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Abstract. We present a three-dimensional (3D) description of muon induced deuteron

disintegration. This reaction is treated as the decay of the muonic atom with the muon

initially on the lowest K shell. Our aim is to calculate the total and differential de-

cay rates. We work in momentum space and use 3D momentum eigenstates directly.

This approach allowed us to calculate the appropriate nuclear matrix elements, necessary

building blocks for the differential decay rate, in a single step. For contrast - in classi-

cal calculations many partial-waves have to be taken into account. We achieved a very

good agreement between the 3D and partial-wave methods for calculations that involve

single-nucleon currents. Our result for the total decay rate is also in agreement with ex-

perimental values, though these are not very precise. This success motivates us to also

include two-nucleon current contributions that include the meson exchange currents. Ad-

ditionally, our formalism can also be applied to other, so far poorly described, processes

like: μ +3 He → ν + n + d or μ +3 He → ν + n + n + p.

1 Introduction

Muon induced deuteron disintegration is presented in a 3D formalism, that instead of partial wave

decomposition of operators involved in the calculations, uses the 3D momentum eigenstates of the

nucleon directly. This formalism was successfully applied to transition operator calculations in [1]

and to the description of electron induced deuteron disintegration in [2]. This short paper aims at

show the advantages of this method by underlining the direct approach that it makes possible.

2 Formal ingredients

The kinematic situation is presented in Figure 1. Initially the muon is captured by the deuteron nucleus

temporarily creating a muonic atom with the muon on the lowest K shell. In the final state the atom

disintegrates into two neutrons and a muonic neutrino. The calculation outlined below aims to arrive

at the decay rate of the muonic atom, a more complete description can be found in [3].

The reaction is described using the Fermi approximation (for example [4]) and we consider the

case with the muon spin coupled to the deuteron angular momentum to form a hyperfine doublet
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Figure 1: Diagrammatic representation and kinematics for the μ + d → νμ + n + n reaction. This

process is treated as the decay of the muonic atom, with the muon on the K shell.

f = 1/2 and quadruplet f = 3/2, separately. The differential decay rate is governed by the weak

transition operator Tw ∝ LλJλ where:

Lλ =
1

(2π)3
ū(pν, sν)γλ(1 − γ5)u(pμ, sμ) (1)

is the leptonic part and

Jλ =
1

(2π)3 A
〈p P = −pν | (1 + tG0) jλ | Φdeuteron〉 ≡ 1

(2π)3
Mλ (2)

is the hadronic part. In eq. (1) pμ, pν are the momenta of the incoming muon (with spin sν) and
outgoing neutrino (with spin sμ) and u, γλ are Dirac spinors and matrices, respectively. In eq. (2)

| Φdeuteron〉 is the deuteron wave function and A〈p P = −pν | is the final anti-symmetrized two nucleon

state with the relative momentum of the two neutrons p and total momentum P = −pν. Finally j is
the weak current operator, t is the two nucleon (2N) transition operator and G0 is the free propagator.

The crucial matrix elements:

Mλ =A 〈p P | (1 + tG0) jλ | Φd〉 =A 〈p P | jλ | Φd〉 +A 〈p P | tG0 jλ | Φd〉 (3)

introduced in eq. (2) are a sum of the plane wave and scattering parts. Both contributions can be

calculated using the same formalism as was developed in [2] for deuteron electro-disintegration.

Calculation of both the plane wave and scattering parts in (3) require the knowledge of the weak

current jλ. In the present case we limit our selves to single nucleon currents, they are derived using a

standard approach from the non relativistic expansion of:

〈p′ | jμ(1) | p〉 = ū(p′, s′)
( (
gV
1 − 2mgV

2

)
γμ + gV

2

(
p + p′

)μ
+ gA

1γ
μγ5 + gA

2

(
p − p′

)μ γ5
)
τ−u(p, s′) (4)

Where m is the nucleon mass and τ− is the isospin lowering operator. For the results presented in the

next section we chose the form factors gV
1
, gA

1 , g
V
2
, gA

2 in (4) to agree with [5].

The scattering part in (3) includes the transition operator t which can be calculated using 3D meth-

ods described for example in [1]. The calculation scheme presented there allows for the incorporation

of a very general form of the 2N potential. In the results presented below we used the Bonn B potential

from [6].
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3 Results

The previous section contains only an outline of the calculation, details are presented in [3]. Here we

will demonstrate the final results compared with the classical partial wave approach. Results for the

total decay rates for the hyperfine doublet and quadruplet ( f = 1/2, 3/2) cases calculated using the

plane wave part only are compared to the full result:

Γ
f= 1

2

plane−wave = 363.511[1/s] Γ
f= 1

2

full
= 396.118[1/s]

Γ
f= 3

2

plane−wave = 10.425[1/s] Γ
f= 3

2

full
= 12.231[1/s]

The scattering contribution to the total decay rate is clearly visible and amounts to about 8% of the

full rate. Additionally it can be seen that the quadruplet capture rate is significantly smaller then the

doublet rate.
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