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SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS

CONSTRUCTED BY A SPACE-TIME NUMERICAL DISCRETIZATION

LUIGI C. BERSELLI, SIMONE FAGIOLI, AND STEFANO SPIRITO

Abstract. We prove that weak solutions obtained as limits of certain numerical space-time
discretizations are suitable in the sense of Scheffer and Caffarelli-Kohn-Nirenberg. More
precisely, in the space-periodic setting, we consider a full discretization in which the θ-
method is used to discretize the time variable, while in the space variables we consider
appropriate families of finite elements. The main result is the validity of the so-called local
energy inequality.

1. Introduction

We consider the homogeneous incompressible 3D Navier-Stokes equations

∂tu−∆u+ (u ·∇)u+∇p = 0 in (0, T )× T
3,

div u = 0 in (0, T )× T
3,

(1.1)

in the space periodic setting, with divergence-free initial datum

u|t=0 = u0 in T
3, (1.2)

where T > 0 is arbitrary and T
3 is the three dimensional flat torus. Here, the unknowns are

the vector field u and the scalar p, which are both with zero mean value. The aim of this
paper is to consider a space-time discretization of the initial value problem (1.1)-(1.2) and to
prove the convergence (as the parameters of the discretization vanish) to a Leray-Hopf weak
solution, satisfying also the local energy inequality

∂t

(

|u|2

2

)

+ div

((

|u|2

2
+ p

)

u

)

−∆

(

|u|2

2

)

+ |∇u|2 ≤ 0 in D′(]0, T [×T
3).

Solution satisfying the above inequality (and minimal assumptions on the pressure) are known
in literature as suitable weak solutions and they are of fundamental importance for at least
two reasons: 1) From the theoretical point of view it is known that for these solutions the pos-
sible set of singularities has vanishing 1D-parabolic Hausdorff measure, see Scheffer [19] and
Caffarelli-Kohn-Nirenberg [11]; 2) The local energy inequality is a sort of entropy condition
and, even if it is not enough to prove uniqueness, it seems a natural request to select phys-
ically relevant solutions; for this reason the above inequality has to be satisfied by solutions
constructed by numerical methods, see Guermond et al. [16, 17].

The terminology (and an existence result) for suitable weak solutions can be found in
Caffarelli, Kohn, and Nirenberg [11], where a retarded-time approximation method has been
used in the construction. Since uniqueness is not known in the class of weak solutions, the
question of understanding which are the approximations producing suitable solutions became
central, see the papers by Beirão da Veiga [1, 2, 3]. In these papers it has also been raised
the question whether the “natural” Faedo-Galerkin methods will produce suitable solutions
and the question remained completely unsolved for almost twenty years, when the positive
answer, at least for certain finite element spaces, appeared in Guermond [13, 14]. (In the above
papers the space discretization is considered, while the time variable is kept continuous). It is
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important to observe that, most of the known regularization procedures to construct Leray-
Hopf weak solutions of the Navier-Stokes equations (hyper-viscosity, Leray, Leray-α, Voigt,
artificial compressibility. . . ) seem to produce in the limit solutions satisfying the local energy
inequality. We started a systematics study of this question and, even if technicalities could be
rather different, we obtained several positive answers, see [8, 9, 12]. The technical problems
related with discrete (numerical, finite dimensional) approximations are of a different nature.
In particular, obtaining the local energy inequality is “formally” based on multiplying the
equations by uφ, where φ is a non-negative bump function, and integrating over in space and
time variables. Clearly, if u belongs to a finite dimensional space Xh (say of finite elements),
then uφ is not allowed to be used as a test function and one needs to project uφ back on
Xh. This is the reason why results obtained in [13, 14] require the use of spaces satisfying a
suitable commutator property, which is a local property, see Section 3.1. In particular, the
standard Fourier-Galerkin method (which is not local being a spectral approximation) does
not satisfy the commutator property and the convergence to a suitable weak solution is still
an interesting open problem, see the partial results in Craig et al. [10], with interesting links
with the global energy equality.

From the numerical point of view another important issue is that of considering also the
time discretization, hence going from a semi-discrete scheme to a fully-discrete one. Also
regarding this issue few results are available. In [7] it is proved that solutions of space-
periodic Navier-Stokes constructed by semi-discretization (in the time variable, with the
standard implicit Euler algorithm) are suitable. The argument has been also extended to a
general domain in [4] assuming vorticity-based slip boundary conditions, which are important
in the vanishing viscosity problem [5, 6]. The case of Dirichlet boundary conditions is still
unsolved and one main difficulty is that of proving, at the discrete level, coercive pressure
estimates, similar to those obtained by Sohr and Von Wahl [20] in the continuous case.

The aim of this paper is to extend the results from [13] and [7] to a general space-time
numerical discretization with a general θ-method in the time-variable and finite elements in
the space variables. The extension of the results regarding only on the space or only on the
time discretization presents some additional difficulties and it is not just a combination of
the previous ones. In particular, the main core of the proof is obtaining appropriate a-priori
estimates and using compactness results. Contrary to [13, 7] results obtained here require a
more subtle compactness argument for space-time discrete functions and the main theorem
is obtained by using a technique borrowed from the treatment of non-homogeneous and com-
pressible fluids and resembling the compensated compactness arguments, see P.L. Lions [15,
Lemma 5.1]. Observe that here the simple convergence in the sense of distributions is not
enough, contrary to the case of the product density/velocity in the weak formulation of the
Navier-Stokes equations with variable density. We also observe that at present the extension
to the Dirichlet problem, as in [14], seems a challenging problem; the estimates in the nega-
tive spaces obtained in [14] look not enough to handle the discretization in time made with
step functions, which cannot be in fractional Sobolev spaces with order larger than one-half.

To set the problem we consider as in [13] two sequences of discrete approximation spaces
{Xh}h ⊂ H1

# and {Mh}h ⊂ H1
# which satisfy –among other properties described in Section 3–

an appropriate commutator property, see Definition 3.1. Then, given a net tm := m∆t we
consider the following space-time discretization of the problem (1.1)-(1.2): Set u0h = Ph(u

h
0),

where Ph is the projection over Xh. For any m = 1, ..., N and given um−1
h ∈ Xh and

pm−1
h ∈ Mh, find umh ∈ Xh and pm ∈ Mh such that

(dtu
m
h , vh) + (∇um,θ

h ,∇vh) + bh(u
m,θ
h , um,θ

h , vh)− (pmh,,div vh) = 0,

(div umh , qh) = 0,
(1.3)

where um,θ
h := θ umh +(1− θ)um−1

h , dtu
m :=

um
h −um−1

h
∆t , and bh(u

m,θ
h , um,θ

h , vh) is a suitable dis-
crete approximation of the non-linear term; see also Quarteroni and Valli [18] and Thomée [22]
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for general properties of θ-schemes for parabolic equations. We refer to Sections 2-3 for the
other notations, definitions, and properties regarding (1.3). As usual in time-discrete problem
(see for instance [21]) in order to study the convergence to the solutions of the continuous
problem it is useful to rewrite (1.3) on (0, T ) as follows:

(

∂tv
∆t
h , wh

)

+
(

∇u∆t
h ,∇wh

)

+ bh
(

u∆t
h , u∆t

h , wh

)

−
(

p∆t
h ,div qh

)

= 0,
(

div u∆t
h , wh

)

= 0,
(1.4)

where v∆t
h is the linear interpolation of {umh }Nm=1 (over the net tm = m∆t), while u∆t

h and

p∆t
h are the time-step functions which on the interval [tm−1, tm) are equal to um,θ

h and pmh ,
respectively.

The main result of the paper is the following, we refer to Section 2 for further details on
the notation.

Theorem 1.1. Let the finite element space (Xh,Mh) satisfy the discrete commutation prop-
erty, and the technical conditions described in Section 3.1. Let u0 ∈ H1

div and θ ∈ (1/2, 1].

Let {(v∆t
h , u∆t

h , p∆t
h )}∆t,h be a sequence of solutions of (1.4) computed by solving (1.3). Then,

there exists
(u, p) ∈ L∞(0, T ;L2

div) ∩ L2(0, T ;H1
div)× L4/3(0, T ;L2

#),

such that, up to a sub-sequence, as (∆t, h) → (0, 0),

v∆t
h → u strongly in L2((0, T ) × T

3),

u∆t
h → u strongly in L2((0, T )× T

3),

∇u∆t
h ⇀ ∇u weakly in L2((0, T )× T

3),

p∆t
h ⇀ p weakly in L

4
3 ((0, T ) × T

3).

Moreover, the couple (u, p) is a suitable weak solution of (1.1)-(1.2) in the sense of Defini-
tion 2.2.

Remark 1.2. As explicit examples, the MINI and Hood-Taylor elements represents couples
(Xh,Mh) of finite element spaces for which the theorem is valid.

The proof of Theorem 1.1 is given in Section 5 and it is based on a compactness argument.
We briefly explain the main novelty in the proof: First from the standard discrete energy
inequality (Lemma 4.1) only an H1-bound in space on u∆t

h is available but no compactness in

time. Note that this is not enough in general to deduce strong convergence of u∆t
h , which turns

out to be necessary to prove even the convergence to a Leray-Hopf weak solution. It is also
relevant to observe that in many references (e.g. as in [21, 18]) authors focus on the order of
the convergence between the numerical and continuous solution in the L2-norm. Nevertheless,
in our case it is very relevant to obtain the uniform l2(H1

div) bound on the numerical solution,
since this is requested to show convergence to a weak solution in the genuine sense of Leray
and Hopf. This explains the limitations on θ, which in this paper are not due to classical
stability issues. Hence, in the proof of the main result also the Step 1 (that of proving that
the numerical solutions converge to a weak solutions) is original, or at least we did not find
this explicitly proved in any reference (In [21] a partial analysis of this point, valid only for
certain schemes, is provided). On the other hand, from the equations (1.4) is possible to
prove some mild time regularity on v∆t

h ; this will enough to ensure that the product v∆t
h u∆t

h

is weakly convergent in L1(T3) to v u, where v and u are the weak limit of v∆t
h and u∆t

h ,
respectively. This is the technical point where results à la compensated compactness are
used. Finally, this additional information combined again with discrete energy inequality
allows to infer that u = v and that u∆t

h is strongly convergent in L2((0, T ) × T
3).

Plan of the paper. In Section 2 we fix the notation that we use in the paper and we
recall the main definitions and tools used. In Section 3 we introduce and give some details
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about the space-time discretization methods. Finally, in Section 4 we prove the main a priori
estimates needed to study the convergence and finally in Section 5 we prove Theorem 1.1.

2. Notations and Preliminaries

In this section we declare the notation we will use in the paper, we recall the main def-
initions concerning weak solutions of incompressible Navier-Stokes and also a compactness
result.

2.1. Notations. We introduce the notations typical of space-periodic problems. The flat
three-dimensional torus T3 is defined by (R/2πZ)3. In the sequel we will use the customary
Lebesgue spaces Lp(T3) and Sobolev spaces W k,p(T3) and we will denote their norms by ∥ ·∥p
and ∥ · ∥W k,p We will not distinguish between scalar and vector valued functions, since it will
be clear from the context which one has to be considered. In the case p = 2, the L2(T3) scalar
product is denoted by (·, ·) and we use the notation Hs(T3) := W s,2(T3) and we define, for
s > 0, the dual spaces H−s(T3) = (Hs(T3))′. Moreover, we will consider always subspaces of
functions with zero mean value and these will be denoted by

Lp
# :=

{

w ∈ Lp(T3)

∫

T3

w dx = 0

}

1 ≤ p < +∞,

and also

Hs
# := Hs(T3) ∩ L2

#.

As usual in fluid mechanics one has to consider spaces of divergence free vector fields,
defined as follows

L2
div :=

{

w ∈ (L2
#)

3 : divw = 0
}

and Hs
div := Hs

# ∩ L2
div.

Finally, given X a Banach space, Lp(0, T ;X) denotes the classical Bochner spaces of X valued
functions, endowed with its natural norm, denoted by ∥ · ∥Lp(X). We denote by lp(X) the
discrete counterpart for X-valued sequences {xm}, defined on the net {m∆t} with weighted

norm defined by ∥x∥plp(X) := ∆t
∑M

m=0 ∥x
m∥pX .

2.2. Weak solutions and suitable weak solutions. We start by recalling the notion of
weak solution (as introduced by Leray and Hopf) for the space periodic setting.

Definition 2.1. The vector field u is a Leray-Hopf weak solution of (1.1)-(1.2) if

u ∈ L∞(0, T ;L2
div) ∩ L2(0, T ;H1

div),

and if u satisfies the Navier-Stokes equations (1.1)-(1.2) in the weak sense, namely the integral
equality

∫ T

0

[

(u, ∂tφ)− (∇u,∇φ)− ((u ·∇)u,φ)
]

dt+ (u0,φ(0)) = 0, (2.1)

holds true for all smooth, periodic, and divergence-free functions φ ∈ C∞
c ([0, T );C∞(T3))

such that
∫

T3 φ dx = 0. Moreover, the initial datum is attained in the strong L2-sense, that is

lim
t→0+

∥u(t)− u0∥2 = 0,

and the following global energy inequality holds

1

2
∥u(t)∥22 +

∫ t

0
∥∇u(s)∥22 ds ≤

1

2
∥u0∥

2
2, for all t ∈ (0, T ).

Suitable weak solutions are a particular subclass of Leray-Hopf weak solutions and the
definition is the following.
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Definition 2.2. A pair (u, p) is a suitable weak solution to the Navier-Stokes equation (1.1)

if u is a Leray-Hopf weak solution, p ∈ L
4
3 (0, T ;L2

#), and the local energy inequality

∫ T

0

∫

T3

|∇u|2φ dxdt ≤

∫ T

0

∫

T3

[

|u|2

2
(∂tφ+∆φ) +

(

|u|2

2
+ p

)

u ·∇φ

]

dxdt. (2.2)

holds for all φ ∈ C∞

0 (0, T ;C∞(T3)) such that φ ≥ 0,

Remark 2.3. The definition of suitable weak solution is usually stated with p ∈ L
5
3 ((0, T )×T

3)

while in Definition 2.2 p ∈ L
4
3 (0, T ;L2(T3)). This is not an issue since of course we have a

bit less integrability in time but we gain a full L2-integrability in space. We stress that
the main property of suitable weak solutions is the fact that they satisfy the local energy
inequality (2.2) and weakening the request on pressure does not influence the validity of local
regularity results, see for instance discussion in Vasseur [23]

2.3. A compactness lemma. In this subsection we recall the main compactness lemma
which allows us to prove the strong convergence of the approximations. We remark that it
is a particular case of a more general lemma whose statement and proof can be found in [15,
Lemma 5.1]. For sake of completeness we give a proof adapted to the case we are interested
in.

Lemma 2.4. Let {fn}n∈N and {gn}n∈N be uniformly bounded in L∞(0, T ;L2(T3)) and let be
given f, g ∈ L∞(0, T ;L2(T3)) such that

fn ⇀ f weakly in L2((0, T ) × T
3),

gn ⇀ g weakly in L2((0, T )× T
3).

(2.3)

Let p ≥ 1 and assume that

{∂tfn}n ⊂ Lp(0, T ;H−1(T3)), {gn}n ⊂ L2(0, T ;H1(T3)), (2.4)

with uniform (with respect to n ∈ N) bounds on the norms. Then,

fn gn ⇀ f g weakly in L1((0, T ) × T
3). (2.5)

Proof. By using (2.3), (2.4), and the fact that L2(T3) is compactly embedded in H−1(T3) it
follows from the Banach space version of Arzelà-Ascoli theorem that

fn → f strongly in C(0, T ;H−1(T3)). (2.6)

From (2.4) it follows that

gn ⇀ g weakly in L2(0, T ;H1(T3)). (2.7)

Then, (2.6) and (2.7) easily imply that

fn gn ⇀ f g in the sense of distribution on (0, T ) × T
3.

The L1-weak convergence in (2.5) follows by noting that the bounds in (2.4) imply that the
sequence {fn gn}n is equi-integrable.

3. Setting of the numerical approximation

In this section we introduce the time and space discretization of the initial value prob-
lem (1.1)-(1.2). We start by introducing the space discretization.
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3.1. Space discretization. For the space discretization we strictly follow the setting con-
sidered in [13]. Let {Xh}h>0 ⊂ H1

# be the discrete space for approximate velocity and

{Mh}h>0 ⊂ L2
# be that of approximate pressure. To avoid further technicalities, we assume

as in [13], that Mh ⊂ H1
#.

We make the following (technical) assumptions on the spaces Xh and Mh:

(1) For any v ∈ H1
# and for any q ∈ L2

# there exists {vh}h and {qh}h with vh ∈ Xh and
qh ∈ Mh such that

vh → v strongly in H1
# as h → 0,

qh → q strongly in L2
# as h → 0;

(3.1)

(2) Let πh : L2(T3) → Xh be the L2−projection onto Xh. Then, there exists c > 0
independent of h such that,

∀qh ∈ Mh ∥πh (∇qh) ∥2 ≥ c∥qh∥2; (3.2)

(3) There is c independent of h such that for all v ∈ H1
#

∥v − πh(v)∥2 = inf
wh∈Xh

∥v − wh∥2 ≤ c h∥v∥H1 ,

∥πh(v)∥H1 ≤ c∥v∥H1 ;

(4) There exists c independent of h such that

∥vh∥H1 ≤ c h−1∥vh∥2 ∀vh ∈ Xh. (3.3)

Moreover, we assume that Xh and Mh satisfy the following discrete commutator property.

Definition 3.1. We say that Xh (resp. Mh) has the discrete commutator property if there
exists an operator Ph ∈ L(H1;Xh) (resp. Qh ∈ L(L2;Mh)) such that for all φ ∈ W 2,∞ (resp.
φ ∈ W 1,∞) and all vh ∈ Xh (resp. qh ∈ Mh)

∥vhφ− Ph(vhφ)∥Hl ≤ ch1+m−l∥vh∥Hm∥φ∥Wm+1,∞ , (3.4)

∥qhφ−Qh(qhφ)∥2 ≤ ch∥qh∥2∥φ∥W 1,∞ , (3.5)

for all 0 ≤ l ≤ m ≤ 1.

Remark 3.2. We want to stress that in the case of spectral method, e.g. the Galerkin methods
based on Fourier expansion on the torus, the discrete commutator property fails. This is
one of the main obstacles in proving the local energy inequality for weak solutions of (1.1)
constructed by the Fourier-Galerkin method.

We recall from [13] that the coercivity hypothesis (3.2), allows us to define the map ψh :
H2

# → Mh such that, for all q ∈ H2
#, the function ψh(q) is the unique solution to the problem:

(πh(∇ψh(q)),∇rh) = (∇q,∇rh) . (3.6)

This map has the following properties: there exists c independent of h such that for all
q ∈ H2

#,

∥∇(ψh(q)− q)∥2 ≤ c h∥q∥H2 ,

∥πh∇ψh(q)∥H1 ≤ c∥q∥H2 . (3.7)

Let us introduce

Vh =
{

vh ∈ Xh : (div vh, qh) = 0 ∀qh ∈ L2(Ω)
}

.

To have the basic energy estimate we need to modify the non-linear term since Vh is not a
subspace of H1

div. Let us define the following

nlh(u, v) := (u ·∇) v +
1

2
v div u. (3.8)
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Then, nlh is a bi-linear operator

nlh : H1
# ×H1

# → H−1,

where H−1 := (H1
#)

′. Moreover, the following estimate holds true

∥nlh(u, v)∥H−1 ≤ ∥u∥L3∥v∥H1 ∀u, v ∈ H1
#. (3.9)

Finally, by defining bh(u, v, w) := ⟨nlh(u, v), w⟩H−1×H1
#
, it follows that

bh(u, v, v) = 0 ∀u, v ∈ H1
div + Vh.

Then, the space discretization of (1.1)-(1.2) reads as follows:
Find uh ∈ C(0, T ;Xh) with ∂tuh ∈ L2(0, T ;Xh) and ph ∈ L2(0, T ;Mh) such that, for all
vh ∈ Xh and qh ∈ Mh:

(∂tuh, vh) + bh(uh, uh, vh)− (ph,div vh) + (∇uh,∇vh) = 0,

(div uh, qh) = 0.
(3.10)

with the initial datum

uh|t=0 = uh0 ,

where uh0 is an approximation of u0 such that uh0 ∈ Xh, and

uh0 → u0 strongly in L2
div as h → 0.

3.2. Time discretization. For the time variable t we define the mesh as follows: Given
N ∈ N the time-step 0 < ∆t ≤ T is defined as ∆t := T/N . Accordingly, we define the
corresponding net {tm}Nm=1 by

t0 := 0 tm := m∆t, m = 0, . . . , N.

To discretize in time the semi-discrete problem (3.10) we consider the following θ-method
(cf. [18, § 5.6.2]) for θ ∈ [0, 1]:
Set u0h = u0 ∈ H1

div. For any m = 1, ..., N given um−1
h ∈ Xh and pm−1

h ∈ Mh find umh ∈ Xh

and pmh ∈ Mh such that

(dtu
m
h , vh) + (∇um,θ

h ,∇vh) + bh(u
m,θ
h , um,θ

h , vh)− (pmh,,div vh) = 0,

(div umh , qh) = 0,
(3.11)

for all vh ∈ Xh and for all qh ∈ Mh. We recall that here dtu
m is the backward finite-difference

approximation for the time-derivative in the interval (tm−1, tm)

∂tuh ∼ dtu
m :=

umh − um−1
h

∆t
,

and um,θ
h := θumh + (1 − θ)um−1

h is the convex combination. With a slight abuse of notation
we consider ∆t = T/N and h, instead of (N,h), as the indexes of the sequences for which
we prove the convergence. Then, the convergence will be proved in the limit as (∆t, h) both
going to zero. We stress that this does not affect the proofs since all the convergences are
proved up to sub-sequences.

Once (3.11) is solved, we consider a continuous version useful to study the convergence.

To this end we associate to the triple (um,θ
h , umh , pmh ) the functions

(v∆t
h , u∆t

h , p∆t
h ) : [0, T ] × T

3 → R
3 × R

3 × R,
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defined as follows:

v∆t
h (t) :=

⎧

⎨

⎩

um−1
h +

t− tm−1

∆t
(umh − um−1

h ) for t ∈ [tm−1, tm),

uNh for t = tN ,

u∆t
h (t) :=

{

um,θ
h for t ∈ [tm−1, tm),

uN,θ
h for t = tN ,

p∆t
h (t) :=

{

pmh for t ∈ [tm−1, tm),

pNh for t = tN .

(3.12)

Then, the discrete equations (3.11) can be rephrased as as follows:
(

∂tv
∆t
h , wh

)

+ bh
(

u∆t
h , u∆t

h , wh

)

+
(

∇u∆t
h ,∇wh

)

−
(

p∆t
h ,div qh

)

= 0,
(

div u∆t
h , wh

)

= 0,
(3.13)

for all wh ∈ Ls(0, T ;Xh) (with s ≥ 4) and for all qh ∈ L2(0, T ;Mh). We notice that the
divergence-free condition comes from the fact that umh is such that

(div umh , qh) = 0 for m = 1, ..., N, ∀ qh ∈ Mh.

4. A priori estimates

In this section we prove the a priori estimates that we need to study the convergence
of solutions of (3.13) to suitable weak solutions of (1.1)-(1.2). We start with the following
discrete energy equality.

Lemma 4.1. For any 1/2 < θ ≤ 1, N ∈ N, and m = 1, .., N the following discrete energy-
type equality holds true

1

2
(∥umh ∥22 − ∥um−1

h ∥22) +
(2θ − 1)

2
∥umh − um−1

h ∥22 +∆t ∥∇um,θ
h ∥22 = 0. (4.1)

Proof. For any m = 1, ..., N take wh = χ[tm−1,tm)u
m,θ
h ∈ L∞(0, T ;Xh) in (3.13). Then,

(

umh − um−1
h

∆t
, um,θ

h

)

+ ∥∇um,θ
h ∥22 = 0,

because since um,θ
h ∈ Xh and pmh ∈ Mh it follows that

bh(u
m,θ
h , um,θ

h , um,θ
h ) = 0 and (pmh ,div um,θ

h ) = 0.

By using the elementary algebraic identity

(a− b, a) =
|a|2

2
−

|b|2

2
+

|a− b|2

2
,

the term involving the discrete derivative reads as follows:

(umh − um−1
h , um,θ

h ) = (umh − um−1
h , θumh + (1− θ)um−1

h )

= θ(umh − um−1
h , umh ) + (1− θ)(um−1

h − umh , um−1
h )

=
θ

2
(∥umh ∥22 − ∥um−1

h ∥+ ∥umh − um−1
h ∥22)

−
(1− θ)

2
(∥um−1

h ∥22 − ∥umh ∥+ ∥umh − um−1
h ∥22)

=
1

2
(∥umh ∥22 − ∥um−1

h ∥22) +
(2θ − 1)

2
(∥umh − um−1

h ∥22).
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Then, multiplying by ∆t > 0, Eq. (4.1) holds true. In addition, summing over m we also get

1

2
∥uNh ∥22 +

(2θ − 1)

2

N
∑

m=0

∥umh − um−1
h ∥22 +∆t

N
∑

m=0

∥∇um,θ
h ∥22 =

1

2
∥u0h∥

2
2,

which proves the l∞(L2
#) ∩ l2(H1

#) uniform bound for the sequence {umh }.

Remark 4.2. Strictly speaking the requirement θ > 1/2 is not required for the proof of
Lemma 4.1. However, it is needed in order to deduce the most important a priori estimates
since it makes the coefficient of the second term from the left-hand side of (4.1) positive.
Moreover, since we actually need that term in the convergence proof to a weak solution, we
cannot consider the endpoint case θ = 1/2.

The next lemma concerns the regularity of the pressure. We follow the argument in [13]
and we notice that we are essentially solving the standard discrete Poisson problem associated
to the pressure.

Lemma 4.3. There exists a constant c > 0, independent of ∆t and of h, but eventually
depending on θ, such that

∥pmh ∥2 ≤ c
(

∥um,θ
h ∥H1 + ∥um,θ

h ∥L3∥um,θ
h ∥H1

)

for m = 1, . . . , N. (4.2)

Proof. Let qm ∈ H2
# be the unique solution of the following Poisson problem:

(∇qm,∇φ) = (pmh ,φ) ∀φ ∈ H1
#. (4.3)

Standard elliptic estimates imply there exists an absolute constant c > 0 such that

∥qm∥H2 ≤ c∥pmh ∥2. (4.4)

Let us consider πh∇(ψh(q
m)) ∈ Xh as a test function in (3.11), then we get

(dtu
m,πh∇(ψh(q

m)))− (∇um,θ
h ,∇πh∇(ψh(q

m)))

+ bh(u
m,θ
h , um,θ

h ,πh∇(ψh(q
m))) + (pmh ,div πh∇(ψh(q

m))) = 0.

First, by using (3.6) and (4.3) we get

(pmh ,div πh∇(ψh(q
m))) = (∇pmh ,πh∇(ψh(q

m))) = (∇pmh ,∇qm) = (pmh , pmh ) = ∥pmh ∥22.

Then, we get

∥pmh ∥22 =(∇um,θ
h ,∇πh∇(ψh(q

m)))− (dtu
m,πh∇(ψh(q

m)))

− bh(u
m
h , umh ,πh∇(ψh(q

m))).

By using (3.7) and (4.4) we have
∣

∣

∣

(

∇um,θ
h ,∇πh∇(ψh(q

m))
)
∣

∣

∣
≤ ∥∇um,θ

h ∥2∥πh∇(ψh(q
m))∥2

≤ C∥∇um,θ
h ∥2∥q

m∥H2

≤ C∥∇um,θ
h ∥2∥p

m
h ∥2.

Concerning the term involving the discrete time-derivative we have
(

umh − um−1
h ,πh∇(ψh(q

m))
)

=
(

umh − um−1
h ,∇(ψh(q

m))
)

= −
(

div(umh − um−1
h ),ψh(q

m)
)

= 0.

Finally, regarding the non-linear term by using (3.9) and (3.7) we have

|bh(u
m,θ
h , um,θ

h ,πh∇(ψh(q
m)))| ≤

∣

∣

∣

〈

nlh(u
m,θ
h , um,θ

h ),πh∇(ψh(q
m))

〉∣

∣

∣

≤ C∥um,θ
h ∥L3∥um,θ

h ∥H1∥pmh ∥2.

Then,

∥pmh ∥22 ≤ c
(

∥um,θ
h ∥L3∥um,θ

h ∥H1 + ∥um,θ
h ∥H1

)

∥pmh ∥2,
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and (4.2) readily follows.

We are now in position to prove the main a priori estimates on the approximate solutions
of (3.13).

Proposition 4.4. Let be given u0 ∈ L2
div and 1/2 < θ ≤ 1. Then, there exists a constant

c > 0, independent of ∆t and of h, such that

a) ∥v∆t
h ∥L∞(L2) ≤ c,

b) ∥u∆t
h ∥L∞(L2)∩L2(H1) ≤ c,

c) ∥p∆t
h ∥L4/3(L2) ≤ c,

d) ∥∂tv
∆t
h ∥L4/3(H−1) ≤ c.

Moreover, we also have the following estimate

∫ T

0
∥v∆t

h − u∆t
h ∥22 dt ≤ ∆t

(

1

3
− θ + θ2

) N
∑

m=1

∥umh − um−1
h ∥22. (4.5)

Proof. The bound in L∞(0, T ;L2
#)∩L2(0, T ;H1

#) for v
∆t
h follows from (3.12) and Lemma 4.1,

as well as the bounds on u∆t
h in b). The bound on the pressure p∆t

h follows again from (3.12)

and Lemma 4.3. Finally, the bound on the time derivative of v∆t
h follows by (3.13) and a

standard comparison argument. Concerning (4.5), by using the definitions in (3.12) we get
for t ∈ [tm−1, tm)

v∆t
h − v∆t

h = θ umh + (1− θ)um−1
h − um−1

h −
t− tm−1

∆t
(umh − um−1

h )

=

(

θ −
t− tm−1

∆t

)

(

umh − um−1
h

)

.

Then, evaluating the integrals, we have

∫ T

0
∥v∆t

h − v∆t
h ∥22 dt =

N
∑

m=1

∥umh − um−1
h ∥22

∫ tm

tm−1

(

θ −
t− tm−1

∆t

)2

dt

≤ ∆t

(

1

3
− θ + θ2

) N
∑

m=1

∥umh − um−1
h ∥22,

ending the proof.

5. Proof of the main theorem

In this section we prove Theorem 1.1. We split the proof in the two main steps.

Proof of Theorem 1.1. We first prove the convergence of the numerical sequence to a Leray-
Hopf weak solution and then we prove that the weak solution constructed is suitable, namely
it satisfies the local energy inequality (2.2).

Step 1: Convergence towards a Leray-Hopf weak solution. We start by observing
that from a simple density argument, the test functions considered in (2.1) can be chosen in
the space Ls(0, T ;H1

div) ∩ C1(0, T ;L2
div), with s ≥ 4. In particular, by using (3.1) for any

w ∈ Ls(0, T ;H1
div) ∩ C1(0, T ;L2

div) such that w(T, x) = 0 we can find a sequence {wh}h ⊂
Ls(0, T ;H1

#) ∩C(0, T ;L2
#) such that

wh → w strongly in Ls(0, T ;H1
#) as h → 0,

wh(0) → w(0) strongly in L2
# as h → 0.

(5.1)
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Let {(v∆t
h , v∆t

h , p∆t
h )}(∆t,h), defined as in (3.12), be a family of solutions of (3.13). By Propo-

sition 4.4-a) we have that
{

v∆t
h

}

(∆t,h)
⊂ L∞(0, T ;L2

#), with uniform bounds on the norms.

Then, by standard compactness arguments there exists v ∈ L∞(0, T ;L2
#), such that (up to a

sub-sequence)

v∆t
h ⇀ v weakly in L2(0, T ;L2

#) as (∆t, h) → (0, 0). (5.2)

Again by using Proposition 4.4 b), there exists u ∈ L∞(0, T ;L2
#) such that (up to a sub-

sequence)

u∆t
h ⇀ u weakly in L2(0, T ;L2

#) as (∆t, h) → (0, 0),

u∆t
h ⇀ u in L2(0, T ;H1

#) as (∆t, h) → (0, 0).
(5.3)

Moreover, by using (3.1), for any q ∈ L2(0, T ;L2
#) we can find a sequence {qh}h ⊂ L2(0, T ;L2

#)

such that qh ∈ L2(0, T ;Mh) and

qh → q strongly in L2(0, T ;L2
#) as h → 0.

Then, by using (5.3) and (3.13) we have that

0 =

∫ T

0

(

∇ · u∆t
h , qh

)

dt →

∫ T

0
(∇ · u, q) dt as (∆t, h) → (0, 0),

hence u is divergence-free, belonging to H1
div. Let us consider (4.5), then

∫ T

0
∥v∆t

h − u∆t
h ∥22 dt = ∆t

(

1

3
− θ + θ2

) N
∑

m=1

∥um − um−1∥22 ≤ c∆t, (5.4)

where in the last inequality we used Lemma 4.1. Hence, the integral
∫ T
0 ∥v∆t

h − u∆t
h ∥22 dt

vanishes as ∆t → 0. Then, by using (5.2) and (5.3) it easily follows that v = u.
At this point we note that Proposition 4.4 b) and d) imply that (with uniform bounds)

{∂tv
∆t
h }(∆t,h) ⊂ L

4
3 (0, T ;H−1) and {u∆t

h }(∆t,h) ⊂ L2(0, T ;H1
#).

Then, by using Lemma 2.4 and the fact that u = v we get that

u∆t
h v∆t

h ⇀ |u|2 weakly in L1((0, T ) × T
3) as (∆t, h) → (0, 0). (5.5)

In particular, by using (5.4) and (5.5) we have that

v∆t
h → u strongly in L2(0, T ;L2

#) as (∆t, h) → (0, 0),

u∆t
h → u strongly in L2(0, T ;L2

#) as (∆t, h) → (0, 0).
(5.6)

Concerning the pressure term the uniform bound in Proposition 4.4 d) ensures the existence

of p ∈ L
4
3 (0, T ;L2

#) such that (up to a sub-sequence)

p∆t
h ⇀ p weakly in L

4
3 (0, T ;L2

#) as (∆t, h) → (0, 0). (5.7)

Then, by using (5.1) and (5.2) we have that

lim
(∆t,h)→(0,0)

∫ T

0
(∂tv

∆t
h , wh) dt = lim

(∆t,h)→(0,0)

(

−

∫ T

0
(v∆t

h , ∂twh) dt+ (u0, wh(0))

)

−

∫ T

0
(u, ∂tw) dt+ (u0, w(0)),

Next, by using (5.3) we also get

lim
(∆t,h)→(0,0)

∫ T

0
(∇v∆t

h ,∇wh) dt =

∫ T

0
(∇u,∇w) dt.
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By (5.1), (5.7), and the fact that w is (weakly) divergence-free we obtain
∫ T

0
(p∆t

h ,divwh) dt → 0 as (∆t, h) → (0, 0).

Concerning the non-linear term, let s ≥ 4 and s′ and s∗ be real numbers such that

1

s
+

1

s′
= 1, and

1

s
+

1

s∗
=

1

2
. (5.8)

By using (5.6), (5.3), a standard interpolation argument, and Proposition 4.4 b) it follows
that

u∆t
h → u strongly in Ls∗(0, T ;L3

#) as (∆t, h) → (0, 0),

and by (3.8) with a standard compactness argument

nlh
(

u∆t
h , u∆t

h

)

⇀ u ·∇u, in Ls′(0, T ;H−1) as (∆t, h) → (0, 0).

Then, by using also (5.1) it follows that
∫ T

0
bh(u

∆t
h , u∆t

h , wh) dt →

∫ T

0

(

(u ·∇)u,w
)

dt as (∆t, h) → (0, 0).

Finally, the energy inequality follows by Lemma 4.1, by using the lower semicontinuity of the
L2-norm with respect to the weak convergence.

Step 2: Proof of the Local Energy Inequality. In order to conclude the proof of Theo-
rem 1.1 we need to prove that the Leray-Hopf weak solution constructed in Step 1 is suitable.
According to Definition 2.2 this requires just to prove that the local energy inequality. To
this end, let us consider a smooth, periodic in the space variable function φ ≥ 0, vanishing
for t = 0, T , and use as test function Ph(u

∆t
h φ) in the momentum equation in (3.13).

We first consider the term involving the time derivative, which we handle as follows:
∫ T

0

(

∂tv
∆t
h , Ph(u

∆t
h φ)

)

dt =

∫ T

0

(

∂tv
∆t
h , Ph(u

∆t
h φ)− u∆t

h φ+ u∆t
h φ

)

dt

=

∫ T

0

(

∂tv
∆t
h , u∆t

h φ
)

dt+

∫ T

0

(

∂tv
∆t
h , Ph(u

∆t
h φ)− u∆t

h φ
)

dt =: I1 + I2.

Concerning the term I1 we have that

I1 =

∫ T

0
(∂tv

∆t
h , (v∆t

h − v∆t
h + u∆t

h )φ) dt

=

∫ T

0
(∂tv

∆t
h , v∆t

h )φ dt+

∫ T

0
(∂tv

N
h , (u∆t

h − v∆t
h )φ) dt

=: I11 + I12.

Let us first consider I11. By splitting the integral over [0, T ] as the sum of integrals over
[tm−1, tm] and, by integrating by parts, we get

∫ T

0
(∂tv

∆t
h , v∆t

h φ) dt =

N
∑

m=1

∫ tm

tm−1

(∂tv
∆t
h , v∆t

h φ) dt =

N
∑

m=1

∫ tm

tm−1

(
1

2
∂t|v

∆t
h |2,φ) dt

=
1

2

N
∑

m=1

(|umh |2,φ(tm, x))− (|um−1
h |2,φ(tm−1, x))−

N
∑

m=1

∫ tm

tm−1

(
1

2
|v∆t

h |2, ∂tφ) dt,

where we used that ∂tv
∆t
h (t) =

um
h −um−1

h
∆t , for t ∈ [tm−1, tm[. Next, since the sum telescopes

and φ is with compact support in (0, T ) we get
∫ T

0
(∂tv

∆t
h , v∆t

h φ) dt = −

∫ T

0

(1

2
|v∆t

h |2, ∂tφ
)

dt.
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By the strong convergence of v∆t
h → u in L2(0, T ;L2

#) we can conclude that

lim
(∆t,h)→(0,0)

∫ T

0
(∂tv

∆t
h , v∆t

h φ) dt = −

∫ T

0

(1

2
|u|2, ∂tφ

)

dt.

Then, we consider the term I12. Since u
∆t
h is constant on the interval [tm−1, tm[ we can write

∫ T

0
(∂tv

∆t
h , (u∆t

h − v∆t
h )φ) dt = −

N
∑

m=1

∫ tm

tm−1

(∂t(v
∆t
h − u∆t

h ), (v∆t
h − u∆t

h )φ) dt

= −

N
∑

m=1

∫ tm

tm−1

(

∂t
|v∆t

h − u∆t
h |2

2
,φ

)

dt

=
N
∑

m=1

∫ tm

tm−1

(

|v∆t
h − u∆t

h |2

2
, ∂tφ

)

dt,

−

N
∑

m=1

(

|v∆t
h (tm)− u∆t

h (tm)|2

2
,φ(tm)

)

−

(

|v∆t
h (tm−1)− u∆t

h (tm−1)|
2

2
,φ(tm)

)

,

where in the last line we have used the fact we do not have boundary terms because the sum
telescopes and φ has compact support in (0, T ). Then, since u∆t

h − v∆t
h vanishes (strongly) in

L2(0, T ;L2
#), we get that I12 → 0 as (∆t, h) → (0, 0).

We have that the I2 → 0 as (∆t, h) → (+∞, 0). Indeed, by the discrete commutator
property (3.4), Proposition 4.4, and the inverse inequality (3.3) we can infer

∣

∣I2
∣

∣ =

∣

∣

∣

∣

∫ T

0

(

∂tv
∆t
h , Ph(u

∆t
h φ)− u∆t

h φ
)

dt

∣

∣

∣

∣

≤

∫ T

0
∥∂tv

∆t
h ∥H−1∥Ph(u

∆t
h φ)− u∆t

h φ∥H1dt

≤ ch∥∂tv
∆t
h ∥

L
4
3 (H−1)

∥u∆t
h ∥L4(H1)

≤ ch
1
2 ∥∂tv

∆t
h ∥

L
4
3 (H−1)

∥u∆t
h ∥L∞(L2)∥u

∆t
h ∥L2(H1) ≤ c h

1
2 .

Hence, also this term vanishes as h → 0 and this concludes the considerations for the term
involving the time-derivative.

Concerning the viscous term, by adding and subtracting ∇u∆t
h φ we obtain the following

three terms:

(∇u∆t
h ,∇Ph(u

∆t
h φ)) = (∇u∆t

h ,∇(u∆t
h φ)) + (∇u∆t

h ,∇(Ph(u
∆t
h φ)− u∆t

h φ))

= (|∇u∆t
h |2,φ)− (

1

2
|u∆t

h |2,∆φ) +Rvisc,

where the “viscous remainder” Rvisc is defined as

Rvisc :=
(

∇u∆t
h ,∇[Ph(u

∆t
h φ)− u∆t

h φ]
)

,

Since u∆t
h converges to u weakly in L2(0, T ;H1

#) and strongly in L2(0, T ;L2
#), by integrating

over (0, T ) we can infer the following two results:

lim inf
(∆t,h)→(0,0)

∫ T

0
(|∇u∆t

h |2,φ) dt ≥

∫ T

0
(|∇u|2,φ) dt,

∫ T

0
(
1

2
|u∆t

h |2,∆φ) dt →

∫ T

0
(
1

2
|u|2,∆φ) dt,
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where in the first inequality we used that φ is non-negative. For the remainder Rvisc, by
using again the discrete commutator property from Definition 3.1, we have that

∣

∣

∣

∣

∫ T

0
Rvisc dt

∣

∣

∣

∣

≤ c h

∫ T

0
∥∇u∆t

h ∥2 dt → 0 as (∆t, h) → (0, 0).

We consider now the nonlinear term bh. We have

bh(u
∆t
h , u∆t

h , Ph(u
∆t
h φ)) = bh(u

∆t
h , u∆t

h , uNh φ) + bh(u
∆t
h , u∆t

h , Ph(u
∆t
h φ)− u∆t

h φ)

= bh(u
∆t
h , u∆t

h , u∆t
h φ) +Rnl.

(5.9)

The “nonlinear remainder” Rnl := bh(u
∆t
h , u∆t

h , Ph(u
∆t
h φ)− u∆t

h φ) can be estimated by using
(3.9), the discrete commutator property, and (3.3). Indeed, we have

|Rnl| ≤ ∥nlh(u
∆t
h , u∆t

h )∥H−1∥Ph(u
∆t
h φ)− u∆t

h φ∥H1

≤ c h∥u∆t
h ∥3∥u

∆t
h ∥H1∥u∆t

h ∥H1

≤ c h∥u∆t
h ∥

1/2
2 ∥u∆t

h ∥
1/2
H1 ∥u

∆t
h ∥2H1 ,

(5.10)

hence, by integrating in time
∫ T

0
Rnl dt → 0 as (∆t, h) → (0, 0).

The definition of nlh in (3.8) allows us to handle the first term on the right hand side in (5.9)
as follows.

bh(u
∆t
h , u∆t

h , u∆t
h φ) =

(

(u∆t
h ·∇)u∆t

h , u∆t
h φ

)

+
1

2

(

(u∆t
h div u∆t

h , u∆t
h φ

)

=

(

(u∆t
h ·∇)

1

2
|u∆t

h |2 +
1

2
|u∆t

h |2 div u∆t
h ,φ

)

=

(

div
(

u∆t
h

1

2
|u∆t

h |2
)

,φ

)

= −

(

u∆t
h

1

2
|u∆t

h |2,∇φ

)

.

Then, for 4 < s ≤ 6 and s∗ as in (5.8) it follows that

u∆t
h

1

2
|u∆t

h |2 → u
1

2
|u|2 strongly in Ls∗/3(0, T ;L1), as (∆t, h) → (0, 0),

and one shows that
∫ T

0
bh(u

∆t
h , u∆t

h , u∆t
h φ) dt → −

∫ T

0

(

u
1

2
|u|2,∇φ

)

dt as (∆t, h) → (0, 0).

The last term we consider is that involving the pressure. By integrating by parts we have

(p∆t
h ,divPh(u

∆t
h φ)) = (pNh u∆t

h ,∇φ) +Rp1 +Rp2. (5.11)

where the two “pressure remainders” are defined as follows

Rp1 :=
(

p∆t
h ,div(Ph(u

∆t
h φ)− u∆t

h φ)
)

and Rp2 :=
(

φ p∆t
h ,div u∆t

h

)

.

By using again the discrete commutator property (3.5) and (3.3) we easily get

|Rp1| ≤ ∥p∆t
h ∥2∥Ph(u

∆t
h φ)− u∆t

h φ∥H1

≤ c h∥p∆t
h ∥2∥u

∆t
h ∥H1

and then, by integrating in time,
∣

∣

∣

∣

∫ T

0
Rp1 dt

∣

∣

∣

∣

≤ c h
1
2 ∥p∆t

h ∥
L

4
3 (L2)

∥u∆t
h ∥

1
2

L2(H1)
∥u∆t

h ∥
1
2

L∞(L2)
,

which implies
∫ T

0
Rp1 dt → 0 as (∆t, h) → (0, 0).
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The term Rp2 can be treated in the same way but now using the discrete commutation
property for the projector over Qh

|Rp2| ≤ c∥Qh(p
∆t
h φ)− φp∆t

h ∥2∥u
∆t
h φ∥H1

≤ c h
1
2 ∥p∆t

h ∥
L

4
3 (L2)

∥u∆t
h ∥

1
2

L2(H1)
∥u∆t

h ∥
1
2

L∞(L2)

and finally this implies that
∫ T

0
Rp2 dt → 0 as (∆t, h) → (0, 0),

hence collecting all terms we have finally proved the local energy inequality (2.2).
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