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The Gamow-Teller (GT) matrix element contributing to tritium β decay is calculated with trinu-
cleon wave functions obtained from hyperspherical-harmonics solutions of the Schrödinger equation
with the chiral two- and three-nucleon interactions including ∆ intermediate states that have re-
cently been constructed in configuration space. Predictions up to N3LO in the chiral expansion of
the axial current (with ∆’s) overestimate the empirical value by 1–4 %. By exploiting the relation
between the low-energy constant (LEC) in the contact three-nucleon interaction and two-body axial
current, we provide new determinations of the LECs cD and cE that characterize this interaction
by fitting the trinucleon binding energy and tritium GT matrix element. Some of the implications
that the resulting models of three-nucleon interactions have on the spectra of light nuclei and the
equation of state of neutron matter are briefly discussed. We also provide a partial analysis, which
ignores ∆’s, of the contributions due to loop corrections in the axial current at N4LO. Finally, ex-
plicit expressions for the axial current up to N4LO have been derived in configuration space, which
other researchers in the field may find useful.

I. INTRODUCTION

Tritium β decay and the Gamow-Teller (GT) matrix
element contributing to it have provided, over the past
several decades, a testing ground for models of the nu-
clear axial current and, in particular, for the role that
many-body weak transition operators beyond the leading
one-body GT operator play in this matrix element [1–5]
as well as in the closely related one entering the cross sec-
tion of the basic solar burning reaction 1H(p, e+νe)

2H [4–
7] (in this connection, the first calculation of these pro-
cesses in lattice quantum chromodynamics reported last
year by the NPLQCD collaboration [8] should also be
noted). More recently, the development of chiral effec-
tive field theory (χEFT) has led to a re-examination of
these weak transitions within such a framework [9–13]
(as well as in formulations in which the pion degrees
of freedom are integrated out—so called, pion-less effec-
tive field theory [14, 15]). An important advantage of
χEFT over older approaches based on meson-exchange
phenomenology [16–18] has been in having established a
relation between the three-nucleon (3N) interaction and
the two-nucleon (2N) axial current [19, 20], specifically
between the low-energy constant (LEC) cD (in standard
notation) in the 3N contact interaction [21] and the LEC
in the 2N contact axial current [20]. Thus, this makes it
possible to use nuclear properties governed by either the

strong or weak interactions to constrain simultaneously
the 3N interaction and 2N axial current.

In this context, the present study addresses two top-
ics. The first consists in an assessment of how well the
experimental value of the 3H GT matrix element is re-
produced in calculations based on nuclear Hamiltonians
with the recently constructed chiral 2N and 3N inter-
actions [22, 23]. These interactions, which are local in
configuration space, have long-range parts mediated by
one- and two-pion exchange (denoted as OPE and TPE,
respectively), including ∆-isobar intermediate states, up
to next-to-next-to-leading order (N2LO) in the 2N case,
and up to next-to-leading order (NLO) in the 3N case in
the chiral expansion. The 2N and 3N short-range parts
are parametrized by contact interactions up to, respec-
tively, next-to-next-to-next-to-leading order (N3LO) [22]
and NLO [23]. In particular, the LECs cD and cE which
characterize the 3N contact terms have been fitted to the
trinucleon binding energies and neutron-deuteron (nd)
doublet scattering length. As shown below, the predicted
GT matrix element with these interactions and accompa-
nying axial currents is a few % larger than the empirical
value.

The second topic deals with a determination of cD and
cE in which we fit, rather than the scattering length, the
3H GT matrix element. Because of the much reduced
correlation between binding energies and the GT matrix
element, this procedure leads to a more robust determi-
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nation of cD and cE than attained in the previous fit.
The axial current here includes OPE terms with ∆ in-
termediate states up to N3LO in the chiral counting of
Ref. [24]. The resulting values of cD and cE are rather
different from those obtained earlier [23], and the im-
plications that these newly calibrated models of the 3N
interaction have on the spectra of light nuclei and the
equation of state of neutron matter are currently being
investigated [26] (note that an error in the relation given
in the original Ref. [20] between the contact-axial-current
LEC and cD has been corrected [25]).

Related issues which we also explore in this work are (i)
the magnitude of contributions to the axial current be-
yond N3LO owing to loop corrections induced by TPE,
and (ii) the extent to which these contributions impact
the 3H GT matrix element and, in particular, modify the
values of cD and cE . Since currently available derivations
of TPE axial currents in χEFT [24, 27] do not explicitly
include ∆’s, our comments regarding these two questions
should be viewed, at this stage, as preliminary. Neverthe-
less, we believe that, even within the context of such an
incomplete analysis, it is possible to draw some conclu-
sions, especially in reference to the convergence pattern
of the chiral expansion for the axial current.

This paper is organized as follows. In Sec. II we list
explicit expressions in configuration space for the axial
current up to N3LO. While these are well known [10],
they are reported here for completeness and clarity of
presentation, particularly in view of the regularization
scheme in configuration space that has been adopted for
consistency with the chiral interactions of Refs. [22, 28].
In Sec. III we present predictions for the 3H GT matrix
element obtained with the LECs cD and cE of Ref. [23],
and in Sec. IV report a new set of values for these LECs
resulting from fitting the GT matrix element and 3H/3He
binding energies. In Sec. V we provide configuration-
space expressions for the loop corrections of the axial
current at N4LO [24, 27], and estimates of their con-
tributions. The actual derivation of these expressions,
which to the best of our knowledge were previously not
known, is relegated in Appendix A; the resulting N4LO
current has a simple structure, which we hope will en-
courage its use by other researchers in the field. Finally,
we offer some concluding remarks in Sec. VI.

II. AXIAL CURRENTS UP TO N3LO IN
CONFIGURATION SPACE

We illustrate in Fig. 1 the contributions to the ax-
ial current in a χEFT with nucleon, ∆-isobar, and pion
degrees of freedom up to N3LO. Momentum-space ex-
pressions for panels (a) and (b), (c) and (d), (i) and (j),
and (k) and (l) are listed in Ref. [24], respectively in
Eqs. (3.14), (5.1)–(5.2), (5.5)–(5.6), and (5.4); the con-
tributions of panels (g) and (h) vanish, while those of
panels (e) and (f) read

jN2LO
5,a (∆) = j∆5,a −

q

q2 +m2
π

q · j∆5,a , (2.1)

where

j∆5,a =
gA

2 f2
π

[
2 c∆3 τj,a kj + c∆4 (τi × τj)a σi × kj

]
×σj · kj

1

ω2
j

+ (i
 j) , (2.2)

with the LECs c∆3 and c∆4 given by

c∆3 = − h2
A

9m∆N
, c∆4 =

h2
A

18m∆N
. (2.3)

Here gA and hA are nucleon and nucleon-to-∆ axial
coupling constants (gA = 1.2723 and hA = 2.74), fπ and
m∆N are the pion-decay constant and ∆-nucleon mass
difference (fπ = 92.4 MeV and m∆N = 293.1 MeV), σi
and τi are the spin and isospin Pauli matrices of nu-
cleon i, pi and p′i are its initial and final momenta with
the pion energy ωi and pion momentum ki defined as
ωi =

√
k2
i +m2

π and ki =p′i −pi, and ki + kj =q, where
q is the external field momentum.

FIG. 1. Diagrams illustrating the contributions to the axial
current up to N3LO (Q0). Nucleons, ∆-isobars, pions, and
external fields are denoted by solid, thick-solid, dashed, and
wavy lines, respectively. The squares in panel (c) and (d)
represent relativistic corrections, while the dots in panels (i)

and (j) denote vertices implied by the L(2)
πN chiral Lagrangian.

Only a single time ordering is shown. Note that the contact
contributions in panels (g) and (h) vanish.

We provide below the configuration-space expressions
for these currents, ignoring pion-pole terms which con-
tribute negligibly to the observable under consideration
in the present work. The LO term, which scales as
Q−3 in the power counting (Q denotes generically a low-
momentum scale), reads

jLO
5,a(q) = −gA

2
τi,a σi eiq·ri + (i
 j) , (2.4)

while the N2LO and N3LO terms (scaling, respectively,
as Q−1 and Q0) are written as

jN2LO
5,a (q) = jN2LO

5,a (q; RC) + jN2LO
5,a (q; ∆) , (2.5)

jN3LO
5,a (q) = jN3LO

5,a (q; OPE) + jN2LO
5,a (q; CT) , (2.6)

where
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jN2LO
5,a (q; RC) =

gA
8m2

τi,a
{
pi × (σi × pi) , eiq·ri

}
+

gA
8m2

τi,a eiq·ri (iq× pi + q σi · q/2) + (i
 j) , (2.7)

jN2LO
5,a (q; ∆) = −eiq·ri (τi × τj)a

[
I(1)(µij ;α

∆
1 )σi × σj + I(2)(µij ;α

∆
1 )σi × r̂ij σj · r̂ij

]
− eiq·ri τj,a

[
I(1)(µij ;α

∆
2 )σj + I(2)(µij ;α

∆
2 ) r̂ij σj · r̂ij

]
+ (i
 j) , (2.8)

and

jN3LO
5,a (q; OPE) = −eiq·ri (τi × τj)a

[
I(1)(µij ;α1)σi × σj + I(2)(µij ;α1)σi × r̂ij σj · r̂ij

]
− eiq·ri τj,a

[
I(1)(µij ;α2)σj + I(2)(µij ;α2) r̂ij σj · r̂ij

]
− (τi × τj)a

1

2mπ

{
pi , eiq·ri Ĩ (1)(µij ; α̃1)σj · r̂ij

}
−i (τi × τj)a eiq·ri Ĩ (1)(µij ; α̃2)σi ×

q

mπ
σj · r̂ij + (i
 j) , (2.9)

jN3LO
5,a (q; CT) = z0 eiq·Rij

e−z
2
ij

π3/2
(τi × τj)a (σi × σj) , (2.10)

and pk =−i∇k is the momentum operator of nucleon k,
{. . . , . . . } denotes the anticommutator,

rij = ri − rj , Rij = (ri + rj) /2 , (2.11)

µij = mπrij , zij = rij/RS , (2.12)

and the δ-function in the contact axial current has been
smeared by replacing it with a Gaussian cutoff of range
RS [22, 28]. The adimensional LEC z0 is given by

z0 =
gA
2

m2
π

f2
π

1

(mπ RS)
3

[
− mπ

4 gA Λχ
cD

+
mπ

3

(
c3 + c∆3 + 2 c4 + 2 c∆4

)
+
mπ

6m

]
, (2.13)

where cD denotes the LEC multiplying one of the contact
terms in the three-nucleon interaction [21], and it should
be noted that the combination c∆3 + 2 c∆4 vanishes. It has
recently been realized [25] that the relation between z0

and cD had been given erroneously in the original refer-
ence [20], a – sign and a factor 1/4 were missing in the
term proportional to cD. The various correlation func-
tions are defined as

I(1)(µ;α) = −α (1 + µ)
e−µ

µ3
, (2.14)

I(2)(µ;α) = α (3 + 3µ+ µ2)
e−µ

µ3
, (2.15)

Ĩ (1)(µ; α̃) = −α̃ (1 + µ)
e−µ

µ2
, (2.16)

where

α∆
1 =

gA
8π

m3
π

f2
π

c∆4 , α∆
2 =

gA
4π

m3
π

f2
π

c∆3 , (2.17)

α1 =
gA
8π

m3
π

f2
π

(
c4 +

1

4m

)
, α2 =

gA
4π

m3
π

f2
π

c3 , (2.18)

α̃1 =
gA

16π

m3
π

mf2
π

, α̃2 =
gA

32π

m3
π

mf2
π

(c6 + 1) , (2.19)

mπ and m are the pion and nucleon masses, Λχ = 1 GeV,
and the LECs c3, c4, and c6 have the values [28, 29]

c3 = −0.79 GeV−1 , c4 = 1.33 GeV−1 , c6 = 5.83 .
(2.20)

Each correlation function above is regularized by multi-
plication of a configuration-space cutoff as in the case of
the local chiral potentials of Refs. [22, 28], namely

X(1,2)(mπr) −→ CRL(r)X(1,2)(mπr) (2.21)

with

CRL
(r) = 1− 1

(r/RL)
p

e(r−RL)/aL + 1
, (2.22)

where aL =RL/2, the exponent p is taken as p= 6, and X

stands for I or Ĩ. Finally, charge-raising (+) or charge-
lowering (−) currents are obtained from j5,± = j5,x ±
i j5,y, and hereafter, we define the isospin combinations

τi,± = (τi,x ± i τi,y)/2 , (2.23)

(τ1 × τ2)± = (τ1 × τ2)x ± i (τ1 × τ2)y . (2.24)

III. 3H β DECAY WITH LOCAL CHIRAL
INTERACTIONS

In recent years, local chiral 2N interactions have been
derived [22, 28, 30] in configuration space, primarily
for use in quantum Monte Carlo calculations of light-
nuclei and neutron-matter properties [23, 31–36]. Here
we focus on the family of interactions constructed by
our group [22]. These are written as the sum of an
electromagnetic-interaction component, including up to
quadratic terms in the fine-structure constant, and a
strong-interaction component characterized by long- and
short-range parts. The long-range part includes OPE
and TPE terms up to N2LO in the chiral expansion [28],
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derived in the static limit from leading and sub-leading
πN and πN∆ chiral Lagrangians. In coordinate space,
this long-range part is represented by charge-independent
central, spin, and tensor components with and without
isospin dependence τi ·τj (the so-called v6 operator struc-
ture), and by charge-independence-breaking central and
tensor components induced by OPE and proportional to
the isotensor operator Tij = 3 τzi τ

z
j − τi · τj . The radial

functions multiplying these operators are singular at the
origin, and are regularized by a cutoff of the form given
in Eq. (2.22).

The short-range part is described by charge-
independent contact interactions up to N3LO, specified
by a total of 20 LECs, and charge-dependent ones up to
NLO, characterized by 6 LECs [22]. By utilizing Fierz
identities, the resulting charge-independent interaction
can be made to contain, in addition to the v6 opera-
tor structure, spin-orbit, L2 (L is the relative orbital
angular momentum), and quadratic spin-orbit compo-
nents, while the charge-dependent one retains central,
tensor, and spin-orbit components. Both are regular-
ized by multiplication of a Gaussian cutoff CRS(r) =
exp

[
−(r/RS)2

]
/
(
π3/2R3

S

)
, as in the contact axial cur-

rent, Eq. (2.10).

Two classes of interactions were constructed, which
only differ in the range of laboratory energy over which
the fits to the 2N database [37] were carried out, either
0–125 MeV in class I or 0–200 MeV in class II. For each
class, three different sets of cutoff radii (RS, RL) were
considered (RS, RL) = (0.8, 1.2) fm in set a, (0.7,1.0) fm
in set b, and (0.6,0.8) fm in set c. The χ2/datum achieved
by the fits in class I (II) was . 1.1 (. 1.4) for a total of
about 2700 (3700) data points. We have been referring
to these high-quality 2N interactions generically as the
Norfolk vij ’s (NV2s), and have been designating those
in class I as NV2-Ia, NV2-Ib, and NV2-Ic, and those
in class II as NV2-IIa, NV2-IIb, and NV2-IIc. Owing
to the poor convergence of the hyperspherical-harmonics
(HH) expansion and the severe fermion-sign problem of
the Green function Monte Carlo (GFMC) method, how-
ever, models Ic and IIc have not been used (at least, not
yet) in actual calculations of light nuclei.

The NV2s were found to underbind, in GFMC calcu-
lations, the ground-state energies of nuclei with A= 3–
6 [22]. To remedy this shortcoming, in Ref. [23] we
constructed the leading 3N interaction in a χEFT, in-
cluding ∆ intermediate states. It consists [21] of a long-
range piece mediated by TPE at LO and NLO, and a
short-range piece parametrized in terms of two contact
interactions, which enter formally at NLO. The two (adi-
mensional) LECs cD and cE , which characterize these
latter interactions, were determined in HH calculations
by simultaneously reproducing the experimental trinu-
cleon ground-state energies and the nd doublet scatter-
ing length for each of the 2N models considered, namely,
Ia and Ib, and IIa and IIb. It was then shown [23] that
the Hamiltonian based on the interactions NV2+3-Ia led,
in GFMC calculations, to an excellent description of the

spectra of light nuclei in the mass range A= 4–12, includ-
ing their level ordering and spin-orbit splittings. It has
since become clear [26] that the other models (NV2+3-
Ib, etc.) do not provide a description of these spectra as
satisfactory as that obtained with NV2+3-Ia.

Given the value of cD, the axial current is fully con-
strained, since the LEC z0 in the contact term is fixed via
Eq. (2.13). The evaluation of the tritium Gamow-Teller
(GT) matrix element is carried out by Monte Carlo in-
tegration [12], and statistical errors are less than a %
for each individual contribution (in fact, at the level of
a few parts in 10−4 for the LO). Predictions obtained
with the Hamiltonian models NV2+3-Ia/b and NV2+3-
IIa/b and at vanishing momentum transfer (q= 0) are
reported in Table I. The experimental value, as obtained
in the analysis of Ref. [12], is GTexp = 0.9511± 0.0013; it
is underestimated at LO by all models at the 3% level,
but is overestimated by . 4% in the N3LO calculations.
As it can be surmised from the difference between mod-
els a and b in both classes I and II, the LO contribu-
tion is very weakly dependent on the pair of cutoff radii
(RS,RL), characterizing the two- and three-nucleon inter-
actions from which the 3H and 3He HH wave functions
are derived. In contrast, the cutoff dependence is much
more pronounced in the case of the N2LO and N3LO
contributions, since for these the short- and long-range
regulators directly enter the correlation functions of the
corresponding transition operators. The N2LO(RC) cor-
rection, which is nominally suppressed by two powers of
the expansion parameter Q/Λχ, being inversely propor-
tional to the square of the nucleon mass, itself of order
Λχ, is in fact further suppressed than the naive N2LO
power counting would imply. Indeed, it is almost an or-
der of magnitude smaller, and of opposite sign, than the
N2LO(∆) contribution.

Ia Ib IIa IIb
cD 3.666 −2.061 1.278 −4.480
cE −1.638 −0.982 −1.029 −0.412

LO 0.9248 0.9237 0.9249 0.9259
N2LO(∆) 0.0401 0.0586 0.0406 0.0589
N2LO(RC) −0.0055 −0.0063 −0.0059 −0.0077
N3LO(OPE) 0.0327 0.0457 0.0330 0.0462
N3LO(CT) −0.0036 −0.0487 −0.0249 −0.0668
TOT 0.9885 0.9730 0.9677 0.9565

TABLE I. Contributions to the GT matrix element in tritium
β decay obtained with chiral axial currents up to N3LO and
HH wave functions corresponding to the NV2+3-Ia/b and
NV2+3-IIa/b chiral Hamiltonians. The experimental value is
0.9511± 0.0013 [12], to be compared to the sum of these con-
tributions (row labeled TOT). Also listed are the cD and cE
values of the contact terms in the three-nucleon interactions
of these Hamiltonians [23].

The sum of the N2LO(∆) and N3LO(OPE) contribu-
tions in Table I should be compared to the N3LO(OPE)
contribution reported in Ref. [12] for the combinations
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of the Entem and Machleidt (momentum-space) 2N in-
teractions at N3LO [38, 39] and the Epelbaum et al. 3N
interactions at LO [21] (i.e., the TPE piece proportional
to c1, c3, and c4, and the cD and cE contact terms). In
that work, ∆-isobar degrees of freedom were included im-
plicitly, as reflected by the much larger values (in mag-
nitude) considered for the LECs c3 and c4. We found
in Ref. [12] the N3LO(OPE) contribution to be 0.0082
(0.00043) or 0.0579 (0.0652) with the momentum-space
cutoff Λ = 500 (600) MeV depending on which c3-c4 set
was used, either the values reported by Entem and Mach-
leidt [39] in the first case or the recent determinations
by Hoferichter and collaborators [40] in the second case.
Here, we obtain values in the range 0.073–0.104, the lower
(upper) limit corresponding to models a (b). As we noted
in Ref. [12], there are cancellations between the individ-
ual terms proportional to c3 and c4, which make their
sum very sensitive to the actual values adopted for these
LECs. Nevertheless, it would appear that the present
results are close to those obtained in that work with the
c3 and c4 values from Ref. [40].

The magnitude (and sign) of the N3LO(CT) contribu-
tion results from the product of the matrix element∑

i≤j

〈3He| e−z
2
ij (τi × τj)+ (σi × σj)z |

3H〉 < 0 , (3.1)

and magnitude and sign of the LEC z0, which is propor-
tional to

z0 ∝ −
mπ

4 gA Λχ
cD +

mπ

3
(c3 + 2 c4) +

mπ

6m

' 0.1105− 0.0271 cD . (3.2)

For the cD values corresponding to the interactions
NV2+3-Ia/b and NV2+3-IIa/b, we find that the
N3LO(CT) contribution is negative overall. Because of
the cancellation in z0 between the constant term and the
term proportional to cD in Eq. (3.2), its magnitude is
accidentally very small for model Ia.

Ia Ib IIa IIb
CT1 −0.0036 −0.0487 −0.0249 −0.0668
CT2 −0.0037 −0.0493 −0.0252 −0.0677
CT3 −0.0036 −0.0487 −0.0249 −0.0669
CT4 −0.0036 −0.0482 −0.0246 −0.0660

TABLE II. Contributions of four different parameterizations
of the contact axial current to the GT matrix element in tri-
tium. The first row is the same as listed in Table I.

The N3LO(CT) contribution is only very marginally
affected by the operator structure adopted for the contact
axial current, more specifically

jN3LO
5,+ (CT1) = z0

e−z
2
ij

π3/2
(τi × τj)+ (σi × σj) , (3.3)

jN3LO
5,+ (CT2) = 4 z0

e−z
2
ij

π3/2
(σi τi,+ + σj τj,+) , (3.4)

jN3LO
5,+ (CT3) = 2 z0

e−z
2
ij

π3/2
(σi − σj) (τi,+ − τj,+) , (3.5)

jN3LO
5,+ (CT4) = −4 z0

e−z
2
ij

π3/2
(σi τj,+ + σj τi,+) , (3.6)

where the isospin-raising operators are defined as in
Eq. (2.23). These structures, which are Fierz-equivalent
in the absence of the cutoff, are no longer so when the
latter is included. The contributions corresponding to
the set above are reported in Table II.

IV. REFITTING cD WITH LOCAL CHIRAL
INTERACTIONS

In this section, we determine the LECs cD and cE in
the three-nucleon contact interaction, as parametrized in
Ref. [23], by fitting the experimental trinucleon binding
energies and central value of the 3H GT matrix element.
We designate these new LECs as c∗D and c∗E . The fit is
carried out as in Ref. [12, 41]. We span a broad range
of values in cD, and, in correspondence to each cD in
this range, determine cE so as to reproduce the binding
energy of either 3H or 3He. The resulting trajectories
are nearly indistinguishable [12, 41]. Then, for each set
of (cD, cE), the triton and 3He wave functions are cal-
culated and the GT matrix element, denoted as GTth,
is obtained, by including in the axial current contribu-
tions up to N3LO. The ratio GTth/GTexp for the case of
the NV2+3-Ia interactions is shown in Fig. 2 (left panel),
where the band reflects the uncertainty resulting from the
experimental error on GTexp, which, conservatively, has
been doubled. The LECs (c∗D, c

∗
E) that reproduce GTexp

(its central value) and the trinucleon binding energies
are reported in Table III, along with the axial current
contributions at LO, N2LO, and N3LO. In Table IV, we
provide the range of (c∗D, c

∗
E) values compatible with the

experimental error on GTexp. The 3N interactions cor-
responding to the new set of (c∗D, c

∗
E) are denoted with ∗

hereafter.

Ia∗ Ib∗ IIa∗ IIb∗

c∗D −0.635 −4.71 −0.61 −5.25
c∗E −0.09 0.55 −0.35 0.05

LO 0.9272 0.9247 0.9261 0.9263
N2LO 0.0345 0.0517 0.0345 0.0515
N3LO(OPE) 0.0327 0.0454 0.0330 0.0465
N3LO(CT) −0.0435 −0.0715 −0.0432 −0.0737

TABLE III. The values c∗D and c∗E obtained by fitting the
experimental trinucleon binding energies and central value of
the 3H GT matrix element with chiral axial currents up to
N3LO and HH wave functions corresponding to the NV2+3-
Ia∗/b∗ and NV2+3-IIa∗/b∗ chiral Hamiltonians. Also re-
ported are the contributions at LO, N2LO, N3LO(OPE), and
N3LO(CT).
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FIG. 2. Upper panel: The calculated ratio GTth/GTexp as
function of cD (solid line; each point on this line reproduces
the trinucleon binding energies). Lower panel: The cD-cE
trajectories obtained by fitting the experimental trinucleon
binding energies (solid line) and nd doublet scattering length
(dashed line) (the intercept of these two lines gives the cD
and cE values that reproduce these two observables simulta-
neously). The NV2+3-Ia chiral interactions are used here for
illustration. The values of 8.475 MeV and 7.725 MeV, and
0.645 ± 0.010 fm [42] are used for the 3H and 3He binding
energies, and nd scattering length, respectively. Note that
these energies have been corrected for the small contributions
(+7 keV in 3H and −7 keV in 3He) due to the n-p mass dif-
ference [43]. The band (left panel) results from experimental
uncertainty GTEXP, which has conservatively been doubled.

It is interesting to compare the present (cD, cE) tra-
jectories (left panel of Fig. 2) with those of Ref. [23]
(right panel), obtained by fitting the experimental nd
doublet scattering length rather than GTexp. The strat-
egy adopted in the present work appears to be more ro-
bust than that of Ref. [23], since there the strong correla-
tion between binding energy and scattering length makes
the simultaneous determination of (cD, cE) problematic.
This difficulty is removed here.

The most striking difference between the previous and
present determinations of LECs is in the values of cE
and c∗E , in particular the fact that c∗E is quite small in
magnitude and not consistently negative as obtained in
Ref. [23]. A negative cE leads to a repulsive contribution
for the associated three-nucleon contact interaction in
light nuclei [23], but to an attractive one in pure neutron
matter. Indeed, auxiliary-field diffusion Monte Carlo
(AFDMC) calculations show [26] that the large and neg-
ative cE value for model NV2+3-Ia (cE =−1.638) turns
out to be disastrous in neutron matter, since it leads to
collapse already at moderate densities (at ρ' ρ0 = 0.16
neutron/fm3). Thus, even though this model reproduces
quite well the low-lying spectra of nuclei in the mass
range A= 4–12, it cannot sustain the existence of neu-
tron stars of twice solar masses, and is therefore at vari-
ance with recent observations [44, 45]. The present de-
terminations (the c∗E ’s) will mitigate, if not resolve, this
issue [26]. Furthermore, because of their smallness (in
magnitude), they will very substantially reduce the cutoff
dependence seen in AFDMC calculations of the neutron-
matter equation of state at high densities [33]. There
are also first indications that these new models, NV2+3-
Ia∗/b∗ and NV2+3-IIa∗/b∗, predict light-nuclei spectra
in reasonable agreement with experimental data [26].

There is a large variation between the c∗D values ob-
tained with models NV2+3-Ia∗/IIa∗ and those with mod-
els NV2+3-Ib∗/IIb∗, which simply reflects the cutoff de-
pendence of the N2LO(∆), N3LO(OPE), and N3LO(CT)
contributions (see Table III). The cutoff radii (RS, RL)
are (0.8,1.2) fm for the former (a models) and (0.7,1.0)
fm for the latter (b models). As a consequence, the
N2LO(∆) and N3LO(OPE) contributions, which both
have the same (positive) sign, increase the LO contri-
bution and lead to an overestimate of GTexp. This off-
set is then corrected by the N3LO(CT) contribution. In
contrast to the earlier fits [23], we find the present deter-
minations of c∗D to be consistently negative, which make
the term in the three-nucleon contact interaction propor-
tional to it repulsive in both light nuclei and nuclear and
neutron matter. However, because of its one-pion leg, it
is highly sensitive to tensor correlations induced by the
2N interaction, so its contribution in neutron matter,
where such correlations are weak, is noticeably reduced.

V. ESTIMATE OF AXIAL CURRENT
CONTRIBUTIONS AT N4LO

In this section, we provide estimates of N4LO correc-
tions to the GT matrix element in 3H. These estimates

are incomplete, since the calculations reported here ig-
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Ia∗ Ib∗ IIa∗ IIb∗

c∗D (−0.89,−0.38) (−4.99,−4.42) (−0.89,−0.33) (−5.56,−4.94)
c∗E (−0.01,−0.17) (+0.70,+0.40) (−0.25,−0.45) (+0.23,−0.13)

TABLE IV. The range of c∗D and c∗E values allowed by the experimental error on GTexp (note that this error has conservatively
been doubled). The lower/upper limits correspond to GTexp −/+ error.

nore ∆ intermediate states in the axial current at N4LO.1

We are not aware of formal derivations of the two-body
(and three-body) axial currents at this order, which in-
clude, beyond nucleon and pion, explicit ∆ degrees of
freedom. Nevertheless, it is interesting to have an ap-
proximate estimate for the magnitude of the presently
known N4LO corrections. As a by-product of this ef-
fort, we also obtain analytical expressions in configura-
tion space for these corrections, which other researchers
in the field may find useful.

The (static part of the) axial current at N4LO was
given in the Baroni et al. papers and accompanying er-

rata [12, 24]. It is written as the sum of three terms:
the first (labeled OPE) represents loop corrections to the
OPE axial current, the second (labeled TPE) represents
genuine TPE contributions, and the last (labeled CT)
includes contact contributions induced by the regulariza-
tion scheme in configuration space we have adopted (see
Appendix A for a discussion),

jN4LO
5,a (q) = jOPE

5,a (q) + jTPE
5,a (q) + jCT

5,a (q) , (5.1)

where

jOPE
5,a (q) = eiq·ri

1

9
(τi × τj)a

[
I(1)(µij ;β)σi × σj + I(2)(µij ;β)σi × r̂ij σj · r̂ij

]
−eiq·ri τj,a

[
I(1)(µij ;β)σj + I(2)(µij ;β) r̂ij σj · r̂ij

]
+ (i
 j) , (5.2)

jTPE
5,a (q) = eiq·ri τj,a

[
F

(0)
1 (λij)σi − F (1)

2 (λij)σi − F (2)
2 (λij) r̂ij σi · r̂ij

]
− eiq·ri τi,a

[
F

(1)
3 (λij)σj + F

(2)
3 (λij) r̂ij σj · r̂ij

]
−eiq·Rij τj,a

[
G

(0)
1 (λij)σj +H

(1)
1 (λij)σj +H

(2)
1 (λij) r̂ij σj · r̂ij

]
+eiq·Rij (τi × τj)a

[
H

(1)
3 (λij)σi × σj+H

(2)
3 (λij)σi × r̂ij (σj · r̂ij)

]
+(i
 j), (5.3)

jCT
5,a (q) = eiq·Rij (τi × τj)a I

(0)(zij ;∞)σi × σj +
[
eiq·ri τj,a F

(0)
1 (zij ;∞)σi

−eiq·Rij τj,aG
(0)
1 (zij ;∞)σj + (i
 j)

]
, (5.4)

and pion-pole contributions are provided in Appendix A
for completeness. The various correlation functions,
regularized by multiplication of configuration-space cut-
offs as in Sec. II (and Refs. [22, 28]), are listed in

1 It is useful to comment at this stage on a confusing notational
inconsistency in the power counting ascribed to interactions and
currents. On the one hand, following the customary practice in
the literature, we have been referring to two-body interaction
terms of increasing order in the power counting as LO, NLO,
N2LO, and N3LO with, respectively, power scaling Q0, Q2, Q3,
and Q4 in a two-body system, and to three-body interaction
terms as LO and NLO with scaling Q−1 and Q0 in a three-
body system. On the other hand, we denote axial-current terms
as LO, N2LO, N3LO, and N4LO which scale, respectively, as
Q−3, Q−1, Q0, and Q1 (in a two-body system). This notational
mismatch between interactions and currents, however, should not
obscure the fact that, at least as far as the long-range part of the
interactions from OPE and TPE is concerned, there is formal
consistency in the power counting between these interactions and
currents in the calculations reported in the previous two sections.

Eqs. (2.14)–(2.15) and Appendix A, Eqs. (A42)–(A51)
and Eqs. (A57)–(A58); furthermore, we have defined

I(0)(zij ;∞) =
5 g5

A

1536π

m4
π

f4
π

1

(mπRS)
3

e−z
2
ij

π3/2
, (5.5)

and

β =
9 g5

A

1024π2

m4
π

f4
π

, λij = 2mπ rij . (5.6)

An independent derivation of the axial current by the
Bochum group in the same χEFT framework has recently
appeared in the literature [27]. There are differences at
N4LO between this derivation and that of Ref. [24], relat-
ing to (i) non-static two-body and static three-body con-
tributions, which were deliberately neglected in Ref. [24],
but are explicitly accounted for in Ref. [27], and (ii)
a subset of static two-body contributions, specifically
those obtained from box-diagram corrections as well as
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loop corrections to the OPE axial current. These differ-
ences presumably originate from the different prescrip-
tions adopted in these two derivations for isolating non-
iterative terms in reducible diagrams. It is plausible that
the resulting forms in the two formalisms may be related
to each other by a unitary transformation [46]. However,
whether this is indeed the case is yet to be established.

We report below the configuration-space expression for
these differences at vanishing momentum transfer. We

define

∆ jN4LO
5,a ≡ jTOPT

5,a (q=0)− jUT
5,a (q=0)

∣∣
N4LO

, (5.7)

where jTOPT
5,a and jUT

5,a are the static N4LO contributions
obtained, respectively, in Refs. [12, 24] and [27], and sep-
arate ∆ jN4LO

5,a as before into OPE, TPE, and associated
contact terms (see Appendix A),

∆ jN4LO
5,a = ∆ jN4LO

5,a (OPE) + ∆ jN4LO
5,a (TPE)

+ ∆ jN4LO
5,a (CT) , (5.8)

where

∆ jN4LO
5,a (OPE)=−7

9
(τi × τj)a

[
I(1)(µij ;β)σi × σj + I(2)(µij ;β)σi × r̂ij σj · r̂ij

]
+

7

9
τj,a

[
I(1)(µij ;β)σj + I(2)(µij ;β) r̂ij σj · r̂ij

]
+ (i
 j) , (5.9)

∆ jN4LO
5,a (TPE)=−τj,a

[
F̃ (0)(λij)σi − G̃ (1)(λij)σi − G̃ (2)(λij) r̂ij σi · r̂ij

]
+ (i
 j) , (5.10)

∆ jN4LO
5,a (CT)=(τi × τj)a Ĩ

(0)(zij ;∞)σi × σj −
[
τj,a F̃

(0)(zij ;∞)σi + (i
 j)
]
. (5.11)

The correlation functions for the TPE and CT terms are
listed in Appendix A, Eqs. (A72)–(A74) and Eqs. (A76)–
(A77).

The contributions of these N4LO corrections to the GT
matrix element are listed in Table V. The calculations
use the HH wave functions obtained with the Hamilto-
nians NV2+3Ia∗/b∗ and NV2+3IIa∗/b∗ of the previous
section. In the table we report the jN4LO

5,a contribution as
given in Eq. (5.1) and obtained in the Baroni et al. and
Krebs et al. formalisms, rows labeled B and K respec-
tively, as well as the breakup of the B contribution into
its three pieces associated with the OPE, TPE, CT terms
of Eqs. (5.2), (5.3), and (5.4), rows labeled OPE(B),
TPE(B), CT(B). We also provide the corresponding dif-
ferences between the B and K formalisms of Eqs. (5.9),
(5.10), and (5.11), rows labeled B-K(OPE), B-K(TPE),
and B-K(CT).

The contributions at N4LO are found to be relatively
large and of opposite sign than those at LO in both for-
malisms. There is virtually no dependence on fitting the
2N scattering data to higher energies (compare I to II
results). One would expect also the N4LO contributions
from the presently ignored two-body (as well as three-
body!) terms with ∆ intermediate states to have a sim-
ilar magnitude and to be of the same sign as calculated
in Table V. This makes the convergence pattern of the
chiral expansion problematic for this weak-transition pro-
cess. It is also apparent that there is a significant cutoff
dependence (compare the a∗ and b∗ results). Of course,
this dependence could be reabsorbed into the LEC of the
contact current by enforcing agreement with the empir-
ical value (note that there are no additional currents of

Ia∗ Ib∗ IIa∗ IIb∗

N4LO(B) −0.0672 −0.0732 −0.0671 −0.0716
N4LO(K) −0.0364 −0.0540 −0.0365 −0.0543
OPE(B) −0.0045 −0.0068 −0.0046 −0.0069
TPE(B) −0.0211 −0.0326 −0.0214 −0.0338
CT(B) −0.0415 −0.0338 −0.0410 −0.0310
B-K(OPE) 0.0141 0.0196 0.0142 0.0201
B-K(TPE) 0.0018 0.0024 0.0018 0.0025
B-K(CT) −0.0467 −0.0412 −0.0466 −0.0399

TABLE V. Contributions obtained with the Baroni et al. [24]
and Krebs et al. [27] formulations of the N4LO axial cur-
rent, denoted respectively as N4LO(B) and N4LO(K). Also
listed are the OPE(B), TPE(B), and CT(B) individual con-
tributions of Eqs. (5.2), (5.3), and (5.4) in the Baroni et al.
formulation, and the corresponding differences B-K(OPE), B-
K(TPE), and B-K(CT) in the two formalisms as given in
Eqs. (5.9), (5.10), and (5.11).

this type that come in at N4LO). Clearly, the values of
z0 (and cD) would be radically different from those listed
in Table IV. For example, for the Ia∗ case, these new cD
values would be roughly 6.0 and 3.5 with, respectively,
the Baroni et al. and Krebs et al. estimates of the (incom-
plete) N4LO corrections reported in the table above, to
be compared to c∗D =−0.635 obtained in the previous sec-
tion. Of course, these determinations assume that cD and
cE in the 3N contact interaction can be independently
fixed, which is only approximately valid. Furthermore,
such an analysis at N4LO would also call for the inclu-
sion of loop contributions at N2LO in the 3N interaction.
Finally, we have evaluated the contribution due to one
out of the many three-body axial-current mechanisms—
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specifically, the expected leading term associated with
TPE, panel (a) of Fig. 3 in Ref. [12]—and found it to be
negligible, having values in the range –0.0009 for Ia∗/IIa∗

to –0.0014 Ib∗/IIb∗.

VI. CONCLUSIONS

One of questions we have examined in this work deals
with the determination of the LECs cD and cE that char-
acterize the 3N interaction and nuclear axial current, in
the context of the chiral 2N and 3N interaction mod-
els with ∆ intermediate states we have developed over
the last couple of years [22, 23]. We have shown that
cD and cE constrained to reproduce the trinucleon bind-
ing energies and nd doublet scattering length [23] lead
to a few % overestimate of the empirical value for the
tritium GT matrix element. In contrast, the values for
these LECs obtained by replacing the scattering length
with the GT matrix element in the fitting procedure
(and denoted as c∗D and c∗E) are very different from—
and generally much smaller in magnitude than—those
above [23]. The implications of these new determina-
tions on the spectra of light nuclei and the equation of
state of neutron matter have yet to be fully analyzed.
However, the first indications are [26] that the new chiral
Hamiltonian models NV2+3-Ia∗/b∗ and NV2+3-IIa∗/b∗

(with the c∗D and c∗E values in the 3N contact interaction)
provide a description, at least for the set of levels in the
mass range A= 4–10 examined so far, in reasonable ac-
cord with the observed spectra. More importantly, the
problem of neutron-matter collapse at relatively low den-
sity, which affects, in particular, model NV2+3-Ia stud-
ied in detail in Ref. [23], does not occur for the current
models [26], since the |c∗E |’s are significantly smaller than
the |cE |’s and, indeed, positive in some cases, thus leading
to repulsion in neutron matter for the associated (central)
term in the 3N contact interaction.

The other issue we have investigated concerns the size
of the contribution associated with N4LO terms in the
axial current, specifically those originating from loop cor-
rections. Even after making allowance for current un-
certainties in the form of some of these loop corrections
obtained in the Baroni al. [12, 24] and Krebs et al. [27]
formalisms, it appears that their contribution is relatively
large when compared to that at N2LO and N3LO, which
calls into question the convergence of the chiral expan-
sion for the axial current. As we have already noted, the
analysis at N4LO carried out here is incomplete, since
∆ degrees of freedom have not been accounted for con-
sistently in either interactions or currents at that order.
Nevertheless, there is no obvious reason, at least not to
us, to expect that axial-current terms originating from

TPE with ∆ intermediate states would give a contribu-
tion of opposite sign relative to that obtained currently,
and so conspire to make the overall N4LO contribution
small and in line with the expected power counting. As
a matter of fact, the convergence is already problematic
in going from N2LO to N3LO (see Table III).

A future application of the interactions and currents
we have developed here will focus on the study of weak
transitions—β decays and electron- and muon-capture
processes—in light nuclei with quantum Monte Carlo
methods [47]. In this context, it is interesting to note
that no-core shell-model calculations of these transitions
in the A= 3–10 mass range [48, 49], based on chiral in-
teractions and currents, find the sign of the overall cor-
rection beyond LO to be opposite to that obtained for
the same systems by Pastore et al. [47]; the exception
is tritium for which both groups find the same sign as
the LO contribution. So, the authors of Ref. [48, 49]
obtain a quenching of the nuclear GT matrix elements
for all these light nuclei but 3H (see also Ref. [50] in
connection with this issue in a calculation of 6He β de-
cay), while those of Ref. [47] always an enhancement.
It is unclear whether this discrepancy arises from the
hybrid nature of the Pastore et al. calculation, which
used phenomenological interactions, but the chiral cur-
rents derived in Refs. [12, 24] (albeit regularized with a
momentum-space cutoff).2 However, one would expect
the sign of the correction beyond LO to be the same in
3H and the other light nuclei, as indeed obtained by Pa-
store et al.. This expectation is based on the fact that,
say, in a charge-raising process, the two-body weak tran-
sition operators primarily convert a pn pair with total
spin-isospin ST = 10 (nn pair with ST = 01) to a pp pair
with ST = 01 (pn pair with ST = 10) [5]. These oper-
ators, at least in light systems, do not couple TTz = 10
to TTz = 11 in a significant way, since P-waves are small
in that case. At small internucleon separations . 1/mπ,
where these transitions operators play a role, the pair
wave functions with ST = 10 and 01 in different nuclei
are similar in shape and differ only by a scale factor [51].
Thus, the sign of these contributions should be the same.

This research is supported by the U.S. Depart-
ment of Energy, Office of Science, Office of Nu-
clear Physics, under award de-sc0010300 (A.B.) and
contracts DE-AC05-06OR23177 (R.S.) and DE-AC02-
06CH11357 (A.L., M.P., S.C.P., and R.B.W.). The work
of A.L., S.P., M.P., S.C.P., and R.B.W. has been further
supported by the NUclear Computational Low-Energy
Initiative (NUCLEI) SciDAC project. Computational re-
sources provided by the National Energy Research Scien-
tific Computing Center (NERSC) and INFN-Pisa Com-
puter Center are gratefully acknowledged.

2 We note that an enhancement was also obtained in a calcula-
tion using phenomenological interactions with two-body axial

currents derived from meson-exchange mechanisms [47].
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Appendix A: Axial currents at N4LO in configuration space

In this appendix we sketch the derivation of the configuration-space expressions for (the local part of) the axial
current at N4LO. For completeness, we include pion-pole contributions,

jN4LO
5,a (q) = jOPE

5,a (q) + jTPE
5,a (q) + jCT

5,a (q)− q

2mπ

1

q2/(4m2
π) + 1/4

[
q

2mπ
· jOPE

5,a (q) + ρTPE
5,a (q) + ρCT

5,a (q)

]
, (A1)

where jOPE
5,a (q), jTPE

5,a (q), and jCT
5,a (q) have been defined earlier, and

ρTPE
5,a (q) = −i eiq·Rij τj,a

[
L

(1)
2 (λij)σj · r̂ij + L

(1)
1 (λij) (2σi · r̂ij − σj · r̂ij)

]
+eiq·ri τj,a

q

2mπ
·
[
F

(0)
1 (λij)σi − F (1)

2 (λij)σi − F (2)
2 (λij) r̂ij σi · r̂ij

]
− eiq·ri τi,a

q

2mπ
·
[
F

(1)
3 (λij)σj + F

(2)
3 (λij) r̂ij σj · r̂ij

]
+ (i
 j) , (A2)

ρCT
5,a (q) = − i eiq·Rij τj,a

[
L

(1)
2 (zij ;∞)σj · r̂ij + L

(1)
1 (zij ;∞) (2σi · r̂ij − σj · r̂ij)

]
+

q

2mπ
·
[
eiq·ri τj,a F

(0)
1 (zij ;∞)σi − eiq·Rij τj,aG

(0)
1 (zij ;∞)σj

]
+ (i
 j) . (A3)

1. Loop functions

We begin with the momentum-space expressions in Ref. [24] and accompanying errata. After carrying out the
parametric integrations, the loop functions read:

1

2mπ
W 1(x) = −1− 5 g2

A

4
x arcc(x) +

1− 2 g2
A

4x
arcs(x) +

g2
A

4

1

1 + x2
, (A4)

2mπW2(x) =
1− g2

A

4

1

x
arcs(x) +

g2
A

4

1

1 + x2
− 1 + 2 g2

A

4x2

[
1

x
arcs(x)− 1

]
, (A5)

2mπW3(x) = − 1

x
arcs(x) , (A6)

1

2mπ
Z1(x) = −x arcc(x) +

1

2x
arcs(x) , (A7)

1

2mπ

Z2(x)

x2 + 1/4

∣∣∣∣
q=0

=
3

x

3x2/4 + 1/8

x2 + 1/4
arcs(x) + 3x

[
x2

x2 + 1/4
arcs(x)− π

2

]
, (A8)

1

2mπ
Z3(x) =

1

4
+
x2 + 1

4x
arcs(x) , (A9)

where we have defined the adimensional variable

x =
k

2mπ
, (A10)

and have introduced the shorthand

arcc(x) = arccos
x√

1 + x2
and arcs(x) = arcsin

x√
1 + x2

. (A11)

The notation Z2(x)|q=0 indicates that this loop function is evaluated in the limit of vanishing momentum transfer q,
while the over-lines on W1(x), Z1(x), and Z2(x)/(x2 + 1/4) indicate that we have isolated a linear polynomial in x in
the limit x→∞ in these loop functions, that is

W 1(x) = W1(x)−W∞1 (x) , (A12)

and similarly for Z1(x) and Z2(x)/(x2 + 1/4), where the asymptotic polynomials read

1

2mπ
W∞1 (x) =

1− 9 g2
A

4
+ π

1− 5 g2
A

8
x , (A13)
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1

2mπ
Z∞1 (x) = 1 +

π

2
x , (A14)

1

2mπ

Z2(x)

x2 + 1/4

∣∣∣∣∞
q=0

= 3 +
3π

2
x . (A15)

2. Fourier transforms

In order to obtain configuration-space expressions for the N4LO axial current, we need the following Fourier trans-
forms of the loop functions (with the asymptotic polynomials subtracted out as in the previous subsection)

Fi(r) =

∫
dk

(2π)3
e−ik·rWi(k) , Gi(r) =

∫
dk

(2π)3
e−ik·r Zi(k) , Hi(r) =

∫
dk

(2π)3
e−ik·r

Zi(k)

k2 +m2
π

,(A16)

which can be generically expressed as∫
dk

(2π)3
e−ik·r f(k) =

(2mπ)3

2π2

1

λ

∫ ∞
0

dxx sin(xλ) f(x) , λ = 2mπ r . (A17)

We carry out the integrals above by utilizing contour integration in the complex plane. We illustrate the procedure
by considering

F3(λ) =
(2mπ)3

2π2

1

λ

∫ ∞
0

dxx sin(xλ)W3(x) = − (2mπ)2

2π2

1

λ
I(λ) , (A18)

where

I(λ) =

∫ ∞
0

dx sin(xλ) arcsin
x√

1 + x2
. (A19)

While this integral can be done by more elementary methods, the contour-integration technique is useful for dealing
with the more complicated transforms needed above. By making use of the identity arccosα = π/2 − arcsinα, we
write

I(λ) =
1

2

∫ ∞
−∞

dx sin(xλ) arcsin
x√

1 + x2
= −1

2
Im

∫ ∞
−∞

dx ei xλ arccos
x√

1 + x2
, (A20)

and are then led to consider the function of the complex variable η

f(η) =
i

2
ln
η − i
η + i

ei ηλπ ≡ g(η) ei ηλπ , (A21)

where we have used the relation

arccos η = −i ln
(
η + i

√
1− η2

)
. (A22)

FIG. 3. Integration contour.
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The function f(η) has branch points at η = ± i, but is otherwise analytic. The upper cut is taken from i to +i∞
(along the positive imaginary axis), while the lower one from −i to −i∞ (along the negative imaginary axis). We
consider the closed contour C as in Fig. 3, so that∮

C

dη f(η) = 0 . (A23)

Before evaluating the integral above, we need to consider the value of f(η) to the right and left of the cut running
along the positive imaginary axis. To this end, we define

η − i = r+ ei θ+ with − 3π

2
≤ θ+ ≤

π

2
, η + i = r− ei θ− with − π

2
≤ θ− ≤

3π

2
, (A24)

the restrictions on θ± ensuring that the cuts are not crossed. Therefore for a given η, we have

g(η) =
i

2
ln
r+

r−
− θ+ − θ−

2
, (A25)

and the difference along the upper cut (corresponding to η = i y with y > 0) is given by

g(η)|left of cut − g(η)|right of cut = π . (A26)

The big arcs of radius R, and the small circle of radius r around the brach point + i give vanishing contributions as,
respectively, R→∞ and r → 0. Therefore, on the segments left and right of the upper cut, we find∫

left of cut

dη f(η)−
∫

right of cut

dη f(η) = π

∫ i∞

i

dη ei ηλ = i π
e−λ

λ
, (A27)

and from Eq. (A23) we obtain∫ ∞
−∞

dx ei xλ arccos
x√

1 + x2
+ i π

e−λ

λ
= 0 or I(λ) =

π

2

e−λ

λ
. (A28)

By employing the integration technique above (in some instances, in addition to branch points simple poles also
occur), we find the following expressions:

1

(2mπ)4
F1(λ) =

1

16π

[ (
1− 2 g2

A

) 1

λ
−
(
1− 5 g2

A

)( 2

λ3
+

2

λ2
+

1

λ
− 2

λ3
eλ
)

+ g2
A

]
e−λ

λ
, (A29)

1

(2mπ)2
F2(λ) =

1

16π

[ (
1− g2

A

) e−λ

λ2
+ g2

A

e−λ

λ
+
(
1 + 2 g2

A

)
Γ(−1, λ)

]
, (A30)

1

(2mπ)2
F3(λ) = − 1

4π

e−λ

λ2
, (A31)

1

(2mπ)4
G1(λ) = − 1

2π

(
1

λ2
+

1

λ
+

1

4
− eλ

λ2

)
e−λ

λ2
, (A32)

1

(2mπ)4
G3(λ) = − 1

8π

(
1

λ
+ 1− eλ

λ

)
e−λ

λ3
, (A33)

1

(2mπ)2
H1(λ) =

1

4π

[(
1 +

ln 3

4

)
e−λ/2

λ
+

e−λ

λ2
− 1

4

∫ ∞
λ

dt e−t
1

t2 − λ2/4

]
, (A34)

1

(2mπ)4
H2(λ) = − 9

16π

[
ln 3

12

e−λ/2

λ
− e−λ

λ2
+

1

12

∫ ∞
λ

dt e−t
1

t2 − λ2/4
+

4

3λ

d2

dλ2
M(λ)

]
, (A35)

1

(2mπ)2
H3(λ) =

1

16π

[(
1 +

3 ln 3

4

)
e−λ/2

λ
+

e−λ

λ2
− 3

4

∫ ∞
λ

dt e−t
1

t2 − λ2/4

]
, (A36)

where we have introduced the incomplete gamma function Γ(α, x),

Γ(α, x) =

∫ ∞
x

dt tα−1 e−t , (A37)



13

and have defined

M(λ) =
e−λ

λ
− 1

λ
− ln 3

4
e−λ/2 +

λ

4

∫ ∞
λ

dt e−t
1

t2 − λ2/4
, (A38)

which enters H2(λ). The left-over integrals and their derivatives relative to λ can be expressed in terms of incomplete
gamma functions via the identities∫ ∞

λ

dt e−t
1

t2 − λ2/4
=

e−λ/2

λ
Γ(0, λ/2)− eλ/2

λ
Γ(0, 3λ/2) , (A39)

d

dλ

∫ ∞
λ

dt e−t
1

t2 − λ2/4
= −

(
1 +

λ

2

)
e−λ/2

λ2
Γ(0, λ/2) +

(
1− λ

2

)
eλ/2

λ2
Γ(0, 3λ/2) , (A40)

d2

dλ2

∫ ∞
λ

dt e−t
1

t2 − λ2/4
=

(
2 + λ+

λ2

4

)
e−λ/2

λ3
Γ(0, λ/2)−

(
2− λ+

λ2

4

)
eλ/2

λ3
Γ(0, 3λ/2) +

eλ

λ2
. (A41)

3. Correlation functions

From the Fourier transforms above, the correlation functions entering the N4LO axial current listed in Sec. V are
obtained as

F
(0)
1 (λ) =

g3
A

64π

1

f4
π

F1(λ)

=
g3
A

1024π2

(2mπ)4

f4
π

[ (
1− 2 g2

A

)
λ2
π −

(
1− 5 g2

A

) (
2 + 2λ+ λ2 − 2 eλ

)
+ g2

A λ
3
] e−λ

λ4
, (A42)

F
(1)
2 (λ) =

g3
A

64π

(2mπ)2

f4
π

1

λ

d

dλ
F2(λ)

= − g3
A

1024π2

(2mπ)4

f4
π

[ (
1− g2

A

)
(2 + λ) + g2

A

(
λ+ λ2

)
+
(
1 + 2 g2

A

)
λ
] e−λ

λ4
, (A43)

F
(2)
2 (λ) =

g3
A

64π

(2mπ)2

f4
π

[
d2

dλ2
F2(λ)− 1

λ

d

dλ
F2(λ)

]
=

g3
A

1024π2

(2mπ)4

f4
π

[ (
1− g2

A

) (
8 + 5λ+ λ2

)
+ g2

A

(
3λ+ 3λ2 + λ3

)
+
(
1 + 2 g2

A

) (
3λ+ λ2

) ] e−λ

λ4
,(A44)

F
(1)
3 (λ) = − g5

A

64π

(2mπ)2

f4
π

[
d2

dλ2
F3(λ) +

1

λ

d

dλ
F3(λ)

]
=

g5
A

256π2

(2mπ)4

f4
π

(
4 + 3λ+ λ2

) e−λ

λ4
, (A45)

F
(2)
3 (λ) =

g5
A

64π

(2mπ)2

f4
π

[
d2

dλ2
F3(λ)− 1

λ

d

dλ
F3(λ)

]
= − g5

A

256π2

(2mπ)4

f4
π

(
8 + 5λ+ λ2

) e−λ

λ4
, (A46)

G
(0)
1 (λ) =

g3
A

64π

1

f4
π

G1(λ) = − g3
A

128π2

(2mπ)4

f4
π

(
1 + λ+

λ2

4
− eλ

)
e−λ

λ4
, (A47)

H
(1)
1 (λ) =

g3
A

32π

(2mπ)2

f4
π

1

λ

d

dλ
H1(λ)

=
g3
A

128π2

(2mπ)4

f4
π

[
−
(

1 +
ln 3

4

)(
λ+

λ2

2

)
eλ/2 − (2 + λ) +

1

4

(
λ+

λ2

2

)
Γ̃(0, λ/2)

−1

4

(
λ− λ2

2

)
Γ̃(0, 3λ/2)

]
e−λ

λ4
, (A48)

H
(2)
1 (λ) =

g3
A

32π

(2mπ)2

f4
π

[
d2

dλ2
H1(λ)− 1

λ

d

dλ
H1(λ)

]
=

g3
A

128π2

(2mπ)4

f4
π

[(
1 +

ln 3

4

)(
3λ+

3λ2

2
+
λ3

4

)
eλ/2 +

(
8 + 5λ+

3λ2

4

)
−1

4

(
3λ+

3λ2

2
+
λ3

4

)
Γ̃(0, λ/2) +

1

4

(
3λ− 3λ2

2
+
λ3

4

)
Γ̃(0, 3λ/2)

]
e−λ

λ4
, (A49)
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H
(1)
3 (λ) =

g3
A

32π

(2mπ)2

f4
π

1

λ

d

dλ
H3(λ)

=
g3
A

512π2

(2mπ)4

f4
π

[
−
(

1 +
3 ln 3

4

)(
λ+

λ2

2

)
eλ/2 − (2 + λ) +

3

4

(
λ+

λ2

2

)
Γ̃(0, λ/2)

−3

4

(
λ− λ2

2

)
Γ̃(0, 3λ/2)

]
e−λ

λ4
, (A50)

H
(2)
3 (λ) =

g3
A

32π

(2mπ)2

f4
π

[
d2

dλ2
H3(λ)− 1

λ

d

dλ
H3(λ)

]
=

g3
A

512π2

(2mπ)4

f4
π

[(
1 +

3 ln 3

4

)(
3λ+

3λ2

2
+
λ3

4

)
eλ/2 +

(
8 + 5λ+

λ2

4

)
−3

4

(
3λ+

3λ2

2
+
λ3

4

)
Γ̃(0, λ/2) +

3

4

(
3λ− 3λ2

2
+
λ3

4

)
Γ̃(0, 3λ/2)

]
e−λ

λ4
, (A51)

L
(1)
1 (λ) =

g3
A

128π

1

f4
π

d

dλ
G1(λ) =

g3
A

256π2

(2mπ)4

f4
π

(
4 + 4λ+

3λ2

2
+
λ3

4
− 4 eλ

)
e−λ

λ5
, (A52)

L
(1)
2 (λ) =

g3
A

128π

1

f4
π

d

dλ
H2(λ)

=
g3
A

512π2

(2mπ)4

f4
π

[
24 + 24λ+ 9λ2 +

3λ3

2
− 24 eλ

+
3

8
λ3

(
1 +

λ

2

)
Γ̃(0, λ/2)− 3

8
λ3

(
1− λ

2

)
Γ̃(0, 3λ/2)

]
e−λ

λ5
, (A53)

where we have defined

Γ̃(α, x) = ex
∫ ∞
x

dt tα−1 e−t , (A54)

and Γ̃(α, x) is computed numerically. The correlation functions above are regularized via

X
(n)
i (2mπr) −→ CRL

(r)X
(n)
i (2mπr) (A55)

where X stands for F,G,H, and L.

4. Contact contributions

Asymptotic polynomials only occur in the loop functions W1(k), Z1(k), and Z2(k)/(k2 +m2
π) (see above), and lead

to contact contributions, which we regularize with the Gaussian cutoff [22, 28]

CRS(k) = e−R
2
S k

2/4 . (A56)

We obtain

F
(0)
1 (z;∞) =

g3
A

128π3

m4
π

f4
π

1

(mπRS)
3

[
1− 9 g2

A

2
C(0)(z) +

1− 5 g2
A

8

π

mπRS
C(1)(z)

]
, (A57)

G
(0)
1 (z;∞) =

g3
A

128π3

m4
π

f4
π

1

(mπRS)
3

[
2C(0)(z) +

π

2mπRS
C(1)(z)

]
, (A58)

L
(1)
1 (z;∞) =

g3
A

512π3

m4
π

f4
π

1

(mπRS)
4

[
2
d

dz
C(0)(z) +

π

2mπRS

d

dz
C(1)(z)

]
, (A59)

L
(1)
2 (z;∞) =

g3
A

512π3

m4
π

f4
π

1

(mπRS)
4

[
6
d

dz
C(0)(z) +

3π

2mπRS

d

dz
C(1)(z)

]
, (A60)

where

C(0)(z) = 2
√
π e−z

2

, (A61)
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d

dz
C(0)(z) = −4

√
π z e−z

2

, (A62)

C(1)(z) =

∫ ∞
0

dxx3 j0(xz) e−x
2/4 , (A63)

d

dz
C(1)(z) = −

∫ ∞
0

dxx4 j1(xz) e−x
2/4 , (A64)

and z = r/RS.

5. Difference between Baroni al. and Krebs et al.

For clarity, we report below the momentum-space expressions for the difference between the two derivations, denoted
as TOPT [24] and UT [27] (in the limit of vanishing momentum transfer),

∆ jN4LO
5,a (k; OPE) = − 7 g5

A

256π

mπ

f4
π

[τj,a k− (τi × τj)a σi × k]
σj · k
k2 +m2

π

+ (i
 j) , (A65)

∆ jN4LO
5,a (k; TPE) = − g5

A

128π f4
π

τj,a

[
F̃ (k)σi + G̃(k)kσi · k

]
+ (i
 j) , (A66)

where k ≡ kj = −ki, and the loop functions are given by

F̃ (k) = mπ
6 k2 + 20m2

π

k2 + 4m2
π

, (A67)

G̃(k) =
4 k2 + 16m2

π

2 k3
arctan

(
k

2mπ

)
− 2mπ

k2

3 k2 + 8m2
π

k2 + 4m2
π

. (A68)

We isolate the asymptotic constant in F̃ (k) as

F (k) = F̃ (k)− F̃∞ , F (k) = − 4m3
π

k2 + 4m2
π

, F̃∞ = 6mπ . (A69)

The Fourier transforms read

F̃ (λ) =

∫
k

e−ik·r F (k) = − (2mπ)4

8π

e−λ

λ
, (A70)

G̃(λ) =

∫
k

e−ik·r G̃(k) =
(2mπ)2

2π

[
e−λ

(
1

λ2
− 1

2λ

)
− Γ(−1, λ)

]
, (A71)

and the corresponding correlation functions are obtained as

F̃ (0)(λ) =
g5
A

128π f4
π

F (λ) = − g5
A

1024π2

(2mπ)4

f4
π

e−λ

λ
, (A72)

G̃(1)(λ) =
g5
A

128π

(2mπ)2

f4
π

1

λ

d

dλ
G̃(λ) = − g5

A

256π2

(2mπ)4

f4
π

(
2− λ

2
− λ2

2

)
e−λ

λ4
, (A73)

G̃(2)(λ) =
g5
A

128π

(2mπ)2

f4
π

[
d2

dλ2
G̃(λ)− 1

λ

d

dλ
G̃(λ)

]
=

g5
A

256π2

(2mπ)4

f4
π

(
8 +

λ

2
− 3λ2

2
− λ3

2

)
e−λ

λ4
. (A74)

We write the contact contributions from the OPE and TPE terms above as

∆ jN4LO
5,a (k; CT)=

7 g5
A

512π

mπ

f4
π

(τi × τj)a σi × σj −
[

g5
A

128π f4
π

F̃∞ τj,a σi + (i
 j)

]
, (A75)

and define the correlation functions in Eq. (5.11) as

Ĩ(0)(z;∞) =
7 g5

A

1024π3

m4
π

f4
π

1

(mπRS)
3 C

(0)(z) , (A76)

F̃ (0)(z;∞) =
3 g5

A

128π3

m4
π

f4
π

1

(mπRS)
3 C

(0)(z) . (A77)
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