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Abstract
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1 Introduction

The purpose of this paper is to illustrate and improve a simple but effective method
to prove existence and minimal regularity of a density for the solutions of stochastic
differential equations with non–regular coefficients. The strong points of the method
are its simplicity, flexibility and the dimension–free nature of the regularity estimates.
Indeed, the simple method has been first introduced in [15] (see also [39, 41, 42, 43]),
widely extending an idea in [20], to prove existence of densities for finite dimensional
projections of an infinite dimensional stochastic equation. The method has been later
used in several contexts, see for instance [14, 19, 44, 45, 1].

Indeed, the method we are discussing and extending fits into the general problem
of studying existence and regularity of densities for stochastic equations with non–
smooth coefficients. The problem has raised some interest recently. In addition to the
aforementioned [20, 15], we would like to mention the approach in [5, 7, 6] based on
some analytic criteria in spaces of Orlicz type, and interpolation. In [24, 25] the author
get rid of the drift with a Girsanov transformation, and then use the Malliavin calculus.
Malliavin calculus is also used in [31]. An atypical method based on optimization is
instead introduced in [3, 4]. Different approaches, based on an explicit representation of
the density (and so giving typically results as lower and upper bounds on the density,
rather than regularity) have been given in [26, 29, 28]. Finally, [34] proves Malliavin
differentiability of solutions of stochastic equations with non–differentiable coefficients.
For a PDE approach see for instance [32].

In this paper, as well as in most of the aforementioned papers (possibly with non–
Gaussian noise), we focus on the following “toy problem”,

dXt = b(t,Xt) dt+ σ(t,Xt) dBt

and in Section 2 we illustrate our simple method for the existence of a density for the
solutions of the equation above, under the assumptions b ∈ L∞(Rd), σ ∈ Cβb (Rd;Rd×d

′
),
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for some β ∈ (0, 1), d, d′ ≥ 1, and σ(y)σ(y)? ≥ δI, with δ > 0 (weaker assumptions will be
discussed in the subsequent sections). The method uses the idea of an auxiliary (much)
simpler process introduced in [20], together with a smoothing lemma (see Appendix A)
for duality in Besov spaces.

In this paper we use the simple method illustrated in Section 2 to extend the scope
and the conclusions of the method itself. It is of foremost importance to notice that, even
though we prove our results on the toy problem above, the results themselves are not
difficult to extend to other contexts, such as equations driven by non–Gaussian noise,
path–dependent equations, stochastic PDEs. We shall illustrate some of these examples
in Section 7.

We first show in Section 2.2 that a higher order of approximation provides, whenever
it is compatible with the regularity of the coefficients, a higher regularity for the density.

Even though the results of Section 2 assume uniform ellipticity of the diffusion, it
is not difficult to adapt the method to the cases of a singular diffusion matrix as in
Section 3.1, and of a hypo-elliptic diffusion. In the latter case we only discuss a simple
example to illustrate the ideas. Unfortunately, but not unexpectedly, stronger regularity
assumptions are necessary here, strong enough that in principle the problem may be
amenable by a more standard approach such as the Malliavin calculus.

In Section 4 we prove a local version of the results of the simple method introduced
in Section 2, to take into account the case when the coefficients are not globally regular
or globally bounded.

In Section 5 we discuss the case of rougher coefficients (with respect to the assump-
tions of Section 2, namely bounded drift and Hölder covariance). In Section 5.1 we
prove existence of a density for Lp drifts, with p larger than the dimension of the state
spaces. Unfortunately we have not been able to lower the regularity requirements for
the diffusion. We briefly discuss the issue in Section 5.2.

Finally, in Section 6 we slightly improve on the summability index of the Besov spaces
for the regularity of the density. This is not yet a satisfactory result, since in the basic
case of Section 2 one would expect Hölder regularity. We can achieve Hölder regularity
only in dimension one (see Remark 6.4).

Our results aim to be explanatory, so we will not mix different developments of the
method (for instance, we will not consider local results, as in Section 4, with rough drift,
as in Section 5, or with singular diffusion, etc.).

In addition with the results explained so far for the simple toy model, in Section 7 we
discuss a series of examples,

• path–dependent stochastic equations,

• improvements over [14] for a class of stochastic equations driven by α–stable noise,

• a singular stochastic PDE.

These examples should convince of the power and flexibility of our simple method. We
notice in particular that the dimension–free nature of the regularity obtained is well
suited for infinite dimensional problem (as well as in general for singular problems). It is
sufficient indeed to apply the simple method to a series of approximating problems, to
obtain uniform estimate in a Besov space with small but positive regularity. This ensures
uniform integrability and thus convergence of the densities to the density of the limit
problem.

Finally, in Appendix A we introduce our functional analytic framework, with the
definition of all the function spaces we use throughout the paper, and we prove the
crucial smoothing results for laws of random variables.
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1.1 Basic notation

Throughout the paper we will use the following notations.
Given x ∈ Rd and r > 0, we shall denote by Br(x) the ball centred at x of radius r.

Given a m× d matrix A, we shall denote by A? its transpose, and by |A| its “operator”
norm, that is |A| = maxx∈Rd,|x|=1 |Ax|. We shall use the symbol . in our estimates to
denote that the inequality holds up to a universal multiplicative numerical constant.

We shall denote by Cβ(Rd;Rm), respectively Cβb (Rd;Rm), the space of Hölder contin-
uous functions, respectively bounded Hölder continuous, from Rd to Rm, with Hölder
exponent β. The space Cβb (Rd;Rm) is a normed space with norm ‖ · ‖Cβb := ‖ · ‖∞ + [·]Cβb ,

where ‖ · ‖∞ is the classical sup-norm, and

[f ]Cβb
:= sup

x 6=y

|f(x)− f(y)|
|x− y|β

,

is the Hölder seminorm. When the functions are real valued, we will adopt the shorter
notation Cβb (Rd). A separable version of these spaces can be obtained by taking the
closure of bounded smooth function with respect to the norm ‖ · ‖Cβb .

More generally we shall use the Zygmund spaces C α
b (Rd), that can be defined as the

closure of bounded smooth functions with respect to the norm

‖ · ‖Cα
b

:= ‖ · ‖∞ + [·]Cα ,

where

[f ]Cα
b

:=
∥∥∥h 7→ ‖∆m

h f‖∞
|h|s

∥∥∥
∞
.

Here the discrete increments are defined as,

(∆1
hf)(x) := f(x+ h)− f(x),

(∆n
hf)(x) := ∆1

h(∆n−1
h f)(x) =

n∑
j=0

(−1)n−j
(
n

j

)
f(x+ jh).

(1.1)

In Appendix A we will define, in greater generality, Besov and Triebel–Lizorkin spaces. In
particular we shall see that C α

b (Rd) = Bα∞,∞(Rd). We refer to Appendix A for a thorough
introduction to these spaces.

2 The core idea

In this section we introduce the core idea around the simple method which is the
main theme of the paper. The idea appears implicitly in [15] (and later, explicitly, in
[14]). We repeat it here so that it will be the starting point of our improvements. We will
moreover make explicit the dependence on the time when the density is evaluated and
on the initial condition.

To get the gist of the idea, we focus on the simple toy model,

dXt = b(Xt) dt+ σ(Xt) dBt, (2.1)

where b ∈ L∞(Rd), σ ∈ Cβb (Rd;Rd×d
′
), with β ∈ (0, 1), and (Bt)t≥0 is a d′-dimensional

Brownian motion. Assume moreover that

there is δ > 0 such that det(σ(y)σ?(y)) ≥ δ > 0 for all y ∈ Rd. (2.2)

In other words the diffusion coefficient is non–degenerate.
Our basic tool here is the smoothing Lemma A.1. Fix an integer m ≥ 1 large and

a function φ in C α
b (Rd), with α ∈ (0, 1) to be chosen later. Our aim is to estimate
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E[∆m
h φ(Xt)] and capture the regularizing effect of the density. To this end, consider a

number 0 < ε < t ∧ 1 and the auxiliary process

Y εs =

{
Xs, s ≤ t− ε,
Xt−ε + σ(Xt−ε)(Bs −Bt−ε), s ≥ t− ε.

(2.3)

We decompose the quantity E[∆m
h φ(Xt)] in two terms, the approximation error,

Ae :=
∣∣E[∆m

h φ(Xt)]− E[∆m
h φ(Y εt )]

∣∣, (2.4)

and the probabilistic estimate,

Pe :=
∣∣E[∆m

h φ(Y εt )]
∣∣. (2.5)

We will address (and denote) the two fundamental quantities we have defined as Ae and
Pe in the rest of the paper.

For the first term we use the regularity of the test function φ,

Ae =
∣∣E[∆m

h φ(Xt)−∆m
h φ(Y εt )]

∣∣ . [φ]Cα
b
E[|Xt − Y εt |α] . [φ]Cα

b
E[|Xt − Y εt |2]

α
2 ,

where

Xt − Y εt =

∫ t

t−ε
b(Xr) dr +

∫ t

t−ε
(σ(Xr)− σ(Xt−ε) dBr

and, by standard estimates on stochastic equations, we have,∣∣E[|Xt − Y εt |2]
∣∣ . ‖b‖2L∞ε2 + [σ]2Cβ

∫ t

t−ε
E[|Xr −Xt−ε|2β ] dr

. ‖b‖2L∞ε2 + [σ]2Cβ (‖b‖2L∞ + ‖σ‖2L∞)β
)
ε1+β ,

(2.6)

or, in other words, Ae . ε
1
2α(1+β). For the second term we condition over the history

Ft−ε up to time t− ε, as in [20],

Pe =
∣∣E[E[∆m

h φ(Y εt )|Ft−ε]]
∣∣ =

∣∣E[E[∆m
h φ(y + σ(y)B̃ε)]y=Xt−ε ]

∣∣,
since, given Ft−ε, Y εt is a Brownian motion, independent of Ft−ε, with starting point
Xt−ε and covariance matrix σ(Xt−ε)σ

?(Xt−ε). Using the second formula in (1.1) and a
change of variables,∣∣E[∆m

h φ(y + σ(y)B̃ε)]
∣∣ =

∣∣∣ ∫
Rd
φ(y + x)∆m

−hgσ(y)(ε, x) dx
∣∣∣

≤ ‖φ‖L∞‖∆m
−hgσ(y)(ε)‖L1 ,

(2.7)

where gσ(y)(ε) is the density of a Brownian motion with covariance matrix σ(y)σ?(y) at
time ε. It is elementary now to show that ‖∆m

−hgσ(y)(ε)‖L1 ≤ c(1∧ (|h|/
√
ε))m, with a num-

ber c that depends on det(σ(y)σ?(y))−1 (and ‖σ‖L∞), and thus is uniformly bounded with
respect to y by our non–degeneracy assumption. In conclusion, Pe . ‖φ‖L∞(|h|/

√
ε)m,

and ∣∣E[∆m
h φ(Xt)]

∣∣ . ‖φ‖Cα
b

(
ε

1
2α(1+β) +

(
1 ∧ |h|√

ε

)m)
.

An optimization in ε suggests the choice ε ≈ |h|
2m

m+α(1+β) (the requirement ε ≤ t will be
discussed below), thus ∣∣E[∆m

h φ(Xt)]
∣∣ . ‖φ‖Cα

b
|h|

αm(1+β)
m+α(1+β) . (2.8)

For m large, the exponent of |h| is about α(1 + β). The smoothing Lemma A.1 yields
that Xt has a density pt ∈ Bαβ1,∞(Rd). Since α can be chosen arbitrarily close to 1, we

conclude that pt ∈ Bβ−η1,∞ (Rd) for all η > 0.
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Remark 2.1. The regularity conditions on the coefficients can be replaced by growth
conditions and finiteness of moments. For instance, assume that

E
[

sup
s∈[0,t]

|Xs|2
]
<∞,

and that |b(x)| . |x|2 (this is indeed the case analyzed in [15]). Then

E

∣∣∣∫ t

t−ε
b(Xs) ds

∣∣∣ . εE
[

sup
s∈[0,t]

|Xs|2
]
,

and the estimate of the approximation error is as above.

We wish to give a version of the above computations that takes into account the size
of the pre–factor in (2.8) in terms of the time t and the initial value X0. We state the
result in a way that will be convenient for the next sections. In terms of the proposition
below, the above computations correspond to a0 = β, θ = 2.

Proposition 2.2. Consider a solution X of (2.1) with initial condition X0 = x ∈ Rd. If
there are numbers a0 > 0, θ > 0, K0 ≥ 1 such that∣∣E[∆m

h φ(Xt)]
∣∣ ≤ K α

θ
0

(
ε
α
θ (1+a0) +

( |h|
ε1/θ

)m)‖φ‖Cα
b
, (2.9)

for every ε < 1, with ε ≤ t
2 , every α ∈ (0, 1), and every φ ∈ C α

b , then

‖px(t)‖Ba1,∞ ≤ cK
a
θa0

+δ

0 (1 ∧ t)−
1+a0
θa0

a−δ, (2.10)

for every a ∈ (0, a0) and small δ > 0, where c = c(a, a0, θ, δ) does not depend on x. Here
px(t) is the density of Xt.

Proof. Indeed, if a < a0, choose α = a+δ1
a0

, with δ1 < a0 − a, so that α < 1. Consider also
δ2 < 1, to be chosen later, and choose m ≥ 1 as the smallest integer such that

m

m+ α(1 + a0)
≥ 1− δ2.

Consider two cases. If |h|θ(1−δ2) < t, then we choose ε = 1
2 |h|

θ(1−δ2) so that∣∣E[∆m
h φ(Xt)]

∣∣ . K
α
θ

0 (|h|α(1+a0)(1−δ2) + |h|mδ2)‖φ‖Cα
b
. K

α
θ

0 |h|α(1+a0)(1−δ2)‖φ‖Cα
b
,

since δ2m ≥ α(1 + a0)(1− δ2) by the choice of m.
If on the other hand t ≤ |h|θ(1−δ2), then we choose ε = t

2 , so that∣∣E[∆m
h φ(Xt)]

∣∣ . K
α
θ

0

(
t
α
θ (1+a0) +

( |h|
t1/θ

)α(1+a0)(1−δ2))‖φ‖Cα
b

. K
α
θ

0

(
(1 ∧ t)−αθ (1+a0)(1−δ2)|h|α(1+a0)(1−δ2)

)
‖φ‖Cα

b
.

In either case,∣∣E[∆m
h φ(Xt)]

∣∣ . K
α
θ

0 (1 ∧ t)−αθ (1+a0)(1−δ2)|h|α(1+a0)(1−δ2)‖φ‖Cα
b
.

If we choose δ2 = δ1
2α(1+a0) , then α(1+a0)(1−δ2)−α = a+ δ1

2 , thus a < α(1+a0)(1−δ2)−α.

Since by our choice of m we also have m > α(1+a0)(1−δ2), by the smoothing Lemma A.1,

‖px(t)‖Ba1,∞ . K
α
θ

0 (1 ∧ t)−αθ (1+a0)(1−δ2).

By the choice of δ2,

α

θ
(1 + a0)(1− δ2) =

1 + a0

θa0
a+

2 + a0

2θa0
δ1 =

1 + a0

θa0
a+ δ,
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if we set δ1 = 2θa0
2+a0

δ. With these positions,

α

θ
=

a

θa0
+

δ1
θa0

=
a

θa0
+

2

2 + a0
δ ≤ a

θa0
+ δ.

This yields the exponents in (2.10).
Finally, δ1 < a0 − a if δ < 1

2θa0
(a0 − a)(2 + a0), while with our positions,

δ2 =
θa0δ

(1 + a0)(2 + a0) aa0 + 2θ(1 + a0)δ
≤ 1

2
.

Remark 2.3 (Time dependent coefficients). It is not difficult to add time regularity to
the coefficients. We will do so for the drift in Section 5.1. As for the diffusion coefficient,
if for instance σ ∈ L∞(0, T ;Cβb ), and if we define the auxiliary process as

Y εs = Xt−ε + σ(s,Xt−ε)(Bs −Bt−ε),

if s ≥ t − ε, and as in (2.3) otherwise, then both the approximation error and the
probabilistic estimate can be estimated with the same power of ε as above, and thus the
result we get is the same.

Remark 2.4 (Time regularity). It is possible to obtain regularity in time of the density.
This has been done in [43] in the framework of finite dimensional projections of Navier–
Stokes equations. Here one can prove that

‖px(t)− px(s)‖Bα1,∞ . |t− s|β/2,

when α+ β < 1, where px is the density of the solution started at x. The estimate of the
semi–norm [·]Bα1,∞ (see (A.1) for its definition) is easy, since it is elementary to see that

‖∆n
h(px(t)− px(s))‖L1 .

{
‖∆n

hpx(t)‖L1 + ‖∆n
hpx(s)‖L1 , |h| � |t− s|,

‖px(t)− px(s)‖L1 , |t− s| � |h|.

From this, using the methods we have introduced in this section, it is easy to derive that
[px(t)− px(s)]Bα1,∞ . |t− s|β/2. The L1–estimate ‖px(t)− px(s)‖L1 . |t− s| 12− is the most
challenging, and in [43] it has been obtained using the Girsanov transformation.

2.1 Local solutions

In principle the solution of (2.1) may not be defined over all times. In this section we
want to manage the case of solutions with explosion. We will see that, under suitable
assumptions on the coefficients, the solution of (2.1) has a density on the event of
non-explosion.

To this end we need to give a suitable definition of the solution. We define Xt as the
local solution before explosion, and a cemetery site∞ afterwards. Under the assumption
of local existence and uniqueness, this defines a Markov process (this was done already
for instance in [40] in a general framework). Denote by τ∞ the explosion time, then
{τ∞ > t} = {|Xt| <∞}. We will use these events to localize the solution at a fixed time.

Let ηR(x) be a smooth function equal to 1 when |x| ≤ R, and to 0 when |x| ≥ R + 1.
Our computations will prove that, if µt is the law of Xt (possibly with an atom at∞), then
ηR(x)µt(dx) has a density with respect to the Lebesgue measure. As long as the estimate
on the density of ηRµt does not depend on R, by the uniform integrability ensured by
the Besov bound, also the measure 1{|Xt|<∞}µt = 1{τ∞>t}µt has a density, with similar
Besov bounds by semi–continuity.
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In more details, fix t > 0, α ∈ (0, 1), φ ∈ C α
b , m ≥ 1, and h such that |h| ≤ 1. To prove

that ηR(x)µt(dx) has a density, in view of the smoothing Lemma A.1 it is sufficient to
prove that ∣∣E[∆m

h φ(Xt)ηR(Xt)]
∣∣ . |h|s‖φ‖Cα

b
,

for some s > α. We decompose the discrete derivative as

E[∆m
h φ(Xt)ηR(Xt)] = E

[(
∆m
h φ(Xt)−∆m

h φ(Y εt )
)
ηR(Xt)

]
+ E[∆m

h φ(Y εt )(ηR(Xt)− ηR(Xt−ε)) + E[∆m
h φ(Y εt )ηR(Xt−ε)]

The first term on the right-hand-side is the approximation error,∣∣E[(∆m
h φ(Xt)−∆m

h φ(Y εt )
)
ηR(Xt)

] ∣∣ . [φ]Cα
b
E[|Xt − Y εt |αηR(Xt)],

and the final estimate depends only on the regularity of the coefficients. The third term
is the probabilistic estimate,∣∣E[∆m

h φ(Y εt )ηR(Xt−ε)]
∣∣ =

∣∣E[ηR(Xt−ε)E[∆m
h φ(Y εt ) |Ft−ε]

] ∣∣
≤ E

[
|E[∆m

h φ(Y εt ) |Ft−ε]|
]

that can be estimated as in the previous section. Here Ft−ε is the σ–field of events
before time t− ε.

Finally, the new term that accounts for explosion can be controlled as follows,∣∣E[∆m
h φ(Y εt )(ηR(Xt)− ηR(Xt−ε))]

∣∣ . [φ]Cα
b
|h|αE[|ηR(Xt)− ηR(Xt−ε)|].

Moreover, we have that

|ηR(Xt)− ηR(Xt−ε)| ≤ |Xt −Xt−ε|ηR+1(Xt),

if both Xt and Xt−ε are smaller than R + 1 or larger than R + 1. In case Xt−ε < R + 1

and Xt ≥ R+ 1,

|ηR(Xt)− ηR(Xt−ε)| = |ηR(Xt−ε)ηR+1(Xt−ε)|
= |ηR(XτR+1

)− ηR(Xt−ε)|ηR+1(Xt−ε) ≤ |XτR+1
−Xt−ε|ηR+1(Xt−ε),

and in both cases one can use the equation to obtain an estimate of the above quantities.

2.2 More regularity - I

By Proposition 2.2 it is immediately clear that in order to obtain more regularity for
the density we need to improve the approximation error. If we think of the auxiliary
process (2.3) as a (very) basic numerical approximation of the original process X, then
we need to use a more refined numerical method. To do this it is necessary to have
smoother coefficients. Moreover, due to the non–anticipative nature of the estimate of
the probabilistic estimate, the numerical method needs to be explicit.

Let us focus, for the sake of clarity, on the drift term, namely consider

dXt = b(Xt) dt+ dBt,

with b ∈ Cβb (Rd). Similar considerations and conclusions are likewise possible for the
diffusion coefficient.

To exploit the additional regularity of the drift b, it is meaningful to define the auxiliary
process differently. Define the auxiliary process Y ε in a general way as

Y εs = Xt−ε +

∫ s

t−ε
Ar dr +Bs −Bt−ε, s ≥ t− ε, (2.11)
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and this time take Ar = b(Xt−ε), rather than Ar = 0 as we have done before. The
probabilistic estimate does not change, since we have only changed the mean, but in
a way that is measurable with respect to the information at time t− ε. To evaluate the
approximation error, consider

E[|Xt − Y εt |] = E

∣∣∣∫ t

t−ε
(b(Xs)− b(Xt−ε)) ds

∣∣∣ ≤ [b]CβE

∫ t

t−ε
|Xs −Xt−ε|β ds . ε1+ β

2 , (2.12)

since, as in Section 2, E[|Xs −Xt−ε|] .
√
ε. Thus, Ae . [φ]Cα

b
ε
α
2 (2+β) and Proposition 2.2

ensures that the density is in Ba1,∞ for a < 1 + β.
It is now quantitatively clear that the more regular is b, the more regularity we

obtain for the density. The (obvious) key idea is to find a good approximation of X. A
natural candidate for Y are the Picard iterations for our equation. The next step to
improve the regularity of the density is to choose an auxiliary process that ensures a
smaller estimate of |Xt − Y εt |. Since in (2.12) the estimates depends on |Xs − Xt−ε|,
and in turn the size of this term corresponds to the size of the Brownian increments,
a way to improve the difference might be to define the auxiliary process (2.11) with
As = b(Xt−ε + Bs − Bt−ε) when s ≥ t − ε. Unfortunately this makes the term in the
probabilistic estimate “anticipative” (with respect to the time t− ε). If we are ready to
consider an “anticipative” term, we are faced with the difficulty that it becomes now
difficult to evaluate the law of the terms that contribute to the probabilistic estimate.
The simplicity of the probabilistic estimate is indeed an implicit requirement of the
simple method we are illustrating.

A workaround that, albeit “anticipative”, keeps the term that will contribute to
the probabilistic estimate simple, can be considered if b is more regular, namely if
b ∈ C1+β

b (Rd), by looking at iterated integrals of Brownian motion. Additional regularity
of b cannot be avoided in general, and a way to see this is to look at the discussion on
the Fokker–Planck equation at the beginning of Section 6. With this in mind, take

Ar = b(Xt−ε) + b′(Xt−ε)(Br −Bt−ε) (2.13)

in (2.11), then

b(Xs)−As = b(Xs)− b(Xt−ε)− b′(Xt−ε)(Br −Bt−ε)
= b′(Xt−ε)(Xs −Xt−ε) +O(|Xs −Xt−ε|1+β)− b′(Xt−ε)(Br −Bt−ε)

= b′(Xt−ε)

∫ t

t−ε
b(Xr) dr +O(|Xs −Xt−ε|1+β),

thus E[|b(Xs) − As|] . ε
1
2 (1+β), therefore Ae . [φ]Cα

b
ε
α
2 (3+β). With this choice of the

auxiliary process, we see that the term providing the probabilistic estimate is again
amenable to our analysis: given y = Xt−ε, we have that

Y εt = y + εb(y) + B̃ε + b′(y)

∫ ε

0

B̃s ds,

where B̃r = Bt−ε+r − Bt−ε is independent of the history until time t − ε. The random
variable Y εt is conditionally Gaussian with variance

Var(Y εt |Xt−ε) = ε+ b′(Xt−ε)ε
2 +

1

3
b′(Xt−ε)

2ε3 & ε,

so that the probabilistic estimate has the same order in ε. In conclusion the density is in
Ba1,∞ for all a < β + 2.

EJP 23 (2018), paper 113.
Page 9/43

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP242
http://www.imstat.org/ejp/


A simple method for the existence of a density

With additional regularity of b one can consider further stochastic Taylor approxi-
mations to improve the estimates. We refer to the classical [27, Chapter 10] for some
possibilities.

As a concluding remark we notice that, as long as the coefficients have derivatives,
one can more easily resort to Malliavin calculus. These consideration will become useful
though in Section 3.2.

3 Singular diffusion coefficient

In this section we wish to consider the case when the diffusion matrix is singular. We
will briefly discuss two cases. The first is when the diffusion matrix is non-invertible.
The second case is the so–called hypo-elliptic case, when the diffusion matrix is singular,
but the noise is transmitted to noise-less components by the drift.

3.1 Singular diffusion coefficient

First of all, we notice that in general we do not need a uniform estimate such as (2.2),
since under the assumption of non–singularity one can use the results of Section 4. In
this section we wish to investigate conditions that can ensure the existence of a density
around points where the diffusion coefficient is zero or non–invertible.

An observation from [14] indeed says that the method from Section 2 can be slightly
modified to take into account the case when the diffusion coefficient is not invertible. The
idea is as in Section 2.1. Consider a solutionXt of (2.1) and let µt be its law. Fix an integer
m ≥ 1, then the smoothing Lemma A.1 is applied to the measure |σ−1(x)|−mµt(dx), where
| · | is the operator norm of a matrix, see Section 1.1. If this measure has a density, then
µt has a density on {y : σ(y) invertible}.

To this end, it is sufficient to prove that∣∣∣E[ ∆m
h φ(Xt)

|σ−1(Xt)|m
] ∣∣∣ . |h|s‖φ‖Cα

b
.

The decomposition here is

E[|σ−1(Xt)|−m∆m
h φ(Xt)] = E[∆m

h φ(Xt)(|σ−1(Xt)|−m − |σ−1(Xt−ε)|−m)] +

+ E[|σ−1(Xt−ε)|−m(∆m
h φ(Xt)−∆m

h φ(Y εt ))] +

+ E[|σ−1(Xt−ε)|−m∆m
h φ(Y εt )]

The first term can be controlled as∣∣E[∆m
h φ(Xt)(|σ−1(Xt)|−m − |σ−1(Xt−ε)|−m)]

∣∣ . [φ]Cα
b
|h|α[σ]CβE[|Xt −Xt−ε|β ]

. [φ]Cα
b
|h|αε

β
2 ,

while the second term plays the role of the approximation error, thus

Ae . ‖σ‖mL∞ [φ]Cα
b
E[|Xt − Y εt |α] . [φ]Cα

b
ε
α
2 (1+β).

Finally, the third term is the probabilistic estimate, and by conditioning,

Pe =
∣∣E[(|σ−1(y)|−mE[∆m

h φ(y + σ(y)B̃ε)]
)
y=Xt−ε

] ∣∣ . ‖φ‖L∞ε−m2 |h|m.
The contribution of the first term is negligible. Indeed, if the method is successful, then
|h| .

√
ε, thus |h|αεβ/2 . ε

1
2 (α+β) ≤ ε

α
2 (1+β), since α < 1. In conclusion, we end up with

the same estimate as in Section 2,∣∣∣E[ ∆m
h φ(Xt)

|σ−1(Xt)|m
] ∣∣∣ . ‖φ‖Cα

b
(ε
α
2 (1+β) + ε−

m
2 |h|m),
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so that we obtain the same conclusion, but on the measure |σ−1(x)|−mµt(dx). This proves
the following result.

Proposition 3.1. Let b ∈ L∞(Rd) and σ ∈ Cβb (Rd : Rd×d
′
). Let X be a solution of (2.1)

and t > 0. Then Xt has a density with respect to the Lebesgue measure on the set
{y : σ(y) invertible}.

Clearly, the regularity assumptions on the coefficients can be relaxed (for instance
along the lines of Section 5).

We now wish to find some simple condition for the existence of a density on Rd even
in the case of non–invertible diffusion coefficient. For the sake of simplicity, we consider
our problem (2.1) without drift, namely,

dXt = σ(Xt) dBt.

Proposition 3.2. Assume that σ ∈ Cβb (Rd;Rd×d), let t > 0 and assume that there is
γ > 0 such that

E
[∫ t

t
2

|σ(Xs)
−1|γ ds

]
<∞.

Then Xt has a density p in Rd and there is a0 = a0(β, γ) > 0 such that p ∈ Ba1,∞ for all
a < a0.

Proof. Consider the auxiliary process as in (2.3). The approximation error is as in
Section 2, thus Ae . ε

α
2 (1+β)[φ]Cα

b
.

For the probabilistic estimate, if B̃s = Bt−ε+s −Bt−ε, then by conditioning,

Pe =
∣∣E[E[∆m

h φ(y + σ(y)B̃ε)]y=Xt−ε

] ∣∣
Now, if σ(y) is invertible,

∣∣E[∆m
h φ(y + σ(y)B̃ε)]

∣∣ . (1 ∧ |σ(y)−1| |h|√
ε

)m
‖φ‖L∞ ,

and the inequality extends to σ(y) non invertible, since by definition |σ(y)−1|−1 =

inf |z|=1 |σ(y)z| (and the understanding 1
0 =∞). By the moment assumption,

Pe . E
[(

1 ∧ |σ(Xt−ε)
−1| |h|√
ε

)m]
‖φ‖L∞ . E[|σ(Xt−ε)

−1|γ ]
( |h|√

ε

)γ
‖φ‖L∞ .

Choose now 0 < λ1 < λ2 < 1 and consider the two terms Ae and Pe (here we have
replaced ε with δ for convenience),∣∣E[∆m

h φ(Xt)]
∣∣ . (δ α2 (1+β) +

|h|γ

δγ/2
E[|σ(Xt−δ)

−1|γ ]
)
‖φ‖Cα

b
.

Integrate the above inequality over δ ∈ (λ1ε, λ2ε) to obtain,

∣∣E[∆m
h φ(Xt)]

∣∣ . (εα2 (1+β) +
|h|γ

εγ/2
E

∫ t

t
2

|σ(Xr)
−1|γ dr

)
‖φ‖Cα

b
.

The proof can now be concluded with computations similar to those in Proposition 2.2.

Example 3.3. The result we have obtained is clearly non–optimal. Let us consider a
simple example to figure out the issue.

Consider Xt = B2
t , where (Bt)t≥0 is a one–dimensional Brownian motion. It is known

that (Xt)t≥0 solves

dXt = dt+ 2
√
Xt dWt,
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with initial condition X0 = 0, where (Wt)t≥0 is another Brownian motion. The function
σ(x) =

√
x is clearly 1

2–Hölder, and

E[σ(Xt)
γ ] = E[|Bt|−γ ] <∞

if and only if γ < 1. The previous considerations ensure that there is a density pt for Xt

on R and that has regularity Bα1,∞, with α < 2
3 ( 5

2 − 2
√

3
2 )� 1

2 . On the other hand here

the density is explicitly known, with pt(x) = (2πtx)−
1
2 e−x/(2t). It is not difficult to prove

that actually pt ∈ Bα1,∞, α ≤ 1
2 . The correct regularity can be recovered, at least away

from the zero of the diffusion coefficient, using the methods of Section 4.

3.2 A hypo-elliptic example

Here we aim to consider a hypo-elliptic problem, that is a problem where the diffusion
coefficient is not invertible, but the effect of the noise is propagated by the drift. We
will only show a (very) elementary example, to convince that the simple method we are
illustrating is effective also in this framework. It would be difficult, though, to give a
general result.

Consider the following problem, with X = (X1, X2),{
dX1 = b1(X1, X2) dt+ dB,

dX2 = b2(X1, X2) dt,
(3.1)

where B is a one–dimensional standard Brownian motion. Here the diffusion coefficient
is (

1 0

0 0

)
,

which is nowhere invertible, thus none of the results of the previous section is available.
The key point is clearly the definition of the auxiliary process for the second component.
The basic definition in (2.3), as well as the one in (2.11) with A2

r = b2(Xt−ε), are not
suitable, because there is no term that propagates the noise. This is fundamental in
view of the probabilistic estimate. Thus, we consider the auxiliary process in the second
component as in (2.11), but with the process A defined similarly to (2.13). Moreover,
only variations in the first component (the one that contains the noise) are taken into
account. In other words,

Y ε,2s = X2
t−s +

∫ s

t−ε

(
b2(Xt−ε) + ∂x1b2(Xt−ε)(Y

1
r −X1

t−ε)
)
dr,

for s ≥ t− ε. Here we need to assume that b2 is differentiable. To ensure that the first
component will “transfer” the regularizing effect of the noise to the second component,
we need to add the “hypo-elliptic” assumption

∂x1b2(x) 6= 0.

We turn to the definition of the first component of the auxiliary process. There is a
hidden requirement for the approximation error. Indeed, we will see in Proposition 3.4
below that Pe . ε−

3
2m|h|m. This is due to the fact that the random variable in the second

component is smoother, thus gives a stronger singularity in time. To guess the right
size of the approximation error, we see that, with the probabilistic estimate as above,
if Ae . εαq, then by the simple optimization we have seen in Proposition 2.2, we need
q > 3

2 . In other words, we need to choose an auxiliary process that approximates the
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original process to the order ε3/2. Thus we assume b1 ∈ C1+β
b (Rd), with β > 0, and set

for s ≥ t− ε,

Y ε,1s = X1
t−ε +

∫ s

t−ε

(
b1(Xt−ε) + ∂x1b1(Xt−ε)(Bs −Bt−ε)

)
ds+Bs −B1−ε.

Proposition 3.4. Assume that b1 ∈ C1+β
b (Rd), with β ∈ (0, 1), and b2 ∈ C1

b (Rd), with
|∂x1

b2(x)| ≥ c0 > 0. Then for every t > 0 each solution Xt of problem (3.1) has a density
in Ba1,∞ for every a < 1

3β.

We notice that on the one hand the result is not very satisfactory, since coefficients
are assumed differentiable (although one can be more careful on which directional
derivatives are really necessary), thus one can derive the existence of a density by the
existence of the Malliavin derivative and the non–degeneracy of the Malliavin matrix.
The last statement would follow from our hypo-elliptic assumption. On the other hand, at
this level the simple method of this paper still provides the additional minimal regularity
that ensures that smooth approximations of the solution have uniformly integrable (thus,
weakly compact) densities.

Proof of Proposition 3.4. We first estimate the approximation error. We easily have

E[|X1
s −X1

t−ε|] ≤ E[|Bs −Bt−ε|] + E

∫ s

t−ε
|b1(Xr)| dr .

√
ε,

E[|X2
s −X2

t−ε|] ≤ E
∫ s

t−ε
|b2(Xr)| dr ≤ ‖b‖L∞ε,

thus,

E[|X1
t − Y 1

t |] = E

∣∣∣∫ t

t−ε

(
b1(Xs)− b1(Xt−ε)− ∂x1b1(Xt−ε)(Xs −Xt−ε) +

+ ∂x1b1(Xt−ε)(Xs −Xt−ε − (Bs −Bt−ε))
)
ds

. ε
1
2 (β+3).

Likewise,

E[|X2
t − Y

ε,2
t |] ≤ E

∫ t

t−ε
|b2(Xs)− b2(Xt−ε)− ∂x1

b2(Xt−ε)(Y
1
s −X1

t−ε)| ds

≤ E
∫ t

t−ε

(
|∂x1b2(Xt−ε)(X

1
s − Y 1

s ) + ∂x2b2(Xt−ε)(X
2
s −X2

t−ε)
)
ds

≤ ‖∇b‖L∞
∫ t

t−ε
E[|X1

s − Y 1
s |+ |X2

s −X2
t−ε|] ds

. ε2.

In conclusion the approximation error is Ae . [φ]Cα
b
ε
α
2 (β+3).

We turn to the probabilistic estimate. Conditional to the history up to time t− ε, we
can write

Y 1
t = A1 + B̃ε +A2C̃ε, Y 2

t = A3 +A4C̃ε with C̃ε :=

∫ ε

0

B̃s ds,

where A1, A2, A3, A4 are measurable with respect to the past (of t − ε), and B̃s =

Bs+t−ε −Bt−ε. In particular, A4 = ∂x1b2(Xt−ε), thus |A4| ≥ c0 > 0. The random variable
(B̃ε, C̃ε) is Gaussian, and its covariance matrix has eigenvalues of order ε and ε3. Thus∣∣E[∆hφ(Yt)]

∣∣ . |h|m
ε

3
2m

[φ]Cα
b
,
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and in conclusion ∣∣E[∆m
h φ(X1)]

∣∣ . [φ]Cα
b
ε

1
2α(3+β) + ‖φ‖L∞ε−

3
2m|h|m.

Our standard computations (those in Proposition 2.2), ensure that the density of Xt is in
Ba1,∞ for all a < 1

3β.

Remark 3.5. The regularity obtained in the previous proposition is the regularity of the
joint density of X1

t and X2
t . It is not difficult to check that the density of the random

variable X1
t is more regular.

4 Local estimates

In this section we wish to obtain local estimates on the density. This might be useful
if for instance

• we only have local regularity of the coefficients,

• or if the diffusion coefficient is non–zero or non–singular only in some part of the
space,

and so on.
To this end, let us consider our toy model (2.1). We will localize the problem as in

[13, Theorem 2.4], and then apply the method to the localized problem.

Theorem 4.1. Assume that there is a ball D ⊂ Rd such that b ∈ L∞(D), σ ∈ Cβ(D), for
some β > 0 and that det(σ(y)σ(y)?) > 0 on D.

If Xx is solution of (2.1), with initial condition x ∈ Rd, then for every t > 0 the random
variable Xx

t has a density px(t) in a smaller ball D′ ⊆ D, and px(t) ∈ Ba1,∞(D′) for every
a < β.

We will devote the rest of the section to the proof of the theorem. Prior to this, we
give a global version of the above result.

Corollary 4.2. Assume that b ∈ L∞loc(Rd), that σ is Hölder continuous on bounded sets,
and that det(σ(y)σ(y)?) > 0 for all y ∈ Rd. If Xx is solution of (2.1), with initial condition
x ∈ Rd, then for every t > 0 the random variable Xx

t has a density px(t) on Rd. Moreover,
if D ⊂ Rd is a ball and σ ∈ Cβ(D), then px(t) ∈ Ba1,∞(D′) for every a < β and every
smaller ball D′ ⊂ D.

Proof. Notice that a probability measure that is locally absolutely continuous, is abso-
lutely continuous, thus it is sufficient to prove the existence of a density in balls. This is
immediate from the previous theorem.

4.1 Proof of Theorem 4.1

Let x0 ∈ Rd and r > 0 be such that B6r(x0) ⊂ D. We shall study existence and
regularity of the density around x0 of the solution X of (2.1) at some fixed time t.

4.1.1 Localization

Let ϕ ∈ C∞(Rd) be such that ϕ = 1 on B1(0) and 1B1(0) ≤ ϕ ≤ 1B2(0), and let ϕr(x) :=

ϕ((x− x0)/r). Set
m(t, r) = E[ϕr(Xt)],

then we see that r 7→ m(t, r) is non–decreasing with limit 1 at r = ∞. Assume that
m(t, r) > 0 for all r > 0 (otherwise |Xt − x0| > 0 a. s. and the density of Xt is equal to 0

in a neighbourhood of x0). By the definition of ϕ, if Supp(f) ⊂ Br(x0), then

E[f(Xt)] = E[f(Xt)ϕr(Xt)],
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thus, in view of the smoothing Lemma A.1, it is sufficient to prove that∣∣E[(∆m
h φ)(Xt)ϕr(Xt)]

∣∣ . |h|γ‖φ‖Cα
b
, (4.1)

for suitable α, γ.
To localize the dynamics, we proceed again as in [13], and consider a localizing

function η ∈ C∞(Rd,Rd), defined as η(x) = x in B4r(0), and η(x) = 5x/|x| outside B5r(0).
Set b̄(x) = b(η(x)) and σ̄(x) = σ(η(x)). It is immediate to see that b̄ and σ̄ have (globally)
the same (local) regularity properties of b, σ. In particular, σ̄ ∈ Cβb (Rd). Let X̄x be the
solution of

dX̄ = b̄(X̄s) ds+ σ̄(X̄s) dBs,

with initial condition X̄x
0 = x.

4.1.2 Decomposition

Fix a small parameter δ ∈ (0, 1], with δ � t, and set

τi := {s ≥ t− δ : Xs ∈ B3r(x0)},
τo := {s ≥ τi : Xs 6∈ B4r(x0)}.

Set moreover

It := {ϕr(Xt) > 0, τi = t− δ, τo > t},
Ot := {ϕr(Xt) > 0, (τi > t− δ or (τi = t− δ and τo ≤ t))},

so that if f ∈ Cb(Rd),

E[f(Xt)ϕr(Xt)] = E[f(Xt)ϕr(Xt)1It ] + E[f(Xt)ϕr(Xt)1Ot ] (4.2)

Consider first the second term. In [13] it is proved that

Ot ⊂
{
ϕr(Xt) > 0, sup

[0,δ]

|X̄Xτi
s −Xτi | ≥ r|

}
,

and it is easy to see (recall that X̄ satisfies an equation with globally bounded coefficients)
that for every q ≥ 1,

P
[
ϕr(Xt) > 0, sup

[0,δ]

|X̄Xτi
s −Xτi | ≥ r|

]
≤ P

[
τi ≤ t, sup

[0,δ]

|X̄Xτi
s −Xτi | ≥ r|

]
≤ 1

rq
E
[
1τi≤tE

[
sup
[0,δ]

|X̄Xτi
s −Xτi |q

∣∣τi]]
≤ 1

rq
sup

x∈B3r(x0)

E
[
sup
[0,δ]

|X̄x
s − x|q

]
.

1

rq
(‖b̄‖qL∞ + ‖σ̄‖qL∞)δ

q
2 .

Therefore, for every q ≥ 1,∣∣E[f(Xt)ϕr(Xt)1Ot ]
∣∣ ≤ ‖f‖L∞‖ϕ‖L∞P[Ot]

.
‖ϕ‖L∞
rq

(‖b̄‖qL∞ + ‖σ̄‖qL∞)‖f‖L∞δ
q
2 .

(4.3)

Consider next the first term in (4.2). Conditional to Xt−δ, the random variable
1{τi=t−δ} is Xt−δ–measurable, (since {τi = t− δ} = {Xt−δ ∈ B3r(x0)), thus

E
[
f(Xt)ϕr(Xt)1{ϕr(Xt)>0}1{τi=t−δ}1{τo>t}

]
=

= E
[
1{τi=t−δ}E[f(Xt)ϕr(Xt)1{ϕr(Xt)>0}1{τo>t}

∣∣Xt−δ]
]
.

(4.4)

EJP 23 (2018), paper 113.
Page 15/43

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP242
http://www.imstat.org/ejp/
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On the event It we have that Xt−δ ∈ B3r(x0) and Xs ∈ B4r(x0) for all s ∈ [t − δ, t].

Therefore Xs = X
Xt−δ
s+δ−t for all s ∈ [t− δ, t]. Thus, by the Markov property, on {τi = t− δ},∣∣E[f(Xt)ϕr(Xt)1{ϕr(Xt)>0}1{τo>t}

∣∣Xt−δ
] ∣∣ =

=
∣∣E[f(X̄t)ϕr(X̄t)1{ϕr(X̄t)>0}1{τo>t}

∣∣Xt−δ
] ∣∣

=
∣∣∣E[f(X̄x

δ )ϕr(X̄
x
δ )1{ϕr(X̄xδ )>0}1{τ̄x>δ}

]∣∣∣
x=Xt−δ

∣∣∣
≤ sup
x∈B3r(x0)

∣∣∣E[f(X̄x
δ )ϕr(X̄

x
δ )1{τ̄x>δ}

]∣∣∣
(4.5)

where τ̄x is the first exit time of X̄x from B4r(x0). We consider now the above expectation.
If x ∈ B3r(x0),

E
[
f(X̄x

δ )ϕr(X̄
x
δ )1{ϕr(X̄xδ )>0}1{τ̄x>δ}

]
=

= E
[
f(X̄x

δ )ϕr(X̄
x
δ )
]
− E

[
f(X̄x

δ )ϕr(X̄
x
δ )1{τ̄x≤δ}

]
.

(4.6)

The analysis of the first term on the right-hand side is postponed to the next section. We
focus here on the second term. Indeed,∣∣E[f(X̄x

δ )ϕr(X̄
x
δ )1{τ̄x≤δ}

] ∣∣ ≤ ‖f‖L∞‖ϕ‖L∞P[τ̄x ≤ δ].

We have

X̄x
τ̄x − x =

∫ τ̄x

0

b̄(X̄x
s ) ds+

∫ τ̄x

0

σ̄(X̄x
s ) dBs =: J1 + J2.

On {τ̄x ≤ δ} and for x ∈ B3r(x0), we have |X̄x
τ̄x − x| ≥ r, thus |J1 + J2| ≥ r, hence

|J1| ≥ 1
2r or |J2| ≥ 1

2r. Therefore, for every q ≥ 1,

P[τ̄x ≤ δ] ≤ P[τ̄x ≤ δ, |J1| ≥ 1
2r] + P[τ̄x ≤ δ, |J2| ≥ 1

2r]

.
1

rq
‖b̄‖qL∞E[(τ̄x ∧ δ)q] +

1

rq
E
[∣∣∣∫ τ̄x∧δ

0

σ̄(X̄x
s ) dBs

∣∣∣q]
.

1

rq
(‖b̄‖qL∞ + ‖σ̄‖qL∞)δq/2,

and in conclusion∣∣E[f(X̄x
δ )ϕr(X̄

x
δ )1{τ̄x≤δ}

] ∣∣ . ‖ϕ‖L∞
rq

(‖b̄‖qL∞ + ‖σ̄‖qL∞)‖f‖L∞δ
q
2 . (4.7)

Before turning to the next step, we summarise what we have proved so far. By (4.4),
(4.5) and (4.6), we see that∣∣E[f(Xt)ϕr(Xt)1It ]

∣∣ . sup
x∈B3r(x0)

∣∣∣E[f(X̄x
δ )ϕr(X̄

x
δ )
]∣∣∣+ ‖f‖L∞δ

q
2 .

We use this estimate and (4.3) in (4.2) to finally obtain∣∣E[f(Xt)ϕr(Xt)]
∣∣ . sup

x∈B3r(x0)

∣∣∣E[f(X̄x
δ )ϕr(X̄

x
δ )
]∣∣∣+ ‖f‖L∞δ

q
2 , (4.8)

where the constant in the inequality above depends on r, ‖b̄‖L∞ and ‖σ̄‖L∞ .

4.1.3 The method

Let α ∈ (0, 1) and m ≥ 1 (to be suitably chosen later), and h ∈ Rd with |h| ≤ 1. Consider
φ ∈ C α

b (Rd), and apply (4.8) to get∣∣E[(∆m
h φ)(Xt)ϕr(Xt)]

∣∣ . sup
x∈B3r(x0)

∣∣∣E[(∆m
h φ)(X̄x

δ )ϕr(X̄
x
δ )
]∣∣∣+ ‖φ‖L∞δ

q
2 , (4.9)
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A simple method for the existence of a density

We will apply our method to the new process X̄. Under our standing assumptions, X̄
has globally bounded drift and globally non–singular Hölder diffusion coefficient, so
in principle the estimate should not be any different than what we did in Section 2.
Indeed, we consider the extra parameter ε ∈ [0, δ] and an extra process Ȳ x, defined as in
Section 2, and we do the decomposition

E
[
(∆m

h φ)(X̄x
δ )ϕr(X̄

x
δ )
]

= E
[
(∆m

h φ)(X̄x
δ )ϕr(X̄

x
δ )
]
− E

[
(∆m

h φ)(Ȳ xδ )ϕr(Ȳ
x
δ )
]
+

+ E
[
(∆m

h φ)(Ȳ xδ )ϕr(Ȳ
x
δ )
]

The approximation error is essentially the same,∣∣E[(∆m
h φ)(X̄x

δ )ϕr(X̄
x
δ )
]
− E

[
(∆m

h φ)(Ȳ xδ )ϕr(Ȳ
x
δ )
] ∣∣ =

=
∣∣E[(∆m

h φ)(X̄x
δ )
(
ϕr(X̄

x
δ )− ϕr(Ȳ xδ )

)]
+ E

[(
(∆m

h φ)(X̄x
δ )− (∆m

h φ)(Ȳ xδ )
)
ϕr(Ȳ

x
δ )
] ∣∣

.
‖Dϕ‖L∞

r
‖φ‖L∞E|X̄x

δ − Ȳ xδ |+ ‖ϕ‖L∞ [φ]Cα
b
E|X̄x

δ − Ȳ xδ |α.

As in Section 2, we have

E|X̄x
δ − Ȳ xδ | .

(
‖b̄‖L∞ + [σ̄]Cβ (‖b̄‖L∞ + ‖σ̄‖L∞)β

)
ε

1
2 (1+β),

thus

Ae . (1 + 1
r )‖ϕ‖C1‖φ‖Cα

b
ε
α
2 (1+β).

The probabilistic estimate is slightly more delicate. By conditioning on the σ–field
Fδ−ε of events known at time δ − ε,

E
[
(∆m

h φ)(Ȳ xδ )ϕr(Ȳ
x
δ )
]

= E
[
E[(∆m

h φ)(Ȳ xδ )ϕr(Ȳ
x
δ )|Fδ−ε]

]
= E

[
E[(∆m

h φ)(u+ σ̄(u)B̃ε))ϕr(u+ σ̄(u)B̃ε)]
∣∣
u=Ȳ xδ−ε

]
,

since

Ȳ xδ = Y xδ−ε + σ̄(Y xδ−ε)(Bδ −Bδ−ε),

and B̃s = Bδ−ε+s −Bδ−ε, s ∈ [0, ε], is a Brownian motion. It remains to analyze the term

E[(∆m
h φ)(u+ σ̄(u)B̃ε))ϕr(u+ σ̄(u)B̃ε)] =

∫
Rd

(∆m
h φ)(u+ y)ϕr(u+ y)gε(y) dy,

where gε is the density of a centred Gaussian random vector with covariance σ̄(u)σ̄(u)?ε.
By a simple change of variables (see the first formula in(4.10)),

∣∣E[(∆m
h φ)(u+ σ̄(u)B̃ε))ϕr(u+ σ̄(u)B̃ε)]

∣∣ =
∣∣∣ ∫
Rd
φ(u+ y)∆m

−h(ϕr(u+ ·)gε)(y) dy
∣∣∣

≤ ‖φ‖L∞‖∆m
−h(ϕr(u+ ·)gε)‖L1 .

The Leibniz formula for discrete derivatives (4.10) yields

‖∆m
−h(ϕr(u+ ·)gε)‖L1 ≤

m∑
k=0

(
m

k

)
‖∆k
−hgε‖L1‖(∆m−k

−h ϕr(u+ ·))(·+ kh)‖L∞ .

On the one hand, since ε ≤ 1, and since by the assumptions of the theorem there is
σ̄0 > 0 such that σ̄2

0 ≤ det(σ̄(u)σ̄(u)?) for all u ∈ Rd,

‖∆k
−hgε‖L1 .

( |h|√
εdet(σ̄(u)σ̄(u)?)

)k
.

1

σ̄k0

|h|k

ε
k
2

.
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On the other hand,

‖(∆m−k
−h ϕr(u+ ·))(·+ kh)‖L∞ .

‖Dm−kϕ‖L∞
rm−k

|h|m−k,

thus,

‖∆m
−h(ϕr(u+ ·)gε)‖L1 .

|h|m

ε
m
2
‖ϕ‖Cm

m∑
k=0

(
m

k

)
1

σ̄k0

1

rm−k
= ‖ϕ‖Cm

(
1
r + 1

σ̄0

)m |h|m
ε
m
2
,

and in conclusion,∣∣E[(∆m
h φ)(Ȳ xδ )ϕr(Ȳ

x
δ )
] ∣∣ . ‖φ‖L∞‖ϕ‖Cm( 1

r + 1
σ̄0

)m |h|m
ε
m
2
.

In conclusion, by (4.9) and the above computations we have that∣∣E[(∆m
h φ)(Xt)ϕr(Xt)

] ∣∣ . ‖φ‖Cα
b

(
δ
q
2 + ε

1
2α(1+β) +

|h|m

ε
m
2

)
,

with q, δ, ε yet to be chosen, with 0 < ε ≤ δ ≤ 1 ∧ t. Choose δ to be a multiple of ε, and
q = α(1 + β), so that

∣∣E[(∆m
h φ)(Xt)ϕr(Xt)

] ∣∣ . ‖φ‖Cα
b

(
ε
α
2 (1+β) +

|h|m

ε
m
2

)
,

The same computations of Proposition 2.2 yield the result.
We finally mention two formulae on discrete derivatives we have used in the compu-

tations above, ∫
Rd

(∆m
h φ)(x)ψ(x) dx =

∫
Rd
φ(x)(∆m

−hψ)(x) dx,

∆m
h (φψ)(x) =

m∑
k=0

(
m

k

)
(∆m

h φ)(x)(∆m−k
h ψ)(x+ kh).

(4.10)

5 Rougher coefficients

In this section we wish to discuss an extension of the basic result on existence given
in Section 2. We will only be able to lower the required regularity of the drift coefficient.

We wish first to give a few remarks about the possible limitations in the case of
rough coefficients. With Proposition 2.2 at hand, it is reasonable to expect to find a
threshold of regularity for the coefficients under which the method fails. Indeed, the key
requirement is a0 > 0 in formula (2.9). In the simple case of equation (5.1) below, this
would correspond to the estimate Ae . εα/2, that is

E

∣∣∣∫ t

t−ε
b(Xs) ds

∣∣∣α . ε
α
2 .

Notice that this estimate is readily available if one observes that∫ t

t−ε
b(Xs) ds = Xt −Xt−ε − (Bt −Bt−ε).

In other words, in the case a0 = 0, at short times, the size of the drift is the same as the
size of the noise and in principle one can believe that the effect of the noise fails to be
effective for densities.

It would be interesting to understand if there is a counterexample to existence of
densities in the case a0 ≤ 0, or if simply the method fails.
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5.1 Rougher drift coefficient

In this section we shall study the existence of a density for solutions of the equation

dXt = b(t,Xt) dt+ dBt, (5.1)

with non–regular coefficient b. We have taken a simple diffusion coefficient to focus on
the difficulties originated by the drift.

Theorem 5.1 below shows existence and regularity of a density under the assumption
b ∈ Lq(0, T ;Lp(Rd)), with 2

q + d
p < 1. It is interesting to notice that this same condition

ensures existence and uniqueness of a strong solution [30] of (5.1). See Remark 5.2 for
a wider discussion along these lines.

This setting could provide a testbed for the problem of existence of densities in the
case a0 ≤ 0 (addressed at the beginning of Section 5).

Theorem 5.1. Assume b ∈ Lq(0, T ;Lp(Rd)), with 2
q + d

p < 1. Then for every initial

condition x ∈ Rd the solution of (5.1) with initial condition x has a density px(t) for every
t > 0. Moreover, for every γ < 1− 2

q ,

sup
t∈(0,T ]

sup
x∈Rd

(1 ∧ t)eγ‖px(t)‖Bγ1,∞ <∞,

where eγ is any number such that eγ >
1− 1

q

1− 2
q−

d
p

γ.

Proof. Set p′ = p
p−1 and a = d

p , so that p′ = d
d−a and thus Ba1,∞ ⊂ Lp

′
. Set for every γ > 0,

‖p·‖?,γ := sup
t∈(0,T ]

sup
x∈Rd

(1 ∧ t)eγ‖px(t)‖Bγ1,∞ ,

where γ 7→ eγ will be identified below in the proof. Now, by the Hölder inequality, and
Sobolev’s embeddings,

E

∫ t

t−ε
|b(s,Xs)| ds =

∫ t

t−ε

∫
Rd
|b(s, y)|px(s, y) dy

≤
∫ t

t−ε
‖b(s)‖Lp‖px(s)‖Lp′ ds

.
∫ t

t−ε
‖b(s)‖Lp‖px(s)‖Ba1,∞ ds

≤ ‖p·‖?,a
∫ t

t−ε
‖b(s)‖Lp(1 ∧ s)−ea ds

≤ ‖p·‖?,a‖b‖Lq(0,T ;Lp)

(∫ t

t−ε
(1 ∧ s)−eaq

′
ds
) 1
q′

. (1 ∧ t)−eaε
1
q′ ‖p·‖?,a‖b‖Lq(0,T ;Lp),

where q′ = q
q−1 . We can thus estimate the approximation error with,

Ae ≤ [φ]Cα
b
E
[∣∣∣∫ t

t−ε
b(s,Xs) ds

∣∣∣α] ≤
≤ [φ]Cα

b
E
[∫ t

t−ε
|b(s,Xs)| ds

]α
. (1 ∧ t)−αeaεα/q

′
‖p·‖α?,a[φ]Cα

b
.

The probabilistic estimate is as in the standard case (Section 2), so,if we set K0 =

(1∧ t)−2αea(1∨‖p·‖2α?,a) and a0 = 2
q′ − 1, then we have (2.9), therefore (2.10) holds, that is

‖px(t)‖Bγ1,∞ . K
γ

2a0
+δ

0 (1 ∧ t)−
1+a0
2a0

γ−δ

= (1 ∧ t)−( γa0
+2δ)ea− 1+a0

2a0
γ−δ(1 ∨ ‖p·‖

γ
a0

+2δ

?,a ).

(5.2)
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This formula shows an a–priori estimate for ‖p·‖?,γ , once we have defined, through this
same formula, the value of eγ as

eγ >
γ

a0
ea +

1 + a0

2a0
γ.

Unfortunately the estimate, as well as the value eγ , depend on ‖p·‖?,a and ea.
Notice that our assumption ensures that a < a0, therefore if we choose γ = a, the

restriction on ea reads

ea >
1 + a0

2(a0 − a)
a.

The constant in the inequality (5.2) does not depend on the initial condition, thus

‖p·‖?,a . (1 ∨ ‖p·‖
a
a0

+2δ

?,a ).

If we choose δ small enough that a
a0

+ 2δ < 1, this provides an a–priori estimate for
‖p·‖?,a, with ea chosen as above.

With the estimate of ‖p·‖?,a at hand, we look back at (5.2) and see that if

eγ >
1 + a0

2(a0 − a)
γ,

then (5.2) provides an estimate for ‖p·‖?,γ .

Remark 5.2. An alternative proof via a backward Kolmogorov equation is available
to prove Theorem 5.1. The idea we wish to use has been extensively used in results
on regularization by noise, see for instance [18], or [30], and [16] for an extension to
random drifts. The idea, here, is to re–write the equation (5.1) as an equation with more
regular coefficients. Notice though that in this way, to “solve” a Fokker–Planck equation,
we end up using its dual Kolmogorov equation. Our original proof has the advantage to
be based on elementary arguments that do not require to solve PDEs, and therefore can
be readily used in more general cases, see for instance Section 7.2.2.

Indeed, for b ∈ Lq(0, T ;Lp(Rd)), p ≥ 2 and d
p + 2

q < 1, consider the following backward
parabolic equation, {

∂sU + 1
2∆U − λU + b · ∇U = b, s ≤ t,

U(t, x) = 0, x ∈ Rd.
(5.3)

with U ∈ Lq(0, t;W 2,p(Rd)) ∩W 1,q(0, t;Lp(Rd)) (see [30, Theorem 10.3]). It is possible to
give a quantitative estimate of the dependence on λ (with a minor modification from [17,
Lemma 3.4], to make the dependence on λ more explicit),

‖U‖L∞([0,t]×Rd ≤ cλ−a−
1
2 . ‖∇U‖L∞([0,t]×Rd ≤ cλ−a.

for every positive a < 1
2 (1− 2

q −
d
p ), and for λ large enough. By Itō’s formula,∫ t

t−ε
b(s,Xs) ds = U(t,Xt)− U(t− ε,Xt−ε)

− λ
∫ t

t−ε
U(s,Xs) ds−

∫ t

t−ε
∇U(s,Xs) · dBs,

and this immediately allows to estimate the approximation error (with the optimal choice
λ = ε−1).
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5.1.1 An almost sure regularity result

We discuss a simple application of the previous result. The regularity of the density we
have found in Theorem 5.1 can be used to obtain regularity of functionals of solutions of
(5.1). Indeed, under the assumptions of Theorem 5.1, if f ∈ Lq(0, T ;Lp(Rd)), then the
function t 7→ E[

∫ t
0
f(r,Xx

r ) dr] is Hölder continuous in (0, T ]. To see this, we simply use
the Hölder inequality, embeddings of Besov spaces, and the estimate of the previous
theorem to obtain,

∣∣∣E[∫ t

s

f(r,Xx
r ) dr

] ∣∣∣ ≤ ∫ t

s

‖f(r)‖Lp‖px(r)‖Lp′ ds

.
∫ t

s

|f(r)‖Lp‖px(r)‖Ba1,∞ ds .
∫ t

s

‖f(r)‖Lp(1 ∧ r)−ea dr

. ‖f‖Lq(Lp)

(∫ t

s

(1 ∧ r)−q
′ea dr

) 1
q′

.
(t− s)

1
q′

(1 ∧ s)ea
‖f‖Lq(Lp),

where a = d
p , and p′ and q′ are the conjugate Hölder exponents of p, q. Similar compu-

tations show that the same function is Hölder continuous on [0, T ] if q′ea < 1, that is if
2d
p + 2

q < 1. More generally, we have the following result.

Proposition 5.3. Assume b ∈ Lq(0, T ;Lp(Rd)), with 2
q + 2d

p < 1. Let Xx be the solution

of (5.1) with initial condition x ∈ Rd, and let px(t) be its density for every t > 0. If
f ∈ Lq(0, T ;Lp(Rd)), then the map

t 7→
∫ t

0

f(r,Xx
r ) dr

is a. s. Hölder continuous on [0, T ] with exponent smaller than 1
q′ − ea, where q is the

conjugate Hölder exponent of q and a = d
p .

Proof. The proof is elementary and uses the Markov property and Kolmogorov’s continu-
ity theorem. We only give a sketch under the assumption that f does not depend on t.
The general case is entirely similar.

Let a = d
p , and set for brevity g(r) = (1 ∧ r)−ea . By the Markov property, if r1 < r2 <

· · · < rk,

∣∣E[f(Xx
r1)f(Xx

r2) . . . f(Xx
rk

)]
∣∣ =

∣∣E[f(Xx
r1)f(Xx

r2) . . . f(Xx
rk−1

)E[f(Xx
rk

)|Frk−1
]
] ∣∣

=
∣∣E[f(Xx

r1)f(Xx
r2) . . . f(Xx

rk−1
)E[f(Xy

rk−rk−1
)]y=Xxrk−1

] ∣∣
. ‖f‖Lpg(rk − rk−1)E

[
f(Xx

r1)f(Xx
r2) . . . f(Xx

rk−1
)]

. · · · . ‖f‖kLpg(r1)g(r2 − r1) . . . g(rk − rk−1),

since, as above,

∣∣E[f(Xx
r )]
∣∣ ≤ ‖f‖Lp‖px(r)‖Lp′ ≤ ‖f‖Lp‖px(r)‖Ba1,∞ . ‖f‖Lpg(r).
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Thus, by k changes of variables,∣∣∣E[(∫ t

s

f(Xx
r ) dr

)k] ∣∣∣ =

=
∣∣∣ ∫ t

s

. . .

∫ t

s

E[f(Xx
r1)f(Xx

r2) . . . f(Xx
rk

)] drk . . . dr2 dr1

∣∣∣
= k!

∣∣∣ ∫ t

s

dr1

∫ t

r1

dr2· · ·
∫ t

rk−1

drkE[f(Xx
r1)f(Xx

r2) . . . f(Xx
rk

)]
∣∣∣

. k!‖f‖kLp
t∫
s

dr1

t∫
r1

dr2 . . .

t∫
rk−1

drkg(r1)g(r2 − r1) . . . g(rk − rk−1)

= k!‖f‖kLp
t−s∫
0

g(t− r1)

r1∫
0

g(r1 − r2)

r2∫
0

g(r2 − r3) . . .

rk−1∫
0

g(rk−1 − rk) drk . . . dr2 dr1.

If t− s ≤ 1, then rk ≤ rk−1 ≤ · · · ≤ r1 ≤ t− s ≤ 1 and∫ rk−1

0

g(rk−1 − rk) drk =
r1−ea
k−1

1− ea
. (t− s)1−ea ,

therefore∣∣∣E[(∫ t

s

f(Xx
r ) dr

)k] ∣∣∣ . (t− s)(k−1)(1−ea)

∫ t−s

0

g(t− r1) dr1 . (t− s)k(1−ea),

since ∫ t−s

0

g(t− r1) dr1 .
t− s

(1 ∧ t)ea
≤ (t− s)1−ea .

Remark 5.4. We remark that the above proposition does not show that the stochastic
flow generated by (5.1) is Hölder continuous.

5.2 Rougher diffusion coefficient

We wish to briefly discuss some difficulties related to the extension of the “core”
method with rougher diffusion coefficients.

First of all, regularity of the diffusion coefficient is a more delicate issue, and reg-
ularity itself might not be as significant as for the drift coefficient in view of densities.
For instance by the Levy characterization theorem we know if σ : Rd → Rd×d

′
satisfies

|σ(x)| = 1 for all x, then the solution of

dXt = σ(Xt) dBt, (5.4)

is a Brownian motion and thus has a smooth density.
On the other hand the method we have introduced seems to strongly depend on an

evaluation of the increments of σ. It would be thus reasonable to expect results if we
lower the summability of the “derivatives” of σ, namely by requiring that σ ∈ Bβp,q for

some p, q ≥ 1 but finite (recall that C β
b = Bβ∞,∞).

A strategy to estimate the approximation error could be as in Theorem 5.1. Assume
for instance σ is non–singular and σ ∈ L∞ ∩ Bβp,q, and let px(s) be the density of the
solution Xx

s of (5.4) with initial condition X0 = x, fix t > 0 and let Y be the auxiliary
process introduced in Section 2. The approximation error would be

Ae . [φ]Cα
b

(∫ t

t−ε
E[|σ(Xx

r )− σ(Xx
t−ε)|2] dr

)α
2

,
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and the Markov property yields

E[|σ(Xx
r )− σ(Xx

t−ε)|2] =

∫
Rd

∫
Rd
E[|σ(z)− σ(y)|2]py(t− s, z)px(s, y) dz dy.

On the one hand the above formula contains increments of σ that could be estimate
using the regularity of σ. On the other hand the term py(t − s, ·) gives a too singular
contribution, if we expect a singularity in time as in Theorem 5.1. Indeed, one can see
that the estimate of the term above is successful only when β > d

p , that is whenever σ,
by Sobolev’s embeddings, is a Hölder function.

6 More regularity - II

In this section we shall see that the method introduced in Section 2 is not optimal,
and suggest a partial probabilistic proof that goes in the direction of the optimal result.

Consider for simplicity the problem with constant diffusion (although our considera-
tions equally hold with a non singular–diffusion) and bounded drift,

dXt = b(Xt) dt+ dBt,

with initial condition X0 = x. The computations in Section 2 show that Xt has a density
px(t) ∈ B1−

1,∞. It is easy to be convinced though that the expected regularity is B1−
∞,∞

(that is Hölder). Indeed, ideally the density should solve the associated Fokker–Planck
equation

∂tpx =
1

2
∆px −∇ · (bpx),

with initial condition px(0) = δx, or

px(t, y) = g(t, y − x) +

∫ t

0

∇g(t− s) ? (bpx)(y) dt,

where g is the heat kernel. It is not difficult to prove, using this mild formulation, that

‖∆2
hpx(t)‖L1 ≤ ‖∆2

hg(t)‖L1 +
∥∥∥∫ t

0

(∆2
h∇g(t− s)) ? (bpx) dt

∥∥∥
L1

≤ ‖∆2
hg(t)‖L1 + ‖b‖L∞

∫ t

0

‖∆2
h∇g(t− s)‖L1 ds,

and conclude with estimates for the heat kernel. Similar computations (with a caveat)
also show Hölder bounds. The trick is to bound the quantity

FT = sup
[0,T ]

t
d
2 ‖p·(t)‖L∞ ,

although we need to know a–priori that this quantity is finite. A similar quantity has
been considered in Section 5.

We turn to a result that improves slightly (but without getting the optimal result) the
summability of the density. We will work under the same assumptions of Section 2.

Theorem 6.1. Let b ∈ L∞(Rd) and σ ∈ Cβb (Rd;Rd×d
′
), with β ∈ (0, 1). Assume moreover

(2.2). Let Xx be a solution of (2.1) with initial condition x ∈ Rd. Then the density px(t)

of Xx
t is in Bap,∞(Rd) for every a < β and every p < d

d−β .

Proof. By the computations in Section 2 we know that under the standing assumptions
the density px(t) ∈ Ba1,∞ for every a < β. By Sobolev’s embeddings, px(t) ∈ Lp for every

p < d
d−β .
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Fix p ∈ (1, d
d−β ) and denote by q the conjugate Hölder exponent of p. Notice that, by

our choice of p, we have that q > d
β .

We will use the smoothing Lemma A.3. To this end let φ ∈ Fαq,∞(Rd), with α ∈ (dq , 1).
With these values of α and q, we can use the characterization of Fαq,∞ in terms of
differences given in formula (A.2). In particular, if we set

Φ(x) := sup
h6=0

|∆hφ(x)|
|h|α

, (6.1)

then Φ ∈ Lq(Rd), [φ]Bαq,∞ = ‖Φ‖Lq , and |∆hφ(x)| ≤ |h|αΦ(x). As usual, we consider
E[∆m

h ϕ(Xt)] and split it into probabilistic estimate and approximation error.
The probabilistic estimate is not the source of issues. We only have to make a Hölder

inequality in formula (2.7) in Lp − Lq rather than L1 − L∞, to get

Pe =
∣∣E[∆m

h φ(Y εt )]
∣∣ . ε−

d
2q
|h|m

ε
m
2
‖φ‖Lq ,

where Y ε is the process defined in formula (2.3).
We turn to the approximation error,

Ae =
∣∣E[φ(Xx

t )− φ(Y εt )]
∣∣ =

∣∣E[E[φ(Xx
t )− φ(Y εt )|Xt−ε]

] ∣∣.
Notice that Y εt is a function of Xx

t−ε and of a Brownian motion B̃s = Bt−ε+s −Bt−ε, s ≥ 0

that is independent of the history until time t− ε, and X is a Markov process. Thus

E[φ(Xx
t )− φ(Y εt )|Xx

t−ε] = E[φ(Xy
ε )− φ(y + σ(y)B̃ε)]|y=Xxt−ε

,

and

Xy
ε = y + σ(y)B̃ε +

∫ ε

0

b(Xy
s ) ds+

∫ ε

0

(σ(Xy
s )− σ(y)) dB̃s.

Therefore, by the Hölder inequality, and with the same computations used to obtain the
estimate (2.6)∣∣E[|φ(Xy

ε )− φ(y + σ(y)B̃ε)]
∣∣ ≤

≤ E
[∣∣∣∫ ε

0

b(Xy
s ) ds+

∫ ε

0

(σ(Xy
s )− σ(y)) dB̃s

∣∣∣αΦ(y + σ(y)B̃ε)
]

≤ E
[∣∣∣∫ ε

0

b(Xy
s ) ds+

∫ ε

0

(σ(Xy
s )− σ(y)) dB̃s

∣∣∣αp] 1
p

E[|Φ(y + σ(y)B̃ε)|q]
1
q

. ε
α
2 (1+β)E[|Φ(y + σ(y)B̃ε)|q]

1
q .

We thus have, using the computations above and again the Hölder inequality,

Ae =
∣∣E[E[φ(Xy

ε )− φ(y + σ(y)B̃ε)]|y=Xxt−ε

] ∣∣
=
∣∣∣ ∫
Rd
E[φ(Xy

ε )− φ(y + σ(y)B̃ε)]px(t− ε, y) dy
∣∣∣

. ε
α
2 (1+β)

∫
Rd
E[|Φ(y + σ(y)B̃ε)|q]

1
q px(t− ε, y) dy

. ε
α
2 (1+β)‖px(t− ε)‖Lp

(
E

∫
Rd
|Φ(y + σ(y)B̃ε)|q dy

) 1
q

.

Let gσ(y),ε be the density of y + σ(y)B̃ε, then by the non–degeneracy assumption on σ it
is easy to see that

gσ(y),ε(z) .
1

(2πε)d/2
e−

c
ε |z−y|

2

,
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for a constant c that depends on σ, thus

E

∫
Rd
|Φ(y + σ(y)B̃ε)|q dy =

∫
Rd
|Φ(z)|q

∫
Rd
gσ(y),ε(z) dy dz . ‖Φ‖qLq ∼ [φ]Fαq,∞ .

In conclusion,

Ae . ε
α
2 (1+β)‖px(t− ε)‖Lp [φ]Fαq,∞ .

Since we work with ε < 1 ∧ t
2 , by (2.10) we have that

‖px(t− ε)‖Lp . ‖px(t− ε)‖
B
d/q
1,∞

. ct

Using the same computations of Proposition 2.2 and the smoothing Lemma A.3, we
finally obtain that px(t) ∈ Bap,∞ for every a < β.

Remark 6.2. With a more careful analysis of the proof of Proposition 2.2, it is not
difficult to obtain an estimate of the norm of the density in Bap,∞ in terms of t, as in
(2.10).

Remark 6.3. Notice that, since by the theorem above we now know that the density is in
Bβ−d
d−β−,∞

, we can deduce a stronger summability (this was the starting point of the proof

above). Unfortunately the limitation in the characterization (A.2) of Triebel–Lizorkin
spaces prevents us to iterate the above proof and deduce Hölder bounds.

Remark 6.4. In the case d = 1, β > 1
2 we have the embedding of Bβ−d

d−β−,∞
in spaces

of Hölder functions. We can thus conclude that the density is Hölder continuous, as
expected.

7 Examples and applications

In this section we show a few applications of the simple method and its improvements
illustrated in the first part of the paper.

Before presenting the examples, we wish to notice that, in the estimate of the
probabilistic estimate, there are two main key points. The first is the estimate of the
small time asymptotics of the “noise” part of the equation. The second is that the
method we have illustrated depends very much on the fact that for times close to the
final time the noise is independent of the past. In principle this might rule out, for
instance, processes such as the fractional Brownian motion as the source of noise. In
the particular case of the fractional Brownian motion though, one can use a suitable
integral representation, and in that case is easy to be convinced that most of the results
(and in particular the basic results of Section 2) hold true with minimal modifications
(essentially we have the Hurst index as the value of the parameter θ in Proposition 2.2).

Moreover we notice that, in view of the analysis of infinite dimensional problems, our
method seems to be tailored to a white in time noise, and it seems so far unlikely that it
can be applied to problems driven by a spatial noise, with no temporal components (see
for instance [9] for results in this direction based on Malliavin’s calculus).

7.1 A path-dependent SDE

Here we use only the basic method (from Section 2), because as such we do not have
a Markov evolution. This result can be essentially found already in [7], we provide it for
the purpose of illustrating the method. Notice that the example includes, with suitable
adjustments, also the case of equations with delay.

Given T > 0 and two integers d, d′ ≥ 1, let b : [0, T ] × C([0, T ];Rd) → Rd and
σ : [0, T ] × C([0, T ];Rd) → Rd×d

′
be such that for every t ≥ 0, if ω|[0,t] = ω′|[0,t], then
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b(t, ω) = b(t, ω′) and σ(t, ω) = σ(t, ω′). In other words, b and σ, when evaluated at time
t, depend only on the part of the path up to time t. This is to ensure adaptness in the
equation.

Given 0 ≤ s ≤ t ≤ T , set for every ω ∈ C([0, T ];Rd),

δs,t(ω) := sup
r∈[s,t]

|ωr − ωs|.

Assume that

• b, σ are bounded,

• there are c > 0 and β ∈ (0, 1) such that

|σ(t, ω)− σ(s, ω)| ≤ cds,t(ω)β ,

for every ω ∈ C([0, T ];Rd) and every 0 ≤ s ≤ t ≤ T ,

• there is λ0 > 0 such that σ(t, ω)σ(t, ω)? ≥ λ0I, for every t ∈ [0, T ] and every
ω ∈ C([0, T ];Rd).

Consider the following path-dependent stochastic equation,

dXt = b(t,X) dt+ σ(t,X) dBt, (7.1)

where (Bt)t≥0 is a d′-dimensional Brownian motion, and X = (Xt)t∈[0,T ].

Proposition 7.1. Under the above assumption, if (Xt)t≥0 is a solution of (7.1), then
for every t ∈ (0, T ] the random variable Xt has a density with respect to the Lebesgue
measure. Moreover, the density is in Ba1,∞(Rd) for every a < β.

Proof. We use the auxiliary process (2.3). Notice that by our first assumption the term
σ(t− ε,X) is measurable with respect to the history up to t− ε.

We have,

Xt − Y εt =

∫ t

t−ε
b(s,X) ds+

∫ t

t−ε

(
σ(s,X)− σ(t− ε,X)

)
dBs,

thus the approximation error is,

Ae . [ϕ]Cα

(
‖b‖L∞εα + E

[∣∣∣∫ t

t−ε

(
σ(s,X)− σ(t− ε,X)

)
dBs

∣∣∣α])
. [ϕ]Cα

(
‖b‖L∞εα + E

[∫ t

t−ε
|σ(s,X)− σ(t− ε,X)|2 ds

]α
2
)

. [ϕ]Cα

(
‖b‖L∞εα + E

[∫ t

t−ε
δt−ε,s(X)2β ds

]α
2
)
.

To estimate E[δt−ε,s(X)2β ], we notice that

δt−ε,s(X) ≤ ε‖b‖L∞ + sup
[t−ε,t]

∣∣∣∫ s

t−ε
σ(r,X) dBr

∣∣∣,
so that E[δt−ε,s(X)2β ] ≤ εβ and Ae . [ϕ]Cαε

α
2 (1+β).

By our second assumption, the probabilistic estimate can be estimated as in Section 2,
to get Pe . ε−m/2|h|m‖ϕ‖L∞ . Proposition 2.2 concludes the proof.

Remark 7.2. Notice that in the derivation of the results of Sections 4, 5, and 6, the
Markov property was used at some stage, thus such results cannot be adapted to this
setting.
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Remark 7.3. The result we have obtained here is slightly less general than in [7, Section
3.1]. Indeed, in [7] they have the same assumptions, but they have a weaker form of
continuity of the diffusion coefficient, namely,

|σ(t, ω)− σ(s, ω)| . (− log δs,t(ω))−2−ε,

for some ε > 0. The density in this case is in Lelog , the Orlicz space with Young function
elog(u) = (1 + |u|) log(1 + |u|). We believe that in principle, if one would consider Besov
spaces with norm as in [7], one might extend the result we have given above with this
weaker assumption. We do not consider this, due to the analytical difficulties involved.

7.2 Lévy noise driven SDEs

In this section we wish to slightly extend the results of [14] in the direction of
Sections 5 and 6. We briefly recall the setting from [14].

Assumption 7.4. Let (Zt)t≥0 be a Lévy process with characteristics function k 7→ e−tΨ(k),
with

Ψ(u) =

∫
Rd

(1− ei〈u,y〉+i〈u, y〉1{|y|≤1})µ(dy),

and there is α ∈ (0, 2) such that the Lévy measure µ satisfies,

•
∫
|y|≥1

|y|γµ(dy) <∞ for all γ ∈ [0, α),

• there is c > 0 such that
∫
|y|≤λ |y|

2µ(dy) ≤ cλ2−α for all λ ∈ (0, 1],

• there are c > 0, r > 0 such that
∫

(1 − cos〈u, y〉)µ(dy) ≥ c|u|α, for all u ∈ Rd with
|u| ≥ r.

We consider the following equation, driven by the α-stable-like process (Zt)t≥0 defined
above,

dXt = b(t,Xt) dt+ σ(Xt) dZt, (7.2)

where b : [0,∞)×Rd → R is bounded measurable, and σ ∈ Cβb (Rd;Rd×d
′
), with

σ(y)σ(y)? > 0, uniformly in y ∈ Rd. (7.3)

Notice that here the non–degeneracy assumption could be weakened following the lines
of Section 3.

In the rest of the section we will restrict to the (simpler) case α ∈ (1, 2). While this
greatly simplifies the computations of Section 7.2.1, it is a necessary assumption in
Section 7.2.2 to obtain sufficiently smallness in the approximation error.

7.2.1 More regularity

In this section we will adapt the ideas of Section 6 to problem (7.2). From [14] we
know that, under the above assumptions on the coefficients and on the driving process,
any solution of (7.2) has a density in Bs1,∞, for s < β ∧ (α− 1). We wish to improve the
summability index. As far as we know, under the standing assumptions on the coefficients
there is not yet a general result of existence or uniqueness for (7.2). So in the rest of
this section we assume that either there is a solution of (7.2) that is a Markov process,
or that there is a solution that can be obtained by approximation of (7.2) with smooth
coefficients. In the latter case the Besov bound ensures the uniform integrability of the
approximating densities and thus that the limit problem has a density with the same
Besov regularity.
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Theorem 7.5. Let (Zt)t≥0 be a Lévy process as in Assumption 7.4, with α > 1, let
b be bounded measurable and σ ∈ Cβb (Rd;Rd×d

′
) such that (7.3) holds, and set κ =

min(α − 1, β). For every x ∈ Rd let (Xx
t )t≥0 be a solution (as specified above) of (7.2).

Then for every t > 0 and x ∈ Rd, the density px(t) of the random variable Xx
t is in

Bap,∞(Rd) for every p ∈ (1, d
d−κ ) and every a < κ(1 ∧ α

p ).

We proceed with the proof of the additional regularity of the density. We will need
first a slight modification of [14, Lemma 3.3] (which in turn is a quantitative version of
[46, Theorem 1.2]).

Lemma 7.6. Let (Zt)t≥0 be a Lévy process as in Assumption 7.4, and let gt be the density
of Zt, for each t > 0. Then for all integers m ≥ 1, all h ∈ Rd, |h| ≤ 1, and all p ∈ [1,∞],

‖∆m
h gt‖Lp . (1 ∧ t)−

m
α −

d
αq |h|m,

where q is the conjugate Hölder exponent of p.

Proof of Theorem 7.5. Define for s ≥ t− ε,

Y y,εs = y + σ(y)(Zt − Zt−ε) (7.4)

and set Y εs = Y
Xt−ε,ε
s . Up to the change of the driving process, this is the same as the

auxiliary process (2.3).
We proceed as in Section 6. Let px be the density of the solution of (7.2) with initial

condition x. We know that px(t) ∈ Ba1,∞ for all a < κ, then by Sobolev’s embeddings

px ∈ Lp for all p < d
d−κ . Fix p ∈ (1, d

d−κ ), and let φ ∈ F θq,∞(Rd), with θ ∈ (dq , 1), where q

is the conjugate Hölder exponent of p. Define Φ as in (6.1), so that ∆hφ(x) ≤ |h|θΦ(x),
Φ ∈ Lq(Rd) and ‖Φ‖Lq = [φ]F θq,∞ .

The probabilistic estimate is obtained through the previous lemma and the non–
degeneracy assumption on σ,

Pe =
∣∣E[E[∆m

h φ(Y y,εε )]y=Xt−ε ]
∣∣ . ε−

m
α −

d
αq |h|m‖φ‖Lq .

We turn to the analysis of the approximation error. We use the Markov property,

Ae =
∣∣E[E[φ(Xy

ε )− φ(Y y,εε )]y=Xt−ε ]
∣∣,

and by the Hölder inequality, for each y ∈ Rd,∣∣E[φ(Xy
ε )− φ(Y y,εε )]

∣∣ ≤ E[|Xy
ε − Y y,εε |θΦ(Y y,εε )]

≤ E[|Xy
ε − Y y,εε |θp]

1
pE[|Φ(Y y,εε )|q]

1
q

. ε
θ
α (κ+1)E[|Φ(Y y,εε )|q]

1
q

where we have used [14, Lemma 3.1-(ii)], and we need θp < α (this will limit the final
regularity when α < p). We thus have,

Ae . ε
θ
α (κ+1)

∫
Rd
E[|Φ(Y y,εε )|q1 ]

1
q1 px(t− ε, y) dy

≤ ε θα (κ+1)‖px(t− ε)‖Lp
(
E

∫
Rd
|Φ(Y y,εε )|q dy

) 1
q

.

First, we need a bound of ‖px(t − ε)‖Lp . By our choice of p, Ba1,∞ ⊂ Lp for a suitable
a < κ. Proposition 2.2, together with the estimates in [14], provides an estimate in time
of ‖px(t− ε)‖Ba1,∞ . With our standard choice ε ≤ t

2 , we readily have that ‖px(t− ε)‖Lp is
bounded by a number that depends on t, but that is uniform in x and ε.
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It remains to estimate the last term. Denote by gy,ε the density of σ(y)(Zt − Zt−ε),
and by gε the density of Zt − Zt−ε. It is easy to see that gy,ε(z) = det(σ(y))−1gε(σ(y)−1z),
thus

E

∫
Rd
|Φ(Y y,εε )|q dy =

∫
Rd
|Φ(z)|q

(∫
Rd

det(σ(y))−1gε(σ(y)−1(z − y)) dy
)
dz,

and it is sufficient to prove that the inner integral is uniformly bounded in z. This follows
from computations similar to those in Section 6, using the estimate in [14, Lemma 3.3].

In conclusion, Ae . ε
θ
α (1+κ), therefore, using the same computations of Proposition 2.2

and the smoothing Lemma A.3, we finally obtain that px(t) ∈ Bap,∞(Rd), for every
a < κ

(
1 ∧ α

p

)
.

7.2.2 Rougher drift

In this section we extend the results of Section 5.1 to α-stable-like drivers. We consider
problem (7.2) with b ∈ Lq(0, T ;Lp(Rd)) (and same assumptions as before on σ).

As in Section 6, our result is an a–priori estimate on the regularity of the density. In
Section 6 the equation we consider has a unique strong solution [30], thus the result is
rigorous. Here, under the assumptions on the coefficients we consider, we do not know
if there is a solution, or if it is a Markov process. So, as in the above Section 7.2.1, we
assume that either there is a solution of (7.2) that is a Markov process, or that there is
a solution that can be obtained by approximation of (7.2) with smooth coefficients. In
the latter case the Besov bound ensures the uniform integrability of the approximating
densities and thus that the limit problem has a density with the same Besov regularity.

Theorem 7.7. Let (Zt)t≥0 be a Lévy process as in Assumption 7.4, with α > 1, let
b ∈ Lq(0, T ;Lp(Rd)), σ ∈ Cβb (Rd;Rd×d

′
), such that (7.3) holds. For every x ∈ Rd let

(Xx
t )t≥0 be a solution (as specified above) of (7.2). Assume there is e ≥ 0 such that

eq′ < 1, ακ > 1,
d

p
< ακ− 1, e >

κd

p(ακ− 1)− d
, (7.5)

where κ = min( 1
q′ ,

1+β
α , 1

α + β
q′ −

1
2βe), and q′ is the conjugate Hölder exponent of q.

Then for every t > 0 and x ∈ Rd, the random variable Xx
t has a density px(t) in

Bb1,∞(Rd) for every b < ακ− 1.

We recall that, if px(t) is the density of a solution Xx
t of (7.2) with initial condition x,

we have set

‖p·‖?,γ = sup
t∈(0,T ]

sup
x∈Rd

(1 ∧ t)eγ‖px(t)‖Bγ1,∞ ,

with eγ to be suitably chosen. Set a = d
p , so that p′ = d

d−a and Ba1,∞ ⊂ Lp
′
, where p′ is

the Hölder conjugate exponent of p. We start with some estimates of the contribution of
the drift.

Lemma 7.8. If s ≤ t and ε < 1, ε ≤ t
2 ,∣∣∣E[∫ s

t−ε
b(r,Xr) dr

] ∣∣∣ . (1 ∧ t)−eaε
1
q′ ‖b‖Lq(Lp)‖p·‖?,a,

where q′ is the Hölder conjugate exponent of q. If moreover q′ea < 1, then

E
[(∫ s

t−ε
b(r,Xr) dr

)2]
. (1 ∧ t)−eaε

2
q′−ea‖b‖2Lq(Lp)‖p·‖

2
?,a.
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Proof. The first estimate follows as in Theorem 5.1, since we have,∣∣E[b(r,Xs)]
∣∣ . (1 ∧ s)−ea‖b(r)‖Lp‖p·‖?,a.

Likewise,

E
[(∫ s

t−ε
b(r,Xr) dr

)2]
= 2

∫ s

t−ε
dr1

∫ t

r1

E[b(r1, Xr1)b(r2, Xr2)],

and, by the Markov property and the estimate above (twice),∣∣E[b(r1, Xr1)b(r2, Xr2)]
∣∣ =

∣∣E[b(r1, Xr1)E[b(r2, X
y
r2−r1)]y=Xr1

]
∣∣

. (1 ∧ (r2 − r1))−ea‖b(r1)‖Lp‖p·‖?,aE[|b(r1, Xr1)|]

. ‖b(r1)‖Lp‖b(r2)‖Lp‖p·‖2?,a(1 ∧ (r2 − r1))−ea(1 ∧ r1)−ea .

Thus, by the Hölder inequality (twice),

E
[(∫ s

t−ε
b(r,Xr) dr

)2]
.

. ‖b‖2Lq(Lp)‖p·‖
2
?,a

(∫ t

t−ε
(1 ∧ r1)−eaq

′
∫ t

r1

(1 ∧ (r2 − r1))−eaq
′
dr2 dr1

) 1
q′

. ‖b‖2Lq(Lp)‖p·‖
2
?,a(1 ∧ t)−eaε

2
q′−ea ,

by elementary computations, since q′ea < 1.

From the above estimates we immediately deduce the following result.

Lemma 7.9. If γ < α and s ∈ [t− ε, t],

E[|Xs −Xt−ε|γ ]
1
γ . (1 + ‖σ‖L∞ + ‖b‖Lq(Lp))(1 ∨ ‖p·‖?,a)(1 ∧ t)−

ea
2 εκ1 ,

where κ1 = min( 1
α ,

1
q′ −

ea
2 )

Proof. We have that

Xs −Xt−ε =

∫ s

t−ε
b(r,Xr) dr +

∫ s

t−ε
σ(Xr−) dZr,

thus

E[|Xs −Xt−ε|γ ] . E
[∣∣∣∫ s

t−ε
b(r,Xr) dr

∣∣∣γ]+ E
[∣∣∣∫ s

t−ε
σ(Xr−) dZr

∣∣∣γ] = D + S .

By [14, Lemma A.2-(i)],

S . (s− (t− ε))γ/α‖σ‖γL∞ ≤ ε
γ/α‖σ‖γL∞

For D we use the previous lemma, since

D ≤ E
[∣∣∣∫ s

t−ε
b(r,Xr) dr

∣∣∣2] γ2 . ‖b‖γLq(Lp)‖p·‖
γ
?,a(1 ∧ t)−eaγ/2ε

γ
2 ( 2
q′−ea)

.

Proof of Theorem 7.7. We are ready to estimate the approximation error and the proba-
bilistic estimate. We use the auxiliary process as in formula (7.4) of previous section.
The probabilistic estimate can be immediately deduced from Lemma 7.6 (with p = 1),
thus Pe . ε−m/α|h|m‖φ‖L∞ . We turn to the approximation error. We have,

Ae . [φ]C θE[|Xt − Y εt |θ]

. [φ]C θ

(
E

∣∣∣∫ t

t−ε
b(s,Xs) ds

∣∣∣θ + E

∣∣∣∫ t

t−ε
(σ(Xs−)− σ(Xt−ε) dZs

∣∣∣θ).
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For the first term we use the first statement of Lemma 7.8 (recall that θ < 1),

E

∣∣∣∫ t

t−ε
b(s,Xs) ds

∣∣∣θ ≤ E[∣∣∣∫ t

t−ε
b(s,Xs) ds

∣∣∣]θ . (1 ∧ t)−eaθε
θ
q′ ‖p·‖θ?,a.

For the second term we use [14, Lemma A.2-(i)] and Lemma 7.9: let γ be such that
α < γ ≤ 2 and γβ < α, then

E

∣∣∣∫ t

t−ε
(σ(Xs−)− σ(Xt−ε) dZs

∣∣∣θ . εθ/α sup
[t−ε,t]

E[|σ(Xs−)− σ(Xt−ε)|γ ]
θ
γ

. εθ/α[σ]θCβ sup
[t−ε,t]

E[|Xs −Xt−ε|γβ ]
θ
γ

. (1 ∧ t)− 1
2βθea(1 ∨ ‖p·‖?,a)βθεθ(κ1β+ 1

α )

If we put the two estimates together,

Ae . (1 ∧ t)−θea(1 ∨ ‖p·‖?,a)θεθκ[φ]C θ
b
,

where κ = min( 1
q′ ,

1+β
α , 1

α + β
q′ −

1
2βea). With the positions K0 = (1 ∧ t)−αea(1 ∧ ‖p·‖?,a)α

and a0 = ακ− 1, Proposition 2.2 yields that

‖px(t)‖Ba1,∞ . (1 ∧ ‖p·‖?,a)
a
a0

+αδ(1 ∧ t)−
a
a0
ea−αδea− 1+a0

αa0
a−δ,

All the computations above show that under the following conditions,

q′ea < 1, ακ > 1, a =
d

p
< a0,

ea >
a

a0
ea +

1 + a0

αa0
a,

the norm ‖p·‖?,a is finite, and thus ‖p·‖?,b <∞ for every b < a0, for a suitable value of eb
that can be easily computed as above by Proposition 2.2.

It is not immediately apparent that the conditions of Theorem 7.7 may be verified,
so we provide a couple of particular cases. The first matches Theorem 5.1. Notice that
under slightly different assumptions on the drift b that are essentially the same as those
in the corollary below, existence and uniqueness hold, see [11].

Corollary 7.10. Under the assumptions of Theorem 7.7 on the solution and on the
coefficients, assume additionally that σ is constant. Then the parameters κ, e can be
chosen as κ = 1

q′ and e = 0. In particular, the conclusions of the theorem hold if

d

p
+
α

q
< α− 1.

The second particular case applies for p large. In that case we expect the number e
of Theorem 7.7 to be small. As a matter of facts, e→ 0 as p→∞. To further simplify, we
consider the case κ = 1

q′ .

Corollary 7.11. Under the same assumptions of Theorem 7.7, if

• 2d
p + α

q < α− 1,

• q ≥ α
2−α ,

• either β ≥ α− 1, or β < α− 1 and q ≤ α
α−β−1 ,
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then any number e such that

κd

p(ακ− 1)− d
< e <

1

q′

meets the conditions (7.5), and thus the conclusions of Theorem 7.7 hold.

Proof. Let us first prove that κ = 1
q′ if eq′ < 1. Indeed, by the third of the assumptions

above, 1
q′ ≤

β+1
α . Moreover, by the second of the assumptions above, 1

q′ ≤ 2( 1
q′ −

1
α ), thus

if eq′ < 1, then e < 2( 1
q′ −

1
α ), therefore 1+β

α ≤ 1
α + β

q′ −
1
2βe, and in conclusion κ = 1

q′ .

The condition ακ > 1 holds since β > 0 and q′ < α. The condition d
p < ακ− 1 holds

by the first of the assumptions of the corollary. To ensure that e can be chosen in a
non–empty interval, we need to check that

κd

p(ακ− 1)− d
<

1

q′
,

and this follows from the first assumption of the corollary.

7.3 The 3D Navier–Stokes equations with noise

The problem of existence of densities for finite dimensional projections of the solu-
tions of the Navier-Stokes equations driven by noise has been the motivating example,
discussed in [15], that has led to the development of the dimension-free method illus-
trated in this paper. The results have been further improved in [43] proving Hölder
regularity in time with values in Besov spaces in time, and in [41] proving Hölder reg-
ularity in space of the densities. Unlike Section 6, the result of Hölder regularity is
optimal but has been proved by analytical methods.

7.4 A singular equation: Φ4
d

In this section we consider the following singular stochastic PDE,

∂tX = ∆X +X −X3 + ξ, (7.6)

on the torus Td, with periodic boundary conditions, in two dimensions (but see Re-
marks 7.14 and 7.19 for the three dimensional case), where ξ is space-time white noise.

The equation is generally understood as the limit of a family of regularized problems.
To this end, let η be a smooth compactly supported function, set ηδ(x) = δ−dη(δ−1x), and
ξδ = ηδ ? ξ. Consider

∂tXδ −∆Xδ = −X3
δ + (1 + 3cδ)Xδ + ξδ, (7.7)

where cδ is a suitable number that depends on δ and η. Define δ, δ, and δ as

(∂t −∆) δ = − δ + ξδ, δ =
2

δ − cδ, δ =
3

δ − 3cδ δ.

where δ is chosen as the stationary process that solves the above equation. With this
choice, δ and δ are also stationary processes. The constants cδ are chosen so that

δ and δ have a limit as δ ↓ 0, see [12, 35] in dimension two, and [21, 22, 23, 10, 37]
for the three dimensional case. We will denote by , , the limit quantities as δ ↓ 0.

7.4.1 Densities for the solution

Set Xδ = δ +Rδ, then Rδ solves

(∂t −∆)Rδ = −R3
δ − 3 δR

2
δ + (1− 3 δ)Rδ + 2 δ − δ.
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We prove that the solution has a density at each time. Since the solution is distribution
valued, we will prove the existence of a joint density of the solution tested over a finite but
arbitrary number of test functions. Here we denote by 〈·, ·〉 the evaluation of distributions
over test functions.

Theorem 7.12. Let X be a solution of (7.6) on the two dimensional torus, fix t > 0 and
an integer n ≥ 1, and let ϕ1, ϕ2, . . . , ϕn be smooth periodic functions such that the matrix
(〈ϕi, ϕj〉)i,j=1,...,n is non–singular.

Then the random vector (〈X(t), ϕ1〉, 〈X(t), ϕ1〉, . . . , 〈X(t), ϕn〉) has a density with re-
spect to the Lebesgue measure in Ba1,∞(Rn), for every a < 1.

Proof. We will perform our estimates on the solution of (7.7). The Besov bound of the
densities will ensure the existence of a limit density.

Equation (7.7) in mild form and evaluated on each test function ϕi, i = 1, 2, . . . , n,
yields the evolution

dXδ,i = 〈∆Xδ + (1 + 3cδ)Xδ −X3
δ , ϕi〉+ 〈ϕi, ξδ〉,

of the random vector (Xδ,1, Xδ,2, . . . , Xδ,n), defined as Xδ,i(t) = 〈Xδ(t), ϕi〉.
Fix t > 0, then the auxiliary process for the simple method (the term analogous to

(2.3)) here is given as dY εδ,i = 〈ϕi, ξδ〉. By the non–degeneracy assumption on the test
functions it follows that the random vector (〈ϕ1, ξδ〉, 〈ϕ2, ξδ〉, . . . , 〈ϕn, ξδ〉)i,j=1,2,...,n is a
non–degenerate Gaussian random vector, for δ small enough. It easily follows then that
the probabilistic estimate is given by Pe . ε−m/2|h|m‖φ‖L∞ .

For the approximation error we need to compute

E

∫ t

t−ε
〈∆Xδ + (1 + 3cδ)Xδ −X3

δ , ϕi〉 ds.

This is immediate, since Xδ has moments in (negative) Besov spaces [35]. This is read
in terms of uniform bounds on moments of Xδ in negative Besov spaces. In conclusion
Ae . εα[φ]Cα

b
. Proposition 2.2 concludes the proof.

Remark 7.13. We actually expect that the densities in the previous proposition should
be smooth. Following the lines of Section 2.2, one could define a infinite dimensional
auxiliary process Y ε with the drift frozen at t− ε, as in formula (2.13). This would allow
to compute an approximation error at the level of the infinite dimensional processes in
the appropriate Besov spaces of distributions. When evaluated over test functions, this
error would provide the approximation error for the method.

Remark 7.14. The above result holds also in dimension three, with the same proof. The
difference is that, as we shall see below, the correct interpretation of the equation is
more involved.

In dimension three we additionally introduce the diagram δ, the stationary solution
of (∂t −∆) δ = δ. Again, the constant cδ is chosen so that δ and δ have a limit as

δ ↓ 0, see [37]. Set Xδ = δ − δ +Rδ, then Rδ solves

(∂t −∆)Rδ = −R3
δ − 3(Rδ − δ) δ + Pδ(Rδ),

where

Pδ(Rδ) = 3( δ − δ)R
2
δ + (1 + 6 δ δ − 3

2

δ)Rδ + ( δ − δ) +
3

δ − 3 δ

2

δ .

This is not enough yet to give a meaning to the limit equation, because the term Rδ δ

is not well defined in the limit, given the expected regularity of the limit R. Without
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giving too many details (that would be beyond the scope of this paper), we know that the
equation can be suitably reformulated following for instance [37] (see also [10]) as,

(∂t −∆)Rδ = −R3
δ − 3RHδ =© δ − 3Rδ <© δ +Qδ(Rδ) + 3 δ <© δ

where Rδ = RLδ +RHδ , RLδ is solution of

(∂t −∆)RLδ = −3(Rδ − δ) <© δ,

Qδ gathers more regular terms, and =©, <© are defined in terms of the Bony paraproduct
(see for instance [8]).

At this stage one can proceed as in the two-dimensional case, since the stochastic
diagrams as well as the remainder have uniform bounds in time on moments in negative
Besov spaces. Thus, Theorem 7.12 holds for (7.6) also in dimension d = 3.

Corollary 7.15. Let X be a solution of (7.6) on the three dimensional torus, fix t > 0

and an integer n ≥ 1, and let ϕ1, ϕ2, . . . , ϕn be smooth periodic functions such that the
matrix (〈ϕi, ϕj〉)i,j=1,...,n is non–singular.

Then the random vector (〈X(t), ϕ1〉, 〈X(t), ϕ1〉, . . . , 〈X(t), ϕn〉) has a density with re-
spect to the Lebesgue measure in Ba1,∞(Rn), for every a < 1.

7.4.2 Densities for the remainder

In this section we wish to delve into another direction. As a second application of the
simple method in this framework, we wish to investigate the existence of a density for
the remainder R. A possible approach could be based on the previous considerations and
some arguments from Section 3.2. Indeed, it would be sufficient to prove (for instance
in dimension two) that (X, ) has a joint density (when evaluated over test functions).

Since both X and are driven by the same noise, this can be only possible if the drift is
hypoelliptic. This idea has two drawbacks: the first is that it would give densities for R
against test functions, while R is a bona fide function. The second is that, as we have
seen in Section 3.2, the method requires good estimates on the drift, while giving back
low regularity.

We wish to consider here a different idea, that uses the non–linearity directly. The
equation for R is (in dimension two),

(∂t −∆)R = −R3 − 3 R2 + (1− 3 )R+ 2 − .

Our idea is to understand the terms not depending on R as the “noise” of the evolution,
since our simple method presented in this paper is essentially based on small time
estimates for the density of the “noise” object.

Unfortunately the idea does not work here in dimension two (and apparently in
dimension three as well, see Remark 7.19), since and are “too good”, that is with
regularity comparable with the “non–noise” terms R3 + 3 R2 − (1− 3 )R. As such, we
would end up with a formula similar to (2.9), but with a0 = 0. For this reason in the
rest of the section we will discuss an example very close to problem (7.6) and that is
amenable to our analysis.

We consider the following problem,

(∂t −∆)X = −X3 + (−∆)γ/2ξ, (7.8)

with periodic boundary conditions on the two dimensional torus, where γ ∈ (0, 2
5 ) and ξ is

space-time white noise. As above, the problem makes sense when suitably renormalized
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or as a limit of approximated problems. If ξδ is a spatial smooth approximation of the
noise, we study the problem

(∂t −∆)Xδ = −X3
δ + 3cδ(t)Xδ + (−∆)γ/2ξδ,

where cδ(t) = E[ δ(t)
2], and δ solves (∂t −∆) δ = (−∆)γ/2ξδ. Set δ(t) = δ(t)

2 − cδ(t)
and δ(t) = δ(t)

3 − 3cδ(t) δ(t). Denote respectively by , and their limits as
δ → ∞. From now on we will drop for simplicity the subscript δ, even though all
computations are rigorous only at the level of approximations. The Besov bound from our
method will provide the uniform integrability necessary to bring the argument rigorously
in the limit as δ → 0 to the solution of (7.8).

The choice γ < 2
5 is for convenience. In this regime it is sufficient to decompose the

solution as X = +R, and the remainder solves

(∂t −∆)R = −R3 − 3 R2 − 3 R− .

One can prove, for instance following the lines of [36, Theorem 1.1], that has regularity
C−γ−, has regularity C−2γ− and has regularity C−3γ−. Thus we expect that R
has regularity C (2−3γ)−, so that R2 and R are well defined when γ < 2

5
1. In the rest

of the section we will assume that we have a solution for the auxiliary equation with
the above mentioned regularity. In principle the solution might be defined only up to a
random time, but on the one hand we may guess that the results of [37] extend to this
case, and on the other hand our method can take local solutions into account as well (as
in Section 2.1).

The main result for the densities of the remainder is as follows.

Theorem 7.16. Let X be a solution of (7.8), and set Rt = Xt − t. Then for every t > 0

and every x ∈ T2 the random variable Rt(x) has a density with respect to the Lebesgue
measure on R. Moreover the density is in Ba1,∞ for every a < γ

2−3γ .

To prove the theorem we first identify the approximation problem, as in formula (2.3)
for the toy problem. Fix 0 < s < t and write the equation for R in mild form,

Rt = e∆(t−s)Rs −
∫ t

s

e∆(t−r)(R3
r + 3 rR

2
r + 3 rRr) dr −

∫ t

s

e∆(t−r)
r dr.

The terms in the first integral in the formula above are more regular than the second
integral, thus should provide a smaller approximation error. We will treat the last term
as “noise”, although clearly this new “noise” has no independent increments. We define
our auxiliary process for s ≤ r ≤ t, as

Sr = e∆(r−s)Rs −
∫ r

s

e∆(r−u)
u du. (7.9)

Lemma 7.17. Under the standing assumptions, given φ ∈ C α for some α ∈ (0, 1),

Ae ≈
∣∣E[φ(Rt(x))]− E[φ[St(x)]]

∣∣ . [φ]Cα(t− s)1−γ−δ,

for every 0 ≤ s < t, x ∈ T2, and every δ > 0.

Proof. We have that

St −Rt =

∫ t

s

e∆(t−r)(R3
r + 3 rR

2
r + 3 rRr) dr (7.10)

1If γ is above 2
5

but below 1
2

, we need to decompose X with the additional term . The case γ = 1
2

is,
analytically, equivalent to Φ4

3.

EJP 23 (2018), paper 113.
Page 35/43

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP242
http://www.imstat.org/ejp/


A simple method for the existence of a density

Among the terms in the right-hand-side of formula above, the least regular is the one
containing rRr. By [36, Proposition 2.3],

‖ rRr‖C−2γ−δ . ‖ r‖C−2γ−δ‖Rr‖C 2−3γ−δ ,

with δ such that 0 < δ < 1− 5
2γ. Therefore,∣∣∣(∫ t

s

e∆(t−r)
rRr dr

)
(x)
∣∣∣ . (∫ t

s

(t− r)−γ−δ dr
)(

sup
[0,t]

‖R‖C 2−3γ−δ
)(

sup
[0,t]

‖ ‖C−2γ−δ
)

. (t− s)1−γ−δ.

The terms containing R3
r and rR

2
r are more regular and give a smaller contribution in

terms of powers of t− s.

We wish now to “extract” the component of our “noise” that is independent of the
past (that is before time s). To this end notice that if s < r < t, then

r = e∆(r−s)
s +

∫ r

s

e∆(r−u) dWu =: s→r + s,r,

with s→r measurable with respect to the history up to time s (and smooth for r > s),
and s,r independent of the history up to time s. By squaring,

r =
2

r − E[
2

r] =
( 2

s→r − E[
2

s→r]
)

+ 2 s→r s,r +
( 2

s,r − E[
2

s,r]
)
,

and we set

s,r =
2

s,r − E[
2

s,r], s→r =
2

s→r − E[
2

s→r].

Likewise,

r =
3

r − 3E[
2

r] r

=
( 3

s→r − 3E[
2

s→r] s→r
)

+ 3 s→r s,r + 3 s→r s,r +
( 3

s,r − 3 s,rE[
2

s,r]
)
,

and we set

s,r =
3

s,r − 3 s,rE[
2

s,r], s→r =
3

s→r − 3E[
2

s→r] s→r.

In conclusion,

St = e∆(t−s)Rs −
∫ t

s

e∆(t−r)(
s→r + 3 s→r s,r + 3 s→r s,r + s,r

)
dr.

Lemma 7.18. Under the standing assumptions, given φ ∈ L∞,

Pe =
∣∣E[∆m

h φ(St(x))]
∣∣ . ‖φ‖L∞ |h|m

(t− s)m(1− 3
2γ+δ)

,

for every 0 ≤ s < t, x ∈ T2, m ≥ 1, h ∈ T2 with |h| ≤ 1, and every δ > 0.

Proof. Since
E[∆m

h φ(St(x))] = E
[
E[∆m

h φ(St(x)) |Fs]
]
, (7.11)

where Fs is the σ–field of events until time s, the result follows if we can estimate the
small time asymptotic of the L1 norm of the density (and of its derivatives) of St(x) given
Fs.
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To this end we recall that for a real random variable X with density g, we have by
[38, Theorem 2.1.4], the representation

Dmg(x) = E[1{X>x}H(1,1,...,1)],

(there are (m+ 1) ones in the subscript above) for the density and its derivatives (m ≥ 0),
as well as

Dmg(x) = E[1{X<x}H(1,1,...,1)],

where the terms H· come from integration by parts and are defined in [38, Proposition
2.1.4]. Moreover, by [38, formula (2.28)],

E[|H(1,1,...,1)|p]
1
p . ‖M−1

X DX‖
m+1
m+1,2mr,

for every r > p, where D is the Malliavin derivative, andMX is the Malliavin matrix of
X. By integrating over x, we see that

‖Dmg‖L1 . E[|X| |H(1,1,...,1)|], (7.12)

so that our task is to understand how this expectation scales in powers of (t− s) when
we take

X = −
∫ t−s

0

e∆(t−s−r)(U3(r) + 3U2(r) r + 3U1(r) r + r

)
dr,

and Ui, i = 0, . . . , 3 are given elements with Ui uniformly bounded in time with values in
C−i·γ−δ for i = 1, 2, 3, for every δ > 0. Notice that the choice of X above corresponds,
up to an additive constant, to St when conditioned over Fs, and with a translation in
time of the stochastic diagrams (that does not change the law). By the chain rule for the
Malliavin derivative,

DX = −
∫ t−s

0

e∆(t−s−r)(3U2(r)D r + 6U1(r) rD r + 3 rD r

)
dr,

and similarly for the second and third derivative (the fourth derivative is zero since the
random variable X above is in the third Wiener chaos). In particular,

Du r = 1{u≤r} e∆(r−u)
∑
|k|γek,

where (ek)k∈Z2 is the Fourier basis of complex exponentials.
We see that for every small δ > 0,

E
[∣∣∣(∫ t−s

0

e∆(t−s−r)
r

)
(x)
∣∣∣2] ≈ (t− s)2−3γ−2δ,

and likewise,

E
[∣∣∣(∫ t−s

0

e∆(t−s−r) U1(r) r

)
(x)
∣∣∣2] ≈ (t− s)2−2γ−2δ sup

[0,t−s]
‖U1‖C 2γ+δ .

Notice that when we will evaluate the external expectation in (7.11), we will see that
sup[0,t−s] ‖U1‖C 2γ+δ ≈ (t − s)−

γ
2 (since we will replace U1(r) by s→r). In conclusion X

scales as (t − s)1− 3
2γ , up to small corrections. With similar computations we see that

DX scales also as (t− s)1− 3
2γ (due to the additional contribution of D ), as well as the

second and third Malliavin derivatives. Therefore, using formula (7.12), the conclusion
of the lemma follows.

We are ready to complete the proof of the main result of this section.
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Proof of Theorem 7.16. In view of Lemma 7.17 and Lemma 7.18, with the choice s =

t − ε, this is a simple application of Proposition 2.2, with θ = 1/(1 − 3
2γ + δ) and

a0 = (1− γ)θ − 1.

Remark 7.19. One can expect that Theorem 7.16 might hold also for (7.6) in dimension
three. In that case the role of the “noise” should be played by∫ t

s

e∆(t−r)
r <© r dr.

Since the remainder has regularity C 1−, the approximation error should be of the order
Ae ≈ ε 1

2−, while the probabilistic estimate has a density with increments of order |h|/
√
ε.

This prevents the application of Proposition 2.2 (in short, it would correspond to the case
a0 = 0).

To circumvent the problem, one possibility could be to use Hölder continuity in time of
the stochastic diagrams. Unfortunately this would deteriorate the space regularity (see
for instance [36, Theorem 1.1]), yielding a final dependence of the approximation error
of order Ae ≈ ε1/2− (or worse). Another possibility could be to improve the approximation
error with a smarter definition of the auxiliary process, as in Section 2.2.

A Weaker versions of the smoothing lemma

In the first pages of Malliavin’s seminal paper [33] on a probabilistic proof of the
Hörmander theorem there is a classical smoothing lemma. This is the link between the
existence of a density and probabilistic integration by parts and the Malliavin calculus.
The lemma says roughly that if for a Rd-valued random variable X,∣∣E[Dαφ(X)]

∣∣ ≤ cn‖φ‖L∞ ,
for all |α| ≤ n and all test functions φ, then X has a density, with respect to the Lebesgue
measure, in Cn−d−1. In this section we give a generalization of this lemma in Besov
spaces.

A.1 Besov and Triebel–Lizorkin spaces

Besov spaces, together with the Triebel–Lizorkin spaces, are a scale of function
spaces introduced to capture the fine properties of regularity of functions, beyond on the
one hand the Sobolev spaces, and on the other hand the spaces of continuous functions.
Indeed, Besov spaces contain both. The main references we shall use on this subject are
[47, 48].

A general definition with the Littlewood–Paley decomposition is (briefly) as follows.
Let (ϕn)n≥0 be a band–limited decomposition of the frequency space. For a distribution
f each fn = F−1(ϕnf̂) is a Schwartz function and f =

∑
n fn. Then

‖f‖Bsp,q :=
∥∥(2ns‖fn‖Lp)n≥0

∥∥
`q
, and ‖f‖F sp,q :=

∥∥‖(2nsfn)n≥0‖`q
∥∥
Lp
,

(p < ∞ for the F sp,q norm). Notice that to define the Bsp,q norm, the Littlewood–Paley
decomposition is first averaged over position, and then over frequencies, while the
opposite happens for the F sp,q norm. We define the spaces Bsp,q(R

d) and F sp,q(R
d), with

s ∈ R and 1 ≤ p, q ≤ ∞ (with the exception of p =∞ for the F –space) as the closure of
the Schwartz space with respect to the above norms. In this way the spaces we obtain
are separable, regardless of the index (but this is an issue only if p =∞ or q =∞). Since
‖ · ‖Bsp,p = ‖ · ‖F sp,p for all p, we define F s∞,∞ := Bs∞,∞. The spaces obtained do not depend
on the band–limited decomposition (although the norms do), and different choices of the
decomposition give raise to equivalent norms.
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A.1.1 Definition via the difference operator

Given α > 0, we shall denote by Cα(Rd) the standard Hölder space, namely the space of
functions with [α] derivatives such that the derivatives of order [α] are Hölder continuous
of exponent (α− [α]).

A special role in this paper is played by the Zygmund spaces C α
b (Rd) = Bα∞,∞(Rd)

that, for non–integer values of α, coincide with the (separable version of the) Hölder
spaces. With this in mind, we recall an alternative definition of Besov spaces that is
better suited for our purposes (see [47, Theorem 2.5.12] or [48, Theorem 2.6.1] for
further details). Define

(∆1
hf)(x) = f(x+ h)− f(x),

(∆n
hf)(x) = ∆1

h(∆n−1
h f)(x) =

n∑
j=0

(−1)n−j
(
n

j

)
f(x+ jh),

then the following norms, for s > 0, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞,

‖f‖Lp + [f ]Bsp,q

are equivalent norms of Bsp,q(R
d) for the given range of parameters. Here we have set

[f ]Bsp,q :=
∥∥∥h 7→ ‖∆m

h f‖Lp
|h|s

∥∥∥
Lq(B1(0); dh

|h|d
)
. (A.1)

where m is any integer such that s < m, and B1(0) is the unit ball in Rd.
A similar definition can be given for Triebel–Lizorkin spaces (see [47, Theorem

2.5.10]). Let 1 ≤ p <∞, 1 ≤ q ≤ ∞, and s > d
p∧q , and set

[f ]F sp,q :=
∥∥∥x 7→ ‖h 7→ |h|−s∆m

h f(x)‖Lq(Rd; dh
|h|d

)

∥∥∥
Lp

(A.2)

where m is any integer such that m > s. Then ‖f‖Lp + [f ]F sp,q is an equivalent norm in

F sp,q(R
d). Unfortunately the representation in terms of differences only holds for s large.

A.1.2 Besov spaces on domains

Given a bounded domain D with smooth boundary, define for s ∈ R and 1 ≤ p, q ≤ ∞,

Bsp,q(D) := {f : there is g ∈ Bsp,q such that g|D = f},

with norm
‖f‖Bsp,q(D) := inf{‖g‖Bsp,q : g ∈ Bsp,q(Rd) and g|D = f}.

See [47, Chapter 3] for further details.

A.2 Smoothing results

This lemma, in a weaker form, is implicitly given in [15] (see also [43, Lemma 4.1],
and see [14, Lemma 2.1] for a real analytic proof).

Lemma A.1 (fractional integration by parts). Let X be a Rd–valued random variable. If
there are an integer m ≥ 1, a real number s > 0, a real α > 0, with α < s < m, and a
constant K > 0 such that for every φ ∈ C α

b (Rd) and h ∈ Rd, with |h| ≤ 1,∣∣E[∆m
h φ(X)]

∣∣ ≤ K|h|s‖φ‖Cα
b
,

then X has a density fX with respect to the Lebesgue measure on Rd. Moreover
fX ∈ Bs−α1,∞ (Rd) and

‖f‖Bs−α1,∞
. (1 +K). (A.3)
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Proof. Let µ be the law of X. Fix a smooth function φ. Let (ϕε)ε>0 be a smoothing kernel,
namely ϕε = ε−dϕ(x/ε), with ϕ ∈ C∞c (Rd), 0 ≤ ϕ ≤ 1, and

∫
Rd
ϕ(x) dx = 1. Let fε = ϕε ?µ,

then easy computations show that fε ≥ 0,
∫
Rd
fε(x) dx = 1 and that∣∣∣∫

Rd
∆m
h φ(x)fε(x) dx

∣∣∣ =
∣∣∣∫ ϕε(x)E[∆m

h φ(x−X)] dx
∣∣∣ ≤ K|h|s‖φ‖Cα

b
.

On the other hand, by a simple change of variables,∫
Rd

∆m
h φ(x)fε(x) dx =

∫
Rd

∆m
−hfε(x)φ(x) dx. (A.4)

Set gε = (I −∆d)
−α/2fε, and ψ = (I −∆d)

α/2φ, where ∆d is the d–dimensional Laplace
operator. We have by [2, Theorem 10.1] that ‖gε‖L1 ≤ c‖fε‖L1 . Moreover, by [47,
Theorem 2.5.7,Remark 2.2.2/3]), we know that for α > 0, C α

b (Rd) = Bα∞,∞(Rd), and by

[47, Theorem 2.3.8] we know that (I −∆d)
−α/2 is a continuous operator from B0

∞,∞(Rd)

to Bα∞,∞(Rd). Hence, by (A.4) it follows that∣∣∣ ∫
Rd

∆m
h gε(x)ψ(x) dx

∣∣∣ =
∣∣∣ ∫
Rd

∆m
h fε(x)φ(x) dx

∣∣∣ ≤ K|h|s‖φ‖Cα
b
≤ cK|h|s‖ψ‖B0

∞,∞

Notice that by [47, Theorem 2.11.2 and Remark 2.11.2/2], B0
∞,∞(Rd) is the dual of

B0
1,1(Rd), moreover B0

1,1(Rd) ↪→ L1(Rd) by [47, Proposition 2.5.7], therefore ‖∆m
h gε‖L1 ≤

‖∆m
h gε‖B0

1,1
≤ cK|h|s, hence ‖gε‖Bs1,∞ ≤ c(1 +K). Again, since (I −∆d)

α/2 maps continu-

ously Bs1,∞(Rd) into Bs−α1,∞ (Rd), it finally follows that ‖fε‖Bs−α1,∞
≤ c‖gε‖Bs1,∞ .

By Sobolev’s embeddings and [47, formula 2.2.2/(18)], we have for every r < s− α
and 1 ≤ p ≤ d/(d − r) that Bs−α1,∞ (Rd) ↪→ Br1,1(Rd) = W r,1(Rd) ↪→ Lp(Rd). In particular,
(fε)ε>0 is uniformly integrable in L1(Rd), therefore there is fX such that µ = fX dx and
(fε)ε>0 converges weakly in L1(Rd) to fµ. Formula (A.3) follows by semi–continuity.

By the proof, it is clear that the Lemma applies in the case of a positive finite measure
(so, not necessarily of mass one).

The properties of Besov spaces we have used hold regardless of the summability
parameters of the spaces, thus one can show with arguments entirely similar with those
above the following result.

Corollary A.2. Let X be a Rd–valued random variable. If there are an integer m ≥ 1,
numbers α, s, p, q, with 0 < α < s < m, 1 < p ≤ ∞ and 1 ≤ q ≤ ∞, and a constant K > 0

such that for every φ ∈ Bαp,q(Rd) and h ∈ Rd, with |h| ≤ 1,∣∣E[∆m
h φ(X)]

∣∣ ≤ K|h|s‖φ‖Bαp,q ,
then X has a density fX with respect to the Lebesgue measure on Rd. Moreover, for
every r < s− α, fX ∈ Brp′,∞(Rd) and

‖f‖Br
p′,∞

. (1 +K),

where p′ is the conjugate Hölder exponent of p.

We will also use the following version of the smoothing lemma in the paper.

Lemma A.3. Let 1 < p < ∞ and f ∈ Lp(Rd). Assume there are an integer m ≥ 1, two
real numbers s > 0 and α > 0, with α < s < m, and a constant K > 0 such that for every
φ ∈ C∞c (Rd) and h ∈ Rd, with |h| ≤ 1,∣∣∣∫

Rd
∆m
h φ(x)f(x) dx

∣∣∣ ≤ K|h|s‖φ‖Fαq,∞ ,
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where q is the Hölder conjugate exponent of p. Then f ∈ Bs−αp,∞ and

‖f‖Bs−αp,∞
. (‖f‖Lp +K). (A.5)

Proof. Fix a smooth function φ and set g = (I − ∆d)
−α/2f , ψ = (I − ∆d)

α/2φ, then by
integration by parts,∣∣∣∫

Rd
(∆m

h g)(x)ψ(x) dx
∣∣∣ =

∣∣∣∫
Rd
g(x)(∆m

−hψ)(x) dx
∣∣∣ =

=
∣∣∣∫
Rd
f(x)(∆m

−hφ)(x) dx
∣∣∣ ≤ K|h|s‖φ‖Fαq,∞ ≤ K|h|s‖ψ‖F 0

q,∞
,

since by [47, Theorem 2.3.8], (I −∆d)
−α/2 maps Fαq,∞ into F 0

q,∞.
We know by [47, Theorem 2.11.2] that the space F 0

q,∞ is the dual of F 0
p,1, therefore we

deduce from the inequality above that ‖∆m
h g‖F 0

p,1
≤ K|h|s. On the other hand we know

by [47, Proposition 2.5.7] that F 0
p,1 ⊂ Lp, hence ‖∆m

h g‖Lp . K|h|s.
Finally, by [2], ‖g‖Lp . ‖f‖Lp , and in conclusion g ∈ Bsp,∞ and ‖g‖Bsp,∞ . (K + ‖f‖Lp),

and then (A.5) follows, since ‖f‖Bs−αp,∞
= ‖(I −∆d)

α/2g‖Bs−αp,∞
= ‖g‖Bsp,∞ .

Remark A.4. Since Fα∞,∞ = Bα∞,∞ for all α ∈ R, the case p =∞ in the lemma above is
already covered by Lemma A.1.
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