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Abstract

We consider the optimization problem for a shape cost functional F (Ω, f) which
depends on a domain Ω varying in a suitable admissible class and on a “right-hand
side” f . More precisely, the cost functional F is given by an integral which involves
the solution u of an elliptic PDE in Ω with right-hand side f ; the boundary conditions
considered are of the Dirichlet type. When the function f is only known up to some
degree of uncertainty, our goal is to obtain the existence of an optimal shape in the worst
possible situation. Some numerical simulations are provided, showing the difference in
the optimal shape between the case when f is perfectly known and the case when only
the worst situation is optimized.
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1 Introduction

In worst-case optimization problems one has two sets X,Y of admissible choices and a cost
functional F : X × Y → R; the goal is to minimize F over X when the worst choice with
respect to Y occurs. In other words, we consider the optimization problem

min
{
F(x) : x ∈ X

}
where the cost functional F is defined by

F(x) = sup
{
F (x, y) : y ∈ Y

}
.

For a clear and extended presentation of worst-case optimization problems in structural
mechanics we refer to [1].

In the present paper we consider a worst-case shape optimization problem for elliptic
PDEs with Dirichlet boundary conditions. More precisely, we fix a bounded domain D ⊂ Rd
and for every domain Ω ⊂ D and f ∈ L2(D) we consider the state function u, solution of
the PDE

−∆u = f in Ω, u ∈ H1
0 (Ω),

and a cost functional of the form

F (Ω, f) =

∫
Ω
j(x, u) dx,

where j : D × R→ R is a decreasing function in the second variable. If we assume that the
right-hand side f may vary under an unknown small perturbation, we obtain the worst-case
shape functional

F(Ω) = sup
{
F (Ω, f + g) : ‖g‖L2(D) ≤ δ

}
,
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where δ > 0 is a fixed real number. In Theorem 4.2 we show that for small δ, there exists a
solution to the shape optimization problem

min
{
F(Ω) : Ω ⊂ D, |Ω| ≤ m

}
,

where we indicate by | · | the Lebesgue measure in Rd.
Of particular interest is the case when j(x, u) = −1

2
f(x)u, when the cost functional

F (Ω, f) becomes the Dirichlet energy

E(Ω, f) = min

{∫
Ω

(1

2
|∇u|2 − fu

)
dx : u ∈ H1

0 (Ω)

}
,

and we denote by E the corresponding worst-case functional. We discuss this case in Section
3 since the specificity of the functional allows us to obtain the existence of an optimal domain
by applying some classical results of [5] for decreasing shape functionals. In Section 3.1 we
consider the case f = constant or more generally f(x) = f̃(|x|) with f̃(r) decreasing; we
show (see Theorem 3.3) that in this situation, if D is large enough, the solution of the
worst-case shape optimization problem

min
{
E(Ω) : Ω ⊂ D, |Ω| ≤ m

}
,

is actually a ball of measure m.
The last Section 5 contains some numerical computations on a particular example.

2 Capacity, quasi-open sets and capacitary measures

Here below we summarize the main tools that we use in the sequel; the interested reader can
find a more detailed presentation of them in [2].

Capacity and Sobolev functions. We define the capacity of a set E ⊂ Rd as

cap(E) = inf

{∫
Rd

|∇u|2 dx : u ∈ H1(Rd); u = 1 in a neighbourhood of E

}
.

A classical result gives that the Sobolev functions are defined up to a set of zero capacity.
In fact, we have that for every u ∈ H1(Rd) the set of Lebesgue points

L(u) =

{
x0 ∈ Rd : lim

r→0

1

|Br|

∫
Br(x0)

u(x) dx exists

}
,

is such that cap
(
Rd\L(u)

)
= 0. Thus, we can identify a Sobolev function with its equivalence

class with respect to the relation u ∼ v, iff cap({u 6= v}) = 0.

Quasi-open sets and Sobolev spaces. We say that the set Ω ⊂ Rd is quasi-open if for
every ε > 0 there is an open set Ωε such that cap(Ωε) ≤ ε and Ω ∪ Ωε is open. Given a
quasi-open set Ω ⊂ Rd we define the Sobolev space H1

0 (Ω) as

H1
0 (Ω) =

{
u ∈ H1(Rd) : cap

(
{u 6= 0} \ Ω

)
= 0
}
,

and we notice that this definition coincides with the usual one in the case when Ω is open.
For every quasi-open set Ω, the Sobolev space H1

0 (Ω) is a closed subspace of H1(Rd) with
respect to the Sobolev norm

‖u‖H1 =
(
‖u‖2L2 + ‖∇u‖2L2

)1/2
.
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PDEs on quasi-open sets. For a quasi-open set Ω ⊂ Rd and a function f ∈ L2(Ω) we say
that u is a solution of the PDE

−∆u = f in Ω, u ∈ H1
0 (Ω), (2.1)

if we have that u ∈ H1
0 (Ω) and∫
Ω
∇φ · ∇u dx =

∫
Ω
φf dx, for every φ ∈ H1

0 (Ω).

It is well-known that u ∈ H1
0 (Ω) is a solution of (2.1) if and only if it minimizes in H1

0 (Ω)
the functional

J(Ω, u, f) =

∫
Ω

(1

2
|∇u|2 − fu

)
dx. (2.2)

In this framework the maximum principle states that if f > 0, then {u > 0} = Ω up to a set
of zero capacity. Thus, we can identify any quasi-open set Ω of finite measure with the level
set {wΩ > 0} where wΩ is the solution of

−∆wΩ = 1 in Ω, wΩ ∈ H1
0 (Ω).

In particular, we can endow the family of all quasi-open subsets of D with the metric

dγ(Ω1,Ω2) = ‖wΩ1 − wΩ2‖L1(D). (2.3)

Capacitary measures. We say that a positive measure µ is of a capacitary type if µ(E) = 0
for every set E ⊂ Rd such that cap(E) = 0. Since every u ∈ H1(Rd) is defined up to a set
of zero capacity, we have that the integral

∫
Rd u

2 dµ is well-defined (finite or infinite). We
define the Sobolev space H1

µ as

H1
µ =

{
u ∈ H1(Rd) :

∫
Rd

u2 dµ < +∞
}
.

Notice that if Ω is a quasi-open set, then H1
0 (Ω) = H1

µΩ
, where the capacitary measure µΩ

is defined as

µΩ(E) =

{
0 if cap(E \ Ω) = 0

+∞ if cap(E \ Ω) > 0.

PDEs involving capacitary measures. For a capacitary measure µ and a function
f ∈ L2(Rd) we say that u is a solution to the PDE

−∆u+ µu = f in Rd, u ∈ H1
µ, (2.4)

if we have that u ∈ H1
µ and∫

Rd

∇φ · ∇u dx+

∫
Rd

uφ dµ =

∫
Rd

φf dx, for every φ ∈ H1
µ.

As in the classical case we have that u is a solution of (2.4) if and only if u minimizes in H1
µ

the functional

J(µ, u, f) =
1

2

∫
Rd

|∇u|2 dx+
1

2

∫
Rd

u2 dµ−
∫
Rd

uf dx. (2.5)
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Moreover we have the following maximum principle: If µ1 ≥ µ2 (which means that µ1(E) ≥
µ2(E) for every quasi-open set E) and f1 ≤ f2, then u1 ≤ u2, where ui is the solution of

−∆ui + µiui = fi in Rd, ui ∈ H1
µi .

The metric space of capacitary measures. Suppose that D ⊂ Rd is an open set of finite
measure. We denote by QO(D) the metric space of quasi-open subsets of D endowed with
the metric (2.3). Then the completion of QO(D) with respect to dγ is given by the set

Mcap(D) =
{
µ capacitary measure : µ(E) = +∞, for every E such that cap(E\D) > 0

}
,

with the metric
dγ(µ1, µ2) = ‖wµ1 − wµ2‖L1(D),

where wµ denotes the solution of

−∆wµ + µwµ = 1 in Rd, wµ ∈ H1
µ.

it was proved in [7] that
(
Mcap(D), dγ

)
is a compact metric space.

Continuous functionals on Mcap(D). The resolvent operator is continuous with respect
to the metric above, in fact if fn ∈ L2(D) is a sequence converging in L2(D) to f∞ ∈ L2(D)
and µn is a sequence of capacitary measures converging to µ∞ ∈Mcap(D) in the dγ distance
then the sequence of solutions un of the PDEs

−∆un + µnun = fn in D, un ∈ H1
µn ,

converges strongly in L2(D) to the solution of

−∆u∞ + µ∞u∞ = f∞ in D, u∞ ∈ H1
µ∞ .

Thus, all the functionals of the form

F (µ) =

∫
D
j(x, u) dx, (2.6)

where j : D × R→ R is a given function, and u is the solution of

−∆u+ µu = f in D, u ∈ H1
µ,

are lower semi-continuous with respect to dγ , provided j(x, s) is continuous with respect to
s and bounded from below as

j(x, s) ≥ −c|s|2 + a(x) with c > 0 and a ∈ L1(D).

Existence of optimal sets. The following result was proved in [5] and represents the main
tool for proving existence of optimal domains.

Theorem 2.1 (Buttazzo-Dal Maso). Suppose that D is a bounded open set and F is a
functional on the family of quasi-open sets such that

• F is decreasing with respect to the set inclusion,

• F is lower semi-continuous with respect to the γ-distance.
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Then, for every m > 0 there is a solution to the problem

min
{
F(Ω) : |Ω| ≤ m, Ω quasi-open, Ω ⊂ D

}
.

Dirichlet energy of quasi-open sets and capacitary measures. Suppose that D ⊂ Rd
is a quasi-open set and f ∈ L2(D). For a quasi-open set of finite measure Ω ⊂ D we define
the Dirichlet energy of Ω with respect to f as

E(Ω, f) = min
{
J(Ω, u, f) : u ∈ H1

0 (Ω)
}
,

where the functional J(Ω, u, f) is defined in (2.2). The minimizer u solves (2.1). Thus
multiplying both sides of (2.1) by u and integrating by parts, we get

E(Ω, f) = −1

2

∫
D
fu dx.

For a capacitary measure µ ∈Mcap(D) we have

E(µ, f) = min
{
J(µ, u, f) : u ∈ H1

µ

}
,

where J(µ, u, f) is the functional in (2.5), and again by integration by parts we get

E(µ, f) = −1

2

∫
D
fu dx.

Remark 2.2. The functional E(Ω, f) is decreasing with respect to the set inclusion since we
have

H1
0 (Ω1) ⊂ H1

0 (Ω2) whenever Ω1 ⊂ Ω2.

Moreover, E(Ω, f) is of the form (2.6) and so it is lower semi-continuous with respect to dγ .
Thus, by Theorem 2.1, there is a solution to the shape optimization problem

min
{
E(Ω, f) : Ω quasi-open, Ω ⊂ D, |Ω| ≤ m

}
.

In order to have a solution Ωopt which is an open set it is necessary to assume some higher
intergability of f , while regularity results for ∂Ωopt are available only if we assume that f is
Hölder continuous.

3 Optimal domains for worst-case energy functionals

We consider a fixed bounded domain D ⊂ Rd and a function f ∈ Lp(D), where p ∈ [2d/(d+
2),+∞] (p > 1 if d = 2). For every quasi-open set Ω ⊂ D we define the worst-case shape
functional

Eδ,p(Ω) = sup
{
E(Ω, f + g) : ‖g‖Lp(D) ≤ δ

}
, (3.1)

where δ > 0 is a given number.

Proposition 3.1. For every quasi open set Ω ⊂ Rd of finite measure and f ∈ Lp(Ω), for p
as above, we have

Eδ,p(Ω) = min

{∫
D

(1

2
|∇u|2 − fu

)
dx+ δ‖u‖Lp′ (D) : u ∈ H1

0 (Ω)

}
. (3.2)

The supremum in (3.1) is attained for the function

g = −δu|u|(2−p)/(p−1)‖u‖−p
′/p

Lp′ (D)
,

where p′ is the conjugate exponent of p and u is the minimizer of the right hand side of (3.2).
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Proof. We first show that the supremum in (3.1) is attained. Let gn be a maximizing
sequence in (3.1); since ‖gn‖Lp(D) ≤ δ we may assume, up to extracting a subsequence, that
gn converges weakly to some g in Lp(D). The solutions un of

−∆un = f + gn in Ω, un ∈ H1
0 (Ω)

then converge, weakly in H1
0 (Ω), to the solution u of

−∆u = f + g in Ω, u ∈ H1
0 (Ω).

Therefore,

lim sup
n→∞

E(Ω, f + gn) ≤ lim
n→∞

J(Ω, u, f + gn) = J(Ω, u, f + g) = E(Ω, f + g).

Since gn is a maximizing sequence, we get the claim.
The expression of Eδ,p is of sup-inf type and to the functional J the sup-inf switch can

be applied (see for instance [6]). The supremum of J(Ω, u, f + g) with respect to g is easy
to compute and is reached for

g = −δu|u|(2−p)/(p−1)‖u‖−p
′/p

Lp′ (D)
,

where p′ is the conjugate exponent of p; we have then

Eδ,p(Ω) = inf

{∫
D

(1

2
|∇u|2 − fu

)
dx+ δ‖u‖Lp′ (D) : u ∈ H1

0 (Ω)

}
.

Note that, when p =∞, the functional Eδ,∞ reduces to

Eδ,∞(Ω) = inf

{∫
D

(1

2
|∇u|2 − fu+ δ|u|

)
dx : u ∈ H1

0 (Ω)

}
and the analysis above still holds.

Theorem 3.2. The worst case shape optimization problem

min
{
Eδ,p(Ω) : Ω ⊂ D, Ω quasi-open, |Ω| ≤ m

}
. (3.3)

admits a solution.

Proof. We will prove that the functional Eδ,p satisfies the hypotheses of Theorem 2.1. By
using the inclusion of Sobolev spacesH1

0 (Ω1) ⊂ H1
0 (Ω2) whenever Ω1 ⊂ Ω2 and the expression

(3.2) we obtain that the mapping Ω 7→ Eδ,p(Ω) is decreasing with respect to the set inclusion.
Thus it is sufficient to prove that the shape functional Eδ,p is lower semicontinuous with
respect to the γ-convergence. Suppose that Ωn is a sequence of quasi-open sets in D γ-
converging to the quasi-open set Ω∞ ⊂ D. For every open set Ωn let gn ∈ Lp(D) be the
function such that

Eδ,p(Ωn) = E(Ωn, f, gn) and ‖gn‖Lp = δ.

Up to a subsequence, we may suppose that gn converges weakly in Lp(D) to a function
g ∈ Lp(D) which is such that ‖g‖Lp ≤ δ. By the γ-convergence of Ωn we get that the
solution un of the equation

−∆un = f + gn in Ωn, un ∈ H1
0 (Ωn),
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converges strongly in H1
0 (D) to the solution of

−∆u = f + g in Ω∞, u ∈ H1
0 (Ω∞).

Thus, we have that

lim inf
n→∞

Eδ,p(Ωn) = lim inf
n→∞

E(Ωn, f + gn) = lim inf
n→∞

−1

2

∫
D

(f + gn)un dx

= −1

2

∫
D

(f + g)u dx = E(Ω, f + g) ≥ Eδ,p(Ω),

which concludes the proof.

3.1 The radial case

In this section we consider the case of a right-hand side f of radial type; more precisely, we
assume that f = f(|x|) and that the function r 7→ f(r) is decreasing. We then consider the
worst-case shape optimization problem (3.3) where the cost functional Eδ,p is given, according
to Proposition 3.1, by

Eδ,p(Ω) = inf

{∫
D

(1

2
|∇u|2 − f(|x|)u

)
dx+ δ‖u‖Lp′ (D) : u ∈ H1

0 (Ω)

}
.

We also assume that the domain D is large enough to contain a ball of measure m. With
the assumptions above we have the following result.

Proposition 3.3. The worst case shape optimization problem (3.3) is solved by the ball of
measure m centered at the origin.

Proof. The proof is obtained by symmetrization. It is known that the rearrangement of Ω
into the ball Ω∗ centered at the origin and u into a radial decreasing function u∗ gives a
lower Dirichlet integral ∫

Ω∗
|∇u∗|2 dx ≤

∫
Ω
|∇u|2 dx,

and the same Lp
′

norm
‖u∗‖Lp′ (Ω∗) = ‖u‖Lp′ (Ω),

while, due to the monotonicity assumption on f and the Riesz inequality (see [8]), the linear
term

∫
Ω fu dx increases : ∫

Ω∗
f(|x|)u∗(x) dx ≥

∫
Ω
f(|x|)u(x) dx.

Therefore, we obtain that the ball Ω∗ satisfies

|Ω∗| = |Ω| = m and Eδ,p(Ω∗) ≤ Eδ,p(Ω),

which concludes the proof.
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4 Optimal domains for linear worst-case functionals

In this section we consider a more general form of the optimization problem of the previous
sections, presented in the form of an optimal control problem, where the control variable is
the domain Ω ⊂ D in the bounded open set D ⊂ Rd.

The worst-case cost functional. For a quasi-open set Ω ⊂ D we consider the state
equation

−∆u = f in Ω, u ∈ H1
0 (Ω),

where f ∈ Lp(D) is a given fixed non-negative function and p ≥ 2d/(d+ 2) (p > 1, if d = 2).
The cost functional is then

F (Ω, f) =

∫
D
j(x, u) dx,

where
j(x, u) = −h(x)u with h ∈ Lq(D) and h(x) ≥ 0,

where q ≥ 2d/(d + 2) (q > 1, if d = 2). Note that, when h = f we are in the situation of
Section 3. We assume that the right-hand side f may vary under an unknown perturbation,
i.e. we consider the worst-case shape functional

Fδ,p(Ω) = sup
‖g‖Lp≤δ

inf

{
−
∫

Ω
h(x)u dx : −∆u = f + g in Ω, u ∈ H1

0 (Ω)

}
.

Lemma 4.1. Let Ω ⊂ Rd be a quasi-open set of finite measure, f ∈ Lp(Ω) and h ∈ Lq(Ω),
where p and q are as above. Then

Fδ,p(Ω) = −
∫

Ω
fw dx+ δ‖w‖Lp′ (Ω), (4.1)

where w is the solution of

−∆w = h in Ω, w ∈ H1
0 (Ω).

Proof. Let g ∈ Lp(Ω) be such that ‖g‖Lq ≤ δ and u be the solution of

−∆u = f + g in Ω, u ∈ H1
0 (Ω).

Then after integrating by parts we have

−
∫

Ω
hu dx =

∫
Ω
∇u · ∇w dx = −

∫
Ω
w(f + g) dx ≤ −

∫
Ω
wf dx+ δ‖w‖Lp′ (Ω),

with an equality achieved for

g = −δw|w|(2−p)/(p−1)‖w‖−p
′/p

Lp′ ,

which concludes the proof.

The shape optimization problem. We now consider the shape optimization problem

min
{
Fδ,p(Ω) : Ω ⊂ D, Ω quasi-open, |Ω| ≤ m

}
, (4.2)

where m > 0 and Fδ,p(Ω) is the functional from (4.1). We notice that Fδ,p is not necessarily
decreasing and so, we cannot apply Theorem 2.1 in order to obtain that an optimal domain
exists.
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Theorem 4.2. Let D ⊂ Rd be a bounded open set, h ∈ Ld(D) and f ∈ Lp(D) be two given
functions, where p ≥ 2d/(d+ 2) (p > 1, if d = 2). Suppose that h ≥ 0 and f ≥ ε > 0 on D.
Then, there is a constant δ̄ > 0 such that for every 0 < δ ≤ δ̄, there exists a solution to the
problem (4.2).

Proof. Let Ωn be a minimizing sequence for (4.2). By wn we denote the solution of

−∆wn = h in Ωn, wn ∈ H1
0 (Ωn).

We may assume that Ωn converges in the dγ distance to the capacitary measure µ ∈Mcap(D).
By the properties of the γ-convergence we have that wn converges strongly in L2(D) and
weakly in H1

0 (D) to the function wµ, solution of

−∆wµ + µwµ = h, wµ ∈ H1
µ,

and so, setting

Fδ,p(µ) := −
∫
D
fwµ dx+ δ‖wµ‖p′ ,

we get
Fδ,p(µ) ≤ lim inf

n→∞
Fδ,p(Ωn).

We now consider the quasi-open set Ω = {wµ > 0}. By the pointwise almost everywhere
convergence of wn to wµ we have that

|Ω| ≤ lim inf
n→+∞

|Ωn| ≤ m.

Thus, in order to prove that the set Ω is a solution of (4.2), it is sufficient to prove that
Fδ,p(Ω) ≤ Fδ,p(µ). We notice that by the maximum principle we have wµ ≤ wΩ, so that

Fδ,p(Ω)−Fδ,p(µ) =

∫
D
−fwΩ dx+ δ‖wΩ‖p′ −

(
−
∫
D
fwµ dx+ δ‖wµ‖p′

)
=

∫
D
−f(wΩ − wµ) dx+ δ

(
‖wΩ‖p′ − ‖wµ‖p′

)
≤
∫
D
−f(wΩ − wµ) dx+

δ

p′
‖wµ‖−p

′/p
p′

(∫
D
wp
′

Ω dx−
∫
D
wp
′
µ dx

)
≤
∫
D
−f(wΩ − wµ) dx+

δ

p′
‖wµ‖−p

′/p
p′

∫
D
p′wp

′−1
Ω (wΩ − wµ) dx

≤
∫
D
−f(wΩ − wµ) dx+ δ

∫
D

Cp
′−1
h

‖wµ‖p
′−1
p′

(wΩ − wµ) dx,

where in the last line we set Ch = ‖wD‖∞, being wD is the solution of

−∆wD = h in D, wD ∈ H1
0 (D),

and we used that by the maximum principle we have wΩ ≤ wD and that wD is bounded.
Thus we have

Fδ,p(Ω)−Fδ,p(µ) ≤
∫
D

(
δCp

′−1
h

‖wµ‖p
′−1
p′

− f
)

(wΩ − wµ) dx. (4.3)

Our next step is to prove that the right-hand side of (4.3) is negative for δ small enough.
Let Dm ⊂ D be a fixed quasi-open set with |Dm| = m and take δ small enough, depending
on Dm, h, f , and p, to have Fδ,p(Dm) < 0; taking into account the definition of Fδ,p in (4.1)

9



this is always possible. Thus for δ small enough, there is a constant c̄ > 0 depending only
on p, h, f and D such that

−c̄ ≥ inf
{
Fδ,p(Ω) : Ω ⊂ D, Ω quasi-open, |Ω| ≤ m

}
.

In particular, we have Fδ,p(µ) ≤ −c̄ < 0. Then

Fδ,p(µ) = −
∫
D
fwµ dx+ δ‖wµ‖p′ ≥

(
δ − ‖f‖p

)
‖wµ‖p′ ,

and we can estimate from below the norm of wµ as follows:

‖wµ‖p′ ≥
−Fδ,p(µ)

‖f‖p − δ
≥ c̄

‖f‖p − δ
.

Substituting in (4.3) we get

Fδ,p(Ω)−Fδ,p(µ) ≤
∫
D

(
δ
(Ch(‖f‖p − δ)

c̄

)p′−1
− f

)
(wΩ − wµ) dx.

Since f is bounded from below we obtain that, choosing δ̄ > 0 small enough, depending on
D, f , h, m and p, for δ ≤ δ̄ we have Fδ,p(Ω)−Fδ,p(µ) ≤ 0, which proves the claim.

5 A numerical example

This section is devoted to some numerical simulations of optimal solutions for the worst-case
functional. We focus on the worst-case functional Eδ,p given in (3.2) for the case p = 2. In
order to set a numerical algorithm for simulating the optimal shapes we work with the optimal
control formulation, as in the previous section. Obtaining the Euler-Lagrange equation of
the worst-case functional Eδ,2 it is elementary to check that the problem

min
{
Eδ,2(Ω) : Ω ⊂ D, |Ω| ≤ m

}
is equivalent to

min
{
F (Ω) : Ω ⊂ D, |Ω| ≤ m

}
,

where

F (Ω) =

∫
Ω

[
− f(x)u+ δ‖u‖2

]
dx,

and u the solution of the state equation

−∆u = f − δ u

‖u‖2
in Ω, u ∈ H1

0 (Ω).

Remark that both, the cost functional and the state equation, are now nonlinear. Of course,
when δ = 0 we recover the original shape optimization problem for compliance. For the
numerical simulations of optimal solutions we work with the generalized (relaxed) formulation
of the problem (see [4]), or more concretely with an approximation of it introduced in [3,
Remark 5.8],

min
{
F̃ (V ) : V ∈ B(D),

∫
D
e−αV dx ≤ m

}
,

where F̃ stands for the functional

F̃ (V ) =

∫
D

[
− f(x)u+ δ‖u‖2

]
dx,
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being u the solution of the PDE

−∆u+ V (x)u = f − δ u

‖u‖2
in D, u ∈ H1

0 (D)

and B(Ω) the class of nonnegative Borel measurable functions on Ω. The constraint∫
D
e−αV dx ≤ m

plays the role of the volume constraint in the original problem. In [3, Remark 5.8] it is shown
that when α goes to zero this problem Γ-converges to the relaxed formulation of the problem
given in [4]. In general, if an optimal shape Ω exists, then there is an optimal potential V
such that, a.e. x ∈ Ω,

V (x) =

{
0 if x ∈ Ω

+∞ if x ∈ D \ Ω .

Our simulations are performed in FreeFEM++ using the Method of Moving Asymptotes
as the optimizing routing (available in FreeFEM++ through the NLopt library). Method
of Moving Asymptotes is a gradient based method widely used for Topology and Structural
Optimization problems [9]. The nonlinear state and adjoint equations are solved with a
simple iterative algorithm in which the nonlinear term is updated with the state of the
previous iteration. In our numerical examples we take D = (0, 1)× (0, 1) and a regular mesh
of 50×50 elements. For the numerical practice it is advisable to constraint V to take vales on
a bounded interval [0,M ], and we select M = 1000 (when V takes this maximal value on the
state u is very small and practically vanishes). The election of α is a delicate issue if we want
to obtain optimal potentials V in which we clearly identify the optimal shape Ω = {V = 0},
since it depends on the value M and the number of mesh elements. In our examples we
have checked the right α to be α = 0.01. The source term f(x, y) is the piecewise constant
function:

f(x, y) =

{
1 if x ≤ 0.5

2 if x > 0.5 .

The volume fraction is m = 0.3, and it is saturated in all the simulations we show. In Figure
1 we show the results for the unperturbed case, i.e. δ = 0. In this case optimal compliance is
−0.0297465, and in the picture we clearly identify the optimal shape {V = 0} located on the
right side of the square, just where the source term f is bigger. Out of the optimal shape, the
potential is already big enough so that the optimal state practically vanishes, as we can see
in the pictures. In Figure 2 we show the results for the perturbed case with δ = 0.25. In this
case, optimal compliance is −0.0188295, greater that the unperturbed optimal compliance,
and the optimal shape is very similar to the unperturbed one, but a bit more rounded as
intuitively expected.
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Figure 1: Results for the unperturbed case
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Figure 2: Results for the perturbed case with δ = 0.25
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