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Phylogeography of the smooth-
coated otter (Lutrogale perspicillata): 
distinct evolutionary lineages and 
hybridization with the Asian small-
clawed otter (Aonyx cinereus)
Beatrice Moretti1, Omar F. Al-Sheikhly2, Monica Guerrini1, Meryl Theng3, Brij K. Gupta4, 
Mukhtar K. Haba2, Waseem A. Khan5, Aleem A. Khan6 & Filippo Barbanera1

We investigated the phylogeography of the smooth-coated otter (Lutrogale perspicillata) to determine 
its spatial genetic structure for aiding an adaptive conservation management of the species. Fifty-
eight modern and 11 archival (dated 1882–1970) otters sampled from Iraq to Malaysian Borneo were 
genotyped (mtDNA Cytochrome-b, 10 microsatellite DNA loci). Moreover, 16 Aonyx cinereus (Asian 
small-clawed otter) and seven Lutra lutra (Eurasian otter) were sequenced to increase information 
available for phylogenetic reconstructions. As reported in previous studies, we found that  
L. perspicillata, A. cinereus and A. capensis (African clawless otter) grouped in a clade sister to the genus 
Lutra, with L. perspicillata and A. cinereus being reciprocally monophyletic. Within L. perspicillata, we 
uncovered three Evolutionarily Significant Units and proved that L. p. maxwelli is not only endemic 
to Iraq but also the most recent subspecies. We suggest a revision of the distribution range limits of 
easternmost L. perspicillata subspecies. We show that smooth-coated otters in Singapore are  
L. perspicillata x A. cinereus hybrids with A. cinereus mtDNA, the first reported case of hybridization in 
the wild among otters. This result also provides evidence supporting the inclusion of L. perspicillata and 
A. cinereus in the genus Amblonyx, thus avoiding the paraphyly of the genus Aonyx.

The Lutrinae subfamily (Carnivora, Mustelidae) comprises 13 species of otters living on all continents except 
Antarctica and Australasia1. Recently, a molecular study carried out by Koepfli et al.2 provided valuable insight 
into the phylogeny of otters, confirming an earlier suggestion that Lutrinae was a monophyletic taxon3–5. 
According to Koepfli et al.2, adaptive radiation of Lutrinae first appeared c. 7.5 Ma in Eurasia and involved three 
main evolutionary lineages. One included the sea otter (Enhydra lutris) and river otters from Eurasia (Lutra 
lutra, Eurasian otter; Aonyx cinereus, Asian small-clawed otter; Lutra sumatrana, hairy-nosed otter; Lutrogale 
perspicillata, smooth-coated otter) and Africa (Aonyx capensis, African clawless otter). Another lineage contained 
New World river otters (genus Lontra: four species) while the third lineage, sister to the previous ones and basal 
within the Lutrinae, comprised the giant otter (Pteronura brasiliensis). Furthermore, L. lutra-L. sumatrana and  
A. cinereus-L. perspicillata turned out to be pairs of sister taxa. On the one hand, the placement of L. perspicillata 
as sister to A. cinereus was in agreement with results from earlier studies on karyotype, brain structure and fossils 
of these species6–11; on the other hand, such monophyly made Aonyx a paraphyletic genus.

The wide distribution range of the smooth-coated otter encompasses socio-politically unstable and remote 
areas in Asia. Three subspecies are known: L. p. maxwelli (Hayman 1956)12 in Iraq, L. p. sindica (Pocock 1940)13 
in Pakistan (mostly in the Sindh), and L. p. perspicillata (Geoffroy St. Hilaire 1826)14 in India, Nepal, and from the 

1Department of Biology, Zoology-Anthropology Unit, Via A. Volta 4, 56126 Pisa, Italy. 2Department of Biology, 
University of Baghdad, Al-Jadriya, 10071 Baghdad, Iraq. 3TRAFFIC Southeast Asia, Unit 3-2, 1st Floor Jalan SS23/11, 
Taman SEA, 47400 Petaling Jaya, Selangor, Malaysia. 4Central Zoo Authority, Ministry of Environment, Forest and 
Climate Change, New Delhi 110003, India. 5Department of Wildlife & Ecology, University of Veterinary & Animal 
Sciences, Lahore, Pakistan. 6Zoology Department, Ghazi University, Dera Ghazi Khan, Pakistan. Correspondence 
and requests for materials should be addressed to F.B. (email: filippo.barbanera@unipi.it)

received: 09 August 2016

accepted: 21 December 2016

Published: 27 January 2017

OPEN

mailto:filippo.barbanera@unipi.it


www.nature.com/scientificreports/

2Scientific Reports | 7:41611 | DOI: 10.1038/srep41611

Bay of Bengal across Indochina to southwestern Yunnan, the Malaysian Peninsula, Sumatra, Java and Borneo15 
(Fig. 1). According to the literature, the colour of the coat is the main morphological feature differentiating these 
subspecies. Lutrogale p. maxwelli, which is referred to as the “black otter” by Marsh Arabs, is the darkest taxon, 
with dark brown to almost black pelage, iron-grey to whitish throat, and light brown to almost grey lower part 
of the neck and undersides. Lutrogale p. sindica holds the palest fur, likely an adaptation to the arid nature of its 
habitat, with the general hue of the upper side being tawny or sandy brown instead of darker brown with a rusty 
tinge. In L. p. perspicillata, the fur is dark to blackish brown along the back and on the head, while the underside 
is light brown to almost grey16–18.

Listed as Vulnerable by the IUCN and included in Appendix II of CITES, L. perspicillata has globally declined 
by 30% over the past 30 years19, meaning that in some place otters are exceedingly rare (e.g., in Iraq) or locally 
extinct. Major threats include habitat fragmentation and loss, water pollution, overfishing, illegal trapping, trade 
and hunting1,20–25.

We investigated the molecular phylogeography of L. perspicillata relying on a large sample size collected across 
the entire species’ range to determine both spatial genetic structure and diversification of the taxon for its man-
agement within an adaptive conservation framework26. We employed both mitochondrial and microsatellite 
(Short Tandem Repeats, STR) DNA markers due to their complementary nature, as analyses based on mtDNA 
alone could reveal only a small part of the evolutionary history of the species27. We used the Cytochrome-b 
gene (Cyt-b) marker, as the only complete L. perspicillata mtDNA sequence available in GenBank concerned this 
gene28. In order to increase geographical coverage, we combined data from modern DNA with those obtained 
from smooth-coated otter specimens resident in natural history museum collections (archival DNA).

Results
Mitochondrial DNA.  Two alignments were created, the first comprising 1,131 bp-long Cyt-b sequences, the 
second 305 bp-long fragments of the same gene with all sequences retrieved from museum specimens. We found 
32 (H) and 25 (h) haplotypes for the 1,131 and 305 bp-long sequence alignment, respectively, that conformed to a 
model of neutral evolution (Tajima’s test, P >​ 0.05: D =​ −​0.081 and D =​ −​0.767, respectively). Sequences showed 
G-biased nucleotide composition, high transitions/transversions (Ti/Tv) ratio (9.66 and 8.78, respectively), and 
did not contain any internal stop codon and/or indels. Overall, we did not find any evidence for the occurrence of 
Numts (mitochondrial sequences of nuclear origin29). All samples of L. perspicillata, except those from Singapore 
(A. cinereus mtDNA), shared maternal ancestry (Fig. 2 and Supplementary Table S1).

Figure 1.  Lutrogale perspicillata distribution map including modern (white circles) and archival (black 
squares) sampling localities (see insets for Iraq, Pakistan and Singapore). In Iraq, the white star indicates the 
site (TaqTaq, Kurdistan) where the sample of Omer et al.47 was collected. The positions of the Rann of Kachchh 
and of the Isthmus of Kra Seaways are reported. Legend:?, unknown locality; PU, Pulau Ubin; PT, Pulau Tekong. 
See Supplementary Table S1. Geographic ranges were adapted from IUCN (Lutrogale perspicillata. The IUCN 
Red List of Threatened Species. Version 2016-1)96. The Figure was modified using CorelDraw! v. 12 (2003) 
software. Digital images (insets) were obtained from Google Earth v. 7.1.5.1557 (2015 Google Inc.) and 
modified with CorelDraw! Google Earth map data: [Data SIO, NOAA, U.S. Navy, NGA, GEBCO - Image 
Landsat] for Iraq and Pakistan digital images, and [Data SIO, NOAA, U.S. Navy, NGA, GEBCO - Image © 2016 
Digital Globe - Image © 2016 CNES/Astrium] for Singapore digital image.
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Mitochondrial DNA: 1,131 bp-long sequence alignment.  We did not find any saturation in the phy-
logenetic signal, as the Index of substitution saturation (Iss) value (0.315) was smaller (P <​ 0.001) than that of 
the critical Iss (Iss.c =​ 0.753 and Iss.c =​ 0.470, in symmetrical and asymmetrical trees, respectively). Bayesian 
(BI), Maximum Likelihood (ML) and Neighbour-Joining (NJ) reconstructions produced identical topologies 
(Fig. 2). All L. perspicillata haplotypes were included in a clade sister to A. cinereus (with all Singapore hap-
lotypes). Lutrogale perspicillata, A. cinereus and A. capensis grouped in a clade sister to the genus Lutra, and 
the estimated divergence time between A. cinereus and L. perspicillata was 1.33 ±​ 0.78 Myr (uncorrected 
p-distance, 0.61 ±​ 0.36)3. Within L. perspicillata, we found three distinct, reciprocally monophyletic and statisti-
cally well-supported lineages. The first included L. p. maxwelli from Iraq, while the second and third comprised 
otters from South and Southeast Asia respectively belonging to L. p. sindica (Pakistan) and L. p. perspicillata 
(India, Bangladesh) and to L. p. perspicillata (Thailand, Cambodia, Vietnam, Malaysia) morphological subspecies. 
Divergence times (as above) were 63 ±​ 60 Kyr between South and Southeast Asia, 326 ±​ 152 Kyr between South 
Asia and Middle East, and 370 ±​ 174 Kyr between Southeast Asia and Middle East smooth-coated otters.

The most likely reconstruction obtained with Sdiva (Sdiva value =​ 2,057.7) included (L.p.sindica,(L.p.maxwelli, 
L.p.perspicillata)) as the prevailing topology for the smooth-coated otter clade (consensus tree created by Sdiva: 
Supplementary Figure S1). It was suggested that South East Asia represented the ancestral area (node 44 =​ 100% D) 
for the diversification of L. perspicillata as well as for the other otters (L. lutra, L. sumatrana and A. cinereus) occur-
ring in East Asia. The same result was obtained using the command “estimate a node” (node 44: 100% D). The analy-
sis performed with Mesquite and the Bayesian trees with constrained topology within the L. perspicillata clade was 
not successful. However, we found that (L.p.sindica, (L.p.maxwelli, L.p.perspicillata)) was the topology for which the 
difference between two states was the closest to 2 (Supplementary Table S5). If that were the case, then South Asia, 
the state with the lower negative log-likelihood, would have been referred to as the ancestral range for L. perspicillata.

Figure 2.  Bayesian (BI) tree computed using modern/GenBank (Supplementary Tables S1 and S4) 
haplotypes (H, 1,131 bp-long sequence alignment) and H. maculicollis as outgroup. Maximum Likelihood 
(ML) and Neighbour Joining (NJ) methods produced perfectly overlapping reconstructions. Hence, the 
statistical support was reported at each node as follows: above, posterior probability value computed in the 
BI analysis; below, bootstrap percentage values computed in the ML (left) and NJ (right) trees. *A. cinereus 
haplotypes (H13 to H15) from L. perspicillata otters sampled in Singapore.
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Mitochondrial DNA: 305 bp-long sequence alignment.  Three haplogroups were disclosed in the net-
work (Fig. 3). The first (haplotype diversity, h: 0.29 ±​ 0.20) included Middle East otters only, while the second 
(h: 0.60 ±​ 0.10) and third (h: 0.81 ±​ 0.04) contained otters from South Asia and Southeast Asia, respectively. In 
the latter, the positive R2 value (see Methods) was statistically significant (R2 =​ 0.134, P =​ 0.03), a population 
demographic expansion could not be rejected (Mismatch Distribution, MD test: r =​ 0.048; PSSD =​ 0.23), and 
the McDonald-Kreitman did not detect any sign of purifying selection (P =​ 0.59 and 0.34 with A. capensis and 
H. maculicollis as outgroup, respectively). Analysis of Molecular Variance (Amova) showed that haplogroups 
significantly diverged from each other (φ​st =​ 0.83, P <​ 0.001: Table 1), the very large majority of diversity being 
partitioned among (83.3%) instead of within (16.7%) haplogroups.

Microsatellite DNA.  The STR panel was powerful in discriminating otters30 (Probability of identity con-
sidering unrelated or sibling individuals: PID =​ 6.9 ×​ 10−12 and PIDsib =​ 1.0 ×​ 10−4, respectively; Table 2). No 
evidence for allele dropout and scoring errors was found, and only 2.5% of the microsatellite locus-population 
combinations turned out to be null alleles. There was no evidence for Linkage Disequilibrium (LE) after 
Bonferroni correction (P >​ 0.05, all comparisons: Supplementary Table S2). Within L. perspicillata, Iraqi otters 
held the highest number of unique alleles (Au =​ 9) and monomorphic loci (Lm =​ 5) as well as the lowest value 
of both allelic richness (Ar =​ 2.00) and Index of Nei (In =​ 0.32). Overall, Au/Lm and Ar/In followed an increas-
ing trend from westwards and eastwards, respectively (Table 3). Significant departure from Hardy-Weinberg 
Equilibrium (HWE) due to heterozygote deficiency was observed in South Asia, Southeast Asia and A. cinereus 
groups (Table 3), which possibly indicated the occurrence of a Wahlund effect31. We found that 64.6% of the STR 
variability was partitioned within L. perspicillata haplogroups and 35.4% among them (Fst =​ 0.35, P <​ 0.001), with 
Fst pairwise distance values among haplogroups being all highly significant (Table 1).

Bayesian clustering analysis performed with Structure using L. perspicillata otters only (Singapore excluded) 
identified K =​ 3 as the most likely number of genetic clusters (Fig. 4a). Cluster I and II included otters from Iraq 
and Pakistan/India (Q, average membership probability: QI and QII =​ 1.00, all individuals), respectively, while 
cluster III contained those from Southeast Asia (QIII range: 0.96–1.00). One Bangladeshi otter showed admixed 
ancestry (QII =​ 0.64; QIII =​ 0.36) (Fig. 4a).

Figure 3.  Lutrogale perspicillata network computed using haplotypes (h) from the 305 bp-long sequence 
alignment (modern + archival DNA and GenBank entries). A scale to infer the number of haplotypes for each 
pie was provided together with a length bar to compute the number of mutational changes. The colour of each 
country, the number of each haplotype as well as the connection (dashed line) with A. cinereus (cf., Fig. 2) are 
indicated. See Supplementary Tables S1 and S4 for details.

Middle East South Asia Southeast Asia

Middle East — 0.86 0.83

South Asia 0.50 — 0.78

Southeast Asia 0.45 0.23 —

Table 1.   φst (mtDNA, above diagonal) and Fst (STR, below diagonal) pairwise distance values among 
L. perspicillata haplogroups (Fig. 3). Middle East: Iraq; South Asia: Pakistan, India, Nepal and Bangladesh; 
Southeast Asia: from Thailand to Malaysian Borneo. All values, P <​ 0.001.
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A second round of clustering analyses revealed a high degree of genetic admixture in the Singapore otter 
population (Fig. 4b). One individual was assigned to L. perspicillata and two to A. cinereus, the remaining 15 
otters showing admixed genotypes (QI range: 0.11–0.88) between the parental species (Supplementary Table S3). 
Average membership probability of the Singapore population to L. perspicillata and A. cinereus was QI =​ 0.42 and 
QII =​ 0.58, respectively.

Discussion
Lutrogale perspicillata diversification across Asia.  The evolutionary relationships of L. perspicillata 
within the Lutrinae perfectly reflected the corresponding part of the phylogeny obtained by Koepfli et al.28:  
L. perspicillata was placed with Aonyx in one clade and L. lutra grouped with L. sumatrana in another sister to 
the previous one (Fig. 2). We confirmed the systematic placement of L. perspicillata as sister to A. cinereus (esti-
mated divergence time: this study, 1.3 Myr; Koepfli et al.2, 1.5 Myr), and the well-established phylogenetic rela-
tionships between these species were further emphasised by the disclosure of L. perspicillata x A. cinereus hybrids 
(see below). This result provided additional evolutionary evidence supporting the proposal of Koepfli et al.28 to 
include L. perspicillata and A. cinereus in the genus Amblonyx (Rafinesque 1832)32. As discussed by these authors, 

Locus Label Ta (°C) Primer sequence (5′–3′)
Size-range 

(bp) A PID PIDsib Repeated motif

Lut435 HEX 48 F: TGAAGCCCAGCTTGGTACTTC 113–133 11 2.7 ×​ 10−2 3.3 ×​ 10−1 (CA)15

R: ACAGACAGTATCCAAGGGACCTG

Lut615 HEX TD 52–48 F: TGCAAAATTAGGCATTTCATTCC 223–249 10 9.9 ×​ 10−4 1.1 ×​ 10−1 (GT)12

R: ATTCTCTTTTGCCCTTTGCTTC

Lut818 FAM TD 52–48 F: AAGGATGTGAAACAGCATTG 142–184 8 4.5 ×​ 10−5 3.9 ×​ 10−2 (GATA)3

R: CCATTTTATACACATAAATCGGAT

Lut457 TET TD 52–48 F: CAGGTTTATGGCTTTATGGCTTTC 153–175 8 2.1 ×​ 10−6 1.4 ×​ 10−2 (CA)9

R: CAGGGTTTGATTTCTGGTGAGG

Lut701 TET TD 55–52 F: GGAAACTGTTAAAGGAGCTCACC 152–180 10 1.1 ×​ 10−7 5.0 ×​ 10−3 (CCTT)2…​(CTAT)9

R: CAGTGTTCATAAGGATGCTCCTAC

Lut453 FAM TD 52–48 F: AGTGCTTTGTACTTGGTAATGG 97–131 9 9.8 ×​ 10−9 2.0 ×​ 10−3 (CA)9

R: AGACTGAAAGCTCTGTGAGGTC

OT19 FAM TD 55–52 F: ATAGGTCTCTCAGCACGGTGTCT 203–223 6 1.2 ×​ 10−9 8.7 ×​ 10−4 (GGAA)6..(GAAA)7

R: TTAAATCCACATCTGTGACTCTGCA

Lut832 TET TD 52–48 F: TGATACTTTCTACCCAGGTGTC 176–192 5 1.6 ×​ 10−10 3.8 ×​ 10−4 (GATA)8

R: TCCTTAGCATTATCTTATTTACCAC

Lut604 FAM TD 55–52 F: TATGATCCTGGTAGATTAACTTTGTG 97–109 6 2.8 ×​ 10−11 1.9 ×​ 10−4 (GT)7

R: TTTCAACAATTCATGCTGGAAC

OT17 HEX TD 55–52 F: ATCAGGTATGAGGATACATTTACCT 144–162 4 6.9 ×​ 10−12 1.0 ×​ 10−4 (CTTT)6

R: TGCAACCTACTTCTATATGAATTT

Table 2.  Characteristics of investigated STR loci: Ta (°C), annealing temperature; TD, touch-down PCR; 
F, forward; R, reverse; size range (bp); A, number of alleles; PID, probability that two individuals drawn at 
random share identical genotypes; PIDsib, probability of identity among siblings; repeated motif. Loci are 
sorted according to the increasing order of their PID and PIDsib single-locus values (i.e., the locus at the top is 
the most informative one), and a sequentially multi-loci PID (PIDsib) is reported for each locus. A, PID and PIDsib 
values were calculated using the entire L. perspicillata modern dataset (Supplementary Table S1). All loci were 
from Dallas & Piertney97 with the exception of OT17 and OT1998.

Haplogroup n A Ar Au Lm In HO HE PHWE χ2 (df)

Middle East 6 20 2.00 9 5 0.32 0.67 0.63 0.17 14.1 (10)

South Asia 16 41 3.32 5 1 0.51 0.41 0.59 <​0.001 ∞​ (18)

Southeast Asia 16 51 3.98 2 0 0.63 0.56 0.64 <​0.001 70.1 (20)

Singapore 18 44 3.29 1 0 0.51 0.47 0.53 0.032 33.1 (20)

A. cinereus 16 60 4.62 20 0 0.67 0.59 0.73 <​0.001 49.2 (20)

Table 3.  Genetic variability of STR loci for L. perspicillata haplogroups (Fig. 3), Singapore population and 
A. cinereus parental control. Legend: n, sample size; A, number of alleles; Ar, allelic richness; Au, number of 
unique alleles; Lm, number of monomorphic loci; In, Index of Nei; HO, observed heterozygosity; HE, expected 
heterozygosity; PHWE, probability value for the Hardy-Weinberg Equilibrium test; χ​2 test with relative degrees of 
freedom (df) (Fischer global test, all loci). Departure from HWE was significant for South Asia, Southeast Asia 
and A. cinereus also after Bonferroni correction (α​ =​ 0.05, α​′​ =​ 0.05/10 * 5 =​ 0.001). Middle East: Iraq; South 
Asia: Pakistan, India, Nepal and Bangladesh; Southeast Asia: from Thailand to Malaysian Borneo.
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such choice would avoid Aonyx to be paraphyletic, thus reflecting monophyly of smooth-coated and Asian small-
clawed otters as well as their divergence from the African A. capensis.

We found three distinct, reciprocally monophyletic and statistically well-supported L. perspicillata evolution-
ary lineages. The first included L. p. maxwelli from Iraq, while the second and third comprised South (L. p. sind-
ica +​ western L. p. perspicillata) and Southeast (eastern L. p. perspicillata) Asia populations, respectively. These 
lineages were perfectly concordant with the haplogroups shown in the network (Fig. 3) and with pairwise φ​st 
distance values computed among them (Table 1). The large majority (83.3%) of the mtDNA diversity was parti-
tioned among haplogroups instead of within them. The microsatellite DNA confirmed such remarkable spatial 
genetic structure. Indeed, both pairwise Fst distance values (Table 1) and Bayesian clustering of individual mul-
tilocus genotypes (Fig. 4a) assessed net separation among Middle East, South and Southeast Asia populations. 
The partition of genetic variation at the nuclear DNA was highly significant (Fst =​ 0.35, P <​ 0.001), although 
most (64.6%) of the diversity was found within haplogroups instead of (35.4%) among them. When we compared 
mitochondrial versus nuclear DNA, we found that the ratio of φ​st to Fst (0.83/0.35) was 2.4. The most obvious 
reason for such discrepancy is that mtDNA has a four-time shorter coalescence time than microsatellites, and a 
decrease in mtDNA diversity should be faster in bottlenecked/declining populations, as it might be the case in  
L. perspicillata33.

Ryder34 introduced the concept of Evolutionarily Significant Unit (ESU) for prioritising conservation of units 
below recognised taxonomic levels. Moritz35 stressed reciprocal monophyly and divergence of allele frequency at 
mitochondrial and nuclear DNA loci, respectively, as the most distinctive attributes of an ESU. In this study, we 
uncovered three ESUs within L. perspicillata: Middle East, South Asia and Southeast Asia (Figs 2 and 3). These 
operational units should allow conservationists to preserve the evolutionary potential of intraspecific genealogies 
(“keep options alive”)36. ESUs can guide ex situ collection curators to pursue separate management of L. perspi-
cillata conspecifics belonging to distinct lineages, hence, to identify the most appropriate source populations for 
reintroduction programs. Regrettably, distinctions among otter populations are sometimes forgotten during rein-
troductions, although it is known that spatial genealogical structuring may occur because of limited gene flow21.

Conventional wisdom suggests that genetic survey results will be more accurate and precise as more samples 
are employed. We are aware that the biogeographic scenario provided in this study should be considered with 
caution. Sdiva reconstruction indicated that the most recent ancestor to L. perspicillata inhabited Southeast Asia 
(Supplementary Fig. S1: node 44). This result was in agreement with (i) the East to West decreasing gradient of 
both mitochondrial (h) and nuclear (Table 3) DNA diversity, (ii) the population expansion in Southeast Asia (R2, 
MD), and (iii) the comparatively shorter branch length for the Southeast Asia lineage (Fig. 2). Glacial refuges 
would typically harbour organisms with higher genetic variability than that of derived populations formed by a 
subset of the original gene pool, and intraspecific diversity should decline away from refuges as consequence of 
successive founder events during post-glacial colonization37,38. As already known for many taxonomic groups in 
Southeast Asia39, we found that the haplotypes sampled in the Sundaland (Thai-Malay Peninsula, Sumatra, and 
Malaysian Borneo: h8 to h10) were private to this region and, as such, distinct from those we found in Indochina 
(h5 to h7, h11 and h12: all private) (Fig. 3, Table S1). Repeated glacial expansions and retractions might have 
generated this genetic pattern in L. perspicillata, as, for instance, sea level depression was 120 m at the Last Glacial 
Maximum (20,000 years ago), with a savanna bridge connecting the Thai-Malay Peninsula with Sumatra, Borneo, 
and Java39. Whereas the involvement of the Isthmus of Kra (Fig. 1) can be excluded, as it dissected the Peninsula 
not later than the 5.5–4.5 Mya40, we hypothesised that Southeast Asia might have acted as Pleistocene glacial 
refuge as well as the source of a westward diversification of L. perspicillata. With reference to the latter, however, 
we found that A. cinereus, sister taxon of L. perspicillata, was connected to the South instead of Southeast Asia 
haplogroup (overall star-like structure in the network of Fig. 3). This clearly suggested South Asia as the source 
for both an eastward and a westward diversification, with L. p. perspicillata (to the East) and L. p. maxwelli (to the 

Figure 4.  Bayesian analysis of STR multilocus genotypes as computed with Structure. Each individual 
was represented as a vertical bar partitioned in K segments, whose length is proportional to the estimated 
membership to the K clusters. (A) Lutrogale perspicillata (Singapore excluded), with K =​ 3. Middle East: Iraq; 
South Asia: Pakistan, India, Nepal and Bangladesh; Southeast Asia: from Thailand to Malaysian Borneo.  
(B) Singapore smooth coated otters compared to either L. perspicillata or A. cinereus parental control, with 
K =​ 2 (see text for details). Legend: *individual from southern Bangladesh (Khulna Division): next column to 
the right refers to the second otter from northern Bangladesh (see Supplementary Table S1); **dead otter found 
near Kranji Dam, Singapore.
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West) as departing subspecies from L. p. sindica. Although the analysis carried out with Mesquite did not pro-
vide an unequivocal result, we found that (L.p.sindica, (L.p.maxwelli, L.p.perspicillata)) was the topology for which 
the difference between two states was the closest to 2 (Supplementary Table S5). If that were the case, then South 
Asia would have been estimated as the ancestral range for L. perspicillata. Despite no definitive proofs are availa-
ble, we are inclined to consider this scenario (South Asia +​ eastward and westward diversification) as more relia-
ble than that suggested by Sdiva and the other evidences (South East Asia +​ westward diversification). Whatever 
the matter would be, Iraq hosts the most recent subspecies, the divergence time between L. p. maxwelli and L. p. 
sindica (c. 330 Kyr) being much longer than that estimated between the latter and L. p. perspicillata (c. 60 Kyr).

The boundary between L. perspicillata easternmost haplogroups and the relationships between Pakistani and 
Indian populations deserve a comment as well (Figs 3 and 4a). In the first case, Myanmar mountain range and/or  
rivers (e.g., Brahmaputra) might have restricted the gene flow between Indian sub-continent and Southeast Asia 
otters, as occurred in many other taxonomic groups41,42. In the second one, the Rann of Kachchh, a huge sea-
sonally marshy region located between Pakistan (Sindh) and India (Gujarat) (Fig. 1), has likely played a major 
role. While the Rann connected the fauna of these countries for a long time, the regression of wetlands in the 
Indian sub-continent caused a marked discontinuity in the distribution of many wet-zone species since the 
mid-Miocene43,44. We suggest that the Pakistani smooth-coated otters kept up relic genetic traits of the Indian 
conspecifics since the gene flow between them was ongoing across the Rann, as occurred with the black francolin 
(Francolinus francolinus, Galliformes)45. Therefore, although a more extended sampling coverage as well as eco-
logical data are needed, the distribution range limits of easternmost L. perspicillata subspecies might be revised as 
follows: otters occurring from Pakistan across India North to Nepal and East to Bangladesh should be assigned to 
L. p. sindica, while those inhabiting Indochina and Southeast Asia to L. p. perspicillata.

Hayman12 described Iraqi smooth-coated otter as a distinct taxon (L. p. maxwelli) based on a skin from a dead 
individual and a young male brought to G.Y. Maxwell by Marsh Arabs. Since then, limited information and no 
picture of live otters were available. In the 1990 s, the Mesopotamian marshes were drained for political reasons 
and a catastrophic decline of the local biota has occurred. Despite re-inundation in 2003, otters became exceed-
ingly rare due to hunting, trapping, and habitat loss24,25,46. In this study, we provided consistent DNA evidence 
for both occurrence and endemicity to Iraq of L. p. maxwelli. All genotyped smooth-coated otters were from 
Mesopotamia; hence, we could not confirm the presence of the species in Kurdistan47 (see below). In Iraq, all 
mtDNA haplotypes and 45% of STR alleles were private and, compared to South and Southeast Asia populations, 
otters showed the lowest value of haplotype diversity, number of alleles, allelic richness, Nei Index and the highest 
number of unique alleles (Figs 2, 3 and 4a; Table 3; Supplementary Table S1). On the one hand, this outcome 
could be due to the small sample size; on the other hand, geographic isolation and related genetic bottlenecks/
founder events could have played a major role. Unlike other mammals with uninterrupted distribution across 
most of southern Asia (e.g., the Indian grey mongoose, Urva edwardsii: from Turkey and the Arabian Peninsula 
East to Bangladesh), L. perspicillata is absent between Pakistan and Iraq (no records in central Asia and extinct 
in Iran48). It is likely that such a gap in the species’ distribution range has led to the divergence among Lutrogale 
subspecies (Figs 2, 3 and 4a; Table 1; compare versus Fig. 1 in Veron et al.41).

Omer et al.47 showed evidence for a smooth-coated otter range extension (c. 500 km) towards Kurdistan rely-
ing on a single sample (JQ437613: Supplementary Table S4). The latter diverged from the Mesopotamian samples 
of this study by 8 and 15 nucleotide changes over 305 bp and 1,131 bp, respectively (Figs 2 and 3), a value up to ten 
times higher than that we disclosed for L. lutra from the same areas (zero and <​ 2 over 305 and 1,131 nucleotide 
positions, respectively). Moreover, we found only L. lutra genetic evidence at the same site surveyed by Omer  
et al.47 in Kurdistan (Supplementary Table S1). To conclude, distinct northern and southern L. p. maxwelli popu-
lations would seem a matter of fact. On the one hand, the incomplete JQ437613 entry (i.e., with nine unresolved 
nucleotide positions) might suggest some sequencing trouble for the sample in point. On the other hand, mito-
chondrial sequence diversity is known to be very low in L. lutra28, hence, our results would be not so surprising. 
Although further investigations are needed to shed some light on L. perspicillata in North Iraq, we feel that L. p. 
maxwelli’s endemicity will be pivotal to draw up a national action plan for the protection of the species24.

Introgressive hybridization with the Asian small-clawed otter.  Among animals, 10% of species are 
involved in hybridization and potential introgression49, mustelids not being an exception50,51. Although mtDNA 
is more prone to introgression than nuclear DNA27, there are many examples of mtDNA capture with (e.g., 
Barbanera et al.52) or without (e.g., Bernatchez et al.53) nuclear introgression. Our study falls in the first case, as 
wild phenotypic smooth-coated otters sampled in Singapore (Fig. 1, Supplementary Table S1) turned out to be  
L. perspicillata x A. cinereus hybrids with A. cinereus maternal ancestry (Figs 2 and 4b, Supplementary Table S3). 
This result represents the first record of introgressive hybridization in a wild otter population worldwide. 
Nevertheless, the occurrence of tight evolutionary relationships between L. perspicillata and A. cinereus was 
known based on molecular phylogenetic, genetic and morphological data (see Introduction). Moreover, to date, 
the only known hybrid otters were those born in captivity as a result of a crossing between an L. perspicillata male 
with an A. cinereus female54.

Integration of genetic material from one species (A. cinereus) into another (L. perspicillata) and morphological 
resemblance to one parental species only (L. perspicillata) suggest repeated backcrossing to the latter. Nonetheless, 
hybrid otters contained the mtDNA of only one of the parental species, A. cinereus. Since the 1960 s, the latter has 
become gradually rarer than L. perspicillata in Singapore and appeared to be more a visitor than a resident species. 
In this area, at the present time, A. cinereus inhabits only off shore islands (Pulau Ubin, Pulau Tekong: Fig. 1)55,56. 
We suggest the occurrence of unidirectional hybridization between A. cinereus females and L. perspicillata males, 
with either prezygotic or postzygotic mechanisms being potentially responsible for the lack of the L. perspicillata 
maternal line57. In the first case, difference in size between smooth-coated (c. 11 kg) and Asian small-clawed  
(c. 5 kg) otter males might have worked as sovranormal stimulus for A. cinereus females. Indeed, it is most likely 
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to be the female of the smaller species that accepts the male of the larger species than the opposite58. According to 
the “sexual selection hypothesis”, A. cinereus females might have initially rejected L. perspicillata, but the longer 
they failed in searching for males of their own species the less discriminating they likely became and, eventually, 
mated with the male of the common species. In the event of postzygotic mechanisms, L. perspicillata (female) x 
A. cinereus (male) crossing could have been unviable or had lower fitness. More likely, even though both parental 
mtDNAs might have been present initially, one lineage could have gone extinct57. Aonyx cinereus mtDNA capture 
could have been due to selective pressure (adaptation) and/or chance (drift), an event that can occur quickly in 
small and fragmented populations, as it was found, for instance, in the asp viper (Vipera aspis52). To conclude, 
further research on sympatric smooth-coated and Asian small-clawed otter populations is needed to establish 
if hybridization is more widespread than what we know today. The genetic admixture of the Singapore otter 
population might have implications for its adaptation to the present-day fast changing environment; hence, a 
genetic survey relying on functional markers (e.g., Major Histocompatibility Complex loci) could be helpful for 
supporting its long-term conservation.

Methods
Biological sampling.  We collected 58 L. perspicillata samples from Iraq to Malaysian Borneo (Fig. 1). We 
sampled otters in the wild in Iraq, Pakistan, India, Thailand and Singapore. Although L. perspicillata is kept in 
low numbers in captivity, we also sampled ex situ individuals never housed with other otter species and whose 
origin in the wild was known to collection curators. Aonyx cinereus samples (n =​ 16) were obtained mostly from 
European and Australian zoos, while we collected L. lutra samples in Iraq (Kurdistan, n =​ 4) and in Italy (n =​ 3) 
(Fig. 1 and Supplementary Table S1). However, faeces (“spraints” in otters) and samples collected by veterinary 
staff members of zoos were also used. Only in Pakistan, samples (blood/hairs) were taken from otters trapped 
in the wild. Methods were performed in accordance with the relevant guidelines and regulations of the Animal 
Health and Welfare Regulations (AHWR) of the Bahauddin Zakariya University, and were approved by the 
Institutional Research Ethical Committee of the same University (permit #D-1/2016). In the light of the type 
of work done, we did not require approval from the Animal Welfare Body (in Italian, “Organismo preposto al 
Benessere Animale”) of the University of Pisa.

We borrowed samples from 11 L. perspicillata specimens resident in the Field Museum of Natural History 
of Chicago, in the Smithsonian Institution National Museum of Natural History of Washington D.C., in the 
Natural History Museum of Denmark (Copenhagen), in the National Museum of Natural History of Paris, and 
in the Natural History Museum of Vienna. Specimens were collected over a period from 1882 to 1970 (Fig. 1 and 
Supplementary Table S1). Curators provided a tiny amount (<​5 mg) of either dry skin or bone fragments mostly 
from the skull cavity (e.g., turbinates) or slivers of toe pad.

DNA extraction.  We extracted DNA from modern samples in the Zoology building of the Department of 
Biology, Pisa. We used DNeasy Blood and Tissue Kit (hair/blood/skin samples) and QIAamp DNA Stool 
Mini Kit (spraints) following instructions provided by the manufacturer (Qiagen). Reliability of each extraction 
was checked through negative controls, while DNA concentration and purity were assessed (spraints excluded) 
with an Eppendorf BioPhotometer (AG Eppendorf). Finally, we extracted DNA from archival samples in a dedi-
cated room free of any mammal DNA in the Anthropology building of the Department of Biology (Pisa) follow-
ing Forcina et al.59.

Mitochondrial DNA.  We designed PCR and sequencing Cyt-b primers for L. perspicillata, A. cinereus and  
L. lutra (modern and archival DNA: Table 4). For the modern samples, we performed PCR reactions as in 
Guerrini et al.60 adding 1 μ​l of 75 μ​M Bovine Serum Albumin (BSA) (Sigma Aldrich) to all reactions, setting 
the annealing time to 1 min and including two blank controls. When the amplification was not successful, we 
obtained the entire Cyt-b gene (1,140 bp) by amplifying the purified products of the first PCR via semi-nested 
PCRs (snPCRs) as reported in Guerrini & Barbanera61. In the second PCR, two overlapping fragments (1st: 
754 bp; 2nd: 612 bp) were amplified for each sample in two reaction tubes applying the same thermal profile as in 
the first PCR. We purified and sequenced all PCR products as in Guerrini et al.60.

For the archival samples, we amplified two overlapping gene fragments (1st: 211 bp, 2nd: 199 bp) in two distinct 
reaction tubes. Each final 307 bp-long sequence corresponded to the Cyt-b portion comprised between nucleo-
tide position n. 602 and n. 908 (codon reading frame, 2). We carried out PCR reactions as in Barbanera et al.62 and 
we purified/sequenced PCR products as above.

We sequenced the entire Cyt-b gene for 56 out of 58 modern L. perspicillata, all A. cinereus (n =​ 16) and L. 
lutra (n =​ 7); for two Indian L. perspicillata we obtained the 307 bp-long fragment (Supplementary Table S1). 
The latter fragment was sequenced for all (n =​ 11) museum samples. Two Cyt-b alignments were created using 
ClustalX 1.8163. First (entire gene: 1,140 bp) included 96 sequences (56 +​ 16 +​ 7 plus 16 GenBank and one 
unpublished sequence: Supplementary Table S4). Iraqi JQ43761347 contained nine unresolved positions; hence, 
we used 1,131 nucleotides in the analyses. Then, we created a 307 bp-long sequence alignment including two 
unpublished, two Indian, all museum and previous sequences (2 +​ 2 +​ 11 +​ 96 =​ 111: Supplementary Tables S1 a
nd S4). However, we used 305 nucleotides because of the incomplete JQ437613 entry (see above).

We employed Mega 564 to calculate nucleotide composition, to check for internal stop codons/indels, and 
to compute Ti/Tv ratio. We used DnaSp 5.0065 to infer haplotypes (H and h for 1,131 bp-long and 305 bp-long 
sequence alignment, respectively) and to check for neutral evolution of the sequences66. GenBank accession codes 
are reported in Supplementary Tables S1 and S4.

Mitochondrial DNA: 1,131 bp-long sequence alignment.  We evaluated the phylogenetic signal by 
calculating the Iss (Xia test with 1,000 bootstrap replicates67) and plotting the number of Ti and Tv against a TN93 
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corrected distance68 with Dambe 4.2.1369. We used Smart Model Selection as implemented in PhyML 3.070 
and found that the General Time Reversible (GTR) +​ G (α​ =​ 0.223) was the best evolutionary model fitting to 
our dataset according to both the Akaike (8,364.0) and Bayesian (8,701.1) Information Criterion. In a Bayesian 
analysis, however, Metropolis-coupled Monte Carlo Markov Chains (MCMC) integrates over the uncertainty in 
parameters values. Hence, only the general form of the model was included in the BI performed with MrBayes 
3.1.271. Two independent runs of analysis were conducted for 4,000,000 generations with a sample frequency of 
100 (four chains, heating =​ 0.2, random starting tree). Convergence between runs was monitored through the 
Average Standard Deviation of Split Frequencies (ASDSF) until this value dropped well below 0.01. Stationarity 
was reached after 400,000 generations (ASDSF =​ 0.003774) as inferred using Tracer 1.5.072. Hence, 4,000 trees 
were discarded as burn-in, and the remaining 72,002 trees were used to produce a 50% majority-rule consen-
sus tree. Then, we carried out both ML (GTR +​ G model, Nearest Neighbour Interchange, automatically gen-
erated starting tree) and NJ (parameters estimated with Smart Model Selection) tree reconstructions using 
Mega and Paup* 4.0b1073, respectively. Trees were rooted using AF057125 H. maculicollis (spotted-necked otter: 
Supplementary Table S4) of Koepfli & Wayne3, and the statistical support at each node was evaluated by calculat-
ing the Posterior Probability value (PP, for BI) and the Bootstrapping Percentage (BP, for ML and NJ, with 10,000 
replicates74). In the present study, many L. perspicillata Cyt-b sequences are available for the first time. Hence, we 
employed the 0.46%/Myr rate (Cyt-b: Tv, 3rd position) of Koepfli & Wayne3 to date separation between A. cinereus 
and L. perspicillata as well as among L. perspicillata subspecies, although we are aware that such estimates should 
be considered as tentative.

We reconstructed historical biogeography of L. perspicillata using Sdiva (Statistical Dispersal-Vicariance)75 
as implemented in Rasp 3.2 (Reconstruct Ancestral State In Phylogenies)76. Six regions were set-up (code: A 
to F): (A) Europe; (B) Middle East; (C) South Asia; (D) Southeast Asia; (E) Africa; (F) northern Pacific coast. When 
the distribution of each taxon encompassed more than one region, the character state was polymorphic and the 
maximum number of areas set for the Sdiva output was three. We used the posterior family of topologies obtained 
from the Bayesian reconstruction with 72,002 trees. Taking into account that the program does not admit politomy, 
we used either the majority rule consensus tree created by Sdiva with compatible groups with less than 50% support 
allowed or the command “estimate a node” to evaluate a given node individually. We also carried out three addi-
tional Bayesian tree reconstructions as that of Fig. 2 (all parameters) but with constrained topology within the L. 
perspicillata clade: (1) (L.p.sindica,(L.p.maxwelli, L.p.perspicillata)), (2) (L.p.maxwelli,(L.p.sindica, L.p.perspicillata)) 
and (3) (L.p.perspicillata,(L.p.maxwelli, L.p.sindica)) (each tree: node 41, PP =​ 1.00). As in Koepfli et al.2, we investi-
gated these alternative arrangements using the Likelihood Reconstruction method (Markov k-state one parameter 
model) as implemented in Mesquite 3.1077. In particular, we employed the likelihood-ratio test to determine the 
best estimate of the reconstructed character state at node 44 (L. perspicillata clade). The regions were set-up with 
code 0–5 and haplotypes assigned as follows: 0, Europe (H4-H7); 1, Middle East (H1-H3, H17, H18); 2, South 
Asia (H27-H29); 3, South East Asia (H19-H26, H11-H16, H8-H10); 4, Africa (H30, H32); 5, northern Pacific coast 
(H31). The likelihood threshold was set at 2.0, namely the ancestral state reconstruction was considered equivocal at 
the investigated node if log-likelihoods differed by less than 2.0.

Type Name Nucleotide sequence (5′-3′)

Modern DNA: Lutrogale/Aonyx/Lutra

Entire gene PCR Lutra_L14724* TGACTAGTAACATGAAAAATCACGTTG

Lutra_H15915* GGGATTCTGCATTTTTGGTTTACAAGAC

Semi-nested PCR 
and/or sequencing LutroCb_fw583 GTTCACCTCCTGTTTCTCC

LutroCb_rev706 AGAAGTAGGGCGCCCAGG

LutroCb_rev706_Aonyx AGGAGTAGGGCGCCTAGG

LutroCb_fw298 CGCGGCCTATACTATGGATC

LutroCb_rev417 GATTACGGTTGCGCCTCAAAAG

LutroCb_fw775 GCCAACCCGCTCAGTACACC

LutroCb_rev906 GTGTGTAGCAGTGGGACGATG

Archival DNA: Lutrogale

PCR and/or 
sequencing LutroCb_fw583 GTTCACCTCCTGTTTCTCC

LutroCb_fw610 GGCTCCAACAACCCCTCCGG

LutroCb_fw727 GTACTATTCTCCCCAGACCT

LutroCb_rev746 AGGTCTGGGGAGAATAGTAC

LutroCb_fw775 GCCAACCCGCTCAGTACACC

LutroCb_rev794 GGTGTACTGAGCGGGTTGGC

LutroCb_rev890 GAYAAGATTAGGGCCAATAC

LutroCb_rev926 GAGGTGTGTAGCAGTGGGACG

Table 4.  Type, name and nucleotide sequence of mtDNA Cyt-b primers used in this study; *modified from 
Irwin et al.99.
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Mitochondrial DNA: 305 bp-long sequence alignment.  We constructed a L. perspicillata haplotype 
network using the Median Joining method78 with Network 4.6.1.3 (2014–2015 Fluxus Technology, UK). We 
employed Arlequin 3.5.179 to investigate the partition of diversity among and within haplogroups by Amova 
using φ​st, analogous to Wright’s80 F-statistics (10,000 permutations), and to calculate haplotype diversity (h) for 
each haplogroup.

Within L. perspicillata, demographic inferences were obtained only for the Southeast Asia haplogroup (see 
Results), as the others did not include a reliable number of haplotypes for the analyses at issue. Ramirez-Soriano 
et al.81 found that the most powerful tests to detect a population demographic change analysing DNA polymor-
phisms were those based on haplotype frequencies. Among these, R2 statistics has the greatest power to detect 
population expansion when the sample size is quite small (<​10)82. Hence, we estimated the significance of the 
R2 statistics through the null distribution of 5,000 coalescence simulations with DnaSp, and we determined the 
Mismatch Distributions (MD) of mtDNA pairwise distances with Arlequin. As to this latter, the more ragged 
the shape of the distribution, the closer the population to a stationary model of constant size over a long period 
(Harpending’s raggedness index, r)83. The MD test uses the observed parameters of the expansion to perform 
coalescent simulations and to create new estimates of the same parameters. Departure from a model of sudden 
expansion was tested by summing the squared differences (SSD) between observed and estimated MD84. In the 
same haplogroup, the McDonald-Kreitman test85 was run with DnaSp to investigate the deviation from an equal 
ratio of non-synonymous to synonymous fixed substitutions using either A. capensis or H. maculicollis as out-
group (Supplementary Table S4).

Microsatellite DNA.  We genotyped 56 L. perspicillata and 16 A. cinereus (see below) samples 
(Supplementary Table S1) at 10 loci originally isolated from the Eurasian otter genome (Table 2). We performed 
PCRs (12.5 μ​l) as in Barbanera et al.86 according to a touch-down thermal profile (Table 2). We added 0.3 μ​l 
of 75 μ​M BSA to all reactions and included two blank controls. We sequenced on both DNA strands at least 
two alleles per locus to validate each repeated motif (Table 2). We genotyped each locus from two to five times 
according to the comparative multiple-tubes approach of Frantz et al.87. We used Gimlet 1.3.388 to confirm each 
consensus genotype and to evaluate the discriminatory power of the whole set of loci (PID and PIDsib)30. We used 
Micro-checker 2.2.389 to check for null alleles, allele dropout and to score errors due to stuttering. We used 
Fstat 2.9.390 to determine the number of alleles (A), the number of unique alleles (Au) and the allelic richness 
(Ar). We used Genepop 4.291 and Arlequin (i) to calculate the Index of Nei (In), expected (He) and observed (Ho) 
heterozygosity, (ii) to infer deviations from HWE and LE, and (iii) to investigate the partition of STR diversity 
among and within L. perspicillata haplogroups (see Results) by Amova using pairwise Fst distances (10,000 per-
mutations)80. We adopted the Bonferroni correction to adjust the significance level of each test92.

We used Structure 2.3.493 to estimate the posterior probability of membership of each individual to K 
assumed genetic clusters. First, we investigated the genetic structure of L. perspicillata relying on pre-defined 
haplogroups (see Results) without prior information on the origin of samples and admixture model, with 106 
MCMC iterations, a burn-in of 105 iterations, and 10 replicates per each K-value (1 to 12). The number of clusters 
that best fitted to the data was chosen as in Evanno et al.94, and an identification threshold (Qi) to each cluster was 
set to 0.9095.

In a second round of analyses, we inferred genetic identity of phenotypic L. perspicillata otters from Singapore 
(n =​ 18). In the light of their A. cinereus mtDNA lineage (see Results), the involvement of the latter was con-
sidered the most likely as the counterpart of hypothetical introgressive events. We used L. perspicillata (n =​ 16: 
Middle East, 2; South Asia, 3; Southeast Asia, 11) and A. cinereus (n =​ 16) individuals as parental controls 
(Supplementary Table S1). We employed Structure to estimate the posterior probability of each Singapore otter 
to belong to one parental species or to have fractions (Qi) of its genome originating from the two parental species. 
We enabled the “popflag” option (K =​ 2) targeting L. perspicillata and A. cinereus as controls and Singapore as the 
unknown population, namely we requested Structure to only update allele frequencies with the genotypes of 
known individuals93.
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Supplementary Information 
 
Table S1. Modern and archival sample size of this study. Data include country, locality/region for the origin of the sample in the wild, latitude/longitude (Lat. N/Long. E), number (n), sex (M, 
male; F, female), type of sample, year of collection and the captive institution or the museum where eventually the sample came from. Notes comprise additional information on each sample, 
when available. With the exception of blood droplets (Whatman®FTA®cards or EDTA), all samples were preserved in 96% ethanol and stored at - 40 °C at the Department of 
Biology of Pisa (Italy). MtDNA haplotypes are indicated for both 1140 (H) and 307 (h) bp-long Cyt-b sequences. GenBank accession codes are provided in the last column: when haplotypes 
H and h occur at the same time, the GenBank accession code refers to the longest sequence (H). Other: PTWRC, Phnom Tamao Zoological Park and Wildlife Rescue Center, Phnom Penh 
(Cambodia). 
 
Country Origin in the wild Lat.N/Long.E n Sex Sample 

type
Year Zoo/Museum Notes Cyt-b haplotype GenBank accession 

code 
Modern samples (n = 81)           

Lutrogale perspicillata (n = 58)           

Bangladesh Khulna Division 22°48'/89°14' 1 M Spraint 2014 Dhaka Zoo, Bangladesh  - H27 h13 LT593933 
 Mohanpur, Rajshahi Division 24°33'/88°38' 1 M Spraint 2014 Rajshahi Zoo, Bangladesh - H28 h14 LT593934 

Cambodia Unknown - 8 - Spraint 2014 Colchester Zoo, UK Originally from PTWRC H19, H24, H25 h5, h12 LT593923/27/28 

 Unknown - 3 2M, F Spraint 2014 PTWRC, Cambodia - H19, H21 h5 LT593923/24 

 Unknown - 1 F Spraint 2014 Wingham Wildlife Park, UK Originally from PTWRC H25 h12 LT593928 
India Nearby Surat, Gujarat - 2 - Spraint 2014 - - - h16, h17 LT593911/12 
 Tapti River, Surat, Gujarat 21°09'/72°45' 4 - Spraint 2015 - - H29 h14 LT593935 
 Nearby Patna, Bihar - 2 - Spraint 2015 - - H27 h13 LT593933 
Iraq Al-Baghdadiya Lake, Chebaeish,  

Central Marshes, Thi Qar Province 
31°02'/47°03' 1 F Skin 2008 - From dead otter H17 h18 LT593922 

 Om Am Nyaj Lake, Al-Hawizeh 
Marsh, Maysan Province 

31°37'/47°35' 1 M Skin 2008 - From dead otter H17 h18 LT593922 

 Abu Khasaf, Al-Hawizeh Marsh,  
Maysan Province 

31°38'/47°38' 1 M Skin 2012 - From dead otter H17 h18 LT593922 

 Al-Hawizeh Marsh,  
Maysan Province 

31°41'/47°36' 1 M Skin 2014 - From dead otter H17 h18 LT593922 

 Al-Hawizeh Marsh,  
Maysan Province

31°57'/47°68' 2 M, F Skin 2014 - From dead otter H17 h18 LT593922 

Laos  Nam Ngum, Vientiane 18°31'/102°32' 1 - Hair 2014 Lao Zoo and Wildlife Sanctuary, Laos From dead otter H25 h12 LT593928 



Malaysia Peninsular Malaysia - 1 F Spraint 2014 Wingham Wildlife Park, UK - H26 h9 LT593932 

Pakistan Keti Shah Forest, Sukkur 27°48’/68°54' 1 - Blood 2014 - - H27 h13 LT593933 
 Nara Canal, Khairpur 26°27'/68°54' 1 - Blood 2014 - - H27 h13 LT593933 
 Jamrao Headwork, Nawab Shah 26°56'/68°58' 1 - Hair 2014 - - H27 h13 LT593933 
 Chotiari Dam, Sanghar 26°12'/68°59' 1 - Hair 2014 - - H27 h13 LT593933 
 Power House, Sanghar 26°24'/68°52' 1 - Hair 2014 - - H27 h13 LT593933 
 Machi Goth, Matiari 25°24'/69°20' 1 - Hair 2014 - - H27 h13 LT593933 
 Goth Baqir, Sanghar 25°52'/68°32' 1 - Hair 2014 - - H27 h13 LT593933 
 Nearby Badin 24°34'/68°50' 1 - Hair 2014 - - H27 h13 LT593933 
Singapore Sungei Buloh Wetlands Reserve 1°26'/103°43' 3 - Spraint 2014 -  H15 h21 LT593920 
 Marina East, Marina Bay 1°16'/103°52' 3 - Spraint 2014 - - H14, H15 h21 LT593919/20 
 Punggol Reservoir 1°24'/103°53' 1 - Spraint 2011 - - H15 h21 LT593920 
 West Coast Park 1°17'/103°46' 1 M Skin 2011 - Road-killed otter (only 

sample) 
H15 h21 LT593920 

 Kranji Dam Reservoir 1°26'/103°44' 2 - Skin; 
spraint 

2015 - Otter found dead in the wild 
(entire individual) 

H15 h21 LT593920 

 Off Stadium, Marina Bay 1°18'/103°52' 3 - Spraint 2015 - - H15 h21 LT593920 
 Serangoon Reservoir 1°23'/103°55' 5 - Spraint 2015 - - H13, H15 h21 LT593918/20 
Thailand Bangkhuntien, Inner Gulf 13°34'/100°25' 1 M Spraint 2014 - - H19 h5 LT593923 

Vietnam  Unknown - 1 M Spraint 2014 Wingham Wildlife Park, UK - H23 h11 LT593926 

Lutra lutra (n = 7)           

Iraq “Abu Ajaj” Abu Al-Tayar Lake,  
Al-Hammar Marsh, Thi Qar 
Province

30°45'/47°01' 1 M Skin 2008 - From dead otter H2 h1 LT593914 

 Taq Taq, Erbil Province, Kurdistan 35°53'/44°35' 2 2M Skin 2007 - From dead otter H1 h1 LT593913 

 Taq Taq, Erbil Province, Kurdistan 35°53'/44°35' 1 - Spraint  2014 - From dead otter H3 h1 LT593915 
Italy Policastro Bussentino 40°06'/15°32' 1 M Tissue 2014 - Road-killed otter (only 

sample) 
H7 h2 LT593916 

 Riserva Naturale di San Giuliano 40°37'/16°28' 1 M Tissue 2014 - Road-killed otter (only 
sample) 

H7 h2 LT593916 

 Vallo della Lucania 40°13'/15°15' 1 M Tissue 2013 - Road-killed otter (only 
sample) 

H7 h2 LT593916 

Aonyx cinereus (n = 16)           

Malaysia Road from Krau to Jenderak 
Pahang, Pen. Malaysia 
 

4°12'/101°58' 1 - Hair 2006 National Museum of Natural History  
(Paris: MNHN TC-563) 

Road-killed otter H16 h22 LT593921 

Unknown - - 4 - Blood 2014 Basel Zoo, Switzerland - H11 h20 LT593917 
Unknown - - 4 3M, F Blood 2015 Perth Zoo, Australia - H11 h20 LT593917 

Unknown - - 3 3F Hair 2015 Edinburgh Zoo, UK - H11 h20 LT593917 
Unknown - - 4 - Spraint 2015 Ostrava Zoo, Czech Republic - H11 h20 LT593917 



    
Archival samples (n = 11)           

Lutrogale perspicillata (n = 11)           

India Kolkata, West Bengal 22°32'/88°25' 1 M Skin  1955 Natural History Museum of Denmark  
(Copenhagen: CN 4712) 

- - h15 LT593910 

Indonesia Medan, Sumatra 3°21'/98°24' 2 2M Toe pad 1970 Natural History Museum  
(Vienna: NHM 66152, NHM 66153) 

- - h10 LT593907 

Laos Thateng, Plateau des Bolovens,  
Balikhamxay Province 

15°18'/106°18' 1 M Skin 
fragment 

1931 Field Museum of Natural History  
(Chicago: FMNH 38010) 

- - h5 LT593902 

 Pakse, Balikhamxay Province 15°06'/105°48' 1 F Skin  1931 Field Museum of Natural History  
(Chicago: FMNH 38011) 

- - h5 LT593902 

Malaysia Sandakan, Sabah, Borneo 5°45'/117°52' 1 F Skin 
fragment 

1887 Smithsonian Institution National Museum of Natural 
History (Washington D.C.: USNM 19173) 

- - h9 LT593906 

 Pulau Langkawi, Kedah, Pen. 
Malaysia 

6°21'/99°43' 1 F Skin  1899 Smithsonian Institution National Museum of Natural 
History (Washington D.C.: USNM 104437) 

- - h8 LT593905 

Nepal Chisapani, West Nepal 28°37'/81°16' 1 M Bone 1948 Smithsonian Institution National Museum of Natural 
History (Washington D.C.: USNM 290145) 

- - h13 LT593909 

Thailand Unknown - 1 - Bone 1882 National Museum of Natural History  
(Paris: MNHN-ZM-MO 1882-2947) 

- - h5 LT593902 

 Bang Nara River, Mueang 
Narathiwat District 

6°13'/102°02' 1 - Skin  1933 Natural History Museum of Denmark  
(Copenhagen:  CN 2531) 

- - h9 LT593906 

Vietnam Mekong River, South of Ho Chi 
Minh 

9°48'/106°03' 1 M Skin  1924 Smithsonian Institution National Museum of Natural 
History (Washington D.C.: USNM 240483) 

- - h12 LT593908 

 
 

 



Table S2. Fisher global test for departure from Linkage Disequilibrium for each locus pair across all 
populations. No comparison was significant (Bonferroni correction:  = 0.05, ’ = /45 = 0.0011).  

 
Loci pair χ2 df P  

Lut435/Lut453 5.72 10 0.84  

Lut435/Lut457 20.60 12 0.06  

Lut453/Lut457 9.08 10 0.52  

Lut435/Lut615 14.88 10 0.14  

Lut453/Lut615 5.29 8 0.73  

Lut457/Lut615 17.37 10 0.07  

Lut435/Lut818 6.40 8 0.60  

Lut453/Lut818 0.99 4 0.91  

Lut457/Lut818 14.12 8 0.08  

Lut615/Lut818 8.52 8 0.38  

Lut435/Lut832 10.16 10 0.43  

Lut453/Lut832 1.82 8 0.99  

Lut457/Lut832 8.27 10 0.60  

Lut615/Lut832 5.18 10 0.88  

Lut818/Lut832 5.74 8 0.68  

Lut435/Lut604 15.54 8 0.05  

Lut453/Lut604 5.65 8 0.69  

Lut457/Lut604 15.94 8 0.04  

Lut615/Lut604 5.88 6 0.44  

Lut818/Lut604 13.50 6 0.04  

Lut832/Lut604 15.46 8 0.05  

Lut435/Lut701 6.80 12 0.87  

Lut453/Lut701 8.05 10 0.62  

Lut457/Lut701 18.47 12 0.10  

Lut615/Lut701 10.08 10 0.43  

Lut818/Lut701 7.69 8 0.46  

Lut832/Lut701 6.41 10 0.78  

Lut604/Lut701 7.25 8 0.51  

Lut435/OT19 3.95 10 0.95  

Lut453/OT19 12.68 10 0.24  

Lut457/OT19 2.68 10 0.99  

Lut615/OT19 11.46 8 0.18  

Lut818/OT19 4.69 6 0.58  

Lut832/OT19 11.14 8 0.19  

Lut604/OT19 4.51 8 0.81  

Lut701/OT19 4.11 10 0.94  

Lut435/OT17 13.93 6 0.03  

Lut453/OT17 1.12 6 0.98  

Lut457/OT17 11.55 6 0.07  

Lut615/OT17 16.11 6 0.01  

Lut818/OT17 10.26 6 0.11  

Lut832/OT17 7.00 6 0.32  

Lut604/OT17 11.65 6 0.07  

Lut701/OT17 4.28 6 0.64  

OT19/OT17 6.34 6 0.39  

 



Table S3. Posterior Probability of membership for each Singapore otter to L. perspicillata 
(QI) and A. cinereus (QII) species as inferred by STRUCTURE (see Fig. 4b).  Legend: *, the 
only individual assigned to L. perspicillata as parental species; **, otter found dead near 
Kranji Dam, Singapore (see also Table S1 and Fig. S1).  

 

Individual QI  
(L. perspicillata) 

QII  
(A. cinereus) 

Singapore 1* 0.94 0.06 
Singapore 2 0.40 0.60 
Singapore 3 0.70 0.30 
Singapore 5 0.11 0.89 
Singapore 6 0.61 0.39 
Singapore 7 0.88 0.12 
Singapore 8 0.39 0.61 
Singapore 9** 0.21 0.79 
Singapore 11 0.42 0.58 
Singapore 12 0.11 0.89 
Singapore 13 0.33 0.67 
Singapore 14 0.08 0.92 
Singapore 15 0.01 0.99 
Singapore 16 0.77 0.23 
Singapore 17 0.46 0.54 
Singapore 18 0.35 0.65 
Singapore 19 0.29 0.71 
Singapore 20 0.44 0.56 

 

 

 



Table S4. Additional Cyt-b sequences used in the alignments. MtDNA haplotypes are indicated for both 1131 (H) and 305 (h) 
bp-long sequence alignment: when haplotypes H and h occur at the same time, the GenBank code refers to the longest sequence 
(H). *, from Kurdistan (North Iraq), with nine unresolved nucleotide positions; **, sequence kindly provided by K.-P. Koepfli 
(Smithsonian Conservation Biology Institute, National Zoological Park, Washington, USA) and used in this study. 

 
Taxon Country Cyt-b haplotype GenBank code Literature record 
Aonyx capensis  - H30 h23 AF057118 Koepfli & Wayne (1998) 
Aonyx cinereus - H12 h20 AF057119 Koepfli & Wayne (1998) 
Enhydra lutris  - H31 h24 AF057120 Koepfli & Wayne (1998) 
Hydrictis maculicollis  - H32 h25 AF057125 Koepfli & Wayne (1998) 
Lutra lutra  Poland H3 h1 AB564050 Sato et al. (2012) 
Lutra lutra  Norway H4 h1 AF057124 Koepfli & Wayne (1998) 
Lutra lutra  Korea H9 h3 EF672696 Ki et al. (2010) 
Lutra lutra  Iberian Pen. H5 h1 EF689067 Fernandes et al. (2008) 
Lutra lutra  Iberian Pen. H6 h1 EF689068 Fernandes et al. (2008) 
Lutra lutra  - H8 h3 FJ236015 Jang et al. (2009)  
Lutra lutra  - H8 h3 NC011358 Jang et al. (2009)  
Lutra lutra  - H3 h1 X94923 Ledje & Arnason (1996) 
Lutra sumatrana  - H10 h4 EF472347 Koepfli et al. (2008b)      
Lutrogale perspicillata   Iraq H18 h19 JQ437613* Omer et al. (2012) 
Lutrogale perspicillata   Thailand H20 h6 EF472348 Koepfli et al. (2008b)      
Lutrogale perspicillata   Cambodia H20 h6 EF472348 Koepfli et al. (2008b)      
Lutrogale perspicillata   Cambodia H22 h6 LT593925** This study 
Lutrogale perspicillata   Thailand - h6 LT593903** This study 
Lutrogale perspicillata   Thailand - h7 LT593904** This study 

 
 

Fernandes, C. A. et al. Species-specific mitochondrial DNA markers for identification of non-invasive samples 
from sympatric carnivores in the Iberian Peninsula. Conserv. Genet., 9, 681-690 (2008) 
 
Jang, K. H., Ryu, S. H. & Hwang, U. W. Mitochondrial Genome of the Eurasian Otter Lutra lutra (Mammalia, 
Carnivora, Mustelidae). Genes Genom., 31, 19-27 (2009) 
 
Ki, J. S., Hwang, D. S., Park, T. J., Han, S. H. & Lee, J.S. A comparative analysis of the complete mitochondrial 
genome of the Eurasian otter Lutra lutra (Carnivora; Mustelidae). Mol. Biol. Rep., 37, 1943-1955 (2010) 
 
Koepfli, K.-P. & Wayne, R. K. Phylogenetic relationships of otters (Carnivora: Mustelidae) based on 
mitochondrial cytochrome b sequences. J. Zool., 246, 401-416 (1998) 
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Ledje, C. & Arnason, U. Phylogenetic analyses of complete cytochrome b genes of the order carnivora with 
particular emphasis on the caniformia. J. Mol. Evol., 42, 135-144 (1996) 
 
Omer, S. A. et al. Evidence for persistence and a major range extension of the smooth-coated otter, Lutrogale 
perspicillata maxwelli (Mustelidae, Carnivora) in Iraq. Folia Zool., 61, 172-176 (2012) 
 
Sato, J. J. et al. Evolutionary and biogeographic history of weasel-like carnivorans (Musteloidea). Mol. 
Phylogenet. Evol., 63, 745-757 (2012) 
 



Table S5. Proportional likelihoods and negative log-likelihoods values for the reconstruction of the ancestral areas for the L. 
perspicillata clade (node 44). Three constrained topologies at node 41 were tested (see Methods). Node numbers correspond to 
those of Supplementary Figure S1. L.p.m, L. p. maxwelli; L.p.s., L. p. sindica; L.p.p., L. p. perspicillata. Code regions: 0, Europe; 
1, Middle East; 2, South Asia; 3, South East Asia; 4, Africa; 5, northern Pacific coast. 
 
 

 

Constrained topology  0 1 2 3 4 5 Inferred ancestral area 

(L.p.s.,(L.p.m, L.p.p.)) Proportional likelihoods 0.0415 0.1237 0.4423 0.3094 0.0415 0.0415  
(L.p.s.,(L.p.m, L.p.p.)) Negative log likelihoods 39.96 38.87 37.59 37.96 39.96 39.96 Equivocal 

(L.p.m.,(L.p.s, L.p.p.)) Proportional likelihoods 0.0468 0.2097 0.1827 0.4669 0.0469 0.0468  

(L.p.m.,(L.p.s, L.p.p.)) Negative log likelihoods 39.16 37.66 37.79 36.86 39.16 39.16 Equivocal 
(L.p.p.,(L.p.m, L.p.s.)) Proportional likelihoods 0.0447 0.2641 0.1412 0.4605 0.0447 0.0447  
(L.p.p.,(L.p.m, L.p.s.)) Negative log likelihoods 39.64 37.86 38.49 37.31 39.64 39.64 Equivocal 



Figure S1. Historical biogeography of investigated taxa. The distribution of each haplotype (H1-H32, Supplementary Table 
S1) is given in the brackets and with colour boxes at the end of the branch. Pie charts at nodes show proportional probabilities 
that the common ancestor was distributed in a given area. The outcome for the very large majority of nodes (included node 44, 
L. perspicillata clade) was D = 100%. Other nodes: node 51 = 100% DE; node 61 = 75% D, 25% DE; node 62 = 87.5% DF, 
12.5% DEF; node 63 = 100% DEF. Area code: A, Europe; B, Middle East; C, South Asia; D, Southeast Asia; E, Africa; F: 
northern Pacific coast. For the sake of clarity, the Posterior Probability (PP) values obtained in the majority rule consensus tree 
(created by SDIVA) with compatible groups with less than 50% support were reported for each node in the L. perspicillata 
clade. Politomy among the three L. perspicillata subspecies was unresolved as in Fig. 2 (prevailing topology: (L. p. sindica, 
(L. p. maxwelli, L. p. perspicillata.)) with PP = 0.34. See also Supplementary Table S5. 
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