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Abstract

Next generation wireless networks aim at providing substantial improvements in spectral efficiency

(SE) and energy efficiency (EE). Massive MIMO has been proved to be a viable technology to achieve

these goals by spatially multiplexing several users using many base station (BS) antennas. A potential

limitation of Massive MIMO in multicell systems is pilot contamination, which arises in the channel

estimation process from the interference caused by reusing pilots in neighboring cells. A standard method

to reduce pilot contamination, known as regular pilot (RP), is to adjust the length of pilot sequences while

transmitting data and pilot symbols disjointly. An alternative method, called superimposed pilot (SP),

sends a superposition of pilot and data symbols. This allows to use longer pilots which, in turn, reduces

pilot contamination. We consider the uplink of a multicell Massive MIMO network using maximum

ratio combining detection and compare RP and SP in terms of SE and EE. To this end, we derive

rigorous closed-form achievable rates with SP under a practical random BS deployment. We prove that

the reduction of pilot contamination with SP is outweighed by the additional coherent and non-coherent

interference. Numerical results show that when both methods are optimized, RP achieves comparable

SE and EE to SP in practical scenarios.
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I. INTRODUCTION

The development of cellular networks is lead by the continuous increase in mobile data traffic

[2]. The design of future cellular networks aims at handling 1000× more data traffic per unit area

[3]. Meanwhile, the energy consumption of mobile communication systems is of great economical

and ecological concerns [4]. Massive multiple-input multiple-output (MIMO) is considered as

one of the most promising technology to jointly improve spectral efficiency (SE) and energy

efficiency (EE) [5]–[9]. The key idea of Massive MIMO is to utilize a large number of antennas

(e.g., hundreds or thousands) at the base stations (BSs) to communicate coherently with several

(e.g., tens or hundreds) user equipments (UEs) by virtue of spatial multiplexing [10], [11].

The acquisition of channel state information (CSI) at the BS is essential in Massive MIMO.

A time division duplexing (TDD) system is usually proposed to avoid the large overhead of

downlink channel training and feedback [11]. Uplink pilot sequences are transmitted by the UEs

and channel reciprocity is exploited at the BS to coherently detect data from UEs in the uplink

and precode data in the downlink. The time and frequency interval, over which the channel can

be considered to remain static and frequency flat, called the coherence block, has a limited size

and, in turn, there is a finite number of orthogonal pilot sequences that are available for channel

estimation. Therefore, in multicell systems the pilot sequences need to be reused across cells.

This creates coherent interference, called pilot contamination, between UEs that share the same

pilots, which reduces the quality of channel estimates and affects the SE. The pilot contamination

has been widely investigated in the literature. In [12]–[17], the same set of pilot sequences is

assumed to be reused in all the cells and pilot contamination is mitigated by exploiting spatial

channel correlation [12]–[14] or data covariance matrices [15]–[17]. Another approach is to have

longer pilot sequences than the number of served UEs per cell to reduce the number of cells

utilizing the same pilot [9], [18]–[20]. This method can effectively reduce pilot contamination

at the cost of an increased estimation overhead that, in turn, decreases the amount of data

symbols transmitted per coherence block. This tradeoff is studied in [19] under a hexagonal cell

deployment and it turned out that a fraction between 5% and 40% of the coherence block should

be used for pilots.

In all the aforementioned works, the transmission of pilot and data symbols is done separately

within the coherence block to reduce interference in the channel estimation process. This method

is known in the literature as regular pilot (RP) transmission. In [21]–[27], the authors explore
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an alternative method that relies on the simultaneous transmission of pilot and data signals. This

method is referred to as superimposed pilot (SP) and allows to increase the amount of samples

that can be used for channel estimation and data transmission. By using SP, [21] propose an

optimal coherent receiver based on the Viterbi algorithm. Linear channel estimation methods of

finite impulse response channels for single-input single-output (SISO) systems are considered in

[22] with only knowledge of the first order statistics. In [23], the authors compare SP and RP

under Gauss-Markov flat fading SISO channels under a practical setup where channels change

rapidly and UEs have low signal-to-noise ratios (SNRs). The results show that SP provides better

performance than RP in terms of uncoded bit-error-rate (BER) and mean squared error (MSE)

of channel estimates. Similar results have been found for stationary MIMO fading channels in

[24]. In the aforementioned works [21]–[24], the authors focus on a single cell or single user

scenario. Recently, [25]–[27] have shown that SP achieves promising results in multicell Massive

MIMO systems. In particular, UEs transmit a linear combination of pilot and data symbols within

the whole coherence block. This allows the use of longer pilot sequences, which can thus be

reused less frequently in the network. This allows to reduce pilot contamination, which could,

in principle, improve the SE. However, sending pilot and data signals simultaneously causes

interference in the channel estimation process from data symbols. This degrades the estimation

quality and creates correlation between channel estimates and data. Moreover, the use of longer

pilots increases the computational complexity of channel estimation and data detection. This, in

turn, consumes more power and may eventually reduce the EE of the network. In summary, the

use of SP in Massive MIMO systems introduces new sources of interference and increases the

consumed power. All this may limit the practical gains of SP methods in terms of SE and EE.

The aim of this paper is to evaluate the performance of SP in the uplink of a multicell Massive

MIMO system and make comparisons with RP. To this end, we derive rigorous closed-form rate

expressions with SP when using maximum ratio combining (MRC). This stands in contrast to

prior works, [25], [27], which deal with approximate expressions of signal-to-interference-plus-

noise ratios (SINRs) and mean square errors (MSEs). The analysis provided in this paper holds

true for any number of BS antennas (not just for a large number). These formulas provide

valuable insights into identifying all the interference sources, their impact on the SE and their

relationship with the other system parameters. The provided expressions are then used to perform

the asymptotic analysis (corresponding to the large number of BS antennas regime) of the

network, which allows to identify the conditions under which either RP or SP provide greater
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rates. Then, in order to properly study the effect associated with intercell interference in a large

practical network with an irregular BS deployment, we adopt the stochastic geometry framework

developed in [8] wherein BSs are spatially distributed according to a homogeneous Poisson point

process (PPP). Within this setting, we calculate closed-form lower bounds of the achievable rates

averaged over the UEs’ spatial distribution. This provides powerful insights into the interplay of

system parameters without requiring the use of heavy numerical simulations. Such lower bounds

are then used to compute the EE of the network with both RP and SP taking into account the

power consumed by transmission and circuitry. Numerical results are used to show that, when

both methods are optimized, RP provides comparable SE and EE to SP in practical scenarios.

The remainder of this paper is organized as follows. Section II introduces the network model.

In Section III, the channel estimation process with RP and SP is detailed whereas the achievable

rates with MRC are computed in Section IV. Section V presents detailed analytical comparisons

between RP and SP. In Section VI, the average achievable rates are first computed for a random

network deployment (based on stochastic geometry) and then used for computing the EE.

Section VII illustrates numerical results while Section VIII concludes our work.

Notation: We denote vectors by lower-case bold-face letters (e.g., x)1 and matrices by bold-

face capital letters (e.g., X).2 The operators E{·} and E{·|y} represent expected value and

expected value conditioned on a realization of the random variable y,3 respectively. The notation

| · | represents the absolute value and ‖ · ‖ denotes the Euclidean norm. We denote the transpose,

conjugate transpose and conjugate operators as (·)T , (·)H and (·)∗, respectively. We denote by IM

the identity matrix of size M×M and CN(·, ·) indicates a circularly symmetric complex Gaussian

distribution. To denote the set of real and complex numbers we use R and C, respectively, while

ℜ(·) is the real part. Γ(·) denotes the Gamma function.

II. NETWORK MODEL

We consider the uplink of a multicell Massive MIMO network where each BS has M antennas

and serves K single-antenna UEs. We define ΦD the set containing all BSs, where D denotes

the density of BSs per unit area (measured in BS/km2). Note that this definition does not require

the BSs to be distributed in any specific manner. However, a stochastic geometry framework

1[x]j refers to the jth element of x.

2[X]j denotes the jth column of X and [X]ij refers to the ith row and jth column element of X.

3We abuse the notation in conditional expectations by referring to the random variable and its realization with the same letter.
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will be used later on in Section VI to model the BS distribution. Without loss of generality, the

following analysis is focused on an arbitrary BS, denoted as BS0 serving UEs in cell 0, and an

arbitrary UE k in cell 0, denoted as UE0k . We define ΨD = ΦD\{0} as the set containing all

other BSs than BS0.

We consider a network with bandwidth BW. The communication channels are modeled as block

fading where each channel is considered to be constant over a coherence block of time duration

Tc and bandwidth Bc.4 The total bandwidth is equally divided among all coherence blocks,

which means that BW/Bc is an integer number, and each block contains τc = BcTc complex

samples. We assume uncorrelated Rayleigh fading channels since this is the first rigorous capacity

analysis with SP in a multicell scenario. As done with RP, we believe that it is helpful to first

develop fundamental theory for uncorrelated channels and then to extend it to correlated channels.

Therefore, this is left for future work. Moreover, since uncorrelated fading corresponds to the

worst-case scenario for pilot contamination and SP aims at mitigating this effect, this analysis

gives insights into the main benefits of SP. In addition, the achievable rates under uncorrelated

Rayleigh fading are close to those under practical measured channels with non-line-of-sight and

spatially distributed UEs [28]. We denote by hll ′i ∈ CM the channel between the M antennas

of BSl and UEl ′i in which the small-scale fading (SSF) is modeled as hll ′i ∼ CN (0, βll ′iIM)
∀l, l′ ∈ ΦD and i ∈ {1, . . . ,K} with βll ′i ≥ 0 being the large-scale fading (LSF) coefficient

between BSl and UEl ′i. We assume that the distance between UEs and BSs is large enough to

consider βll ′i to be the same for all BS antennas. The received signal y0 ∈ CM at BS0 is

y0 =

∑
l ′∈ΦD

K∑
i=1

h0l ′ixl ′i + n0 (1)

where n0 ∈ CM is the noise vector distributed as n0 ∼ CN(0, σ2IM) and xl ′i represents the trans-

mitted signal from UEl ′i in one arbitrary sample of the coherence block. The transmitted signal

can be used for data, pilots or a superposition of the two depending on the employed method.

We analyze the two transmission methods illustrated in Fig. 1: RP, called time-multiplexed in

[25], and SP. With RP, data and pilot symbols are transmitted separately in each coherence block.

Therefore, xl ′i contains only one of the two in each sample of the coherence block. With SP,

pilot and data symbols are transmitted simultaneously during the whole coherence block and

thus xl ′i contains a superposition of the two in each sample.

4In an OFDM system, the coherence bandwidth Bc includes several subcarriers—see [11] for more details.
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Tc

Bc

Bc

Tc

Data symbols
Pilot

Pilot + Data symbols

symbols
RP:

SP:

Fig. 1: Transmission protocol with RP and SP methods.

III. CHANNEL ESTIMATION

To estimate the channels, we use standard linear minimum mean squared error (LMMSE)

techniques [29] with both RP and SP.

A. Regular pilots

We consider a transmission protocol where τp out of the τc samples in each coherence block are

reserved for pilot sequences, which leaves a fraction 1−τp/τc of samples for data transmission. We

consider a set of τp orthogonal pilot sequences of length τp. Each BS allocates K ≤ τp different

pilot sequences to the UEs served in its cell. We denote as φl ′i ∈ Cτp, ∀l′ ∈ ΦD, i ∈ {1, . . . ,K}
the pilot sequence assigned to UEl ′i with |[φl ′i] j | = 1, ∀ j ∈ {1, . . . , τp}. To identify the UEs in

different cells that share the same pilot as UE0k (including UE0k), we define the set PRP

0k
={

{l′, i} : φH
0k
φl ′i , 0

}
. UE0k transmits its pilot sequence φT

0k
along with all other UEs in the

network over τp instances of (1). At BS0, this yields the received signal ZRP

0k
∈ CM×τp given by

ZRP

0k =

∑
l ′∈ΦD

K∑
i=1

√
ql ′ih0l ′iφ

T
l ′i + N̄0 (2)

where ql ′i is the transmission power of the pilot symbols from UEl ′i and N̄0 is the noise matrix

with i.i.d. elements distributed as [N̄0]m j ∼ CN
(
0, σ2

)
∀m ∈ {1, . . . ,M}, j ∈ {1, . . . , τp} with

σ2 being the noise variance. By multiplying ZRP

0k
with φ∗

0k
/√τp, the received pilot signal is

correlated with the pilot sequence corresponding to UE0k , which is equivalent to despreading

the received signal. This operation yields zRP

0k
∈ CM given by

zRP

0k = ZRP

0k

φ∗
0k√
τp
=

∑
{l ′,i}∈PRP

0k

√
ql ′iτph0l ′i + n̄0 (3)
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where n̄0 = N̄0φ
∗
0k
/√τp is a noise vector distributed as n̄0 ∼ CN

(
0, σ2IM

)
. Notice that no

useful information is lost in the despreading operation, given that any signal in the orthogonal

complement of φ0k is independent of zRP

0k
. Therefore, zRP

0k
in (3) is a sufficient statistic for

estimating the channel h00k between BS0 and UE0k . The minimum mean squared error (MMSE)

estimate of h00k is given by the next lemma.

Lemma 1. With RP, the MMSE estimate of h00k is

ĥ00k =

γ̄RP

0k√
q0kτp

zRP

0k (4)

with

γ̄RP

0k =
q0kτpβ00k∑

{l ′,i}∈PRP

0k
ql ′iτpβ0l ′i + σ2

(5)

and has covariance matrix given by

E
{
ĥ00k ĥH

00k

}
= β00k γ̄

RP

0k IM . (6)

Proof: It follows from applying standard LMMSE techniques [29, Ch. 12] to the problem

at hand. Since zRP

0k
contains a Gaussian unknown signal plus independent Gaussian interference

and noise, the LMMSE estimator coincides with the true MMSE estimator.

The parameter γ̄RP

0k
∈ [0, 1] indicates the quality of channel estimates. Notice that, as the

length τp of the pilot sequences increases, γ̄RP

0k
also increases since the noise term becomes less

significant and the cardinality of PRP

0k
decreases with τp. This means that, as τp increases, the

variance of the channel estimates approaches the variance of the true channels and estimation

errors vanish. However, in practical applications τp ≤ τc. Since τc is limited by the physical

properties of the channel, there will always be an estimation error due to pilot contamination

and noise. The key point to notice is that for scenarios where τc is much larger than K , the

channel estimates with RP can be improved by letting τp be larger than K .

B. Superimposed pilots

With SP, all the τc samples of the coherence block are used for transmitting pilot and

data symbols. We consider τc orthogonal pilot sequences of length τc samples. Each BS se-

lects K ≤ τc different pilots and assigns them to its UEs. We denote as ϕl ′i ∈ Cτc , ∀l′ ∈ ΦD,
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i ∈ {1, . . . ,K} the pilot sequence assigned to UEl ′i with |[ϕl ′i] j | = 1, ∀ j ∈ {1, . . . , τc}.5 The set

PSP

0k
=

{
{l′, i} : ϕH

0k
ϕl ′i , 0

}
contains the indices of the UEs using the same pilot as UE0k

(including UE0k). UE0k transmits a superposition of the pilot sequence ϕT
0k

and the data signal

sT
0k

along with all other UEs in the network over τc instances of (1). This yields an M × τc
received signal at BS0 given by

ZSP

0k =

∑
l ′∈ΦD

K∑
i=1

√
ql ′ih0l ′iϕ

T
l ′i +

∑
l ′∈ΦD

K∑
i=1

√
pl ′ih0l ′is

T
l ′i + N0 (7)

where pl ′i and ql ′i are the transmission powers of the data and pilot symbols, respectively,

transmitted by UEl ′i. The vector sl ′i ∈ Cτc contains the data symbols transmitted in the whole

coherence block. We assume the data symbols to be i.i.d. as sl ′i ∼ CN
(
0, Iτc

)
. The noise

matrix is defined as N0 =
[
n01, . . . , n0τc

]
with i.i.d. columns distributed as n0 j ∼ CN

(
0, σ2IM

)
∀ j ∈ {1, . . . , τc}. By multiplying ZSP

0k
with ϕ∗

0k
/√τc, we obtain

zSP

0k =ZSP

0k

ϕ∗
0k√
τc
=

∑
{l ′,i}∈PSP

0k

√
ql ′iτch0l ′i+

∑
l ′∈ΦD

K∑
i=1

√
pl ′i

τc
h0l ′is

T
l ′iϕ

∗
0k+

τc∑
j=1

n0 j

[ϕ0k]∗j√
τc

(8)

which is then used to compute the LMMSE estimate the channel between BS0 and UE0k .

Lemma 2. With SP, the LMMSE estimate of the channel h00k is

ĥ00k =

γ̄SP

0k√
q0kτc

z0k (9)

where

γ̄SP

0k =
q0kτcβ00k∑

{l ′,i}∈PSP

0k
ql ′iτcβ0l ′i +

∑
l ′∈ΦD

∑K
i=1 pl ′iβ0l ′i + σ2

. (10)

The covariance matrix of ĥ00k is

E
{
ĥ00k ĥH

00k

}
= γ̄SP

0kβ00kIM . (11)

Proof: It follows from applying standard LMMSE estimation techniques [29, Ch. 12] to the

problem at hand.

The parameter γ̄SP

0k
∈ [0, 1] indicates the quality of the channel estimates. From (10), it follows

that the interference caused by data symbols is τc-times less influential than the pilot interference

5Note that since the modulus of each pilot symbol is one, the peak-to-average power ratio of the transmitted SP signal does

not increase when adding the pilot symbols.
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from UEs that use the same pilot as UE0k . Moreover, as the length τc of the pilot sequences

increases, γ̄SP

0k
approaches one since the data interference and noise become less influential and

the cardinality of PSP

0k
decreases with τc. This means that the variance of the channel estimates

approaches the variance of the true channels. However, in practical applications τc is limited and

thus there will always be an estimation error due to pilot contamination as well as interference

from data signals and noise.

Remark 1. The key difference between the channel estimates with RP and SP, apart from the

number observations (τp with RP and τc with SP), is the presence of extra interference with

SP due to the received data symbols (see the third term in the right-hand-side of (8)). This

interference not only reduces the quality of the channel estimates but it also:

• Changes the distribution of the channel estimates. The received signal zSP

0k
in (8) is not

Gaussian. Thus, the LMMSE estimate does not coincide with the true MMSE estimate

and the channel estimates are only uncorrelated to the channel estimation errors but not

independent, which stands in contrast to RP.

• Creates correlation between the channel estimates and received data symbols from all UEs.

These phenomena play a key role in the achievable rate analysis with SP and create extra

interfering terms that cannot be obtained from the closed-form expressions provided in [11].

IV. ACHIEVABLE RATES WITH MRC

To evaluate the performance of the network, we derive ergodic achievable rates by applying

standard lower bounding techniques on the capacity (e.g., [11]). Since we consider a fixed

bandwidth, the SE is obtained simply by scaling the achievable rates with 1/BW. We assume

that MRC is employed for data detection. Particularly, the estimates of the data symbols trans-

mitted by UE0k are obtained at BS0 by the inner product vH
00k

y0 with v00k = υ00k ĥ00k , where

υ00k =
1

γ̄RP

0k

√
Mβ00k

with RP and υ00k =
1

γ̄SP

0k

√
Mβ00k

with SP. These scaling factors are selected to

provide an equivalent gain of Mβ00k for the desired signal with both methods.

To motivate the use of MRC, note that as M → ∞, the directions of the channels hll ′i/‖hll ′i‖
of different UEs become asymptotically orthogonal. This is known as asymptotically favorable

propagation. The squared norm of the channel scaled by 1/M converges to a deterministic

number, which is known as channel hardening. When considering uncorrelated Rayleigh fading,

these phenomena make the use of linear detection techniques like MRC asymptotically optimal
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as M → ∞ [11]. In addition, the use of MRC has low complexity in the detection process and

thereby low consumed power.

A. Random Pilot allocation

The key advantage that SP has with respect to RP is the ability to use the whole coherence

block for both channel estimation and data detection. To obtain clear insights into the data rate

performance with respect to the number of samples used of channel estimation, τp (with RP) and

τc (with SP), we consider a random pilot allocation method with both RP and SP. In particular,

we assume that each BS selects K , out of τp (with RP) or τc (with SP), distinct pilot sequences

uniformly at random in each coherence block and allocates them to its served UEs. We define

χRP

l ′i =
φH

0k
φl′i
τp

∈ {0, 1} and χSP

l ′i =
ϕH

0k
ϕl′i
τc

∈ {0, 1} as binary random variables to indicate if

UEl ′i has the same pilot as UE0k with RP and SP, respectively. Notice that BSs allocate pilots

independently and that UEs within each cell have different pilots. This means that for l′ , 0,∑K
i=1
χRP

l ′i and
∑K

i=1
χSP

l ′i are Bernoulli distributed random variables with success probability K/τp
and K/τc, respectively. Thus, the following results hold:

E




K∑
{l ′,i}∈PRP

0k
\{0,k}

ql ′iβ0l ′i



=E

{ ∑
l ′∈ΨD

K∑
i=1

χRP

l ′i ql ′iβ0l ′i

}
=

∑
l ′∈ΨD

K

τp

1

K

(
K∑

i=1

ql ′iβ0l ′i

)
(12)

E




K∑
{l ′,i}∈PSP

0k
\{0,k}

ql ′iβ0l ′i



=E

{ ∑
l ′∈ΨD

K∑
i=1

χSP

l ′iql ′iβ0l ′i

}
=

∑
l ′∈ΨD

K

τc

1

K

(
K∑

i=1

ql ′iβ0l ′i

)
(13)

which allow us to obtain achievable rate expressions that do not depend on the particular

construction of the sets PRP

0k
and PSP

0k
.

B. Regular pilots

The received signal at BS0 with RP, for an arbitrary data symbol j in the coherence block, is

yRP

0 j =

K∑
i=1

√
p0ih00i[s0i] j +

∑
l ′∈ΨD

K∑
i=1

√
pl ′ih0l ′i[sl ′i] j + n0 j (14)

where n0 j is the noise vector distributed as n0 j ∼ CN
(
0, σ2IM

)
. To detect the data symbol from

UE0k , the received signal yRP

0 j
is combined with v00k to obtain

[ŝ0k] j = vH
00kyRP

0 j =
√

p0kE
{
vH

00kh00k

}
[s0k] j +

√
p0k

(
vH

00kh00k − E
{
vH

00kh00k

})
[s0k] j

+

K∑
i,k

√
p0iv

H
00kh00i[s0i] j +

∑
l ′∈ΨD

K∑
i=1

√
pl ′iv

H
00kh0l ′i[sl ′i] j + vH

00kn0 j .
(15)
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By treating the term
√

p0kE
{
vH

00k
h00k

}
[s0k] j as the desired signal and the remaining ones in

(15) as effective noise, we have an equivalent SISO system with a deterministic channel and

non-Gaussian effective noise, which is uncorrelated with the data symbol [s0k] j . Moreover, the

individual terms in the effective noise (second to last terms in (15)) are also uncorrelated due to

the fact that the data symbols from different UEs have zero mean and are independent among

themselves and independent from the noise. In the next lemma, we provide an ergodic achievable

rate, i.e., a lower bound on the capacity, of the system when using RP.

Lemma 3. An ergodic achievable rate for UE0k with RP and MRC detection is

RRP

0k = BW

(
1 −
τp

τc

)
log2

(
1 + SINRRP

0k

)
(16)

where SINRRP

0k
is the effective SINR of UE0k given by

SINRRP

0k =

p0k

��E{vH
00k

h00k

}��2
∑

l ′∈ΦD

K∑
i=1

pl ′iE

{��vH
00k

h0l ′i
��2} − ��E{vH

00k
h00k

}��2 + E{��vH
00k

n0

��2} (17)

=

Mp0kβ00k

M
τp

∑
l ′∈ΨD

K∑
i=1

pl′iql′i
q0k

β2
0l′i
β00k
+

1
γRP

0k

( ∑
l ′∈ΦD

K∑
i=1

pl ′iβ0l ′i + σ2

) (18)

and

γRP

0k = E

{
1

γ̄RP

0k

}−1

=

q0kτpβ00k

q0kτpβ00k +
∑

l ′∈ΨD

K∑
i=1

ql ′iβ0l ′i + σ2

. (19)

The expectations in (17) are taken with respect to the SSF and the random pilot allocation. Note

that the ergodic achievable rate with effective SINR given by (17) holds for any selection of v00k

and any channel distribution.

Proof: It follows from standard lower bounds [11, Ch. 2] on the capacity between the

transmitter and receiver when only knowledge of the average effective channel E
{
vH

00k
h00k

}
is used to obtain an equivalent SISO system with a deterministic channel and non-Gaussian

effective noise. The closed-form expression of the SINR follows the same approach as in [8],

[20], [11, Ch. 4] where the independence between the channel estimates and errors is used to

compute the expectations in (17) in closed-form. In addition, the result in (12) is used to calculate

the expectations with respect to χRP

l ′i .

To mitigate the effect of pilot contamination with RP, we can increase the pilot overhead

by selecting τp > K . This improves the quality of channel estimates (see Section III-A) and
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reduces the interference from pilot contamination (see first term in the denominator of (18)).

This approach is simple and provides good results when a pilot reuse factor is used [11]. Thus, it

provides a suitable comparison reference when evaluating the performance of SP. The selection of

τp is of paramount importance in order to assess the performance of RP. Therefore, in Section VII

we provide numerical results when τp is optimized to maximize the data rates. This optimization

is done through an exhaustive search over the integer values of τp ∈ [K, τc].

C. Superimposed pilots

In the case of SP, the received signal for an arbitrary data symbol j in the coherence block, at

BS0, is given by the j th column of ZSP

0k
(see (7)). By combining the received signal [ZSP

0k
] j with

v00k , an estimate of the data symbol j transmitted by UE0k is obtained as [ŝ0k] j = vH
00k

[
ZSP

0k

]
j
. To

compute an ergodic achievable rate, we first isolate the term that contains the desired information.

To this end, we rewrite the detector as

v00k = υ00k γ̄
SP

0kh00k + v̄00k =
1

√
Mβ00k

h00k + v̄00k (20)

where

v̄00k =

υ00k γ̄
SP

0k√
q0kτc

©
«

∑
l ′∈ΨD

K∑
i=1

χSP

l ′i
√

ql ′iτch0l ′i +

∑
l ′∈ΦD

K∑
i=1

√
pl ′i

τc
h0l ′is

T
l ′iϕ

∗
0k +

τc∑
j ′=1

n0 j ′
[ϕ0k]∗j ′√
τc

ª®
¬
. (21)

Next, we add and subtract
√

p0k

Mβ00k
E

{
‖h00k ‖2

}
[s0k] j from the data estimate [ŝ0k] j to obtain a

desired signal with deterministic effective channel gain. This leads to

[ŝ0k] j =

√
p0k

Mβ00k

E

{
‖h00k ‖2

}
[s0k] j +

√
p0k

Mβ00k

(
‖h00k ‖2 − E

{
‖h00k ‖2

})
[s0k] j

+

√
p0k v̄H

00kh00k[s0k] j +

∑
l ′∈ΦD

K∑
i=1

(√
ql ′i[ϕl ′i] j + ξl ′i

√
pl ′i[sl ′i] j

)
vH

00kh0l ′i + vH
00k n0 j

︸                                                                                                       ︷︷                                                                                                       ︸
=neff

.

(22)

The term neff is defined in (22) for analytical tractability and accounts for the interference caused

by pilot and data symbols received from all UEs (including self-interference from UE0k) plus

noise. For ease of notation, we define ξl ′i = 0 for {l′, i} = {0, k} and ξl ′i = 1 otherwise.

Notice that the first term in (22) is uncorrelated with the remaining ones in (22) since the data

symbols have zero mean, are independent and circularly symmetric complex Gaussian. Thus, we

have an equivalent SISO system with deterministic effective channel and non-Gaussian effective
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noise for which we can obtain an achievable rate based on the analysis in [11, Ch. 2]. This result

is summarized in the following theorem.

Theorem 1. An ergodic achievable rate for UE0k with SP and MRC detection is

RSP

0k = BW log2

(
1 + SINRSP

0k

)
(23)

where SINRSP

0k
is the effective SINR of UE0k given by

SINRSP

0k =

p0k

Mβ00k

���E {
‖h00k ‖2

}���2
p0k

Mβ00k

(
E

{
‖h00k ‖4

}
−

���E {
‖h00k ‖2

}���2
)
+ E

{��neff − E{neff}
��2} (24)

= Mp0kβ00k

/(
M

τc

∑
l ′∈ΨD

K∑
i=1

(
pl ′i+

(
1− 1
τc

)
ql ′i

)
ql ′i

q0k

β2
0l ′i

β00k

+

M

τc

∑
l ′∈ΦD

K∑
i=1

(pl ′i+ql ′i)pl ′i

q0k

β2
0l ′i

β00k︸                                                                                  ︷︷                                                                                  ︸
Coherent interference

+

2

τc
p0kβ00k+

2

τ2c

∑
l ′∈ΨD

K∑
i=1

ql ′ipl ′i

q0k

β2
0l ′i

β00k

+

1

τ2c

∑
l ′∈ΦD

K∑
i=1

p2
l ′i

q0k

β2
0l ′i

β00k

+

1

γSP

0k

( ∑
l ′∈ΦD

K∑
i=1

(ql ′i+pl ′i)β0l ′i+σ
2

)

︸                                                                                                                     ︷︷                                                                                                                     ︸
Non-coherent interference and noise

)

(25)

where

γSP

0k = E

{
1

γ̄SP

0k

}−1

=

q0kτcβ00k

q0kτcβ00k +
∑

l ′∈ΨD

K∑
i=1

ql ′iβ0l ′i +
∑

l ′∈ΦD

K∑
i=1

pl ′iβ0l ′i + σ2

. (26)

The term neff contains the last terms of the effective noise defined in (22). The expectations in

(24) are taken with respect to the SSF and the random pilot allocation.

Proof: It follows from taking the estimate of [ŝ0k] j in (22) and establishing an equivalent

SISO system with a deterministic channel and uncorrelated non-Gaussian effective noise. Then,

by applying standard lower bounds on the capacity between the transmitter and receiver of

the equivalent SISO system, the ergodic achievable rate with effective SINR shown in (24) is

derived [11, Ch. 2]. The proof for obtaining the closed-form expression in (25) can be found in

Appendix A.

With SP, there is no pre-log factor in (23) since the whole coherence block is used for data

transmission. The coherent gain (see the numerator of (25)) scales with M and depends on

the factor γSP

0k
(see (26)), which reflects the channel estimation quality. We define the coherent
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interference as the interference that adds constructively in the detection process due to the

correlation between the detection vector and the received signal. As a result, its variance scales

with M . With non-coherent interference, we refer to all the sources of interference that are

combined non-constructively whose variance, in turn, does not scale with M . There is coherent

interference from pilot contamination and also from pilot and data symbols (see the first two

terms in the denominator of (25)) due to the correlation between channel estimates and data

symbols. Similarly, there is non-coherent interference from pilot symbols, data symbols and

cross-correlation of the two (see the third and fourth terms in the denominator of (25)). In the prior

works [25, Eq. (12)] and [27, Eq. (41)], approximate SINR expressions are provided with SP and

MRC based on asymptotic favorable propagation and channel hardening (i.e., lim
M→∞

hH
0li

h0l′i′
M

= 0

if {l, i} , {l′, i′} and lim
M→∞

‖h0li ‖2

M
= β0li). In contrast, the result in Theorem 1 does not rely on

any asymptotic approximation. This enables us to accurately analyze the system performance

for any finite M . By comparing [25, Eq. (12)] and [27, Eq. (41)] with (25), it is seen that (25)

contains extra interfering terms, which might greatly affect the system performance.

Notice that since the pilot symbols are known to the BSs, they can be subtracted from neff to

reduce the interference and obtain a better estimate of data symbols [25]. To obtain clear insights

into the effect of the interference from pilot symbols, suppose the received pilot symbols can

be perfectly removed from neff. Let

n̄eff =
√

p0k v̄H
00kh00k[s0k] j +

∑
l ′∈ΦD

K∑
i=1

ξl ′i
√

pl ′i[sl ′i] jv
H
00kh0l ′i + vH

00kn0 j (27)

be the resulting term without the effect of pilot interference. Then, by replacing neff with n̄eff in

(24) allows to computed an upper bound on the effective SINR with SP. This is summarized in

the following corollary.

Corollary 1. By removing the received pilot symbols perfectly from the data estimates, the

effective SINR with SP is upper bounded as SINRSP

0k
≤ SINRSP-UB

0k
where

SINRSP-UB

0k = Mp0kβ00k

/(
M

τc

∑
l ′∈ΨD

K∑
i=1

pl ′iql ′i

q0k

β2
0l ′i

β00k

+

M

τc

∑
l ′∈ΦD

K∑
i=1

p2
l ′i

q0k

β2
0l ′i

β00k︸                                                    ︷︷                                                    ︸
Coherent interference

+

1

τ2c

∑
l ′∈ΦD

K∑
i=1

p2
l ′i

q0k

β2
0l ′i

β00k

+

1

γSP

0k

( ∑
l ′∈ΦD

K∑
i=1

pl ′iβ0l ′i + σ
2

)

︸                                                                ︷︷                                                                ︸
Non-coherent interference and noise

)
(28)
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Proof: It follows from replacing neff with n̄eff in (24) and deriving the closed-form expression

with the same approach as in Appendix A.

By subtracting the received pilot symbols perfectly from neff, both the coherent and non-

coherent interference are reduced and some of the cross terms in the non-coherent interference

vanish. This can increase the data rates provided that the proportion of power used for pilot

symbols is not negligible. However, in practice the pilot symbols cannot be perfectly removed

from data estimates because channels are not perfectly known (see Section III-B). Alternatively,

we can remove the estimates of the received pilot symbols (i.e.,
∑

l ′∈ΦD

∑K
i=1

√
ql ′i[ϕl ′i] jv

H
00k

ĥ0l ′i)

from neff. This approach would introduce a large number of cross terms into variance of neff since

the channel estimates are correlated with the received data symbols of all UEs (see Remark 1),

and a closed-form expression of the effective SINR would not provide clear insights into the

performance. The effect of removing the estimates of the received pilot symbols is evaluated

numerically in Section VII.

Notice that iterative decoding algorithms can be used to improve channel and data estimates.

This is achieved at the price of an increased computational complexity with SP since the number

of operations in each iteration grows linearly with M and τc [25]. Moreover, similar approaches

can also be used with RP where the data estimates can be used to improve the channel estimates

and vice versa. As the first capacity analysis with SP, we focus on MRC detection and use the

results with perfect pilot subtraction (shown in Corollary 1) to evaluate the possible gains of

more complex signal processing schemes. The use of iterative decoding algorithms is thus left

for future work.

V. ANALYSIS OF ACHIEVABLE RATES

To compare the rate expressions in Lemma 3, Theorem 1 and Corollary 1, we characterize the

terms in the effective SINR expressions (18) with RP and (25), (28) with SP, and analyze their

influence on the network performance. From Table I, we can see that by using the full coherence

block for pilots in SP: i) the estimates improve when τc increases; ii) there is no penalty in the

pre-log factor on the achievable rate; and iii) the pilot contamination is reduced by a factor of

1/τc. However, due to the high correlation between the received signal [ZSP

0k
] j and the channel

estimate ĥ00k , there are other interfering terms that are combined coherently or non-coherently.

By subtracting perfectly the received pilot symbols, the coherent and non-coherent interference



1
6

TABLE I: Achievable rate comparison of RP and SP

Term RP Lemma 3 RP Theorem 2 SP Theorem 1 and Corollary 1 SP Theorem 2

Coherent gain: Numerator of (18),

(25), (28), (34), (36) and (37).

Mp0k β00k M Mp0k β00k M

Pilot contamination: coherent in-

terference from UEs using the

same pilot as UE0k

M
τp

∑
l′∈ΨD

K∑
i=1

pl′iql′iβ
2
0l′i

q0kβ00k

MK
τp(α−1)

No pilot subtraction:

M
τc

∑
l′∈ΨD

K∑
i=1

(
pl′i+

(
1− 1

τc

)
ql′i

)
ql′i

q0k

β2
0l′i

β00k

Perfect pilot subtraction:

M
τc

∑
l′∈ΨD

K∑
i=1

pl′ iql′i
q0k

β2
0l′i

β00k

No pilot subtraction:

MK
(
1− ∆

τc

)
τc (α−1)

Perfect pilot subtraction:

MK(1−∆)
τc (α−1)

Additional coherent interference

No pilot subtraction:

M
τc

∑
l′∈ΨD

K∑
i=1

(pl′ i+ql′i )pl′i
q0k

β2
0l′i

β00k

Perfect pilot subtraction:

M
τc

∑
l′∈ΨD

K∑
i=1

p2
l′ i

q0k

β2
0l′i

β00k

No pilot subtraction:

MK(1−∆)α
τc∆(α−1)

Perfect pilot subtraction:

MK(1−∆)2α
τc∆(α−1)

Non-coherent interference
( ∑
l′∈ΦD

K∑
i=1

pl′iβ0l′i

)
1

γRP

0k

K2

τp (α−1) +
(
αK
α−2

)
·
(
1 + K

τp

2
α−2
+

σ2

ρτp

)

2

τc
a0k β00k+

2

τ2
c

∑
l′∈ΨD

K∑
i=1

ql′ial′i

q0k

β2
0l′i

β00k︸                                       ︷︷                                       ︸
Cross products pilots and data

+
1

τ2
c

∑
l′∈ΦD

K∑
i=1

p2
l′i

q0k

β2
0l′i

β00k

+

( ∑
l′∈ΦD

K∑
i=1

(bl′i + pl′i)β0l′i
)

1
γSP

0k

No pilot subtraction:

al′i = pl′i , bl′i = ql′i

Perfect pilot subtraction:

al′i = bl′i = 0

2a

τc

(
1+

K

τc (α−1)

)
︸             ︷︷             ︸

Cross products pilots and data

+
K(1−∆)2α
τ2
c∆(α−1) +

K2b
τc∆(α−1)

+
Kαb
α−2

(
1+ K

τc∆

(
2

(α−2)+(1−∆)
)
+

σ2

∆ρτc

)

No pilot subtraction:

a = 1 − ∆, b = 1

Perfect pilot subtraction:

a = 0, b = 1 − ∆
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is reduced and several interference terms from cross products between pilot and data symbols

vanish. The relative strengths of the interference terms depend on the network deployment setup.

To gain further insights, we consider the asymptotic limit when M → ∞. This shows the

influence of the interference that combines coherently in the detection process. The asymptotic

limits are summarized in the following corollary.

Corollary 2. The achievable rates of UE0k with RP and SP when M → ∞ are given by

RA-RP

0k =

(
1 −
τp

τc

)
BW log2

©
«
1 +

p0kβ00k

1
τp

∑
l ′∈ΨD

K∑
i=1

pl′iql′i
q0k

β2
0l′i
β00k

ª®®®®
¬

(29)

RA-SP

0k = BW log2

©
«
1 +

p0k β00k

1
τc

∑
l ′∈ΨD

K∑
i=1

(
pl′i+

(
1− 1

τc

)
ql′i

)
ql′i

q0k

β2
0l′i
β00k
+

1
τc

∑
l ′∈ΦD

K∑
i=1

(pl′i+ql′i)pl′i
q0k

β2
0l′i
β00k

ª®®®®®¬
(30)

≤ BW log2

©
«
1 +

p0kβ00k

1
τc

∑
l ′∈ΨD

K∑
i=1

pl′iql′i
q0k

β2
0l′i
β00k
+

1
τc

∑
l ′∈ΦD

K∑
i=1

p2
l′i

q0k

β2
0l′i
β00k

ª®®®®
¬
. (31)

Proof: It follows from taking the limit in the expressions (18), (25) and (28).

The above asymptotic formulas can be used to compare RP and SP. We see that the scaling

factor 1/τp in the coherent pilot contamination with RP (see the denominator of the fraction

inside the logarithm in (29)) is larger than 1/τc with SP (see the denominator of the fraction inside

the logarithm in (30), (31)). However, with SP there is another term with coherent interference

that affects the performance. If we compare the results in Corollary 2 with [25, Eq. (13)] and

[27, Eq. (42)], the following two differences are observed. First, the pilot contamination term

with SP is neglected in [25], [27], which is a valid assumption only for scenarios wherein the

total number of UEs in the entire network is lower than τc. However, this is not the case of

practical networks with many cells, and thus there will be pilot contamination also with SP.

Secondly, in [25] the length of the pilot signals τp with RP is assumed not to change with the

coherence block size. However, this parameter can indeed be optimized for a given size of the

coherence block. As a result, with RP the effect of pilot contamination changes with the size

of the coherence block as well and this could affect the scenarios in which SP outperforms RP,

and vice versa.
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To compare the asymptotic achievable rates given by (29) and (30), (31), we define ζ = τp/τc
as the ratio between the pilot length with RP and the size of the coherence block. The value of

ζ that maximizes the achievable rate with RP is given as follows.

Corollary 3. With RP, the asymptotic rate when M → ∞ is a concave function of ζ and its

maximum is found at

ζmax =
1

SIRRP

(
1 + SIRRP

W ((1 + SIRRP) e) − 1

)
∈ (0, 1) (32)

for SIRRP > 0 where

SIRRP =

p0kβ00k

1
τc

∑
l ′∈ΨD

K∑
i=1

pl′iql′i
q0k

β2
0l′i
β00k

and W(·) denotes the Lambert W function6 and e denotes the base of the natural logarithm.

Proof: The corollary is proved in Appendix B.

Notice that: i) RA-RP

0k
is a concave function of ζ ∈ [0, 1] that starts (ζ = 0) and ends (ζ = 1)

at zero and thus it is not monotonic; ii) RA-RP

0k
depends linearly and logarithmically on ζ . To the

best of our knowledge, it is not possible to find in closed-form the solution to the inequality

RA-RP

0k
≤ RA-SP

0k
in terms of ζ . Let RA-RP-MAX

0k
= maxζ∈[0,1]{RA-RP

0k
}, then if RA-SP

0k
> RA-RP-MAX

0k

the asymptotic achievable rate with SP always outperforms RP. However, if RA-SP

0k
< RA-RP-MAX

0k

there exists an interval around ζmax for which the asymptotic achievable rate with RP is better

than SP. Since the inequality condition RA-SP

0k
> RA-RP

0k
depends on the power allocation and LSF

coefficients, we need to consider a particular network deployment setup to offer a more precise

comparison between RP and SP. This is what we do in the next sections.

VI. PERFORMANCE COMPARISON UNDER RANDOM DEPLOYMENT

As shown in Sections IV and V, it is necessary to have a particular network deployment setup

to obtain further insights into the performance of SP and RP. To model the irregularity and

large number of cells of practical networks, we use the stochastic geometry framework from [8],

which has been shown to accurately model real network deployments [31]. Here, the BSs are

distributed according to a spatially homogeneous PPP, that is ΦD is a homogeneous PPPs with

density D [BS/km2]. Without loss of generality, we refer to BS0 as a typical BS and to UE0k

6The Lambert W function is defined as z =W(z)eW (z) for any z ∈ C. More details can be found in [30].
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as a typical UE. Particularly, they represent any BS and UE in the network by means of the

translation invariance property of the homogeneous PPP. The K UEs in each cell are assumed

to be uniformly distributed within the Voronoi region around each BS. This means that the

distance between UEl ′i and BSl ′, denoted by dl ′l ′i [km], is distributed as dl ′l ′i ∼ Rayleigh
(

1√
2πD

)
.

To model the LSF between UEl ′i and BSl , we define βll ′i = ω
−1d−α

ll ′i where α is the pathloss

exponent and ω is the pathloss at a reference distance of 1 km. This parameter also accounts

for propagation losses independent of the distances (e.g., wall penetration).

In cellular networks, the transmission power of UEs needs to be controlled in order to avoid

that signals from UEs close to the BS overwhelm signals from UEs further away. This is

particularly important in Massive MIMO where low-resolution analog-to-digital converters are

expected to be used [32], [33]. Thus, we assume statistical channel inversion power control where

the transmission power of data symbols is computed as pl ′i = ρd/βl ′l ′i = ρdωdα
l ′l ′i and of pilot

symbols as ql ′i = ρp/βl ′l ′i = ρpωdα
l ′l ′i. The design parameters ρd and ρp are used to control the

average transmit power for data and pilot symbols, respectively. Moreover, we define ρ as the

total average transmission power per symbol7 such that ρd = ρp = ρ with RP and ρd + ρp = ρ

with SP. We define the proportion between pilot and data power with SP as ∆ ∈ [0, 1] such that

ρp = ∆ρ and ρd = (1 − ∆)ρ.
By introducing the aforementioned definitions of transmission powers and LSF coefficients,

the achievable rates with RP and SP can be computed in terms of the distances between UEs and

BSs. To get insights into the influence of design parameters such as the number of BS antennas

M , the number of UEs per BS K , length of pilot sequences τp with RP and system parameters

such as the size of the coherence block τc, we evaluate the performance for different realizations

of the UE positions. In particular, we calculate an expected value of R̄RP

0k
and R̄SP

0k
with respect

to the distances dll ′i ∀l, l′ ∈ ΦD and i ∈ {1, . . . ,K}. Following the same approach as in [8], a

closed-form lower bound on the achievable rates can be computed as shown in the following

theorem.

Theorem 2. A lower bound on the average ergodic achievable rate of the typical UE0k with

respect to the UE positions when considering statistical channel inversion power control is with

7The average SNR per UEs is then given by SNR = ρ/σ2.
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RP given by

RRP
= BW

(
1 −
τp

τc

)
log2

(
1 + SINRRP

)
(33)

SINRRP
=

M

MK
τp(α−1) +

K2

τp(α−1) +
(
1 + K

τp

2
α−2
+
σ2

ρτp

) (
αK
α−2
+
σ2

ρ

) (34)

where ρd = ρp = ρ. With SP, it is given by

RSP
= BW log2

(
1 + SINRSP

)
(35)

SINRSP
= M(1 − ∆)

/(
MK

τc (α − 1)

(
1− ∆
τc

)
+

MK

τc

(1 − ∆) α
∆ (α − 1)︸                                      ︷︷                                      ︸

Coherent Interference

+

2(1−∆)
τc

(
1+

K

τc (α−1)

)
+

K(1−∆)2α
τ2c∆ (α−1)

+

K2

τc∆ (α−1)+
(
1+

K

τc∆

(
2

(α−2)+(1−∆)
)
+

σ2

∆ρτc

)(
Kα

α−2
+

σ2

ρ

)
︸                                                                                                                        ︷︷                                                                                                                        ︸

Non-coherent Interference and noise

)
.

(36)

By subtracting the pilot symbols perfectly from the data estimates, an upper bound on the effective

SINR with SP is given by SINRSP ≤ SINRSP-UB where

SINRSP-UB
=M(1 − ∆)

/(
MK (1−∆)
τc (α−1) +

MK (1−∆)2 α
τc∆ (α−1)︸                               ︷︷                               ︸

Coherent Interference

+

K(1 − ∆)2α
τ2p∆ (α − 1)

+

K2 (1 − ∆)
τp∆ (α − 1)+

(
1+

K

τc∆

(
2

(α−2)+(1−∆)
)
+

σ2

∆ρτc

)(
K (1−∆)α
α−2

+

σ2

ρ

)
︸                                                                                                    ︷︷                                                                                                    ︸

Non-coherent Interference and noise

)
.

(37)

For both SP and RP, ρ is the average transmission power per symbol.

Proof: It follows from applying Jensen’s inequality to the achievable rate as

E{log2(1 + SINR0k)} ≥ log2(1 + 1/E{SINR−1
0k })

where SINR0k represents the SINR of UE0k with either RP or SP. We then compute the moments

of SINR−1
0k

. Notice that the expectation with respect to the distances results in an SINR expression

independent of the UE index “0, k”. See Appendix C for details on calculating E{SINR−1
0k
}.

The lower bounds on the achievable rates with both RP and SP are increasing with M and

decreasing with K , which means that in order to serve more UEs with the same rates we need
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to increase the number of BS antennas. With RP, we can see that SINRRP increases with τp.

However, the pre-log factor
(
1 − τp/τc

)
decreases with τp. This means that the rate RRP is a

unimodal function of τp which can be maximized with bisection search algorithms. This result

is in line with Corollary 3. If τc increases, then the pre-log factor 1 − τp/τc increases as well

since τp ∈ [K, τc]. This means that, by optimizing RRP with respect to τp, the maximum rate

with RP increases with τc. With SP, the achievable rate RSP also increases with τc.

Notice that the closed-form expressions found in Theorem 2 do not require heavy numerical

simulations and can give powerful insights into the data rates of practical network deployments.

A. Energy Efficiency Modeling

The closed-form achievable rates provided above to measure the SE of the network allow

us to provide analytical expressions for the EE, measured in [bit/Joule], with RP and SP. We

consider the effect of transmission and circuit power consumption following the model found

in [7]. We define the EE as the ratio between the average sum data rate per unit area and the

average power consumption per unit area. This yields

EE =
E

{∑K
k=1 R0k

}
D

PBSD
=

E {R0k} K

PTX + C0 + C1K +D0M + PLP + PCE +A E {R0k} K
(38)

where R0k is the achievable rate defined in (16) with RP and (23) with SP, and PBS is the power

consumption per BS, which accounts for the transmission power and circuit power consumption

(see the denominator of the second equality of (38)). Recall that D is the density of BSs per

unit area in [BS/km2]. Note that E{R0k } can be replaced by its lower bound in Theorem 2. By

using Lemma 5 in Appendix D, the average transmission power is computed as

PTX =

BW

η
KE {p0k} =

BW

η
Kρω

Γ (α/2 + 1)
(πD)α/2

(39)

where η ∈ (0, 1] denotes the efficiency of the power amplifier. The parameter C0 accounts for

fixed power consumption (e.g., site cooling), C1 and D0 are the power consumed per transceiver

chain of the UE and BS, respectively. The power consumption that depends on the data rates

(e.g., coding, decoding, backhaul, etc.) is enclosed by A. The power consumption for linear

processing and channel estimation is denoted by PLP and PCE, respectively. To calculate PLP

and PCE, we find a first-order approximation of the computational complexity (i.e., number of

floating point operations per second (flops)), based on the number of complex multiplications
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TABLE II: Simulation Parameters

Parameter Symbol Value Parameter Symbol Value

Pathloss exponent α 3.76 Circuit power per active UE C1 0.1 W

Fixed propagation loss (1 km) ω 130 dB Circuit power per BS antenna D0 0.1 W

System bandwidth BW 20 MHz Power const. related to data rates ABW 2.3 × 10−2 W

Power amplifier efficiency η 0.39 Computational efficiency L 12.8 [Gflops/W]

Static power consumption C0 10 W Noise power σ2BW 10−13 W

in linear algebra operations, and then multiply it by the computational efficiency of current

microprocessors denoted by L [flops/W]. Then, we have

PLP + PCE =




BW

L
MK with RP

2 BW

L
MK with SP.

(40)

The combined power consumption for linear processing and channel estimation is doubled by

SP as compared to RP. This occurs because with SP we estimate the channel and detect the

data for all symbols in the coherence block, whereas with RP we only estimate the channel in

τp symbols and detect the data in τc − τp symbols. Given that the computational efficiency of

modern microprocessors is continuously increasing, a factor of two does not add a significant

weight into the total power consumption with SP when compared to RP. Thus, the difference

between RP and SP in terms of EE is going to be mainly determined by the rate performance.

Comparisons are made in the next section.

VII. NUMERICAL RESULTS

Monte Carlo (MC) simulations are used to compare RP and SP, and to validate the theoretical

results of Sections IV, V and VI. We simulate a homogeneous PPP with density D = 100

[BS/km2] in an squared area of side length LSQ [km] with an average of Nav = DL2
SQ = 50 BSs.

To avoid edge effects, we implement the wrap around technique where we replicate the original

square 8 times and place the copies around itself. Table II summarizes the simulation parameters

which are based on [7], [8] and references therein. We evaluate the performance of achievable

rates and EE with MRC for the following methods:

• RP with pilot length equal to the number of users per BS, i.e., τp = K;

• RP with optimal pilot length to maximize RRP

0k
;
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Param. M =100 M =300 M =500

τp Opt. 39 42 44

∆ no sub. 0.36 0.45 0.5

∆ perf sub. 0.6 0.7 0.75

∆ est. sub. 0.47 0.5 0.53

(a) Optimized parameters for ρ = σ2/4 (SNR = −6

dB), K = 10 and τc = 200.
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(c) Achievable rate per UE for ρ = σ2/4
(SNR = −6 dB), M = 100 and K = 10.
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(d) Achievable rate per UE for M = 100, τc = 200

and K = 10.

Fig. 2: Optimized parameters and SP achievable rates versus M , τc and ρ/σ2. The solid lines

correspond to the closed-form expressions in Theorem 1 and Corollary 1, the triangle and circle

markers correspond to MC simulations over the SSF. All results are averaged over the LSF.

• SP as in Theorem 1 (denoted as “SP no sub.”, i.e., no pilot subtraction), Corollary 1 (denoted

as “SP perf. sub.”,i.e., perfect pilot subtraction) and Theorem 2;

• SP when we subtract the estimated received pilot symbols from the data estimate [ŝ0k] j in

(22), denoted as “SP est. sub.” which stands for estimated pilot subtraction;

• SP with the approximated results found in [25], [27] denoted as “Approx. [25]” and “Approx.

[27]” respectively.

Note that in all figures the proportion ∆ between pilot and data power with SP is optimized to

maximize the data rates in each LSF realization.

Fig. 2a shows a table with the average τp and ∆ values that maximize the data rates. The

optimal τp covers approximately 20% of the coherence block and it increases with M to
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counteract the effect of pilot contamination. With SP, the optimal ∆ increases with the number of

antennas; in line with the results from [25]. From the results with and without pilot subtraction,

we can see that the optimal ∆ seeks to balance the interference from pilot symbols and the

quality of channel estimation. The rest of the graphs in Fig. 2 shows the average data rate per

UE versus the number of antennas, size of the coherence block, and average SNR. The MC

results confirm the validity of the closed-form expressions found in Theorem 1 and Corollary 1.

It can be seen that there is a large gap between the results with no pilot subtraction and perfect

pilot subtraction. However, the data rates with estimated pilot subtraction are closer to the data

rates with no pilot subtraction, which is due to the cross products that arise from the correlation

between channel estimates and data symbols. The approximation [25] is found within the results

derived in Theorem 1 and Corollary 1, which makes it a good approximation of the performance.

However, since the impact of noise is neglected in [25], the approximation becomes less accurate

in very low SNR scenarios. On the other hand, the approximation in [27] greatly underestimates

the performance with SP.

Fig. 3 depicts the achievable rates per UE versus the number of BS antennas, coherence block

size, and average SNR along with the sum rate per cell versus the number UEs per cell. In

general, we can see that SP outperforms RP with τp = K for most cases when τc is long enough

to reduce pilot contamination. Otherwise, the data rates with RP, including the results when τp is

optimized, provide comparable performance to that of SP with estimated pilot subtraction. When

subtracting the pilot symbols perfectly, the data rates with SP provide the best performance, but

it might be hard to achieve this in practice. In Fig. 3a, the asymptotic limits found derived in

Corollary 2 are shown. We can see that more than 104 BS antennas are needed to converge to the

limits and the relative differences among the methods vary between the finite M and M → ∞.

Fig. 4a depicts the cumulative distribution function (CDF) of the achievable rates per UE

for different realizations of LSF. We can see that the rate distribution does not show any large

difference between the different methods. Fig. 4b shows the strength of the interference sources

with respect to the coherent gain (all terms are defined in Table I). We see that with SP, there

is a reduction of the pilot contamination contributions with respect to RP. At the same time,

however, additional coherent interference appears from data transmission and, in the case of

SP without pilot subtraction, that is substantial. It is important to note that the overall impact

of coherent interference for M = 100 and K = 10 is lower than the impact of non-coherent

interference with both RP and SP. This suggests that, in practical dense deployments, Massive
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(c) Achievable rate per UE for M = 100, τc = 200

and K = 10.
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(d) Achievable sum rate per cell for ρ = σ2/4
(SNR = −6 dB), M = 100 and τc = 200.

Fig. 3: Achievable rates versus M , τc, ρ/σ2 and K . The lines correspond to the closed-form

expressions in Lemma 3, Theorem 1 and Corollary 1. The markers correspond to MC simulations

over the SSF. All results are averaged over the LSF.

MIMO systems may not be limited by coherent interference. Fig. 4c and Fig. 4d depict the EE

in terms of the number of BS antennas and size of the coherence block respectively. We see that

the closed-form lower bounds found in Theorem 2 follow the same trend as the MC simulations.

In general, we can see a similar trend as in previous results, SP outperforms RP when τp = K ,

however when we optimize τp we find that RP provides comparable EE than SP with estimated

pilot subtraction. The highest EE is found with SP when pilot symbols are subtracted perfectly.

VIII. CONCLUSIONS

In this paper, we derived the first rigorous achievable rate expression for a multicell Massive

MIMO network with SP. We analytically and numerically compared RP and SP in a practical
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(c) EE for ρ = σ2/4 (SNR = −6 dB), τc = 200 and

K = 10.
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Fig. 4: Achievable rates CDF, interference sources received power over coherent gain, and EE

versus M and τc. In Figs. 4c and 4d the markers are based on the closed-form expressions

in Lemma 3, Theorem 1 and Corollary 1, averaged over the LSF. The lines are based on the

closed-form expressions in Theorem 2.

multicell deployment. By examining the contribution of different sources of interference, we

observed that SP is able to reduce pilot contamination at the expense of incorporating further

coherent and non-coherent interference that limits the system performance. The results showed

that, by optimizing the pilot length with RP, the average SE and EE are comparable to SP when

estimated pilot subtraction is used. On the other hand, when the pilot symbols are subtracted

perfectly with SP, the SE and EE are the highest, which indicates that there is room for

improvement—iterative decoding algorithms might be able to bridge this gap. When analyzing

the large number of BS antennas regime, we encountered that asymptotic results do not convey

accurate results to gain insights into the behavior of practical deployments. Moreover, it is
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worth to stress that in practical deployments the effect of coherent interference, such as pilot

contamination, can be less influential than non-coherent inter-cell on the SE of UEs.

The use of SP has the potential to provide better performance by using other signal processing

schemes like zero-forcing, multicell MMSE decoding, or iterative decoding algorithms. However,

it is not clear whether the benefit of using such schemes would compensate for the increased

computational complexity. All this study is left for future work.

APPENDIX A

PROOF OF THEOREM 1

Since the channels are circularly symmetric complex Gaussian random vectors, the channel

gain uncertainty term (i.e., the first term in the denominator in (24)) can be computed as (e.g.,

[11, Appendix A])

E

{
‖h00k ‖4

}
−

���E {
‖h00k ‖2

}���2
Mβ00k

=

M (M + 1) β2
00k

− M2β2
00k

Mβ00k

= β00k . (41)

To calculate the variance of the rest of the effective noise, we first condition on an arbitrary

realization of χSP

l ′i ∀l′ ∈ ΦD, i ∈ {1, . . . ,K} and then compute the expectation over χSP

l ′i as

Var(neff) = E
{��neff − E{neff}

��2}
= E

{
E

{ ��neff

��2��� χSP

l ′i

}}
−

��E {
E

{
neff

�� χSP

l ′i

}}��2 . (42)

To proceed further, the following lemma is needed.

Lemma 4. ( [11, Appendix A]) Consider two independent random vectors distributed as x ∼ CN
(
0, σ2

x IM

)
and y ∼ CN

(
0, σ2

y
IM

)
, then we have the following results:

E
{
(x + y)H x

}
= E

{
‖x‖2

}
= Mσ2

x (43)

E

{��(x + y)H x
��2}
= M(M + 1)σ4

x + Mσ2
xσ

2
y
. (44)

By applying Lemma 4 and the result from (13) to (42), we have that

E
{
E

{
neff

�� χSP

l ′i

}}

=

√
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q0kβ00k

E

{(
p0k β00k
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and
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By combining (45) with (46), we have that
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and by combining (24) and (26) with (41) and (47), the proof is complete.
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APPENDIX B

PROOF OF COROLLARY 3

By studying the first and second derivative of RRP-A

0k
with respect to ζ , we have

∂RRP-A

0k
(ζ )

∂ζ
=

(
− ln (1 + ζSIRRP)

ln(2) +

(1 − ζ ) SIRRP

ln(2) (1 + ζSIRRP)

)
BW (48)

∂2RRP-A

0k
(ζ )

∂ζ2
= − (2 + (1 + ζ )SIRRP)

SIRRP ln(2) (1 + ζSIRRP)2
BW < 0 . (49)

We can see that RRP-A

0k
(ζ ) is a concave function and RRP-A

0k
(0) = RRP-A

0k
(1) = 0. Thus, considering

that SIRRP > 0, the maximum point of RRP-A

0k
(ζ ) is obtained when its derivative is zero and it is

found at ζmax shown in (32). This concludes the proof.

APPENDIX C

PROOF OF THEOREM 2

By introducing the definitions of ql ′i = pl ′i = ρ/βl ′l ′i with RP, ql ′i = ∆ρ/βl ′l ′i and pl ′i = (1 − ∆)ρ/βl ′l ′i

with SP and, βl ′l ′i = ω
−1d−α

l ′l ′i, into (18), (25) and (28) we have
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M

τc

(
1− ∆
τc
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(
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0l ′i

)2
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M

τc

(1 − ∆)
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(
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l ′l ′i

dα
0l ′i

)2)
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2

τc
(1 − ∆) + 2(1 − ∆)

τ2c

∑
l ′∈ΨD

K∑
i=1

(
dα

l ′l ′i

dα
0l ′i

)2
+

(1 − ∆)2
τ2c∆

(
K+

∑
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K∑
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(
dα

l ′l ′i

dα
0l ′i

)2)

+

(
1 +

1

∆τc

∑
l ′∈ΨD

K∑
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dα
l ′l ′i

dα
0l ′i
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K(1 − ∆)
∆τc
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σ2

∆ρτc
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K+

∑
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0l ′i
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ρ
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(51)

≤ SINRSP-UB
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+
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ρ
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The expected value of the first term in SINRRP

0k

−1
(first term in the denominator of (50)) with

RP and the expected value of all terms except the last one in SINRSP

0k

−1
and SINRSP-UB

0k

−1
(in

the denominator of (51) and (52) respectively) with SP, are given by applying (56) in Lemma 6

of Appendix D. For the second term in SINRRP

0k

−1
with RP and the last term in SINRSP

0k

−1
and

SINRSP-UB

0k

−1
with SP we can apply the following result

E
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∑
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K∑
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dα
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dα
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dα
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dα
0l ′i
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E
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dα
l ′l ′i

dα
0l ′i

}
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i=1

E
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dα
l ′l ′i

dα
0l ′i

}

+JT

K∑
i=1

K∑
j=1

E

{( ∑
l ′∈ΨD
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l ′l ′i

dα
0l ′i

)( ∑
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dα
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dα
0l j

)}

=GB+GJ
2K

α − 2
+BT

2K

α − 2
+JT
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K∑
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©
«
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∑
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∑
l∈ΨD\{l ′}

dα
l ′l ′i

dα
0l ′i

dα
ll j

dα
0l j



+E

{∑
l ′∈ΨD

dα
l ′l ′i

dα
0l ′i

dα
l ′l ′ j

dα
0l ′ j

}ª®¬
≤ GB +GJ

2K

α − 2
+ BT

2K

α − 2
+ JTK2

((
2

α − 2

)2

+

1

α − 1

)
(53)

which follows from Lemma 6, in Appendix D. For the case of RP we have

G = 1 +
σ2

ρτp
, T =

1

τp
, B = K +

σ2

ρ
, J = 1, (54)

and by combining (53) with (54) we obtain the last two terms in the denominator of SINRRP in

(34). In the case of SP we have

G = 1 +
K(1 − ∆)
∆τc

+

σ2

∆ρτc
, T =

1

∆τc
, B = K +

σ2

ρ
, J = 1, (55)

and by combining (53) with (55) the last two terms in the denominators of SINRSP in (36) are

obtained. For the case of SP with perfect pilot subtraction we have the same values as in (55)

except for B = K(1 − ∆)+ σ2

ρ
and J = 1 − ∆. Then by combining these values with (53) the last

two terms in the denominator of SINRSP-UB in (37) are found. Thus, the proof is concluded.

APPENDIX D

RESULTS FROM STOCHASTIC GEOMETRY

The following results from stochastic geometry are useful.

Lemma 5. The distribution of the distance dl ′l ′i between a UEs and its serving BS for l′ ∈ ΦD

and i ∈ {1, . . . ,K}, where ΦD is a homogeneous PPP with density D, is dl ′l ′i ∼ Rayleigh
(

1√
2πD

)
.

Then we have that E
{
dα

00k

}
=
Γ(α/2+1)
(πD)α/2 for α > −2. This result is also found in [8].
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Lemma 6. For κ ∈ {1, 2} and dll ′i ∈ ΨD being the distance between BSl and UEl ′i where ΨD

describes a the set of BSs distributed as a homogeneous PPP with density D, we have

E

{ ∑
l ′∈ΨD

(
dα

l ′l ′i

dα
0l ′i

) κ}
=

2

κα − 2
∀i ∈ {1, . . . ,K} (56)

E




∑
l ′∈ΨD

∑
l∈ΨD\{l ′}

dα
l ′l ′i

dα
0l ′i

dα
ll j

dα
0l j



=

(
2

α − 2

)2

∀i, j ∈ {1, . . . ,K} (57)

E

{ ∑
l ′∈ΨD

dα
l ′l ′i

dα
0l ′i

dα
l ′l ′ j

dα
0l ′ j

}
≤

(
1

α − 1

)
∀i, j ∈ {1, . . . ,K} and i , j . (58)

Proof: It is found in [8, Appendix B].
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