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1. Introduction

The determination of an accurate nuclear interaction represents a centralgoal of research in
nuclear physics, with important bearings on other fields like astrophysics and particle physics,
where a clear assessment of the theoretical uncertainty associated to the nuclear physics input
is often crucial. In this respect, modern nuclear interactions based on chiral perturbation theory
(ChPT) [1], can be viewed as a definite improvement, since they also allow to estimate the error
due to the truncation of the low-energy expansion [2]. In the two-nucleon(NN) sector it seems
that the above expansion scheme, pursued at the next-to-next-to-next-to leading order (N3LO)
level, is enough to describe the data with high accuracy, with aχ2/d.o.f. close to one [3]. In the
three-nucleon (3N) sector the situation is far less satisfactory. Indeed, while the ChPT schemeis
extremely predictive for the three-nucleon interaction (TNI), in the sensethat only two LECs appear
up to N3LO [4] (actually only one of them is a truly three-nucleon LEC), preliminary investigations
[5] show that strong discrepancies persist at this order between theory and experiment, most notably
the so-calledN −d Ay puzzle, a problem that is shared also by the phenomenological models like
e.g. AV18 + IL7 [6, 7, 8]. This could signal a slower convergence of the chiral expansion than
observed in theNN sector. The predictive power of the effective theory would then worsen, and
higher order LECs should be adjusted in order to accurately describe data. In Ref. [9] we classified
all subleading 3N contact terms, compatible with the discrete symmetry of QCD and with the
relativity constraints [10], which would contribute at N4LO of the chiral expansion, found that they
are strongly constrained by the Pauli principle, and produced the explicitform of the associated 3N
potential in coordinate space, depending on a short-distance cutoffΛ and 10 subleading LECsEi,
i = 1, ...,10,

V (2) = ∑
i6= j 6=k

(E1+E2τττ i · τττ j +E3σσσ i ·σσσ j +E4τττ i · τττ jσσσ i ·σσσ j)

[

Z′′
0(ri j)+2

Z′
0(ri j)

ri j

]

Z0(rik)

+(E5+E6τττ i · τττ j)Si j

[

Z′′
0(ri j)−

Z′
0(ri j)

ri j

]

Z0(rik)

+(E7+E8τττ i · τττk)(L ·SSS)i j
Z′

0(ri j)

ri j
Z0(rik)

+(E9+E10τττ j · τττk)σσσ j · r̂i jσσσ k · r̂ikZ′
0(ri j)Z

′
0(rik) (1.1)

whereSi j and(L ·SSS)i j are respectively the tensor and spin-orbit operators for particlesi and j, and
the functionZ0(r) is the Fourier transform of the cutoff functionF(p2;Λ),

Z0(r;Λ) =
∫

dp
(2π)3eip·rF(p2;Λ). (1.2)

Whether the inclusion of these additional terms could lead to an accurate nuclear interaction de-
pends on their flexibility to solve existing discrepancies between theory and experiment for 3N
observables. It is the purpose of the present paper to investigate this issue. Specifically, we con-
sider a nuclear interaction consisting of the AV18NN potential [6] and a TNI of the form

V3N =V (0)+V (2), (1.3)
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where the leading 3N contact potentialV (0) is written as

V (0) = ∑
i6= j 6=k

E0Z0(ri j)Z0(rik). (1.4)

We then fit the relevant LECs to the3H binding energy, the doublet and quartedN − d scattering
lengths and accurate scattering data onpd differential cross sections and polarization observables
at 3 MeV proton energy [11]. The paper is organized as follows. In Section 2 we describe the
variational procedure we use to solve thep−d scattering problem, which is based on the expansion
on the Hyperspherical Harmonics (HH method). In section 3 we discuss theisospin properties
of the adopted interaction, and restrict ourselves to the isospin 1/2 sector,relevant for thep− d
scattering. In section 4 we describe the adopted fitting strategy. Finally, results are reported in
section 5.

2. Numerical procedure

The HH method has been reviewed in Ref. [12]. TheN − d scattering wave function, below
the deuteron breakup threshold, is written as the sum of an internal and anasymptotic part,

ΨLSJJz = ΨC+ΨA , (2.1)

where the internal part is expanded on the HH basis,

ΨC = ∑
µ

cµΦµ , (2.2)

µ denoting a set of quantum numbers necessary to completely specify the basis element, while
the asymptotic part describes the relative motion between the nucleon and the deuteron at large
separation, which takes the form of a linear combination of the regular and irregular solutions of
the free (or Coulomb)N − d Schroedinger equation at relative momentumq (corresponding to
energyE), duly regulated at small distance,Ωλ

LSJJz
with λ = R, I respectively,

ΨLSJJz
A = ΩR

LSJJz
+∑

L′S′
R

J
LS,L′S′(q)Ω

I
L′S′JJz

. (2.3)

The weightsRJ
LS,L′S′ of the irregular solution relative to the regular one are related to theK matrix.

From them we can determine the scattering phase shifts and mixing parameters,together with
the coefficientcµ in Eq. (2.2), using the Kohn variational principle. The latter requires that the
functional

[

R
J
LS,L′S′(q)

]

= R
J
LS,L′S′(q)−〈ΨL′S′JJz |H −E|ΨLSJJz〉 (2.4)

be stationary under changes of the variational parameters inΨLSJJz , with the asymptotic part nor-
malized such that

〈ΩR
LSJJz

|H −E|ΩI
LSJJz

〉−〈ΩI
LSJJz

|H −E|ΩR
LSJJz

〉= 1. (2.5)

This implies that weightsRJ
LS,L′S′ must solve the linear system

∑̃
LS̃

R
J
LS,L̃S̃XL′S′,L̃S̃ = YLS,L′S′ (2.6)
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where

XLS,L′S′ = 〈ΩI
LSJJz

+ΨI
C|H −E|ΩI

L′S′JJz
〉, YLS,L′S′ =−〈ΩI

LSJJz
+ΨR

C|H −E|ΩI
L′S′JJz

〉, (2.7)

and the internal functionsΨR/I
C have coefficientscR/I

µ solutions of

∑
µ ′

cR/I
µ 〈Φµ |H −E|Φµ ′〉=−〈Φµ |H −E|ΩR/I

LSJJz
〉. (2.8)

A second-order estimate is then obtained by substituting the obtained weightsRJ
LS,L′S′ into Eq. (2.4).

Thus the problem is reduced to a linear one: the necessary matrices, e.g. inthe l.h.s. of Eq. (2.8),
can be computed as linear combinations of several matrices, one for each operator appearing inV3N ,
which can be computed once for all, weighted by the corresponding LEC. From the phase shifts we
then compute observables by truncating the partial wave expansion toJ ≤ 15/2 andL ≤ 6: higher
partial waves give negligible contributions.

3. Isospin projection

Since the deuteron is an isospin singlet,N −d can only give access to theT = 1/2 component
of the TNI. We can therefore decompose the contact operators in the two isospin channels, using
the projectors

P1/2 =
1
2
−

1
6
(τττ1 · τττ2+ τττ1 · τττ3+ τττ2 · τττ3) , (3.1)

andP3/2 = 1−P1/2. The momentum space potentialV (2) = ∑i EiOi involves the 10 operators,

O1 =−k2
i , O2 =−k2

i τττ i · τττ j,

O3 =−k2
i σσσ i ·σσσ j, O4 =−k2

i σσσ i ·σσσ jτττ i · τττ j

O5 =−3ki ·σσσ iki ·σσσ j +k2
i σσσ i ·σσσ j, O6 = (−3ki ·σσσ iki ·σσσ j +k2

i σσσ i ·σσσ j,)τττ i · τττ j,

O7 =
i
4ki × (Qi −Q j) · (σσσ i +σσσ j), O8 =

i
4ki × (Qi −Q j) · (σσσ i +σσσ j)τττ j · τττk,

O9 =−ki ·σσσ ik j ·σσσ j, O10 =−ki ·σσσ ik j ·σσσ jτττ i · τττ j,

(3.2)

with ki = pi −p′
i, Qi = pi +p′

i andpi (p′
i) the initial (final) momentum of thei-th nucleon, and a

sum overi 6= j 6= k is understood. The projections over isospinT = 1/2, (Oi)1/2 = P1/2OiP1/2 are
given, using the relations derived in Ref. [9], by

(O1)1/2 = O1−
1
3

O2+
1
3

O3+
1
9

O4+
1
3

O5+
1
9

O6−4O7−
4
3

O8+O9+
1
3

O10, (3.3)

(O2)1/2 =
2
3

O2+
1
3

O3+
1
9

O4+
1
3

O5+
1
9

O6−4O7−
4
3

O8+O9+
1
3

O10, (3.4)

(Oi)1/2 = Oi, i = 3, ...,8 (3.5)

(O9)1/2 =
1
6

O2−
1
6

O3−
1
18

O4−
1
6

O5−
1
18

O6+2O7+
2
3

O8+
1
2

O9−
1
6

O10, (3.6)

(O10)1/2 =
1
6

O2−
1
6

O3−
1
18

O4−
1
6

O5−
1
18

O6+2O7+
2
3

O8−
1
2

O9+
5
6

O10. (3.7)

By examining the above relations, we find that there is only a single purelyT = 3/2 combination
of operators, e.g.

O3/2 = 3O2−3O3−O4−3O5−O6+36O7+12O8−9O9−3O10. (3.8)
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Notice that, in order to derive the above projections, Fierz transformationshave been heavily used.
Therefore the conclusion only holds up to cutoff effects: indeed the cutoff smears the contact
interactions, and the three nucleons, which are not anymore at the same positions, are much less
constrained by the Pauli principle. As a practical result, we can ignore in our fits one of the
operators, e.g.O2.

4. Fitting strategy

According to naïve dimensional analysis [13] the expected sizes of the LECs are as follows,

E0 ∼
1

F4
π Λ

, Ei ∼
1

F4
π Λ3 , i = 1, ...,10, (4.1)

whereFπ is the pion decay constant andΛ is the hadronic scale. This counting is expected in the
pionful theory. In the pionless case the LECs may also receive contributions from virtual pion
exchanges, which will produce extra factors ofΛ2/M2

π . We therefore extract physical dimensions
and write

E0 =
e0

F4
π Λ

, Ei =
ei

F4
π Λ3 , i = 1, ...,10, (4.2)

with e0 ∼ ei ∼ O(1) if natural. Also, under the hypothesis of naturalness, there should be a hierar-
chy, in the sense thate0 gives the bulk of the TNI, while theei should contribute less. Therefore, we
first find the LO value ofe0 by fitting1 the triton binding energyB(3H) andN−d doublet scattering
lengths2aNd [15]. This is only possible up to∼ 10% theoretical uncertainty, meaning that, in order
to achieve aχ2/d.o.f.∼ 1, we have to add a 10% theoretical uncertainty to the experimental one.
We then performed various two-parameters fits of the variables(e0,ei) to the same observables, for
different values of the cutoffΛ in the range 200−500 MeV, in order to see whether the required
ei results to be natural or not. The results are displayed in Table 1. Among the various LECs,e3

is the one that allows, when used together withe0, to obtain a better description of the two ob-
servables, while at the same time respecting the expected naturalness and convergence criteria. We
therefore select these particular LECs to account forB(3H) and2aNd . We also show in Fig. 1 fits to
six further observables, namely the differential cross section and proton and deuteron polarization
observables forp− d scattering at 3 MeV proton energy, to the very precise experimental data of
Ref. [11], in the caseΛ =300 MeV. Not only is the obtained value forχ2 to be considered, but
also the actual values of parameters. In particular, we have to prefer minimawheree0 is not too
different with respect to its LO value. As a general feature, we observe thatT20 is mostly sensitive
to e5, Ay andT11 to e7, T21 to e10 andT22 to e1. This confirms the previously proposed sensitivity
of theAy to the spin-orbit interaction [16]. For the differential cross section we included an overall
normalization of data points to minimize theχ2, i.e. we defined

χ2 = ∑
i

(

dexp
i /Z −dth

i

)2

(σi/Z)2 (4.3)

with the normalizationZ obtained by minimization,

Z =
∑i dexp

i dth
i /σ2

i

∑i(d
th
i )

2/σ2
i

. (4.4)

1All fits were performed using the POUNDerS algorithm [14].
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Λ(MeV) 200 300 400 500

e0/χ2 1.27/13 0.53/40 0.41/110 0.45/170

e0/e1 X 1.34/-0.82 1.09/-0.99 0.89/-1.45
e0/e2 2.38/0.84 4.24/4.05 1.70/2.02 0.90/2.02
e0/e3 0.39/-0.95 0.89/0.51 0.81/0.83 0.65/1.27
e0/e4 X 1.45/0.33 1.20/0.40 0.97/0.54
e0/e5 1.52/1.24 0.15/-0.90 -0.49/-1.26 -1.47/-1.53
e0/e6 1.70/-0.65 -0.03/0.38 -0.79/0.47 -1.91/0.52
e0/e7 X X X X
e0/e8 X 0.93/-7.95 X X
e0/e9 X X 1.37/-7.29 1.26/-6.94
e0/e10 X -0.03/-4.60 X -1.29/-3.03

Table 1: Results of 1-parameter (first line) and 2-parameter fits toB(3H) and2aNd for different values of the
cutoff Λ. A cross indicates that no solution has been found in the natural range.
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Figure 1: 2-parameter(e0,ei) fits to six differentp−d scattering observables at 3 MeV proton energy, for
Λ =300 MeV.

and checked thatZ never differs from 1 by more than 1%. Actually it turns out thatZ ∼ 0.99
for most of the cases, similarly to the findings of Ref. [17] for the same data.For polarization
observables, we took into account the reported systematic uncertaintyσsys, i.e. we defined,

χ2 = ∑
i

(

dexp
i /Z −dth

i

)2

(σi/Z)2 +
(Z −1)2

σ2
sys

, (4.5)

and

Z =
∑i dexp

i dth
i /σ2

i +(1/σsys)
2

∑i(d
th
i )

2/σ2
i +(1/σsys)2

, (4.6)
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with the overall normalization uncertainty estimated to be within 1% [11], therefore σsys= 0.01.
We then proceeded to perform global fits to all observables, also including theN−d quartet scatter-
ing length [18], by increasing the number of parameters until a significant reduction in theχ2/d.o.f.
is obtained. For instance, in Fig. 2 we display the results of a 3-parameter fitto all considered ob-
servables using the parameters(e0,e3,ei), i 6= 3.

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10

χ2 /d
.o

.f.

Λ=200 MeV
Λ=300 MeV
Λ=400 MeV

Figure 2: 3-parameter(e0,e3,ei) fits to B(3H), 2aNd and all consideredp− d scattering observables at
3 MeV proton energy, for three different cutoffsΛ.

5. Results

By successively including more parameters we observe a reduction inχ2 down toχ2/d.o.f.∼
1.6. This happens, forΛ = 300 MeV when 7, out of the 10 subleading LECs, are used in the fits.
This means that there are correlations among the LECs andp−d scattering alone cannot determine
all of them. We display in Figs. 3 and 4 the result of a 8-parameter global fit for Λ = 300 MeV amd
Λ = 200 MeV. The blue dashed curves are the results corresponding to the AV18 NN interaction
without TNI, while the red solid ones are the fit results. As it is apparent, subleading contact
interactions allow for a very accurate description of experimental data. Inparticular, theAy problem
is solved, although this observable still gives most of the contribution to theχ2. It should also
be remembered that the effective description is the result of truncating a low-energy expansion.
Therefore we have to expect a theoretical uncertainty introduced by such truncation. From the
fit results we estimate this uncertainty to be of the order of 1%. We should also point out that
experimental error are given with only 1 significant digit: a 10% larger error would further reduce
theχ2/d.o.f. from 1.6 to 1.3, in line with modern realisticNN potentials in theNN sector [19]. We
also show in the figures the results for the triton binding energy and for theN−d scattering lengths.
The outcome for the LECs shows that most of them are “natural”, i.e. they have a magnitude in
line with naïve dimensional analysis. However, we observe, in the case ofΛ = 200 MeV a change

7



P
o
S
(
C
D
1
5
)
1
0
3

Realistic 3N force Luca Girlanda

100

200

300

400

50 100 150
θ (degrees)

dσ
/d

Ω

-0.04

-0.02

0

0.02

0 50 100 150
θ (degrees)

T
20

-0.01

0

0.01

0.02

0.03

0 50 100 150
θ (degrees)

T
20

-0.04

-0.03

-0.02

-0.01

0

0 50 100 150
θ (degrees)

T
22

0

0.01

0.02

0.03

0 50 100 150
θ (degrees)

i T
11

0

0.02

0.04

0.06

0 50 100 150
θ (degrees)

A
y

Λ=300 MeV
χ2/d.o.f. = 1.6
a2 = 0.649 fm
a4 = 6.32 fm B(3H) = 8.482 MeV

e0=1.20 e3=-1.75 e4=0.45 e5=-1.93
e6=0.05 e7=2.98 e9=-10.9 e10=-1.76

Figure 3: 8-parameter fit toB(3H), 2aNd and all consideredp− d scattering observables at 3 MeV proton
energy, forΛ =300 MeV. Blue dashed curves corresponding to the AV18NN interaction, while the red solid
ones include the fitted TNI.

8



P
o
S
(
C
D
1
5
)
1
0
3

Realistic 3N force Luca Girlanda

100

200

300

400

50 100 150
θ (degrees)

dσ
/d

Ω

-0.04

-0.02

0

0.02

0 50 100 150
θ (degrees)

T
20

-0.01

0

0.01

0.02

0.03

0 50 100 150
θ (degrees)

T
20

-0.04

-0.03

-0.02

-0.01

0

0 50 100 150
θ (degrees)

T
22

0

0.01

0.02

0.03

0 50 100 150
θ (degrees)

i T
11

0

0.02

0.04

0.06

0 50 100 150
θ (degrees)

A
y

Λ=200 MeV
χ2/d.o.f. = 1.5
a2 = 0.643 fm
a4 = 6.33 fm B(3H) = 8.482 MeV

e0=-4.57 e1=2.18 e3=-2.82 e5=-0.87
e6=0.92 e7=2.05 e9=-2.10 e10=-1.91

Figure 4: Same as Fig. 3 but forΛ =200 MeV.

of sign in the LO LEC, which may depend on the fact that, for such low valuesof cutoff the
convergence of the low-energy expansion is problematic, so that subleading LECs play a non-
negligible role.

Further investigation is necessary in order to explore all the parameter space, to ensure to find
a global minimum and to study the cutoff dependence. Studies along these linesare in progress.
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