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We study the effect of a thermal environment on the quantum annealing dynamics of a transverse-field Ising
chain. The environment is modeled as a single Ohmic bath of quantum harmonic oscillators weakly interacting
with the total transverse magnetization of the chain in a translationally invariant manner. We show that the density
of defects generated at the end of the annealing process displays a minimum as a function of the annealing time,
the so-called optimal working point, only in rather special regions of the bath temperature and coupling strength
plane. We discuss the relevance of our results for current and future experimental implementations with quantum

annealing hardware.
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I. INTRODUCTION

The recent spectacular advancements in the manipulation
and control of interacting quantum systems at the level of a
single object, both in equilibrium and far-from-equilibrium
conditions, opened up a wealth of unprecedented possibilities
in the realm of modern quantum physics [1]. On one hand,
they paved the way to the discovery of unconventional states
of quantum matter. On the other hand, they enabled us to
exploit quantum mechanics to speedup classical computation,
through the implementation of quantum computation or quan-
tum simulation protocols. In the latter context, one of the most
widely known approaches is the so-called quantum annealing
(QA) [2-5], alias adiabatic quantum computation [6].

Due to the realization of ad hoc quantum hardware imple-
mentations, mainly based on superconducting flux qubits, QA
is nowadays becoming a field of quite intense research [7—
13]. Its basic strategy works as follows. Assume to encode
the solution of a given problem in the ground state of a
suitable Hamiltonian. The goal of the protocol is to find such
state by performing an adiabatic connection (if possible) with
another Hamiltonian, typically describing a much simpler
physical system. Starting from the basic idea rooted on the
adiabatic theorem of quantum mechanics [14], a number of
different situations that enable a considerable speedup induced
by quantum fluctuations have been extensively analyzed in
the context of Hamiltonian complexity theory, in the closed-
system setting [15]. Nonetheless, a good description of the
physics emerging from the above-mentioned experimental
devices cannot neglect the role of dissipation, and the ensuing
open-system quantum dynamics [16].

In the absence of dissipation, the adiabatic unitary dynamics
suggests that a slower annealing will lead to a smaller density
of defects generated in the process. It is a well-established
fact that, during any nontrivial QA dynamics, one inevitably
encounters some kind of phase transition, be it a second-
order critical point or a first-order transition, where the gap
protecting the ground state—in principle nonzero, for a finite
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system—vanishes as the number of system sites/spins N goes
to infinity [17-19]. This results in a density of defects nges(7)
that decreases more or less slowly as the annealing timescale t
is increased. In the second-order case, the predicted decrease of
nger(T) is a power-law %, with the exponent o determined by
the equilibrium critical point exponents: this is often referred
to as the Kibble-Zurek (KZ) scaling [20-23].

Although only marginally considered up to now, still the
presence of dissipation modifies this scenario considerably.
One can argue that an environment will likely have an opposite
effect on the density of defects [24]: given enough time, it
would lead to an increase of ng.(7) toward, eventually, a full
thermalization in the limit T — oo. The competing effects of
a quantum adiabatic driving in presence of a dissipative envi-
ronment might therefore lead to interesting nonmonotonicities
in the curve ng.(7): the increase of nges(t) for larger v has
been referred to as anti-Kibble-Zurek (AKZ) [25]. This is,
in turn, intrinsically linked to the presence of a minimum of
nger (T) at some intermediate Top, known as optimal working
point (OWP). Itis worth mentioning that the term “anti-Kibble-
Zurek” appeared for the first time in a completely classical
setting, the adiabatic dynamics of multiferroic hexagonal
manganites [26], with the crucial difference that the deviation
from the expected KZ scenario is there seen as an unexplained
decrease of nger(7) for fast annealings, i.e., for t — 0. This
opposite trend leads to a maximum of nge¢(7) for intermediate
T and, as far as we understand, has nothing to do with
AKZ, which we will address here in our quantum mechanical
framework.

Returning to the quantum case, there have been a few studies
on how dissipation affects the QA performance on a quantum
transverse-field Ising chain in transverse field, where the
annealing is performed by slowly switching off the transverse
field. Some studies have employed a classical Markovian noise
superimposed to the driving field [24,25,27] or a Lindblad
master equation with suitable dissipators [28,29]; others have
considered the effect of one or several bosonic baths coupled to
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FIG. 1. Density of defects vs annealing time for a quantum Ising
chain weakly coupled to an Ohmic bath, at different bath temperatures
T, compared to the ideal coherent evolution (KZ) behavior, nge(t) ~
7712 The plot highlights the three distinct behaviours we have found:
nger(t) can (i) display a global minimum (green triangles), (ii) a local
minimum (blue circles), and (iii) converge monotonically toward a
large-7 thermal plateau (red squares). Here the system-bath coupling
constant is kept fixed at @ = 1072,

each spin along the transverse direction [30-33]. The general
common feature that emerges from these studies is that the
density of defects stops following the KZ scaling after a certain
7, and starts to increase again.

In this paper, we reconsider these issues, concentrating
our attention on the benchmark case of a transverse-field
Ising chain. Remarkably, we find that the OWP disappears
below a certain temperature, which depends on the system-bath
coupling. The possible situations we encounter are outlined in
Fig. 1, where the density of defects is plotted as a function
of the annealing time t, for various temperatures and fixed
system-bath coupling strengths. Notice that three different
situations may emerge, in which ng.¢(7) either shows a global
or local minimum at some Ty (i.€., the global/local OWP), and
situations where nger(7) deviates from the simple coherent-
dynamics KZ-scaling, but is still monotonically decreasing,
hence no OWP is found. Quite remarkably, as we shall discuss
later on, the range of temperatures that are relevant for current
quantum annealers is such that one would predict the absence
of an OWP.

We will further comment on the validity of the often used
assumption that the density of defects can be computed as
a simple sum of two contributions [25,29-32]: one given
by the purely coherent dynamics, the other coming from a
time-evolution governed only by dissipators, i.e., neglecting
the coherent part. Since we consider also regimes for which
relaxation processes after the critical point are important, we
will provide evidence that this additivity assumption breaks
down for large enough annealing times.

The structure of the paper is as follows: In Sec. II we
introduce the dissipative quantum transverse-field Ising chain
under investigation, and discuss the Bloch-Redfield quantum
master equation (QME) approach we use to work out the
dissipative time-evolution of the system. Our numerical results
are illustrated in Sec. III: we first analyze the conditions for

the emergence of an OWP, also sketching a phase diagram as
a function of temperature and system-bath coupling strength.
Next, we investigate the issue of the additivity of the coherent
and incoherent contributions to the density of defects in
different regimes. Finally, in Sec. IV, we summarize our
findings, and provide a discussion of their relevance. The two
appendices are devoted to a discussion of technical issues
related to the QME we have used, and to the approach toward
thermal equilibrium in presence of a bath.

II. MODEL AND METHODS

The model we are going to study is described by the
following Hamiltonian:

I:ilot(t) = ﬁsys(t) + ﬁSB + ﬁbatha (D

where flsys(t) is the time-dependent system Hamiltonian, ﬁsg
is the system-bath interaction term, and ﬁbath is a harmonic
oscillator bath Hamiltonian. The system is taken to be a
quantum spin-1/2 Ising chain in a transverse field [34]:

N
Hyo(t) = —J Z [6767%, + h()67], @)
i=1

where 6; = (67", 6], 67) are the usual Pauli matrices on the i™"
site, N the number of sites, J > 0 the ferromagnetic coupling
strength, and h(¢) > 0 the external (driving) field, which is
turned off during the evolution. Periodic boundary conditions
(PBC) are assumed, i.e., 6 y+1 = 6. The interaction Hamil-
tonian we considered is written as

Ho=--X® Zla (3a)
X =Y "] +b). (3b)

where the b, are bosonic annihilation operators, and A; are
the system-bath coupling constants. The bath Hamiltonian
is taken, as usual, as ﬁbam =3 ho 13;151, where w; are
the harmonic oscillator frequencies. The coupling between
the system and the environment is captured by the spectral
function [16,35] J(w) = >, A78(w — w;). We will focus on
Ohmic dissipation: for a continuum of frequencies w;, we
define J(w) = 2ahi’we™/*, where o quantifies the system-
bath coupling strength and w, is a cutoff frequency. Notice that
here we consider a single (common) bath, which is coupled to
all the spins along the z direction, as done in Ref. [32]. This
is, essentially, the quantum version of a noise term acting on
the transverse field, whose classical counterpart was treated
in Refs. [24,25]. This choice of system-bath coupling, which
generates infinite-range correlations between all the spins in
the chain, will allow us to proceed, after further simplifying
assumptions, with a simple perturbative QME, as will be clear
in a short while.

For the closed system case (i.e., without the coupling with
the oscillator bath), the problem can be analytically tackled by
means of a standard Jordan-Wigner transformation, followed
by a Fourier transform [36,37], which allows us to rewrite

Eq. (2) in terms of spinless fermions operators ¢, in momentum

064307-2



OPTIMAL WORKING POINT IN DISSIPATIVE QUANTUM ...

PHYSICAL REVIEW B 98, 064307 (2018)

space

HSI;S = Z Sk(l)(Cka —¢ kc_k) + Ak(él T_k +Hce)l, 4
k>0

where &, (1) = 2J (h(t) — cosk)and Ay = 2J sink. The k val-
ues in the sum depend on the considered fermionic sector, since
Hy, HE < commutes with the fermion parity [38]. The initial ground
state belongs to the even-parity sector for any value of the
transverse field, hence the time-evolving state always belongs
to that sector. Due to this fact, one can restrict the choice of the k
valuestok = r(2n — 1)/N,withn = 1, ..., N/2, thus fixing
the antiperiodic boundary conditions (ABC) for fermions.

In presence of the system-bath interaction, it is in general
not possible to write Eq. (1) as a sum of independent terms
for each given k. However, the fact that the single bath
operator X couples to a translationally invariant term, 3 [6F =

-2 Zbo(é,ték — E_kéT_k), ensures momentum conservation
for the fermions. As argued in Ref. [32], this in turn implies that
the self-energy for the one-body fermionic Green’s function
is k diagonal, and all fermionic momenta connected to the
external lines have momentum k. Different momenta k' # k
appear only in closed internal loops. At the lowest order level
(second-order) and within the usual Markovian approximation,
the tadpole diagram, which contains a loop, simply provides
a shift of energy levels and can be neglected, while the only
relevant self-energy diagram has momentum k in the fermionic
internal line [31]. This suggests that, at least at weak coupling
and within a Born-Markov approximation, it is legitimate to
assume that each momentum k does not interact with other
momenta k' # k, and that we could write the coupling to the
bath as

Hy =Y R ® @le, — e, (5a)
k>0

R ="l + b (5b)
1

and Hyyn = D ka0 2 hy 13;[’ kl;l «» Where we have effec-
tively “split” the original unique’bath into N/2 identical
copies, one for each fermionic k value, all with identical J (w).
This choice greatly simplifies the problem, since the total
Hamiltonian can be written as a sum in k space:

Heo(t) =Y Hi(1). 6)

k>0

This automatically leads to an ensemble of independent dis-
sipative two-level systems. Indeed, it is convenient to map
the even-parity fermionic Hilbert space to a collection of
pseudospin-1/2 quasiparticles one for each k > 0, with the
identification ;) = ck k|0) and |¢k) |0). Introducing the
pseudospin Pauli matrices 4 = (£, £ , £{) to represent such
two-dimensional space, the Hamiltonian for each k mode reads

He(t) = (&) + Xo) £ + A ] +Zhwlblkblk 0

Hence, as anticipated, each driven two-level system is coupled
with its own bath of harmonic oscillators through a 7 term.
It is worth stressing that this simplifying assumption of k-
decoupled baths does not modify the thermal steady state that

the system reaches at long time, as we will explicitly show in
a short while.

Summarizing the previous discussion, for our specific
choice of the system-bath coupling, the dissipative dynamics
of a translationally invariant quantum Ising chain can be com-
puted by studying the time evolution of N /2 two-level systems
in momentum space, each coupled to an independent identical
bath, described by a Gibbs density matrix at temperature
T, = (kgfBy)~', where kj is the Boltzmann’s constant:

A e*ﬁbﬁbmh
Pbath = Tr{e*ﬁbﬁbmh} . )]
We address the dissipative dynamics of each two-level
system by means of a standard perturbative Bloch-Redfield
QME [39,40]:

d 5k —

o=~ 1A 580~

Fl [ sys * Psys sz’ Sk(t) ﬁily{z] + H.C.) , 9

where HS(;‘S)(I) = &) + Axtl is the two-level system
Hamiltonian, and we assume a Weak system-bath coupling and
the usual Born-Markov approximation [39-44]. Here the first
term on the right-hand side represents the unitary coherent evo-
lution, while the second term contains the dissipative effect of
the bath on the system dynamics. The operator Sy (1) expresses
the interaction of the bosonic bath with the time-evolving

system [43,44] in terms of the bath correlation function C(¢) =
Cie(t) = Tt { Pan € o'/ X e~ Hoant /1 K 3.

N 1 ! N At
Se(t) ~ ﬁ/ dt' C(t") Uy (2.t — 1) 8 Uy (2,1 — 1) . (10)
0

The time dependence of Sk (1) is due to the unperturbed time-
evolution operator Uo «(t, t — t') of the system, which changes

with  since HX)(¢) is driven:

N , —[ i [ =)
Upi(t,t — 1) = Texp 7 ds Hl(s) |- (11
t—t’

Assuming that C(¢) decays fast with respect to the timescales of
the evolving system, and that H;;‘S)(t) is approximately constant
on the decay timescale of C (), the expression in Eq. (11) can
be drastically simplified. This allows us to write the explicit
differential equations that we used to solve for the p{)(t) of
each single two-level system, as detailed in Refs. [41, 42 A441:
we report them in Appendix A for the reader’s convenience.
One might wonder how reasonable our rather special choice
of bath in representing the dissipative dynamics of an Ising
chain is. To answer this question, we have looked at the
relaxation toward equilibrium at fixed values of the transverse
field. Any reasonable weakly coupled bath at temperature 7},
should allow the system to reach thermal equilibrium values
for the operators one wants to measure. This is indeed what the
Bloch-Redfield Eq. (9) does, but the equilibrium temperature
T that the system reaches is actually given by T = T,/2, for
a reason which is discussed in some detail in Appendix B.
In essence, a peculiarity of our bath-coupling is momentum
conservation. Foreach of the L /2 sectors atfixed k, there would
be four different possible states, {ck|0) A_k|0) é}: T_k|0) [0)},
but the dissipative dynamics remains always restricted to

just two of them, {6}: T_k|0), |0)}, i.e., those with presence or
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absence of pairs of fermions with opposite momenta. States
with only one fermion of momentum k or —k, {51; |0), 6T_k [0)},
cannot be reached. This does no justice to the equilibrium
thermodynamics, which takes into account all states in the
Hilbert space, 2-° = 4%/2, and not only a dynamically con-
served subspace of dimension 2%/2. It turns out, however,
that accounting for such a part of the Hilbert space simply
amounts to having a temperature T = T} /2, see Appendix B
for details. Hence in all the plots, we always indicate the
effective temperature T = T} /2 that the system would reach at
thermodynamic equilibrium, rather than the bath-temperature
T}, used in our simulations.

III. NUMERICAL RESULTS

Before presenting our results, it is mandatory to introduce
the QA protocol we are going to simulate, and the figure of
merit we will use to quantify its performance. Namely, we
choose to vary the external field A(¢) in Eq. (2) in the time
interval ¢ € [0, 7], where t denotes the total annealing time,
and implement a standard linear schedule 4(t) = (1 — ¢/t )hy,
where A is the initial value of the field. In this way, the
annealing crosses the zero-temperature critical point of the
quantum Ising chain, 4. = 1, separating a paramagnetic phase
(h > h.) from a ferromagnetically ordered phase (& < h.) in
the 6* direction. In all the numerical calculations, we fix
the number of sites at N = 1000. Concerning the bath, we
choose w, = 10J as cutoff frequency in the Ohmic spectral

function. The initial condition /3;’;;(0) is chosen to be the

ground state of I/-is(yks)(O) for h(0) = hy > 1 (we fix hy = 10).
The time evolution of ,65;‘3 (¢) is then calculated by integrating
the corresponding equations of motion by means of a standard
fourth-order Runge-Kutta method.

To assess the quality of the annealing, we compute the
average density of defects [38,45] over the ferromagnetic
classical Ising state. In the original spin language, the operator
counting such defects reads

~ 1 - AXAX
et = 7 ; (1-676%,) . (12)

Translating it into fermions and pseudospins, we can write the
desired average as

Naer (1) = % > Tr{agg AR®)}. (13)
k>0
where AL} = 1 — %/ cos k + ' sink.

In the following, we discuss the dependence of the final
density of defects ng(f = 7) on the annealing time t, for
different system-bath coupling strengths & and temperatures
T =T,/2. In particular, we characterize the regimes for
which an OWP is present or not, and study how the defect
density approaches thermal values for long annealing times.
We also analyze the conditions under which the processes of
coherent and incoherent defect production can be regarded as
independent, and highlight regimes in which this assumption
fails.

A @

o= 0 e
107 FhpT = 0.057

F kT =0.07J

kpT = 0.10] —*—
kpT =015 —=—
kpT =025 —*—
102 b — 0357 ——

ndef(T)

[ kpT = 0.50J —v—

kT =0.75J —*—

kpT =150 —*— _ -3
kpT = 5.00.] —=— a=10 \
10-3_.‘.””.1 vl el vl ol el
102 107 100 101 102 108 104 105 108
T
100

a=0——
107 HepT =0.257

kpT =0.35.7

kpT =045 —o—
| kpT = 0507 —o—
kpT =0.60.] —o—
102 ST = 0.75.7 —
FhpT =1.000 —v—
FhpT = 1.50.] —a—
LkpT = 2.50.] —e—

kpT =5.00] —=—
Lol L

Ndef (T)

a=10"2
10-3 ul L

102 107 100 107 102 108 10* 10° 108
T

FIG. 2. Density of defects vs annealing time 7 for (a) & = 1073,
(b) & = 1072, for different effective temperatures T, as indicated in
the legend. The arrows indicate the direction of increasing tempera-
tures. The trend for high 7 is of AKZ type, with an emergent OWP. At
lower T and/or higher « values, a monotonic trend smoothly appears,
with the absence of OWP.

A. The optimal working-point issue

Let us start by looking at the behavior of the final density of
defects ngef(7) as a function of the annealing time 7. In Fig. 2,
we consider o = 1073 and 1072, for which our perturbative
approach is reliable [44], and different values of 7. For
sufficiently high temperatures, we observe a clear AKZ trend:
after the initial decrease, ng.f(7) attains an absolute minimum
at some value nop; = ngef(Topt )—corresponding to the OWP
Topr—and then starts to increase again toward a large-t plateau
atne, = nger(t — 00). By decreasing 7', however, the plateau
value ny can become smaller than nqy, hence 7o, would
correspond to a local minimum—surrounded by two inflection
points where the second derivative changes sign—and should
be called, strictly speaking, a local OWP. A further reduction of
T leads to the disappearance of the local minimum at 7,,,—by
a merging of the two inflection points—with a monotonic
decrease of ngs(7) as T grows. By comparing the two plots,
it is clear that the presence of an OWP is determined by the
interplay between the temperature T and system-bath coupling
strength «.

Conversely, Fig. 3 displays the final density of defects for
a fixed temperature, kg7 = J, while scanning « in the range
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FIG. 3. Density of defects vs annealing time t for kg7 = J, at
different coupling strengths «. Note that, for large enough annealing
times, nq.f(7) converges toward the thermal value.

[107#, 107!]: we see that very weak couplings favor an AKZ
behavior, while stronger couplings tend to cause the lack of
an OWP. Moreover, it appears neatly that ng.(t) exhibits
a convergence, for large 7, toward a value n.(7), which
depends only on the temperature 7. We have verified that such
limiting value coincides with the final (2 = 0) thermal value
Ntherm (1) = ngef (h = 0), indicated by a horizontal dashed line
in Fig. 3 and calculated from the equilibrium average:

1
nhe(h) = 5 > Tr{agg AL} (14)
k>0

where f)STys(h) is the system thermal state at bath temperature
T, = 2T, when the transverse field is k. The explicit calcula-
tion of nyerm ('), following Appendix B, brings

Noo(T) = e (T) = 5(1 — tanh (BJ)) . s)

Notice that, for each two-level system, the final gap att = 7
is 4J < hw,. Hence, the bath influences the dynamics until
the end, once the critical point is passed. This is at variance
with the dissipative Landau-Zener model, where the final gap
is usually much bigger than the bath cutoff frequency, and the
final ground state probability might not fully reflect thermal
equilibrium with the bath [46,47].

Figure 4(a) summarizes the values obtained for nqp(T)
vs T, for various a. The stars mark the temperatures Ty, ()
where nop (T) crosses the (infinite-time limit) thermal value
Niherm (T'): given a, only for T > T, the minimum at 7, is an
absolute minimum of n14e¢(7). For T < Tjow (o), the minimum
disappears completely—n 4. (7) is a monotonically decreasing
function of 7. For Tiow(a) < T < Typ(a), nep survives only
as a local minimum. Summarizing, for the range of o we
have investigated (the weak-coupling region o < 10~") one
can construct two characteristic temperature curves, Tioy () <
T,p(ar) and a phase diagram, sketched in Fig. 4(b). Notice that
the two curves are difficult to extrapolate from the data foro —
0, because the simulations would require a too large timescale
to observe the presence or absence of the local minimum in
Nopt. We can, however, argue, on rather simple grounds, that
Tup(a — 0) should drop to zero as ~ 1/log(1/c). Indeed, as

0.12
(a)
0.1+ a=10"2—=—
a=6-10"3——
0.08 - a=3" 1073 ——
—~ a =
3 a=6-10""—*—
E: 0.06 thermal
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§ 0.04 -
I
0.02 -
0 T
0 0.1

0 : 1 1 1 1 1 1 1 1 1
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

«

FIG. 4. (a) Dependence of nqy on T, for various values of . Each
curve defines an upper value T,(a) at which ngp (Typ) = Roo(Typ)
(marked by stars), and a lower T, (o) at which the local minimum
defining ny disappears. (b) Phase diagram in the T — o plane with
Typ(a) and Tioy(cr). A proper OWP only exists for T > T, (). The
black solid line is a fit of T;p(a) using Eq. (17), with C = 2.08 and
D = 12.3. The red dashed line is a fit with Tjo, (@) = ca ™ /o — o,
where we find o, = 5.5-107%, ¢ = 3.58, and b = 0.22. The shaded
area alludes to the typical range of temperatures of interest for the
D-Wave hardware [7,8], with k3T ~ 12 mK and J 2 80 mK.

seen from Fig. 4(a), nop (T, o) appears to be roughly linear in
T in the region where it crosses the thermal curve, nop (7', o) =
A, T, withaslope A, which, as we have verified, depends on «
in a power-law fashion. Since nyperm (7)) ~ e72//%87 for small
T, we can write the implicit relationship:

Nopt (Tups @) = Ay Typ = €=/ k6T (16)

Assuming a power-law for A, we get, up to subleading
corrections,

Tup(ax) ~ a7

log 1 + D(loglog 1)’
where C, D are constants. This functional form fits our
numerical data in a remarkably good way. The behavior of
the Tiow () curve is considerably less trivial. On the practical
side, it is computationally harder to obtain information of
the temperature below which a local OWP ceases to exists.
Our data suggest that there might be a critical value o, ~
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FIG. 5. Density of defects vs time for v = 10°, kzT = J and

different system-bath coupling strengths. The arrow at 7. marks
the value of ¢ at which the transverse field crosses the critical
value, h(t,) = h.. For o = 1072, where the defects density has fully
converged (see Fig. 3), ng.r(¢) is almost superimposed to the exact
instantaneous thermal one computed from Eq. (B4).

5.5 - 10~* below which a local OWP exists even at the smallest
temperatures, but this might be an artefact of some of the
approximations involved in our weak-coupling QME. Allin all,
the phase diagram is quite clear—at least for weak-moderate
values of o—in predicting the presence of a true OWP only
for relatively large temperatures 7. We will discuss this in the
concluding section.

The fact that the system converges to a thermal state for
long annealing times is quite reasonable, and perhaps expected.
Indeed, if the thermalization timescale becomes smaller than
the annealing timescale, one would expect that the system’s
state remains close to the instantaneous thermal equilibrium
state at every time during the whole dynamics. Figure 5, where
we plot nger(?) vs time at fixed kg7 = J and fixed annealing
time T = 103, confirms this expectation.

In Fig. 5, the dashed line indicates, as a guide, the “instan-
taneous” exact thermal value ngef(h(t)) computed according
to Eq. (14) (see Appendix B for details), while the arrow at .
marks the value of t where the transverse field /() crosses the
critical point, i(f.) = h, = 1. We observe that, for increasing
couplings «, the curves tend to be closer and closer to the
instantaneous thermal one, since the thermalization timescale
decreases.

B. Interplay between coherent and incoherent
defects production

As mentioned above, in absence of dissipation, the defects
produced are due to violations of adiabaticity in the coherent
dynamics:

ﬁé’é&(t) = [ny’?(t) Pean()] - (18)
and would be given by
niep(t) = ZTr (At Pian()} - (19)

k>()

As well known, nS(+ = 1) obeys the usual KZ scaling [22].
In the present case, for the Ising chain, n! () ~ 771/2.

In the literature related to dissipative QA, it is often found
that the density of defects can be regarded as the sum of two
independent contributions:

naer(t) ~ nSok(t) + ngss (1) (20)

The second contribution, ni*(¢), should be due to a purely

dissipative time-evolution of the system state:

d A NN A
dt '0((1]1:)9 = _([T]:v Sk(t)péﬁ)q] + H.C.), (213)
nger (1) = — ZTr {Get Pl (D)} - (21b)

k>0

Notice that the time evolution of the system Hamiltonian
enters here only through the bath-convoluted system operator
Sk(t). In particular, based on this “additivity” assumption,
Refs. [30,31] computed scaling laws for the defects density
in presence of dissipation due to several thermal bosonic baths
independently coupled to the system. In Ref. [32], an “additive”
scaling law for the same model, derived for the case of a single
bath coupled to the system, is shown to be in excellent agree-
ment with the density of defects obtained from a dissipative
QME time evolution. However, a crucial requirement for these
scaling laws to hold is that thermalization effects after the
critical point has been crossed must be negligible: indeed, in
Refs. [30,31], the adiabatic sweep is stopped at the critical
point or immediately below it, so giving no time to the system
to “feel” the thermal environment; in Ref. [32], the analysis
is carried out for a very small system-bath coupling «, so
that the thermalization time is extremely long, much longer
than the characteristic annealing timescale. As a consequence,
after the critical point crossing, the system is very weakly
affected by the bath, and the additivity assumption still holds.

Here we are considering an annealing protocol that can
leave enough time to the system to thermalize after the
critical point crossing: indeed, the quantum critical point is
crossed when h(t.) = (1 —t./t)hp = 1, in our units, hence
t. = (1 —1/hp)t = 0.97, for iy = 10. This means that, after
the critical point, the system has #,,,; = 0.1t time to relax to
the thermal state, i.e., a time proportional to the annealing time
7. Therefore, for all the T values for which #,y,; is comparable
or larger than the bath thermalization time, the effect of the
bath after the quantum critical point will not be negligible.

Figure 6 shows a test of the additivity assumption for four
different bath temperatures at fixed coupling & = 1072; for
each temperature, we compare the defects density obtained
via Eq. (9) with that obtained by the sum of n$! and ndis.
For t small enough, the additivity assumption always holds,
since f,y,q 1s too short, i.e., there is not enough time to
feel the effect of the bath after the critical point is crossed.
However, for longer annealing times, the additivity starts to
fail: the lower the temperature, the worse it is. In particular,
we see that additivity would always predict the presence of
an OWP, but in some regimes the interplay between coherent
and dissipative effects is nontrivial and the two contributions
cannot be considered separately. Note also that for k37 = 5J,
the additivity assumption seems to hold for every annealing
time, even after converging to its thermal value. However, this
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FIG. 6. Test for the additivity assumption Eq. (20) for the for-
mation of defects. We compare ng.r(f = 7), calculated with the
full Bloch-Redfield evolution in Eq. (9) (continuous curves, filled
symbols), to the sum of n$2(t) plus the purely dissipative evolution

contribution ngi;fs(t) from Eq. (21) (dashed curve, empty symbols).

is probably due to the fact that both of the two values tend
to converge to the maximum for the density of defects, and
therefore additivity holds better.

IV. DISCUSSION AND CONCLUSIONS

In the present paper, we have revisited some of the issues
related to QA in presence of dissipation. In particular, we
investigated under which conditions it is possible to find
an “optimal” annealing time, the OWP, that minimizes the
number of defects, and therefore maximizes the annealing
performance. We have tackled those issues in the benchmark
case of a transverse-field Ising chain QA by studying its
open-system quantum dynamics with a Markovian QME,
as appropriate for a dissipative environment modeled by a
standard Caldeira-Leggett Ohmic bath, weakly coupled in a
uniform way to the transverse magnetization. Of course, such
a choice of the system-bath coupling is rather peculiar and
very specific. However, we have tested that it provides the
correct steady-state thermalization for a chain evolving at fixed
transverse field; hence we expect that our results should retain
some general validity, at least qualitatively, for other forms of
thermal bosonic baths.

Interestingly, a proper OWP can be seen essentially only
in a high-temperature regime, kg7 2 0.5J. For temperatures
which might be relevant for current [7,8], and presumably
future quantum annealers, kg7 < J, schematically sketched
by a shaded area in the phase-diagram of Fig. 4(b), we
found that n4.¢(7) would be monotonically decreasing (hence
without OWP), except for very weak bath couplings,a < 1073.
In the intermediate temperature regime, ng.r(t) displays a
local minimum at finite t, but the actual global minimum is
attained as a T — oo thermal plateau. Obviously, the previous
considerations would apply to experimental realizations where
the coupling to the environment can be considered to be weak
and Ohmic, which apparently is not the case for the D-Wave
hardware [7,8], where 1/f noise seems to play an important
role [48]. The extension of our study to cases where the bath

100 ¢

/131 oo-c:'b’ooe-ooe»ggg_gO@_O&@G_
= aa,
u—g » EEYPUNN
S Quench + Relax; kg1 = 0.35 ——
102 - QA; kpT =035J =
t Quench + Relax; kgT = 0.75J ------
[ QA; kgT =0.75J o
| Quench + Relax; kT = 5.00J ----
QA; kgT =5.00J ©
10-3| P Y B A W] R [— Y R Ll |
100 10 102 108 104 105 108
T

FIG. 7. Comparison between our dissipative QA results (points)
and sudden quenches from hy = 10 to ko = 0 followed by thermal
relaxation (lines), for ¢ = 0.01 and different temperatures. Data
obtained in both cases by the QME dynamics described in the paper.
Horizontal black lines identify the expected thermal values for each
temperature.

spectral density has different low-frequency behaviors, such as
sub-Ohmic or with 1/f components, is a very interesting open
issue which we leave to a future work.

Previously related studies [30-32] on the same model did
not detect all these different behaviors, because they either
stopped the annealing close to the critical point [30,31]—to
highlight some universal aspects which survive in presence
of the environment—or considered an extremely small, o ~
1070, system-bath coupling [32]: this amounts, in some sense,
to effectively disregarding thermalization/relaxation processes
occurring after the critical point has been crossed.

A second issue we have considered is the additivity ansatz
on the density of defects, Eq. (20), i.e., its being a simple sum
of the density of defects coming from the coherent dynamics
with that originating from the time evolution due to dissipators
only: We found that additivity breaks down as soon as the bath
thermalization time is effectively shorter than the characteristic
timescale for the system dynamics; for our annealing protocol,
this happens at long enough annealing times t, as shown in
Fig. 6.

Another interesting outcome of our calculation is the answer
to the following question: If the long-time limit of a dissipative
QA dynamics is thermalization, is it useful to do QA at all?
Wouldn’t it be better to suddenly quench the system to zero
transverse field and wait for thermal relaxation to occur? To
answer this question, we compare in Fig. 7 the data obtained
by our dissipative QA dynamics with those obtained, using
the same QME, from a “sudden quench” protocol—from
ho = 10 to hy = O—followed by thermal relaxation with the
environment at given 7, for three values of temperature,
kgT/J =0.35,0.75,5, and o = 0.01. The results illustrate
that a dissipative QA is, in general, a better strategy, especially
for short-intermediate times, and/or in presence of an OWP.

A final comment deserves the issue of how general the
picture emerging from our specific model might be. It is hard to
put forward general arguments on this issue, but the results we
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obtained suggest that the picture might apply to more compli-
cated models. Consider, for simplicity, a disordered quantum

Ising chain Hy(1) = — Y, [/i6;67,, + h(1)8{], with J; €
[0, 1], in the presence of a thermal environment. The classical
thermal expectation value for the density of defects at temper-
ature T (for h = 0) will no longer be exponentially small—
Niherm (T) ~ e~2/88T with A = 2J the excitation gap—since
the classical problem is now gapless: On general grounds,
for a power-law density-of-states of excitations p(A) ~ A®
one expects a power-law for the thermal density of defects
Riherm(T) ~ T®*!. Hence, nyperm(T) can be made quite small
by a sufficiently small T for the environment. On the contrary,
the quantum coherent dynamics is made very slow—indeed,
logarithmically slow, nS(7) ~ 1/ log? (y T)—by the infinite-
randomness quantum critical point with exponentially small
gaps [45,49]. Dissipation typically tends to increase the density
of defects, nger(7) > ng‘;}f‘(r) ~ 1/1log? (y 1), hence we gener-
ically expect an extremely slow approach to thermalization for
T — 00: it is not unreasonable to think that such a slow ap-
proach to a small thermal value #2erm (') occurs monotonically
from above, rather than from below, through an intermediate
OWP. Clearly, a full proof of this conjecture would require
more work on the dissipative disordered quantum Ising chain.

In conclusion, we believe that QA protocols realized with
quantum annealers for which thermal effects are sufficiently
weak, at sufficiently low temperatures, should not show any
OWP, but rather a monotonic decrease of the error toward
a large running time thermal plateau. Furthermore, it would
be tempting to move away from the reference quantum Ising
chain toy-model, and explore the effects of dissipation in more
sophisticated models. The use of quantum trajectories [50]
or of tensor-network approaches, recently extended to deal
with open quantum systems [51,52], could help in addressing
generic one-dimensional (or quasi-one-dimensional) systems,
which would be hardly attackable from an analytic perspective.

ACKNOWLEDGMENTS

We acknowledge fruitful discussions with A. Silva, R.
Fazio, and G. Falci. Research was partly supported by EU FP7
under ERC-MODPHY SFRICT, Grant Agreement No. 320796.

APPENDIX A: DIFFERENTIAL EQUATIONS
FROM THE BLOCH-REDFIELD APPROACH

Following the procedure used in Refs. [41,42,44], we start
from Eq. (9) and apply a time-dependent rotation around ],
R, = expli g, fky/Z], with ¢, = arctan(&,(t)/Ay). In this way,

we get R/ I/ﬂy"s)(t) R, = ¢ ', withe, = hA, = JEX(t) + AL

Notice that all the quantities introduced here depend obviously
on k, but we dropped the corresponding index for simplicity.
To express the 8¢ (¢) operator in Eq. (10) in a simpler analytic
form, we make two further approximations: First, we assume
that the bath correlation function C(¢) decays to zero in a
timescale t5 << t — t, so that the maximum of the integral
can be safely extended to infinity. Second, we assume that
Hs(y"s)(t) can be regarded as constant in time intervals that are
comparable to 7p [41,43,44]; this allows us to approximate
the coherent evolution operator of Eq. (11) as Uo,k(t, t—t)

~exp{—i P/I\S(;‘S)(t) t'/h}. Eventually, we express the time
evolution differential equations in the Bloch sphere
representation f)i’}fg(t) =R ,65’;3(1‘) R =311+, rn®#]
with v = x, y, z, and 1 being the 2 x 2 identity matrix, so that
we finally have

Py = =Wy —7x) + (¢I + Va1

Py = —(yD + %) ry — 2A,r (A1)

. : —_ r

Fp = =@y — Vox (Fy — Tx) +2Atry - (VD - ?) Iz,
with 7,(¢) = —tanh[B¢,] being the “instantaneous” putative

equilibrium value that r, would reach in absence of the driving.
The various (time-dependent) rate constants include the usual
“relaxation” y,, “pure dephasing” y,, and “decoherence” y;,
rates [53]

2 )
() = ﬁcoth (BRA)J(2A;) cos™(¢;),  (A2a)
_ qra .,
v,(1) = T sin“(¢;), (A2b)
1
() =y, () + EVR(t), (A2¢)

as well as the following two extra terms

Var () = —% coth (BiiA)J(2A,) sin2¢,, (A3a)

drra
V(1) = W sin 2¢; . (A3b)
If we were to neglect the unitary part of the evolution in the
QME, and consider the purely dissipative QME of Eq. (21),
we would have to integrate the following differential equations
for the corresponding Bloch vector rés(z):

diss

- 7)() + szrz

- diss __ diss
Fy =—WMW (rx

,;Siss - _ (VD + &) r;‘!iss

2
- J R diss
—7r ) — (7/ — _) r .

i.;iiss ==y, (r)(riiss
APPENDIX B: THERMAL DEFECTS DENSITY
CALCULATION

(A4)

In this appendix, we compute analytically the equilibrium
thermal defects density for an ordered transverse-field Ising
chain with a fixed .

To start, recall that the Hamiltonian in Eq. (2) conserves
the parity of the number of up (or down) spins. As a conse-
quence, the Hilbert space can be partitioned into even and odd
parity sectors. This partitioning survives also when moving
to the spinless fermions picture, so that we can think to the
Hamiltonian in Eq. (4) as the even fermion block of the total
Hamiltonian Hf, & H[,. Observe that, considering Hf,
only, we account for N/2 two-level systems, hence a total
of 2N/2 gstates. Let us, for a moment, assume that we treat
these N /2 two-level systems in a thermal state at temperature
T,. For a given momentum k, we reduce the basis states to
just absence/presence of pairs of opposite momentum and
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diagonalize the Hamiltonian Hs(ys) = & %7 + Arty to get

(k) €k 0
Hdiag = |:0 _GJ,

where €, = V&2 + AZ. Therefore, the corresponding thermal
state is given by

B

iy (k)
e_ﬂb Hdiag

Tr{e i)

1 e P 0
- ebrex 4+ e—Prex |: 0 eﬂbekj|'

This state is expressed in the basis of the eigenstates of Hs(ks),

which are combinations of the original basis states |1x) =
E,t T_k|0),and|¢k) = |0). The corresponding creation operators

n,t, in terms of which Hél;g = ek(ﬁlﬁk — ﬁ,kﬁik), are simply

related to the original fermionic operators by

NG -
Ptherm =

(B2)

& = wifly — vl (B3)

where (ug, vy) = (€ + &, Ar)//2€x(€x + & ). Writing the
defect density operator ﬁg];)f in Eq. (13) in terms of the ﬁ,t, the

corresponding expectation value over the thermal state finally

reads
Tb _
Nger = § :Tr
k>0

~ (k) A(k)
7 gef Iotherm

— Z [1—ye(1 =2 Tr[ A7 Ao ]
k>0

— ZU — yitanh(Byer)], (B4)

k>0

where y;, = (Arsink — &, cosk)/e; and Tr{ﬁ,tﬁkﬁt(fe)rm} =

fr(2Bper), with fr(x) = 1/(1 4 ¢*) being the Fermi distri-
bution function. Notice the factor 2 in the Fermi function
argument, due to the fact that excitations here consist of two
fermions, and cost an energy 2¢;. Equation (B4) gives the
density of defects for a system that thermalizes with a bath
at temperature 7, but can only explore states with pairs of
fermions with opposite momenta.

The original problem, however, was a transverse-field Ising
chain, and we are evidently making violence to the correct
thermodynamics by looking only at the even-fermion sector
of the Hilbert space: the counting of states, 2V/2, as opposed
to the 2V states of the full Hilbert space, is a clear witness
of that error. Thinking in terms of the correct approach to
the problem, one would immediately realize that the very fact
that the fermionic boundary conditions, and hence the required
k vectors, change when the fermionic parity changes, brings
a nontrivial “interaction” between fermions, which does not
allow for a simple thermodynamical free-fermion calculation.
However, one can devise the following shortcut, which should
be correct in the thermodynamic limit N — oo, when the
difference in the k vectors associated to the two parity sectors
is negligible. Let us assume that we keep the N /2 k-vectors
fixed to those selected by the ABC boundary conditions for

fermions, but allow also for the singly occupied states 6i|0)

and 6ik|0). For each of the N /2 values of k, we have four
states, hence 4V/2 = 2V states 1n total The Hamiltonian at
fixed k, in the basis given by {ck|0) k|0) c}:cT (10}, 10)}, is
now four-dimensional, and given by

00 0 0
. 00 0 0
k
Hil = 0 0 ¢ O (BS)
00 0 —e

To get the thermal equilibrium state, we exponentiate I:I\;Lﬁf

1 0 O 0

w101 0 o0 ®6)
Pri =7z 10 0 efa o |
00 0 eba

where Zgy = 2 + e P ek,
Building on this result, we can compute the defect density
starting from the second line in Eq. (B4), but noting that now

we have Tr{ﬁ,i N ﬁf({fn = f(Bex). Therefore, it follows that

g‘gfl — Z [1 — yi tanh ('32 ):| ,
k>0

where y; is defined exactly as before. A comparison of this
equation with Eq. (B4) shows that, restricting to states with
only pairs of fermions with opposite momenta, the density
of defects at thermal equilibrium corresponds to the true
thermodynamic one, provided the temperature of the bath is
rescaled by a factor 2: T = T,/2.

Properly speaking, the expression in Eq. (B7) is exact only
in the thermodynamic limit N — oco. One might wonder how
close it describes the equilibrium thermodynamics for a finite
value of N. Here, an exact and consistent reference value
can be easily obtained for an Ising chain with open boundary
conditions (OBC), where the spectrum does not depend on the
fermionic parity. The price to be paid is that the diagonalization
is not a trivial k£ sum of 2 x 2 problems. Nevertheless, for a
given value of the transverse field &, the problem can be always
reduced to an ensemble of N two-level systems. The standard
result is then [36,54]

(B7)

(BY)

N
Z = Tl s

where 7, are the creation operators for the eigenstates with
energies €,,, defined as

i Z(gm,c + hie)). (B9)

i=1

The real coefficients g, ;, h,,.;, together with the energies €,
can be computed numerically [36,54]. The thermal state is thus
the normalized matrix exponential of Eq. (B8):

1 Bén 0
oy = —5——— (B10)
therm eﬁgm + e_ﬂgm O engl" '

We can finally express the defect density operator in Eq. (12)
by using the #,, operators, and then compute its expectation
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FIG. 8. Thermodynamics of the defect density in the transverse-
field Ising chain for k37 = J. The PBC thermodynamics (orange
solid lines) is calculated with Eq. (B7), while the OBC thermody-
namics (red solid lines and diamonds) corresponds to Eq. (B11). The
blue solid circles are PBC-QME relaxation dynamics data for N /2
two-level systems for 7, = 27.

value on the thermal state (B10):

N
1 1 - o
naef =5 = 1 2_(An [r2BEn) + By fr(=2B2n),
m=1
(B11)
with
N—-1
An =Y &mi@mit1 +hmit1), (B12a)
i=1
N—1
By = hmi(gmit1+hmit1). (B12b)
i=1

In Fig. 8, we show the results for the density of defects at
kgT = J vs N, for two different values of the transverse field:
the critical value & = h, = 1, and a value in the ferromagneti-
cally ordered phase, 7 = 0.5 < h.. The plot reports the results
obtained by three different approaches: (i) the PBC formula in
Eq. (B7) (orange solid lines), (ii) an explicit QME relaxation
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FIG. 9. Difference between density of defects for (a) PBC and
(b) OBC and the expected thermal value at the thermodynamic limit,
plotted vs the number of sites N, for h = 0.5, 1. (a) The scaling is
exponential in N. (b) The scaling is polynomial in N; our best fit gives
a convergence with 1/N.

with T;, = 2T (blue circles), and (iii) the exact OBC evaluation,
following Eq. (B11) (red solid lines and diamonds). Notice
that the convergence of the PBC results to the thermodynamic
limit is exponentially fast in N, while the OBC data show
1/N finite-size scaling corrections. This is illustrated in Fig. 9,
where we show the finite-size scaling of both the PBC data (top)
and OBC results (bottom) to the common thermodynamical
limit for k3T = J and h = 0.5, 1.
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