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Dipartimento di Fisica “Enrico Fermi”, Università di Pisa, Largo B.Pontecorvo 3, I-56127 Pisa, Italy

IPCF-CNR, UOS Pisa, Italy

Abstract

We perform thorough molecular-dynamics simulations to compare elasticity and yielding of atomic crystals and model

semicrystalline polymers, the latter characterized by very similar positional ordering with respect to atomic crystals

and considerable bond disorder. We find that the elastic modulus G, the shear yield strength, τY , and the critical yield

strain ǫc of semicrystalline polymers are higher than ( G, τY ), or comparable to (ǫc), the corresponding ones of atomic

crystals. The findings suggest that the bond disorder suppresses dislocation-mediated plasticity in polymeric solids

with positional order.

keywords: Molecular-dynamics simulations, elasticity,

plasticity, semicrystalline polymers

1. Introduction

Elasticity theories [1–4] predict that solid materi-

als respond linearly with elastic modulus G to small

shear deformations. Upon increasing strain, amorphous

solids show complex and far from linear behavior [5–7].

When a critical yield strain ǫc is reached, correspond-

ing to the shear yield strength τY , the transition from

the (reversible) elastic state to the (irreversible) plastic

state takes place [8–10]. In an ideal elasto-plastic body

(Hooke-St.Venant) τY is the maximum stress [8].

It is well-known that plasticity in crystalline solids re-

sults from the structure and the mobility of defects (in

particular dislocations) [11]. Dislocations do not exist

in amorphous polymers, but, under an applied stress, el-

ementary shear displacements can occur in a spatially

correlated linear domain which can close on itself to

form a loop to be interpreted in terms of classical dis-

location mechanics and energetics [8, 12–14]. How-

ever, even if the model can be used to fit the exper-

imental data, there are conceptual problems to extend
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dislocation based concepts to glassy polymers [15, 16].

That difficulty is part of the complexities involved in the

phenomenon of plastic deformation in glassy polymers

which is not yet fully understood, in spite of many ac-

curate phenomenological models, see e.g. refs. [8, 15]

for comprehensive reviews. In particular, Argon consid-

ered a scenario where individual chains are embedded

in an elastic continuum [15]. He argued that plastic de-

formation is caused by the cooperative rearrangements

of a cluster of segments with size Ωf . The latter re-

gion is thermally activated under the applied stress to

overcome the resistance that is generated from elastic

interaction of the polymer chain with its surroundings.

Ωf is significantly smaller than the activation volume

of dislocations [8, 15]. The concept of localized coop-

erative rearrangements was proven to be fruitful also to

account for the plasticity of non-polymeric glasses [15].

It was found that Ωf is much smaller in amorphous met-

als with respect to glassy polymers. In comparison with

the plasticity of crystalline solids, where the long-range

positional order permits the translation of dislocations,

the plasticity of disordered solids is mainly driven by

the activation of cooperative rearrangements within the

cluster of segments [15, 17].

The previous discussion highlights that there are

strong differences in the microscopic mechanisms of
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plasticity of atomic crystals and polymeric glasses.

These two classes of materials differ in two rather dis-

tinct aspects, namely the connectivity and the positional

ordering. Since these two features cannot be thought of

as mutually independent and may exhibit antagonism,

singling out the role of each of them is of interest. As

a first step along this direction, the present paper aims

at elucidating the role of connectivity into the linear and

non-linear deformation of solids with different connec-

tivity and rather similar positional order. Influence of

connectivity outside the elastic limit has been recently

reviewed [18]. Our study considers atomic crystals and

polymer semicrystals, the latter with very similar po-

sitional ordering and considerable bond disorder to av-

erage out the coupling between connectivity and posi-

tional order [19, 20]. We find that the elastic modulus

G, the shear yield strength, τY , and the critical yield

strain ǫc of polymeric semicrystals are higher than ( G,

τY ), or comparable to (ǫc), the corresponding ones of

atomic crystals. The results show that the introduction

of disordered connectivity perturbs the long-range or-

der, most presumably suppressing dislocation-mediated

plasticity, and then increases the shear strength. In this

sense, if positional order is present, atomic and poly-

meric plasticity appear to be not reconcilable. It is worth

noting that that the previous conclusion does not hold

for glassy systems where, e.g., the plasticity of poly-

meric and atomic glasses with different connectivity ex-

hibits similarities [21].

2. Methods

Molecular-dynamics (MD) numerical simulations

were carried out on two different systems, i.e. a melt

of linear polymers and an atomic liquid.

As to the polymer systems, a coarse-grained polymer

model of Nc = 50 linear, fully-flexible, unentangled

chains with M = 10 monomers per chain is considered

[19]. The total number of monomers is N = 500. Non-

bonded monomers at distance r belonging to the same

or different chain interact via the truncated Lennard-

Jones (LJ) potential:

ULJ(r) = ε

[

(

σ∗

r

)12

− 2

(

σ∗

r

)6
]

+ Ucut (1)

σ∗ = 21/6σ is the position of the potential minimum

with depth ε. The value of the constant Ucut is chosen

to ensure ULJ(r) = 0 at r ≥ rc = 2.5 σ. The bonded

monomers interaction is described by an harmonic po-

tential U b:

U b(r) = k(r − r0)
2 (2)

The parameters k and r0 have been set to 2500 ε/σ2 and

0.97 σ respectively [22]. Full-flexibility of the chain is

ensured by the missing bending stiffness between adja-

cent bonds [20]. It must be pointed out that the bond

length ≃ 0.97 σ prevents the significant heterogeneity

of the monomer arrangements which is seen with longer

bond length, see Fig.6a of ref. [20].

As to the atomic systems we consider systems of

N = 500 atoms interacting with the truncated Lennard-

Jones potential as in Eq. 1.

From this point on, all quantities are expressed in

term of reduced units: lengths in units of σ, temper-

atures in units of ε/kB (with kB the Boltzmann con-

stant) and time tMD in units of σ
√

m/ε where m is the

monomer mass. We set m = kB = 1. Periodic bound-

ary conditions are used. The study was performed in

the NPT ensemble (constant number of particles, pres-

sure and temperature). The integration time step is set

to ∆t = 0.003 time units [23–26] The simulations were

carried out using LAMMPS molecular dynamics soft-

ware (http://lammps.sandia.gov) [27].

Fifty-six polymeric samples with initial different ran-

dom monomer positions and velocities are equilibrated

at temperature T = 0.7 and pressure P = 4.7, cor-

responding to number density ρ ∼ 1. That thermo-

dynamic states allows the polymer melt to equilibrate

in the liquid phase for at least three times the average

reorientation time of the end-end vector of the chain.

After the equilibration, production runs started and pro-

ceeded up to the spontaneous onset and the full devel-

opment of the crystallization of the samples. Fourteen

runs failed to crystallize in a reasonable amount of time,

while forty-two of them underwent crystallization form-

ing polymorph crystals with distorted body-centered cu-

bic (Bcc) lattices. Additional details, in particular con-

cerning the crystallization process, are given elsewhere

[19]. Sixty-four atomic liquid runs were equilibrated

with starting temperature T = 1.5 and pressure P =
20.0. The temperature is higher in the atomic systems

to avoid crystallization before the initial equilibration of

the liquid phase, as the absence of polymer bonds facil-

itates the transition to the solid phase. The pressure en-

sures similar densities in the polymeric and atomic liq-

uids. After equilibration for several relaxation times τα
in the liquid phase, fifty-one runs spontaneously crys-

tallized into two well defined classes. Seventeen runs

formed solids quite close to face-centered cubic (Fcc)

crystals and thirty-four runs formed Bcc-like atomic

crystals. See sec. 3 for a detailed discussion. The re-

maining thirteen runs reached a variety of metastable

solid-like conformations and were discarded.

After completion of the solidification, all the systems
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Figure 1: Typical stress-strain curve under athermal quasi-static shear

deformation of the semicrystalline polymer. After a first ’loading’

phase, plastic events with macroscopic stress drops become apparent.

τY is defined as the average value of τ in the steady state phase [28].

ǫc is defined as the strain at the first significant plastic event with stress

drop of at least ∆τth = 0.1. The elastic modulus G (see inset) is

measured via a linear fit of the stress-strain curve in the linear regime

of small deformations 2ǫ < 0.02.

were quenched to temperature T = 10−3 and pressure

P = 0 in a time ∆t = 0.003 and, in agreement with

others [29], later allowed to relax with an NPT run to

let the total energy stabilize. The latter run lasted for a

total time t̄ = 3000. The final densities of the polymeric

and atomic Bcc-like solids are ≃ 1.11 and ≃ 1.052, re-

spectively. The density offset is due to the different con-

nectivity, having both solids the same pressure ( P = 0)

and temperature ( T = 0 ).

Simple shear deformations of the resulting athermal

solids were performed via the Athermal Quasi-Static

(AQS) protocol outlined in ref. [29]. An infinitesimal

strain increment ∆ε = 10−5 is applied to a simulation

box of side L containing the sample, after which the sys-

tem is allowed to relax in the nearest local energy min-

imum with a steepest descent minimization algorithm.

The accurate localization of the state corresponding to

a local energy minimum ensures force equilibration on

each particle, i.e. mechanical equilibration. The proce-

dure is repeated until a total strain of ∆εtot = 15 · 10−2

is reached. Simple shear is performed independently in

the planes (xy, xz, yz), and at each strain step in the

plane αβ the corresponding component of the macro-

scopic stress tensor τα,β is taken as the average value of

the per-monomer stress τ iα,β :

τα,β =
1

N

N
∑

i=1

τ iα,β (3)

In an athermal system the expression of the per-

monomer stress in the atomic representation is [30]:

τ iα,β =
1

2 v

∑

j 6=i

rαijFβij (4)

where Fγkl and rγkl are the γ components of the force

between the kth and the lth monomer and their sepa-

ration, respectively, and v is the average per-monomer

volume, i.e. v = L3/N . For each plane a stress-strain

curve is collected, an illustrative example of which is

given in Fig.1.

Fig.1 is quite analogous to what reported for many

other systems under athermal conditions [31–36] with

an initial linear increase followed by increasing bending

and onset of the plastic regime. In particular, similarly

to other MD studies of glassy polymers [37], one no-

tices that, in the plastic regime, the stress levels off to

a plateau with fluctuations caused by subsequent load-

ing phases and sudden stress drops. We point out that

the initial non-zero stress in the unstrained solid seen in

Fig.1 is a well-known phenomenon usually ascribed to

the limited size of the simulation cell [38].

We measured the shear elastic modulusG as the slope

of the stress-strain curve in the linear regime, within

a strain threshold of εth = 0.01, where the relation

τ = 2ǫ·G holds, see Fig.1 (inset). Following Ref. [28],

the yield stress τY is taken as the average value of the

stress after the first significant plastic event, defined as

the first stress drop of at least ∆τth = 0.1 occurring at

the critical strain ǫc, see Fig.1. This choice is consistent

with other definitions in the presence [10], or not [9],

of strain softening, i.e. the reduction in stress following

yield. The results are robust with respect to changes of

∆τth.

3. Results and discussion

3.1. Solidification of the polymeric and the atomic liq-

uids

Fig.2 plots typical runs during which solidification of

the polymeric (top) and atomic (bottom) systems takes

place. A single run is reported for each system under

consideration. The crystallization is evidenced by the

sudden increase of the density. Note that in the atomic

liquids the size of the jump depends on the final crys-

talline state, as expected owing to the better packing of

the Fcc lattice with respect to the Bcc one. The de-

tailed characterization of the polymorphic structure of

the polymer solid is reported elsewhere [19]. Notice that

the jump is smaller for polymers (∼ 3.3%) than atomic

liquids (& 4.5%) even if the polymer melt has lower

density. The finding agrees with the expectation that
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Figure 2: Time dependence of the density of the systems under study.

The selected lapses of time show the typical, abrupt jumps for the

polymer melt (top, T = 0.7, P = 4.7) and the atomic liquid (bottom,

T = 1.5, P = 20.0) signaling the spontaneous crystallization of

liquid phases with very similar densities under isobaric, isothermal

conditions. See text for details. Running averages were performed on

the data to smoothen the noise.

high packing density is incompatible with connected

structures [18, 39].

3.2. Pre-shear structure of the athermal solids

We now characterize the structure of the athermal

solids before the shear deformation takes place.

To this aim, we compute the order parameters de-

fined by Steinhardt et al. [40]. One considers the polar

and azimuthal angles θ(rij) and φ(rij) of the vector rij
joining the i-th central monomer with the j-th one be-

longing to the neighbors within a preset cutoff distance

rcut = 1.2 σ∗ ≃ 1.35 [40]. rcut is a convenient defi-

nition of the first coordination shell size [41]. To define

a global measure of the order in the system, one then

introduces the quantity:

Q̄glob
lm =

1

Nb

N
∑

i=1

nb(i)
∑

j=1

Ylm [θ(rij), φ(rij)] (5)

where nb(i) is the number of bonds of i-th particle, N
is the total number of particles in the system, Ylm de-

notes a spherical harmonic and Nb is the total number

of bonds:

Nb =
N
∑

i=1

nb(i) (6)

The global orientational order parameter Qglob
l is de-
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Q
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 atomic
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 atomic

Fcc-like
 atomic

Bcc
(ex)

Bcc
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Figure 3: Cross correlation Qloc
l

vs Q
glob

l
with l = 6 (top) and

l = 4 (bottom) of all the athermal solids under study, i.e. 42 polymer

samples (blue dots) and 51 atomic samples (magenta and green dots).

The dashed line is the bisector Qloc
l

= Q
glob

l
corresponding to ideal

order. The pairs (Qloc
l

, Q
glob

l
) with l = 4, 6 of the ideal Fcc and Bcc

lattices (red and black diamonds) and the Bcc excited crystal (black

dot) are also plotted. See text for details. The large size of the region

enclosing the (Qloc
l

, Q
glob

l
) pairs for the polymer solid is ascribed to

significant polymorphism [19].

fined by:

Qglob
l =

[

4π

(2l + 1)

l
∑

m=−l

|Q̄glob
lm |2

]1/2

(7)

The above quantity is invariant under rotations of the

coordinate system and takes characteristic values which

can be used to quantify the kind and the degree of ro-

tational symmetry in the system [40]. In the absence of

large-scale order, the bond orientation is uniformly dis-

tributed around the unit sphere and Qglob
l is rather small

[42]. On the other hand, Qglob
6 is very sensitive to any

kind of crystallization and increases significantly when

order appears [43]. A local orientational parameterQloc
l

can also be defined. We define the auxiliary quantity

Q̄loc
lm(i) =

1

nb(i)

nb(i)
∑

j=1

Ylm [θ(rij), φ(rij)] (8)

The local order parameter Qloc
l is defined as [40]:

Qloc
l =

1

N

N
∑

i=1

[

4π

(2l + 1)

l
∑

m=−l

|Q̄loc
lm(i)|2

]1/2

(9)
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Figure 4: Angular distribution function (ADF) of the first (top) and

the second (bottom) shells of all the athermal polymeric solids under

study.

In general Qloc
l ≥ Qglob

l . In the presence of ideal order,

all the particles have the same neighborhood configura-

tion, and the equality Qloc
l = Qglob

l follows.

Cross correlations between Qloc
l and Qglob

l with l =
4, 6 proved to be rather useful to characterize the or-

der of the solid phases [19]. Fig.3 plots the cross-

correlations for l = 6 (top) and l = 4 (bottom) for all

the solids under study. To increase the readability, the

plots also present the pairs (Qloc
l , Qglob

l ) with l = 4, 6
corresponding to the ideal Bcc and Fcc atomic lattices.

In addition, since the Bcc lattice is known to be less sta-

ble then the Fcc one [19, 44, 45], the pairs (Qloc
l , Qglob

l )
with l = 4, 6 of a Bcc excited crystal are also presented.

The latter is obtained by heating the ideal Bcc crystal

to temperature T = 0.7 with P ≃ 6.5 and, after short

equilibration, quenching it at T = 10−3, P = 0. The

structure of the artificial excited atomic crystal, hence-

forth to be referred to as Bcc(ex), was found to be nearly

the same between 0.7 ≤ T ≤ 1.2. The rationale be-

hind the consideration of the Bcc(ex) crystal is that the

lack of stability of the ideal Bcc structure leads to sig-

nificant deformations of the ordered structure obtained

after the spontaneous crystallization [19]. In this re-

spect, it seems more proper to compare our athermal

solids with the athermal Bcc(ex) solid rather than to the

ideal Bcc one. The excitation of the Bcc lattice has

been performed by using 8 different statistical config-

urations changing the velocities assigned to the parti-

cles to detect the possible presence of statistical dif-

ferences between the runs. Such differences were not

0
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10
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F(
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sα

)

Bcc-like atomic
Bcc

(ex)

Bcc

Fcc-like atomic
Fcc

-1 -0.5 0 0.5 1
cosα

0

1

2

3

4

A
D

F(
r II

 , 
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c d

Figure 5: Angular distribution function (ADF) of the first (panels:

a, b) and the second (panels: c, d) shells of all the athermal atomic

solids under study. Panels a,c and b,d refer to the Bcc-like and Fcc-

like crystals, respectively.

found in the structural analysis of the systems, but ap-

pear in elasticity and plasticity (see sec. 3.3). Excitation

was also tested on the Fcc lattice at the same tempera-

ture T = 0.7, but no differences with the ideal struc-

ture were observed after the quench. The latter finding

is consistent with the higher stability of the Fcc lattice

with respect to the Bcc one [19, 44, 45].

Examination of Fig.3 leads to the following conclu-

sions concerning the structure of the athermal solids be-

fore their deformation:

• solids are highly ordered since their characteristic

points are close to the bisector;

• atomic solids are either Fcc-like crystals or Bcc-

like crystals. The former are quite close to the ideal

structure whereas the latter, due to the lower stabil-

ity of the Bcc lattice, exhibit some distribution and

deviation from the ideality. The lower stability of

the Bcc lattice is apparent in the well-separated lo-

cations of the points corresponding to the Bcc ex-

cited crystal and the ideal Bcc crystal;

• polymeric solids are: i) polymorphic, i.e. the cor-

responding blue dots are distributed, and ii) exhibit

Bcc-like structure, as evidenced by previous anal-

ysis [20], and signaled by the localization of the

dots close to the one of the Bcc excited crystal and

the magenta dots of the Bcc-like atomic crystals.

Fig.3 provides some insight into the influence of the

limited size of our sample on the local and the global or-
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Figure 6: Typical stress-strain curves during the quasi-static shear

deformation of the athermal Bcc-like polymeric and atomic solids.

Curves pertaining to the ideal Bcc and the Bcc(ex) crystals are also

plotted. Notice that the connectivity of the polymeric systems in-

creases the number of abrupt changes of the stress in the plastic

regime, resulting in a ”noisy” pattern.

der of the Bcc-like polymeric polymorphs. To this aim,

we compare the present MD results with previous ones

[20] concerning the same polymer model of interest

here, bond length ≃ 1.12 σ and number of monomers

eight times larger than the present one. In the study

of ref.[20] crystallization occurs during quench-cooling

since no nucleation was observed under isothermal con-

dition, contrary to what reported in the present study.

We found for the Bcc-like fraction Qloc
4 ∼ 0.10− 0.15

and Qloc
6 ∼ 0.38− 0.42 [20], to be compared to Qloc

4 ∼
0.05− 0.1 and Qloc

6 ∼ 0.3 − 0.42, see Fig.3. This sig-

nals limited influence of the different bond length, sam-

ple size and thermodynamic path to crystallization on

the local order of the first coordination shell. As to the

global order, the present result Qglob
6 ∼ 0.27 − 0.42 is

quite close to the ideal value Qloc
6 , see Fig.3, and some-

what higher than Qglob
6 ∼ 0.25 of ref. [20]. Tenta-

tively, we ascribe the difference to the fact that both the

isothermal crystallization and periodic boundary condi-

tions favour better Bcc-like ordering in the present small

sample than in a larger, quench-cooled sample.

Further insight into the local structure around the i-

th particle is offered by the angular distribution func-

tion ADF (cosαjk) where αjk is the angle between rij

and rik , and the vector rij joins the i-th central particle

with the j-th one which is rij apart. The ADF analy-

sis is carried out on the first and the second neighbor

shells surrounding the i-th particle. They are singled

out by the constraints rmin ≤ rij , rik ≤ rmax with

rmin = 0.8, rmax = 1.35 (first shell) and rmin =

20 25 30 35 40 45 50 55 60 65 70 75
G

0.1

0.2

0.3

0.4

0.5

P(
G

)

Bcc-like polymer
Bcc-like atomic
Bcc

(ex)

Bcc

Figure 7: The distributions of the shear elastic modulus for the ather-

mal solids under study. It is seen that the elasticity of the polymer

solid is distinctly higher than the ones of the atomic solids with similar

local structures (Bcc-like and Bcc(ex)). The width of the distribution

for the polymer solid is due to the much larger polymorphism with

respect to the atomic solids, e.g. see Fig.3 and ref. [19]. The softer

character of the Bcc(ex) solid with respect to the ideal Bcc crystal is

apparent.

1.35, rmax = 2.2 (second shell) [19]. Note that the

”first shell” considered by the ADF analysis is virtu-

ally the same region considered by the Steinhardt or-

der parameters ( r < rcut ≃ 1.35) since the number of

monomers spaced by less than rmin = 0.8 is negligi-

ble.

Fig.4 shows the ADF of all the athermal polymeric

solids under study. The differences between the poly-

meric ADF and the atomic (Bcc-like and Bcc(ex)) ADFs

in the first shell are ascribed to the fact that the bond

length of the polymeric chain is incommensurate with

the atomic lattice [20]. The connectivity effect is neg-

ligible in the second shell and the deviations are quite

smaller. For clarity reasons, the ADF of the ideal Bcc

lattice is not shown due to the rather distinct pattern, see

Fig.5. The ADF analysis in Fig.4 clarifies that the agree-

ment between the particle arrangements of the poly-

meric and the atomic athermal solids is partial in the first

shell (sensed by the Steinhardt parameters) but rather

good in the second shell.

Fig.5 plots the ADF of all the athermal atomic solids

under study. It is seen the ADF of the Bcc-like fraction

is well accounted for by the ADF of the Bcc(ex) lattice

both in the first and the second shell whereas the devia-

tions of the ideal Bcc crystal are large. Instead, the ADF

of the Fcc-like fraction is rather close to the ADF of the

ideal Fcc lattice both in the first and the second shell.
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Figure 8: The distributions of the yield strength for the athermal solids

under study. It is seen that the strength of the polymer solid is dis-

tinctly higher than the one of the atomic solid with similar local struc-

ture (Bcc-like) and comparable to the ones of the artificial atomic solid

Bcc(ex) and the ideal Bcc crystal.

3.3. Elastic and plastic response

The elastic and plastic response of the polymeric and

the atomic solids are now examined. We focus on sys-

tems with similar, i.e. Bcc-like and and Bcc(ex), local

environment. Related, illustrative Stress-Strain curves

are given in Fig.6. The complete sets of curves for all

the systems under study are used to draw the elastic

modulus G, the critical strain ǫc of the first plastic event

and the average yield stress τY . Suitable averages over

the three xy, xz, yz deformation planes are taken for each

run.

Fig.7 plots the distributions of the elastic modulus

G of the polymeric and the atomic systems with rather

similar local structure. It is seen that the polymeric sys-

tem has larger shear modulus. Notice that the com-

parison must be performed with the physical Bcc-like

atomic solid and not the artificial Bcc(ex) one which is

presented for reference only. The elastic modulus of the

ideal Bcc crystal is indicated to show the softening ef-

fect of the preparation of the Bcc(ex) solid.

Fig.8 plots the distributions of the shear strength of

the polymeric and the atomic systems with rather simi-

lar local structure. It is seen that the polymeric system

has larger strength than the atomic Bcc-like solid. The

strength is comparable to the one of the artificial Bcc(ex)

atomic solid and the ideal Bcc crystal.

Finally, Fig.9 shows the critical strain ǫc at which

the first plastic event is observed. It is seen that the

strain of the polymer solid is comparable to the one of

the atomic solid with similar local structure (Bcc-like)

and distinctly higher than the one of the artificial atomic

1 2 3 4 5 6 7 8 9
ε

c

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P(
ε c)

Bcc-like polymer
Bcc-like atomic
Bcc

(ex)

Bcc

Figure 9: The distributions of the critical strain ǫc for the athermal

solids under study. It is seen that the strain of the polymer solid is

comparable to the one of the atomic solid with similar local structure

(Bcc-like) and distinctly higher than the one of the artificial atomic

solid Bcc(ex) and the ideal Bcc crystal.

solid Bcc(ex) and the ideal Bcc crystal.

The above findings suggest that the disordered con-

nectivity of the chains suppresses dislocation-mediated

plasticity in polymeric solids with positional order.

As a final remark, we point out that the increases of

the modulus ( ∼ 60%) and the strength ( ∼ 100% ) of

the Bcc-like polymeric athermal solid with respect to

the corresponding atomic one cannot be ascribed to the

slightly larger density of the former with respect to the

latter ( ∼ 5.5% ). In fact, a density increase from 1.04
to 1.15 ( ∼ 10%) caused by spanning different bond

lengths from 1.03 to 0.91 has been proved to minimally

rise the elastic modulus (∼ 9%) and the yield stress (∼
13%) of polymeric solids at T = 0, P = 0 [20].

4. Conclusions

We perform thorough MD simulations to compare

elasticity and yielding of atomic crystals and model

semicrystalline polymers with fully-flexible chains (no

bending potential). Both the atomic and the polymeric

solids have very similar, Bcc-like positional ordering of

the particles. We find that the elastic modulus and the

shear yield strength are higher in semicrystalline poly-

mers with respect to atomic crystals, whereas the criti-

cal yield strain ǫc are comparable. The findings suggest

that the disordered connectivity of the chains suppresses

dislocation-mediated plasticity in polymeric solids with

positional order.
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