocol, mapping “set” and “get” commands
into HTTP “POST” and “GET” methods, respectively. In
addition to durable zero-copy writes, which we share in
Section 4.3.2, pKVS also performs opportunistic zero-
copy reads. On the “set” command, the server records a
pointer to a buffer slot, and on the “get” command, the
server first searches for the key in the B+ tree to obtain the
buffer index and extent, then further obtains the slot which
contains this buffer. The result is a complete form of the
previous POST message in a packet buffer. The server
thus simply places this buffer into a TX ring. In order to
enable zero-copy, we tailor the length of the HTTP POST
and OK to be identical.
Figure 8 shows throughput and average latency on dif-

ferent write ratio and key skewness. 50% and 5% of
write ratios with Zipfian 0.99 distribution correspond to
YCSB [12] workload A (Update heavy) and B (Read
mostly), respectively. We use the default YCSB param-
eters for the key space (1K) and size (1KB). We use 50
concurrent TCP connections.
Because of large benefit of zero-copy durable write,

PASTE improves throughput and latency as the write ratio
increases. PASTE increases throughput by up to 56%,
and reduces latency by up to 36% in comparison to Linux.
PASTE increases throughput by up to 23%, and reduces
latency by up to 19% in comparison to StackMap.

5.1.2 Redis

Redis [57] is a popular named “data structure” on a net-
work service. The server offers many services including
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counters, hyperlog estimators and a key/value store to
name but a few. To demonstrate both the advantages of
using PASTE, and the feasibility, we extended Redis 3.2.8.

Redis uses the socket API to communicate with clients
over TCP and the POSIX file I/O interface. The source
codewasmodified to receive events fromPASTE instead of
read() and data was persisted in PASTE buffers. Around
200 lines of source code were added to the 65K line base
system. We discuss porting effort in Appendix A.4.
Figure 9 plots throughput of the regular and PASTE-

enabled Redis with a single CPU core over different write
ratios and key distribution patterns, including two default
YCSB’s workloads: read-mostly (5% writes with key
skewness of Zipfian 0.99 for 1KB data) and update-heavy
(50%writes with the same distribution and data size). For
comparison, we test the regular Redis with and without
persisting write operations (HSETs). To be fair, PASTE
does not use busy-polling in this test.

Since the data structure is a relatively lightweight hash
table, peak throughputs with PASTE are similar to the
WAL case in Figure 5. PASTE outperforms Redis by 43 to
133%. Even in comparison to Redis without persistence,
PASTE outperforms it by 12 to 31%, indicating PASTE
offers persistence for more than free.

5.2 Software Switch
There is a growing interest by operators in the reliability of
network middleboxes whose failure impacts on many end
systems [35, 56, 61]. Network Function Virtualization
(NFV) has led to deploying and consolidatingmiddleboxes
on commodity servers, enabling better resource utilization
and fine-grained isolation [41, 60, 69]. Fault-tolerant
middlebox (FTMB) [61] allows them to recover with
states after crash. It relies on input packets stored in stable
storage at the virtualization backend, which are replayed
after the middlebox fails [61] since the last VM snapshot.
Programmable traffic monitoring systems [14, 32, 47]

could also benefit from real-time packet logging, which
is now often performed by dynamically activating a mir-

Figure 10: mSwitch with packet logging support.

roring port on a hardware or software switch [53, 64]
to capture traffic. PASTE already maintains a file with
captured packets that is a snapshot of the most recent
packets decided to be recorded, which can be directly
leveraged for this use-case.

In order to support FTMB and other applications that
benefit from packet logging, we implement a logging
feature in mSwitch, a fast, modular software switch that
supports a large number of virtual and physical ports to
serve an NFV backend [24]. Its switching logic is modular
and can implement arbitrary packet processing, such as a
learning bridge, L3 forwarding, theOpen vSwitch datapath
and a subset of P4 [54]. A module takes packets as input
from the switching fabric, and returns packet action values
indicating destination switch port, drop or broadcast.

mSwitch acts as an application of PASTE despite that it
runs in the kernel (Figure 10). We implement a new packet
action of “logging” which is used in conjunction with the
existing actions by switching logic modules. When the
module indicates a packet to be logged, mSwitch swaps
out the buffer from the receive ring slots.

Figure 11 shows throughput with PASTE in comparison
to a variant of mSwitch that implements packet logging
without PASTE, by copying and flushing packets from the
DRAM to the NVMM. We use the default learning bridge
module that has moderate overhead consisting of two hash
calculations for source and destination MAC addresses.
Packets are forwarded between the two 10Gbit/s NIC
ports. For the latency measurement, we increase burst
sizes, which indicate the number of packets arriving at
the input NIC of the mSwitch at a line rate. This models
a very common situation, for example, a TCP sender is
allowed to send up to ten packets at once (i.e., at line rate)
even at the beginning of a connection.

We confirm that PASTE improves throughput and la-
tency by up to 50% and 15%, respectively. A higher
latency with increasing burst sizes is due to batching in
order to amortize device I/O cost (on the order of hun-
dreds of ns) and improve packet processing locality [24].
Thus, reduction of per-packet logging costs with PASTE
reduces latency by larger margins in the presence of larger
numbers of packets processed within the same batch.
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6 Discussion

In this section we discuss applicability of PASTE to
various systems, and describe future work.

6.1 Kernel-Bypass Networking
PASTE relies on sharing network buffers between the
network stack, the application and NVMM abstractions
(e.g., files). Our implementation employs netmap [58],
which executes in the kernel and thus allows PASTE to
exploit a Linux file systemwithDAX [44] support. PASTE
could also be implemented on systems such asArrakis [55],
IX [4] or Intel SPDK [27]. However, these systems have
to implement NVMM abstractions by themselves.
Some user-space TCP/IP stacks, including Sand-

storm [42], UTCP [25] and Warpcore [16], are easier
to support with PASTE, because their buffers can be man-
aged by netmap in the kernel. The only difference from
our current design is that the TCP/IP implementation
(“TCP/IP suite” in Figure 3) resides in user space.

As it turns out, our mSwitch extension in the last section
follows this line and demonstrates flexibility of PASTE
architecture, because it bypasses the vast majority of the
kernel network stack to utilize a fast packet I/O framework.

We are starting to see RDMA deployments [19], but it
requires loss-less network fabric and individual systems
closely tied with low-level hardware details [15, 31, 40].
LITE [65] remedies the latter problem by kernel-level
abstraction. This could help PASTE support RDMA, pro-
viding a higher-level interface to integrate with NVMMs
and to be transparent to TCP/IP networking.
Our latency target range (e.g., 22.6–29.4 µs without

parallel requests, see Section 4.3.1) is close to that of
RDMA. [19] reportsRTTs of several tens of µs overRDMA
network fabric likely in the absence of queueing between
network and application formed by parallel requests. In
addition, recent work also reports comparable latency is
achievable over lossy Ethernet fabric without RDMA [20].

6.2 NVMM Access Latency
Many different NVMM technologies are anticipated, with
I/O latencies from tens to thousands of nanoseconds [29,

45]. As explained in Section 3.2, idempotent requests are
only DMA’ed to the CPU cache, thus the performance of
idempotent requests is decoupled from the characteristics
of the underlying storage. PASTE would only be exposed
to the underlying media for mutable transactions. This is
unavoidable and inherent in storing data. We anticipate
that PASTE would be suitable for many different NVMM
types, but the performance of PASTE transactions would
depend on the performance of any underlying media.

The latest generation of Intel CPUs have a faster cache-
line flush instruction (clflushopt), which also works in
a write-back fashion. Therefore, we will be able to overlap
NVMM access latencies with subsequent processing; and
this can be done across multiple requests processed in the
same batch, i.e., in the same poll() loop (see Figure 4).
We can guarantee that all the flushes are done at the time
of triggering transmission (i.e., poll() using mfence
instructions. In Appendix A.2 we describe details, and
quantify effects with some experiments.

6.3 Generality
PASTE works as a fast, scalable network stack in the
absence of NVMM, because it still exploits run-to-
completion, system call and I/O batching, and zero copy
between the NIC and application. The netmap API that
PASTE is based on has been widely used in packet I/O
applications and has proven its flexibility and ease of use.
Further, PASTE can be used without modifying the kernel,
and offers protection provided by the socket API. There-
fore, we believe PASTE is a suitable basis which achieves
high performance in general and makes applications ready
to efficiently support NVMMs.

6.4 Limitations and Future Work
Space utilization: PASTE relies on fixed-size packet
buffers for indexing. For better space utilization, we would
combine copies for small data depending on workloads.

Multiple applications: Since the application needs to
have direct access to NIC’s DMA target, isolating multiple
applications requires partitioning it. This could be done
using Flow Director on multiple NIC queues and Smart
NICs (based on more flexible policy).
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NVMM wear: DMA-writes would increase wear on
NVMMs, while it could be mitigated by DDIO. We leave
analysing this effect in future work.

7 Related Work

Previous work discussed PASTE’s concept and strategy,
and made minimalistic implementation and experiments
using an emulated NVMM device [23]; This paper com-
pletes our design and implementation, as well as extensive
evaluation and case study of applying to applications.
Special-Purpose Network Stacks: Specializing a net-

work stack by leveraging application knowledge has been
proposed several times [17, 38, 42, 43]. PASTE takes a
different approach with a network stack that is general
enough to support different classes of applications.
Enhanced Network Stacks: IX [4], mTCP [30], Fast-

socket [39] and StackMap [68] are fast network stacks.
Since they do not assume DMA on NVMM, they do
not address the overheads of durably storing data, as de-
scribed in Section 2, and shown how PASTE improves
these approaches in Section 4. We have discussed RDMA
approaches in Section 6.1.
General-Purpose Networking API: On the transmit

path, the sendfile() system call enables applications
to directly transmit data from in-kernel buffer caches or
NVMMs. However, doing the opposite (i.e., directly
receiving data into the buffer cache or NVMM) is not
trivial, because applications need to examine the data to
make processing decisions. PASTE enables this by the
persistent, named packet buffers and their abstraction.
New NIC Interfaces: FlexNIC [34] provides rich ab-

stractions of NIC features, such as scheduling, offloading
and classification. These works are complementary to
PASTE. For example, they could support isolatingmultiple
applications on the same NIC.
NVMM-Aware Persistent Data Store: There exists

a large body of work on efficiently managing data in
NVMM. They tend to examine the problem from the
perspective of the storage system in isolation. There is
little consideration of data arrival from a network or the
requirements of application logic. The POSIX API is
often their starting point. They can be generally classed
into block-oriented storage systems, such as file systems
and virtual disks [3, 26, 36, 46], or byte-oriented file
systems [11, 66, 67], that is the latter’s metadata is byte-
oriented, but they still export a POSIX interface. Some
NVMM programming systems [10, 59] are designed from
the application’s perspective. malloc() manages NVM
and transactions on nodes in linked lists or binary trees
are supported instead of file blocks. This approach fits
the PASTE approach, the native representation of data is
a first class citizen, not serialized data.

None offer a coherent and integrated life-cycle for
work arriving from a network that needs to be persisted.
For example, NVWAL [36] employs byte-granularity
differential logging to reduce the amount of data to log,
resulting in a reduced number of memory copies and
cache-line flushes. There is no support efficiently storing
data in its final resting place. However, PASTE allows
applications to log only a packet buffer index, offset and
length (8B in total) per packet, which is much smaller
than the differential data set.

DRAM-based Data Store: There is a large body of
work which co-design in-memory data store with network
stacks. For example, MICA [38] is an extremely fast,
scalable key-value store that bypasses the most of the
network stack and relies on UDP to tightly map key-
value data structures and packets. RAMCloud [52] is
a distributed key/value store that avoids the penalty of
persisting to media by replicating to multiple physical
machines. PASTE could help such systems to support
persistence, because it creates and names packet buffers
on NVMM and allows applications to organize them with
zero-copy, protocol-independent networking API. On
NVMM, applications can use the same cache invalidation
mechanisms with this class of work.

8 Conclusion

NVMM is not just a faster, more exotic, storage medium.
It is a fundamental change in the memory hierarchy. Its
introduction and adoption will change the way we de-
sign and evaluate systems. The artificial sequestering of
networking stacks, storage stacks and application logic
will be infeasible with such hardware. The Network File
System (NFS) was feasible because the network was not
the bottleneck, the bottleneck was the disk. Commodity
NVMM is pushing the stack out of the kernel and into
user-land. Network stacks are following. As the appli-
cation, network/storage stacks will be operating in the
same address space they need to be co-designed for true
efficiency.
In this paper we have quantified the cost of a network

service offering reliable storage services under a variety
of scenarios. We have shown that by tightly integrating
the network stack, application logic and the storage stack
large performance improvements can be realized. PASTE
is a system that safely permits applications to be built,
and back-ported, to gain these performance improvements.
It does this while retaining the isolation, protection and
software maintenance advantages of modern monolithic
kernel stacks. We verified our system by implementing
and evaluating PASTE then writing and back porting real
applications to use it. We then showed PASTE-based
applications’ performance to be superior to the state of
the art.
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A Appendix

A.1 Consistency Analysis
Figure 12 illustrates data states over a single network
event loop cycle. If the system crashes before metadata
(Plog entries) are flushed, extant packet buffers are simply
overwritten by the next packets following reboot. If it
crashes after the metadata has been written but before
the corresponding buffers are swapped out of Pring, the
application must do so right after re-initializing Ppool,
before starting network I/O. Note that the application
should not have updated the ring’s pointer (cur in Figure 3)
before swapping out the buffers.

The application can identify the buffers to be swapped
out by reading its Plog. There is no atomicity semantics
on buffer swapping, so the application should read Plog
and ensure that the necessary buffers are in the intended
place in either on or outside the Pring. The application
may also leverage the ring pointer to identify buffers that
have been swapped out, because the ring pointer can be
updated atomically.
If the system crashes after buffers have been swapped

out, buffers are consistent. However, some data sent
after that, such as response messages might have been
lost before being dispatched to the network. It is the
responsibility of the application-level protocol to address
or tolerate duplicate responses.

A.2 Overlap Flushes for an Event Loop
In Section 6.2, we have introduced a technique that over-
laps flushes and other processing in a network event
loop that processes multiple requests, by leveraging
clflushopt and mfence. We set out to test this method
using a server equipped with an Intel Xeon Silver 4110
CPU clocked at 2.1Ghz that supports this instruction.
Unfortunately, since this machine does not support our
NVMM device, we emulate NVMM using a reserved
region of DRAM as prior work does [26, 40].
Figure 13a shows WAL throughput and mean latency.

The overlap improves throughput by up to 47%and latency
by up to 32% in StackMap that copies data. It improves
throughput by up to 72% and latency by up to 42% in
PASTE. PASTE with the overlap improves throughput by
up to 54% and latency by up to 35% in comparison to
StackMap.

Figure 13b shows theB+tree case. The overlap improves
throughput by up to 93% in StackMap, and up to 133%
in PASTE; PASTE with the overlap improves throughput
by up to 59% in comparison to StackMap.

We observe higher throughputs in comparison to equiv-
alent results in Section 4, although the CPU clock is lower
in this server and the real NVMM used in the other server
achieves the same speed with DRAM “in theory”. This

is perhaps because of higher memory clock frequency of
this server (2600Mhz, as opposed to 2133Mhz in that
section), and the newer CPU generation.

A.3 Effect of High NVMM Access Latency
Using the aforementioned overlap technique, we examine
the effect of NVMMs with higher access latency. Since
clflushopts are asynchronous, we expect that higher
NVMM access latency delays mfence to return. We thus
insert artificial sleep() before mfence, and measure
impact on overall throughput.

Figure 14 plots results, and they match our expectation.
Emulated latency decreases throughput by largermargin as
the number of parallel connections or requests decreases,
because the NVMM access latency is amortised over the
number of requests processed in the same network event
loop.

In summary, also including the previous subsection, we
conclude that the overlap technique significantly improves
performance, and could mask high NVMM access latency.
However, there is also a caveat. This method could
increase the complexity of consistency guarantees. It
certainly avoids compromising data after acknowledging
to the client. However, when the system crashes before
doing so, the system does not have any guarantee of
the correctness of receiving data to be written. We can
mitigate this risk by either flushing metadata, or designing
the application-level protocol to tolerate duplicate writes
where the server thinks the data is written but the client
does not so thus precipitating resends of the previous write.
We leave the analysis of these approaches for future work.

A.4 Implementation Note
In the OS kernel, network protocols are usually imple-
mented using OS-specific packet representation structures
(sk_buff in Linux, mbuf in *BSD). They typically con-
tain metadata and one or more pointers to buffers that
contain actual packet data, allowing them to point Pbufs.
Once an RX buffer is passed to the TCP/IP implementation
(netif_receive_skb() in Linux, ifp->if_input()
in FreeBSD), in order to identify whether it is ready to be
set to a Pring (e.g., in-order TCP segment), we exploit
a callback that is invoked on data enqueued to a socket
buffer (sk_data_ready() in Linux and sb_upcall()
in FreeBSD). The socket structure also has interfaces
for kernel subsystems (e.g., iSCSI) similar to user-space
socket APIs. But in the kernel they also provide zero-copy
APIs (kernel_sendpage() in Linux and sosend() in
FreeBSD), which allow PASTE to pass data that reside in
Pbufs to the TCP/IP implementation on the TX path.
Further, the OS kernels provide an interface

(get_user_pages() in Linux and vm_map_*() family
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Figure 12: Buffer state over a networking event cycle.

0

100

200

300

400

500

T
hr

ou
gh

pu
t

[1
K

tr
an

s/
s]

1 25 50 75 100

64 B

0

120

240

360

480

600

L
at

en
cy

[µ
s]

1 25 50 75 100

1280 B
# of Concurrent Connections

Stackmap
Stackmap (clflushopt)

PASTE
PASTE (clflushopt)

(a)WAL

0

80

160

240

320

400

T
hr

ou
gh

pu
t

[1
K

tr
an

s/
s]

1 25 50 75 100

64 B

0

180

360

540

720

900

L
at

en
cy

[µ
s]

1 25 50 75 100

1280 B
# of Concurrent Connections

Stackmap
Stackmap (clflushopt)

PASTE
PASTE (clflushopt)

(b) B+tree
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in FreeBSD) to obtain kernel-space virtual addresses from
the user-space ones mmap()ed to the file (e.g., Ppool).
Therefore, PASTE can be implemented without modify-
ing the OS kernel, using its good parts, such as protec-
tion mechanisms inherited from the netmap framework,

NVMM abstractions, file systems and extensive network
protocol implementations.
FreeBSD support is our ongoing effort. It appears

possible once the basic NVMM programming model [62]
is supported, because the netmap framework is already
there.

The porting effort of existing applications to use PASTE
is medium, according to our experience with Redis (where
the majority of the effort was to understand how Redis
works, a burden that the maintainers would not have to
bear). We have a library implemented as a header file
to initialize and run an event loop in Figure 4. This
library implements two callbacks to be registered by an
application: one invoked at accept() and the other
invoked on every RX packet buffer when traversing the
ring (line 12 in the figure). In addition to rearranging
Redis to use these features, we extended a function that
parses and identifies a write request to flush and swap out
the buffer, using the same procedure with flush_buf()
in the figure.

In order to ease porting existing applications andwriting
new ones, we plan to extend libuv, a popular event-driven
networking library, to support PASTE.
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