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Abstract. We analyze the effect of random initial conditions on the local well–
posedness of semi–linear PDEs, to investigate to what extent recent ideas on
singular stochastic PDEs can prove useful in this framework.

In particular, in some cases stochastic initial conditions extend the validity of
the fixed–point argument to larger spaces than deterministic initial conditions
would allow, but in general it is never possible to go beyond the threshold that
is predicted by critical scaling, as in our general class of equations we are not
exploiting any special structure present in the equation.

We also give a specific example where the level of regularity for the fixed–
point argument reached by random initial conditions is not yet critical, but it is
already sharp in the sense that we find infinitely many random initial conditions
of slightly lower regularity, where there is no solution at all. Thus criticality
cannot be reached even by random initial conditions.

The existence and uniqueness in a critical space is always delicate, but we
can consider the Burgers equation in logarithmically sub–critical spaces, where
existence and uniqueness hold, and again random initial conditions allow to
extend the validity to spaces of lower regularity which are still logarithmically
sub-critical.

1. Introduction

This paper is a “proof of concept” that tries to investigate the effect of random
initial conditions for the existence of partial differential equations of evolution type.
These ideas were pioneered by Bourgain [4, 5], and recently the seminal papers by
Burq and Tzvetkov [6, 7] generated a lot of activity. We refer to the recent lecture
notes of Tzvetkov [22] for a more detailed account of the literature.

Most, if not all, of the existing results analyse the interesting case of dispersive
or hyperbolic equations (with exceptions, see for instance [18]). On the other
hand in that case the intrinsic difficulties of the problems examined may hide the
limitations and features of the method we are analysing.
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We focus on semi–linear PDEs, because the theory on the linear propagator
is well established and do not obfuscate the issues derived by the random initial
condition method. Our aim is thus to shed light on its possibilities and limitations.

The main subject of our investigation is a semi–linear PDE with a simple linear
operator (think of Laplacian or bi–Laplacian operator), and a polynomial nonlin-
earity, and we expect that the equation satisfies some kind of scaling invariance.
The idea is that this class of equations represents, at first order, a general class of
fundamental equations. In other words, we are interested in fundamental charac-
teristics, so we focus on homogeneous nonlinearities that ensure scaling laws.

Scaling invariance gives an indication of the spaces in which we can expect to
solve the equation by a fixed point argument. It is a well understood fact (see
for instance [11]) that a critical space of initial conditions is a space whose norm
is left invariant by the scaling of the equation. Continuity of the nonlinearity in
sub–critical spaces (i. e., smaller than a critical space) is not prevented by scaling,
and thus in such spaces a fixed point strategy is expected to be successful (when
only using multi–linear estimates).

We analyse the problem in the class of (possibly negative) Hölder spaces. On the
one hand they provide the largest critical spaces, on the other in such spaces there
is no apparent gain in using a Gaussian randomization of the initial condition.
Indeed, for a Gaussian random variable, summability for every p ≥ 1 comes for
free once one knows that summability holds for at least one exponent.

A full account of the general strategy considered is given in the next section. In
short, we decompose the solution in the linear propagator on the initial condition,
referred to as the rough term (since for rough initial condition, it should capture
all the degrees of irregularity of the solution) and a (hopefully smoother) remain-
der. We thus obtain a new equation for the remainder coming with an additional
summand, given by the nonlinearity computed on the rough term. Thus the main
feature of the random initial condition is to tame the “roughness” of the latter
and to make it well-defined for a wider range of the parameters. Here regular-
ity/roughness should be understood in terms of singularity at t = 0, as all these
functions are smooth when t > 0.

In the setting we have described, we are thus able to answer a series of questions
that we believe are relevant for the subject.

1. Is a random initial condition useful (in this setting)? The general
strength of the method has already been established in the literature we have
cited before. In this setting the method is effective in a series of examples
(see the next section), namely we prove a. s. existence of local solutions with
respect to suitable Gaussian measures supported over function spaces larger
than those available through a standard fixed point argument.

2. When is it useful? The validity of the method is graded though by a
ratio between the linear and non–linear part of the equation (our parameter
δ from Assumption 3.2, that is, roughly speaking, the ratio between the
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largest order of derivative of the non–linear term, and the largest order of
derivative of the linear term). The larger is the ratio, the lower is the validity.

3. Are initial distributions supported on spaces of super–critical ini-
tial conditions possible? Unfortunately the method does not allow to
prove results for super–critical data. Our analysis on semi–linear PDEs
allows to set the analysis on Hölder spaces of negative order, that are essen-
tially the largest critical spaces. We do not get results outside such spaces.

A simple explanation is that, as already explained, critical spaces are
determined by the scaling properties of the problem. By randomizing the
initial condition we do not introduce any additional argument that “breaks”
the scaling invariance. An argument that breaks the scaling invariance is
given in Section 5.4.

We point out that the situation is in a way different when dealing with
dispersive/hyperbolic equations, where the properties we know of the linear
propagator do not allow to set the analysis in arbitrary function spaces.

4. May a second order (or beyond) expansion be useful? As illustrated
in the next section, the randomization is exploited by decomposing the solu-
tion in an “irregular” term (the linear propagator computed over the random
initial condition) and a “smoother” remainder. The first term should cap-
ture the highest degree of irregularity of the solution. It is thus reasonable to
believe that whenever the initial condition is “very” irregular, adding further
additional terms in a, so-to-say, Taylor expansion, might be helpful. It turns
out that in the setting of semi–linear PDEs this is not necessary, since the
linear term (think of the Laplace operator) already makes the first term of
the expansion super–smooth (the irregularity is read in terms of a singularity
in time at t = 0). In the setting of dispersive/hyperbolic equations, where
the regularization of the linear problem is way milder, additional terms in
the expansion may be effective [22, 1].

5. Is renormalization needed? In the recent theory on singular stochastic
PDEs [15, 14, 13] some stochastic objects can be defined only when taking
suitable infinities into account. We do not observe such a phenomenon in full
generality since, whenever a stochastic object cannot be defined, the ran-
dom initial condition cannot fix the problem (see the example in Section 5.5).
Moreover, our examples all exhibit parabolic regularization, where for pos-
itive times solutions are smooth, and there is in that case no need to use
renormalization to define terms.

Nevertheless, there might be situations in which renormalization could
play a role, as the example given in Section 5.4 shows1. We notice though
that the example is very specific and works only through a special non-linear
transformation (Cole-Hopf transform) while the general aim of the present

1We thank the anonymous referee for pointing it out.
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paper is to investigate general conditions under which the use of a random
initial condition can improve the regularity theory for semilinear PDEs.

We notice additionally that for dispersive problem this is in general not
the case and renormalization may prove useful (see for instance [20]).

6. Can we borrow further ideas from the theory of singular stochastic
PDEs? One of the deepest ideas in [15, 14, 13], that goes beyond the global
decomposition first considered for such problems in the stochastic setting in
[8, 9, 10], is the local description of the degree of irregularity of a solution.
In Section 6 we present a result based on the local description to prove
local existence for logarithmically sub–critical initial conditions for the one-
dimensional Burgers equation. We notice that a local description is useful
only when the initial condition has regularity close to the critical level. We
believe that this contribution is the main novelty of the paper.

2. The main examples

The examples we consider are equations on the d–dimensional torus, with peri-
odic boundary conditions, of the form

(2.1) ∂tu = Au+B(u),

where A is a linear operator and B is a multi–linear operator.

2.1. The general strategy. We expect that some scaling invariance holds, that
is there are σ, τ such that if u is solution of (2.1), then so is

(2.2) (t, x) 7→ λσu(λτ t, λx).

2.1.1. Deterministic initial condition. We first consider (2.1), with a deterministic
initial condition. We expect that the maximal Besov space2 where we are able
to solve our equation (2.1) by means of a fixed point argument is C −σ, since
the homogeneous version of this space is invariant under the transformation u 
λσu(λ·).

Assume the non–linear term B is bi–linear and symmetric (we will discuss more
general cases in Sections 5.1 and 5.3), and set

V(u1, u2)(t) =

∫ t

0

eA(t−s) B(u1, u2) ds.

A standard fixed point theorem (Theorem 3.5) solves the above equation as

u = η1 + V(u, u),

2more precisely, the maximal critical space where we are able to solve the equation is V α,β ,
defined in formula (3.4) (see also Remark 3.6), with β = 1− δ, and δ > 1

2 .
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where η1(t) = etA u(0). To this end we assume that the nonlinearity is suitably
continuous, namely there is δ ∈ [0, 1) such that 3

‖V(u1, u2)(t)‖Cα .
∫ t

0

(t− s)−δ‖u1‖Cα‖u2‖Cα ds.

By scaling (see Remark 3.3),

δ = 1− α + σ

τ
.

The fixed point is solved in spaces X α,β
T , defined by means of the norm

‖ · ‖α,β,T = sup
t∈[0,T ]

tβ‖ · ‖Cα ,

that encode the singularity at t = 0. The value α must be large enough for V to
satisfy some continuity property. On the other hand the larger is α, the larger β
needs to be so to compensate the difference in regularity with the initial condition.
We will choose α minimal to minimise the singularity. Theorem 3.5 ensures now
the existence of a unique local solution as long as ‖η1‖α,β,T → 0 as T → ∞, and
β < 1

2
, β + δ ≤ 1. If δ > 1

2
the result is optimal and includes the critical space.

Further improvements are only possible through some additional information, such
as for instance a–priori estimates, that break the scaling.

If on the other hand δ ≤ 1
2
, the fixed point theorem is not optimal and we

can solve the problem with initial conditions in C r only for r > α − 1
2
τ (see

Remark 3.6). A possible strategy could be to single out η1, the most singular part
of u. Set u = v + η1, then

(2.3) v = V(v, v) + 2V(v, η1) + η2,

where η2 = V(η1, η1). Unfortunately this does not really help without a more
detailed understanding of the nonlinearity (see Remark 3.9).

2.1.2. Random initial condition. We turn to random initial conditions. For sim-
plicity and to make our point clear, we assume u0 is a random field on the torus
with independent Gaussian Fourier components. Regularity of u0, as well as of
η (t) := etA u0 (here we adopt Hairer’s notation to make clear that we deal with
random objects), is standard and does not give any advantage.

The crucial point is that randomness plays its major role in taming the term
η = B(η , η ), and in turn η = V(η , η ), is well defined for a wider range of the
parameters (see Remark 4.8). To do these computations, we take some simplifying
assumptions, in particular we impose that, at small scales, B is essentially of the
type Da

(
(Db·)(Db·)

)
, where D is a generic differential operator that might be a

derivative, a gradient or a divergence.

3We adopt the standard notation that ’.’ denotes an inequality that is true up to a generic
constant.
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Since the random initial condition has smoothed the singularity of η at t = 0,
it is now worthwhile to apply the fixed point strategy to the formulation (2.3).
Then, we have to check that the assumptions of Theorem 3.8 are met by the terms
η and η . To this aim, Proposition 4.5 and Theorem 4.10 yield all the needed
information. We end up with a series of inequalities over the parameters τ, a, b
that restrict the possible regularity of the random field.

The first example we consider (surface growth) is one of those for which δ > 1
2
,

thus the deterministic theory is sufficient (as already known from [2]). The second
(KPZ) is borderline, since δ = 1

2
. For the third (Kuramoto–Sivashinsky), the

deterministic theory is not sufficient to get initial conditions up to the critical space,
and this is only possible with random initial conditions. Finally, in the fourth
example (reaction-diffusion), not even random initial conditions are sufficient to
catch the critical case.

Notice that in general, when the random initial condition method fails, this is
always due to η having a singularity in time at t = 0 that is too strong. In
particular, going further to a second order expansion does not help any more.

In the last part of the paper we shall give some remarks and present some addi-
tional examples. Since in the paper we will analyse mass–conservative, symmetric
quadratic nonlinearities, roughly speaking of the form Da((Db·)2) that allow for
optimal results, in Section 5.1 we will discuss what happens in asymmetric case,
while in Section 5.3 we will look at the case of nonlinearities with higher powers,
and finally in Section 5.2 we will relax the constraint of mass conservation.

Sections 5.4 and 5.5 are somewhat different. In Section 5.4 we see that an
argument that breaks the scaling invariance allows for super-critical initial data
through renormalisation. Based on an example, we will see in Section 5.5 that the
fact that even a random initial condition cannot in general cover all cases up to
the critical level (as we shall see in the examples of Sections 2.4 and 2.5) is not a
limitation of our proofs.

Finally, in Section 6 we present a result that shows that, when dealing with
(almost) critical random initial conditions, a global decomposition in terms of
stochastic objects and a remainder term as in (2.3), is not sufficient. Our strategy
is to understand the local degree of irregularity of the solution and to exploit this
fact to gain a tiny (logarithmic) improvement that allows to close the fixed point
argument. This may be seen as a glimpse of the extremely sophisticated ideas
introduced in [15, 14, 13]. Notice though that in the aforementioned papers they
use, roughly speaking, two fundamental ideas: the first is to understand the most
irregular part of the solution – as we have done. The second is to exploit again
the probabilistic structure to define the terms in the most irregular part of the
solution. This is apparently not needed here.

2.2. Surface growth. Consider the following example (see [3] for a general overview),

∂tu = −∆2u−∆u−∆|∇u|2,
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with periodic boundary conditions and zero mean. The equation (without the
lower order term −∆u) has scaling invariance according to formula (2.2), with
exponents σ = 0 and τ = 4. Thus the critical space for fixed point is at the level
of C 0 (more precisely, V −1,1/4, defined in formula (3.4)).

Assumption 4.2 holds with values a = 2, b = 1, and Assumption 3.2 holds with
α = 1, δ = 3

4
. Notice that the choice of α is the minimal value that gives sense to

the non–linear term. The standard fixed point result, Theorem 3.5, holds sharp
for initial conditions in C γ with γ ≥ 0. The argument yielding the critical space
has been given also in [2]. We do not need random initial condition here.

2.3. KPZ. Consider the following problem on the torus,

(2.4) ∂tu = ∆u−M|∇u|2,

subject to periodic boundary conditions and zero mean, whereM is the projector
onto the zero mean space, namely

(Mz)(x) = z(x)−
∫
Td
z(y) dy.

With additive noise this is a fundamental model in mathematical physics, recently
solved by Hairer [15]. The equation has scaling invariance with exponents σ = 0
and τ = 2. Thus the critical space is at the level of C 0 (more precisely V 0,1/2).
It can be easily checked that Assumption 4.2 holds with a = 0, b = 1, and that
Assumption 3.2 holds with α = 1, δ = 1

2
, and again α has been chosen to be min-

imal. Theorem 3.5, holds for initial conditions in C γ, with γ > 0. Unfortunately
the critical space V 0, 1

2 cannot be captured neither by the deterministic results
(Theorem 3.5 and Theorem 3.8), nor by the random initial condition.

2.4. KS. Consider the following mass–conservative Kuramoto–Sivashinsky equa-
tion

∂tu = −∆2u−∆u−M|∇u|2,
with periodic boundary conditions and zero mean. The scaling exponents (when
the lower order term ∆u is neglected) are σ = 2 and τ = 4, and the critical
space for fixed point is C −2. Once more, assumption 4.2 holds with a = 0, b = 1,
while Assumption 3.2 holds with α = 1, δ = 1

4
, where again α is the minimal

number of derivatives to give sense to the nonlinearity. Here Theorem 3.5 holds
for deterministic initial conditions in C γ, with γ > −1, which is still smaller than
the critical space we have identified.

In the stochastic case we will see in Theorem 3.8 that we can solve the equation
for random initial conditions in C γ, with the restriction from Proposition 4.5 and
Theorem 4.10. The main obstacle is the regularity or singularity of η at t = 0.
that leads to γ > max{−2,−1 − d/4}, and for the mixed term we additionally
need γ > min{−4/3− d/6, 3/2− d/4}.
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2.5. Reaction–diffusion. Consider the following equation with periodic bound-
ary conditions and zero mean,

∂tu = ∆u− u+Mu2,

The scaling exponents are σ = 2, τ = 2 (neglecting as usual the lower order
term), with critical space C −2. Assumption 4.2 holds with values a = 0, b = 0,
Assumption 3.2 holds with δ = 0 and the minimal value α = 0. Thus Theorem 3.5
applies for initial conditions in C γ with γ > −1.

Again in the stochastic case of Theorem 3.8 we can extend this to random
initial conditions in C γ, with the restrictions γ > max{−2,−1 − d/4} and γ >
min{−4/3− d/6,−d/4} due to Proposition 4.5 and Theorem 4.10.

2.6. A short summary on Besov spaces. We will work with Besov spaces,
which have somewhat maximal regularity in terms of integrability. These Hölder
spaces are natural spaces for the regularity of Gaussian random variables.

Besov spaces are defined via Littlewood-Paley projectors. Let χ, % be non–
negative smooth radial functions such that

• The support of χ is contained in a ball and the support of % is contained in
an annulus;
• χ(ξ) +

∑
j≥0 %(2−jξ) = 1 for all ξ ∈ Rd;

• Supp(χ)∩Supp(%(2−j·)) = ∅, for j ≥ 1 and Supp(%(2−i·))∩Supp(%(2−j·)) =
∅ when |i− j| > 1.

Set %j(x) := %(2−jx) for all j ≥ 0 and %−1(x) := χ(x). The Littlewood-Paley
blocks are given in terms of the discrete Fourier transform,

∆ju = (2π)−d
∑
k∈Zd

%j(k)FTd(u)(k)ek(x) =
∑
k∈Zd

%j(k)ukek.

Let α ∈ R, p, q ∈ [1,∞], we define the Besov space Bα
p,q(Td) as the closure of the

space of smooth periodic functions with respect to the norm4

‖u‖q
Bαp,q(Td)

:= ‖(2jα‖∆ju‖Lp(Td))j≥−1‖`q .

We will mainly deal with the special case p = q =∞, so we introduce the notation
C α := Bα

∞,∞(Td) and denote by

‖u‖α = ‖u‖Bα∞,∞

its norm.

4Recall ‖{xj}j‖p`p =
∑
j |xj |p for a sequence.
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2.6.1. The Bony paraproduct. The Bony paraproduct <© is defined for distributions
f, g with Littlewood–Paley blocks (∆jf)j≥−1 and (∆jg)j≥−1 as

f <© g =
∑

m≤n−1

(∆mf)(∆ng).

The term f >© g is then defined as f >© g = g <© f , and the resonant term is defined
by

f =© g =
∑

|m−n|≤1

(∆mf)(∆ng),

so that, whenever the product makes sense, we can decompose it into f · g =
f <© g + f =© g + f >© g.

3. The fixed point argument

We outline here an abstract fixed point argument that yields local existence and
uniqueness for initial conditions in the scale of Hölder–Besov spaces. The argument
is given in two flavours: standard and with rough initial condition. To this end
we state some assumptions on the linear and non–linear part of the equation (2.1)
that capture the essential features of our examples and that are needed here.

Assumption 3.1 (Schauder estimates). The unbounded operator A generates an
analytic semigroup. Moreover there is τ > 0 such that the following estimates
hold,

(3.1) ‖ etA u‖α+β ≤ ct−
β
τ ‖u‖α,

for every α ∈ R, every u ∈ Bα
∞,∞, and every β ≥ 0.

Define the integrated nonlinearity,

V(u1, u2)(t) =

∫ t

0

e(t−s)AB(u1(s), u2(s)) ds.

Assumption 3.2. There are α ∈ R, δ ∈ [0, 1), and c > 0 such that

(3.2) ‖V(u1, u2)(t)‖α ≤ c

∫ t

0

(t− s)−δ‖u1(s)‖α‖u2(s)‖α ds

Remark 3.3. A few remarks on the assumptions above,

• it is fairly easy to check that the exponent on the right–hand side of (3.1)
follows by a scaling argument if (2.2) holds;
• likewise, if (2.2) holds (and δ > 0), then again by scaling invariance δ =

1− α+σ
τ

, if the inequalities are optimal;
• there is no apparent gain if we assume different norms for u1, u2 on the right–

hand side of (3.2). On the contrary, usually this gives a δ that depends on
the smallest index of the norm.
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Consider the equation (2.1) in its mild formulation,

u(t) = eAt u0 + V(u, u)(t).

3.1. The standard fixed point argument. Given u0, set

η1(t) = eAt u0.

We wish to solve by fixed point the problem

(3.3) u = η1 + V(u, u),

in the normed space

X α,β
T := {u : ‖u‖α,β,T := sup

t∈[0,T ]

tβ‖u(t)‖α <∞} .

We immediately have the following proposition.

Proposition 3.4. For β < 1
2

and δ + β ≤ 1,

‖V(u1, u2)‖α,β,T ≤ cT 1−β−δ‖u1‖α,β,T‖u2‖α,β,T

Proof. Assumption (3.2) ensures

tβ‖V(u1, u2)(t)‖α ≤ ctβ‖u1‖α,β,T‖u2‖α,β,T
∫ t

0

(t− s)−δs−2β ds.

Hence, as long as β < 1
2
, the statement follows. �

The proposition above allows to verify the following theorem.

Theorem 3.5. Consider β < 1/2 and β ≤ 1 − δ, and assume ‖η1‖α,β,T → 0 for
T → 0. Then there is T > 0 such that the equation (3.3) has a unique fixed point

in X α,β
T .

Notice that the initial conditions u0 to whom the above theorem applies are
those such that ‖η1‖α,β,T → 0 as T → 0. Let us denote by V α,β such a space,
namely

(3.4) V α,β =
{
u0 : lim

T→0
‖η1‖α,β,T = 0

}
,

where we recall that η1(t) = eAt u0. The most interesting case is when β = 1− δ,
since V α,β becomes critical. Indeed, a simple computation shows that the norm
‖ · ‖α,β,T is invariant by the scaling (2.2), in the sense that

sup
[0,T ]

tβ[λσu(λτ t, λ·)]α = λσ+α−τβ sup
[0,λτT ]

tβ[u(t, ·)]α = sup
[0,λτT ]

tβ[u(t, ·)]α,

since, according to Remark 3.3, σ + α = τβ and where [·]α is the semi–norm of
C α.
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Remark 3.6 (Initial conditions in C r). Another way to understand the computation
above is to realize that the larger is β, the larger is the set of initial conditions.
To see this we look for the minimal values of γ such that u0 ∈ C r yields η1 ∈ V α,β

for some β compatible with the assumptions of the above theorem. By (3.1),

(3.5) ‖η1‖α,β,T ≤ T β−
α−r
τ ‖u0‖r,

thus η1 ∈ V α,β when r > α− βτ . Therefore,

• if δ > 1
2
, we can take the maximal value β = 1− δ. With this choice of the

parameters, if u0 ∈ C r then η1 ∈ V α,β for all r > −σ, and the space V α,β is
critical.
• if δ ≤ 1

2
, then we are restricted to β < 1

2
. We have that if u0 ∈ C r then

η1 ∈ V α,β, under the sub–optimal condition r > α− τ
2
.

Note finally that the estimate (3.5) always rules out the critical regularity, as it
can never verify the limit needed in the definition of V α,β. This limit in a critical
Besov-space seems to be an open question for general operators A.

3.2. Fixed point with rough initial condition. Suppose that the initial con-
dition u0 is too rough to apply the results of the previous section. Set as before
η1(t) = etA u0 and let

v = u− η1.

Instead of (3.3), this time we solve the transformed problem

(3.6) v = V(v, v) + 2V(v, η1) + η2,

where we have set η2 = V(η1, η1). The key argument is that by taking a random
distribution over the initial condition, Gaussian for instance, the quadratic term
η2 is well defined, although it could not be in principle defined in general using
only the regularity properties of η1 or, more precisely, its singularity at t = 0. We
expect that the mixed product V(v, η1) might be fine, since η1 is smooth away from
0, and v is zero at 0. Nevertheless, as we have seen in Section 2, the expansion
does not allow to cover, in general, the critical case.

The following proposition is a minor modification of Proposition 3.4.

Proposition 3.7. If β + γ < 1 and δ + γ ≤ 1, then

‖V(u1, u2)‖α,β,T ≤ cT 1−δ−γ‖u1‖α,β,T‖u2‖α,γ,T .

Based on this proposition, we can prove the following theorem.

Theorem 3.8. Consider β < 1
2
, β + δ ≤ 1, γ + β < 1, and δ + γ ≤ 1. Given u0,

assume that ‖η1‖α,γ,T → 0 and ‖η2‖α,β,T → 0, for T → 0. Then there is T > 0

such that the problem (3.6) has a unique fixed point in X α,β
T .

Proof. The proof is again by fixed point argument and very similar to the proof of
Theorem 3.5. This time though we are allowed to use a different weight in time
for η1.
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For the self-mapping we use

‖V(v, v) + 2V(v, η1) + η2‖α,β,T ≤ c(‖v‖2
α,β,T + ‖v‖α,β,T‖η1‖α,γ,T ) + ‖η2‖α,β,T .

Likewise, for the contraction property,

‖V(v1, v1) + 2V(v1, η1)− V(v2, v2) + 2V(v2, η1)‖α,β,T
= ‖V(v1 + v2, v1 − v2) + 2V(v1 − v2, η1)‖α,β,T
≤ c
(
‖v1 + v2‖α,β,T + ‖η1‖α,γ,T

)
· ‖v1 − v2‖α,β,T ,

by Propositions 3.4 and 3.7. �

Remark 3.9 (Initial conditions in C r). In comparison with Remark 3.6, we look
for initial conditions u0 ∈ C r such that the assumptions of Theorem 3.8 hold. By
the (scaling–wise optimal) estimate (3.2) we have

‖η2(t)‖α .
∫ t

0

(t− s)−δ‖η1(s)‖2
α ds . t1−2γ−δ‖η1‖α,γ,T ,

therefore ‖η2‖α,β,T ≤ T β+1−2γ−δ‖η1‖2
α,γ,T if γ < 1

2
and 2γ + δ ≤ β + 1. The

same computation of Remark 3.6 yields η1 ∈ X α,γ if u0 ∈ C r and r ≥ α − γτ .
To minimize the value of r we wish to take γ as large as possible, thus γ ≈ 1

2
.

Unfortunately this yields the condition r > α− τ
2
, which is the same of Remark 3.6.

In conclusion the additional expansion has not given, at least for general initial
conditions, any additional benefit. We will see in the next section, that this is
different for random initial conditions.

4. Stochastic objects

Here we discuss the existence and regularity of the terms appearing in the fixed
point arguments of the previous section, when the initial condition u0 is a random
variable with peculiar structure. Here we focus on the case of bi–linear mass–
conservative nonlinearity B, we will comment later on the no–moving–frame case
and the need of renormalization.

4.1. Diagonal (simplifying) assumptions. Here we greatly simplify our prob-
lem (2.1), by assuming that the linear operator acts diagonally on the Fourier
basis, and that the non-linear operator is a bona fide product. The reason is that
we wish to exploit in a simple setting the decorrelations of the random initial
condition.

Let (ek)k∈Zd be the standard Fourier basis of the torus Td of normalized complex
exponentials.

Assumption 4.1. For every k ∈ Zd, Aek = λkek, with λk ∼ −c|k|τ , for some
constant c > 0.

In the sequel we will assume, without loss of generality, that c = 1.
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Assumption 4.2. For each k,m, n ∈ Zd, let Bkmn denote the product Bkmn =
〈B(em, en), ek〉. Then B is such that Bkmn = 0 if k 6= m+ n and

B(u, v) =
∑
k∈Zd

∑
m+n=k

Bkmnumvnek

for u =
∑

m umem, v =
∑
vnen. Moreover

• (mass conservation) B0mn = 0 for all m,n,
• (regularity) there are numbers a, b ≥ 0 such that for m+ n = k,

(4.1) |Bkmn| ≤ c|k|a|m|b|n|b.
Remark 4.3. We do not assume that (4.1) is sharp. As already pointed out in
Remark 3.3 for the fixed point argument, the asymmetric case does not help. If on
the other hand (4.1) is sharp, a elementary scaling argument shows that σ+a+2b =
τ . Indeed, if a, b are optimal, then roughly speaking B ≈ Da

(
(Db·)(Db·)

)
that

scales as
B(uλ, uλ) = λ2σ+a+2b(B(u, u))λ,

where uλ(t, x) = λσu(λτ t, λx). On the other hand (∂t − A)uλ = λτ+σ(∂tu− Au)λ.
Actually the same result could be directly obtained, starting from (4.1), by

elementary paraproduct estimates as those in [13]. These estimates would provide
also, together with (3.1), a connection with Assumption 3.2.

4.2. Random initial condition. For simplicity, we give Gaussian structure to
the initial condition. Other distributions are possible though, once one assumes
essentially sub–normality and hyper–contraction.

Assumption 4.4. The random variable u0 is Gaussian with the following repre-
sentation in Fourier modes,

u0(x) =
∑
k∈Zd

φkξkek,

where (ξk)k∈Zd is a family of centred complex valued Gaussian random variables
with ξ̄k = ξ−k for all k, and covariance

(4.2) E[ξk1 ξ̄k2 ] = 1{k1=k2}.

Moreover, (φk)k∈Zd is a sequence of “weights” with

• (mass conservation) φ0 = 0,
• (regularity) there is θ ∈ R such that |φk| ∼ |k|θ.

4.3. Regularity of the stochastic objects. Given a random initial condition
u0 as above, we set

η (t) = eAt u0, η = B(η , η ), η (t) = V(η , η )(t) =

∫ t

0

e(t−s)A η (s) ds.

In the rest of the section we study the regularity of η , η , and η in Hölder–Besov
spaces.
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4.3.1. Regularity of u0. We start with the regularity of u0. This follows from
standard results. Indeed, by [16, Theorem 6.3], we have that there exists c > 0
such that

P[‖∆ju0‖L∞ ≥ c
√
j2

1
2

(2θ+d)j] . 2−2j.

Then the first Borel–Cantelli lemma ensures that there is a random number C
such that a. s.,

(4.3) ‖∆ju0‖L∞ ≤ C
√
j2

1
2

(2θ+d)j.

In conclusion ‖u0‖α is almost surely finite (and with exponential moments) as
long as α < −θ− d

2
. Notice that this holds in general for sub–normal independent

sequences (ξk)k∈Zd (since so is for the results in [16]). Here a random variable X

is sub–normal if E[eλX ] ≤ eλ
2/2.

In the Gaussian case we can completely characterize the regularity of u0 as
follows. An elementary computation shows that E[‖u0‖2

Hα ] = ∞ if α ≥ −θ − d
2
.

Hence by Fernique’s theorem u0 6∈ Hα a. s.. Finally, C α′ ⊂ Hα if α′ > α, thus
u0 6∈ C α a. s. for every α > −θ − d

2
.

4.3.2. Regularity of η . We turn to study the regularity of η in terms of spaces
X α,β

T . The previous considerations and Assumption 3.1 immediately yield the
following result.

Proposition 4.5. If u0 is as in Assumption 4.4, then η ∈X α,γ
T for every T > 0

and all α, γ such that

• α < −(θ + d
2
), γ = 0,

• α ≥ −(θ + d
2
), γ >

α+θ+ d
2

τ
.

Moreover, using Assumptions 4.1, we immediately obtain

‖ηt − ηs‖α . s−
ε
τ (t− s)

ε
τ ‖u0‖α,

if α < −(θ+d
2
), with 0 < ε < −α−θ−d

2
, and similarly if α ≥ −(θ+d

2
). In conclusion

we always have η ∈ C([0, T ]; C α) if α < −(θ+d
2
), and η ∈ C((0, T ]; C α) otherwise.

Remark 4.6. We see here that a random initial condition does not give any advan-
tage at the level of η . Due to the assumptions of Theorems 3.5 and 3.8, η will
always be supported over critical spaces.

4.3.3. Regularity of η . The regularity of η , or more precisely the singularity in
time at t = 0, is a fundamental step. Here Assumption 4.1 will play a crucial role.

Since (ξk)k∈Zd0 is a sequence of independent real standard Gaussian random

variables, we see immediately that η is in the second Wiener chaos. Moreover,
as we shall verify below, the 0th–order component is zero, therefore η is in the
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homogeneous second Wiener chaos. To prove that there is no 0th–order component,
we recall that the 0th–order component is simply the expectation of η ,

E[η (t, x)] =
∑
k∈Zd

( ∑
m+n=k

Bkmnφmφn e−t(|m|
τ+|n|τ ) δm+n=0

)
ek(x) =

=
( ∑
m+n=0

B0mn|φm|2 e−2t|m|τ
)
e0(x) = 0,

by Assumptions 4.2 and 4.4.
For β ≥ 0,

E[|∆jη |2] .
∑
|k|∼2j

∑
m+n=k

%j(k)2|Bkmn|2|φm|2|φn|2 e−2t(|m|τ+|n|τ )

. t−2β
∑
|k|∼2j

|k|2a
∑

m+n=k

|m|2θ+2b|n|2θ+2b

(|m|τ + |n|τ )2β
.

The sum extended over all m, n such that m + n = k can be decomposed, by
symmetry, in two sums over the two sets

Ak = {(m,n) : m+ n = k, |m| ≥ |n| ≥ 1

2
|k|}

and

Bk = {(m,n) : m+ n = k, |n| ≤ 1

2
|k| ≤ |m|}.

For the sum over Ak, notice that on Ak we have 1
3
|m| ≤ |n| ≤ |m|, thus, whatever

is the sign of 2θ + 2b,∑
Ak

|m|2θ+2b|n|2θ+2b

(|m|τ + |n|τ )2β
.

∑
|m|≥ 1

2
|k|

1

|m|2βτ−4b−4θ
.

1

|k|2βτ−4b−4θ−d .

Here we need 2βτ − 4b− 4θ > d, otherwise the sum would diverge.
For the sum over Bk, notice that we also have |m| ≤ 3

2
|k|, thus whatever is the

sign of 2b+ 2θ − 2βτ ,∑
Bk

|m|2θ+2b|n|2θ+2b

(|m|τ + |n|τ )2β
.
∑
Bk

|m|2b+2θ−2βτ |n|2b+2θ . |k|2b+2θ−2βτ
∑
|n|≤|k|

|n|2b+2θ .

It is a standard fact to see that the sum on the right hand side of the formula
above behaves as |k|(2b+2θ+d)∨0 (and as log |k| if 2b+ 2θ = −d).

In conclusion we need 2βτ − 4b− 4θ > d, and in that case,

E[|∆jη |2] . t−2β
∑
|k|∼2j

|k|2a−2βτ+2b+2θ+(2b+2θ+d)∨0

. t−2β2j(2a−2βτ+2b+2θ+(2b+2θ+d)∨0),
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with a multiplicative correction term of order j (that does not change our conclu-
sions below) in the case 2b + 2θ = −d. Therefore, by [13, Lemma A.9] it follows
that

sup
t
t2βE[‖η ‖2

α] <∞

for α < βτ − χ1, with βτ > χ0, where

(4.4) χ0 = 2b+ 2θ + 1
2
d, χ1 = a+ b+ θ + (b+ θ + 1

2
d)+.

By hyper–contractivity in the second Wiener chaos [19, 21], the following result
holds.

Lemma 4.7. If α, β ∈ R are such that

β > β0(α) :=
(α + χ1

τ

)
∨
(χ0

τ

)
+
,

then for every p ≥ 1,
sup
t≥0

E[(tβ‖η ‖α)p] <∞ .

Remark 4.8. The advantage of the random initial condition emerges here, as we
see that we have a milder singularity at t = 0. For comparison, let u0 be a non–
random initial condition and set, as in Section 3, η1(t) = etA u0. We wish to find
initial conditions where the minimal singularity in time of the Littlewood–Paley
block of B(η1, η1) is worse than the one of random initial conditions. To this aim,
assume that Bkmn ≈ |k|a|m|b|n|b and that the Fourier coefficients of u0 are so that
u0(k) ≈ |k|θ. Then

|∆jB(η1, η1) ≈
∑
|k|∼2j

|k|a
∑

m+n=k

|m|b+θ|n|b+θ e−t(|m|
τ+nτ ),

and, for each k,∑
m+n=k

|m|b+θ|n|b+θ e−t(|m|
τ+nτ ) &

∑
Ak

|m|b+θ|n|b+θ e−t(|m|
τ+nτ )

≈
∫ +∞

|k|
ρ2b+2θ+d−1 e−2tρτ dρ &

∫ t−1/τ

|k|
ρ2b+2θ+d−1 dρ ∼ t−

2b+2θ+d
τ ,

where Ak is as above.

4.3.4. Regularity of η . By means of Assumption 3.1, we can prove that η is in a
X α,β

T space (actually a V α,β space) for suitable values of α, β. We start by stating
the following lemma.

Lemma 4.9. Assume χ0

τ
< 1. For every α < 2τ − χ1, every β > β0(α)− 1, every

p ≥ 1, and every T > 0, there is a number cT > 0 such that

sup
t∈[0,T ]

E[(tβ‖η ‖α)p] ≤ cT .

Moreover, cT → 0 as T ↓ 0.
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Theorem 4.10. Under Assumptions 4.1, 4.2, and 4.4, if χ0

τ
< 1, then η ∈X α,β

T

for all α < 2τ − χ1, all β > β0(α)− 1, and all T > 0. Moreover, for every p ≥ 1
and for the same values of α, β,

E[‖η ‖pα,β,T ] <∞.

In particular, η ∈ V α,β, a. s., for the same values of α, β.

Proof. Notice preliminarily that it is sufficient to prove the statement when β is
close to β0(α)− 1, since for ε > 0, ‖ · ‖α,β+ε,T ≤ T ε‖ · ‖α,β,T .

Our strategy to prove the theorem is to find γ ∈ (0, 1) and p ≥ 1 such that

γp > 1 and t 7→ tβηt is in W γ,p([0, T ]; C α) (with all moments). By Sobolev’s
embeddings, this concludes the proof of the theorem.

It follows from Lemma 4.9 that

E
[∫ T

0

‖tβη ‖pα dt
]
≤ cT

for all α < 2τ − χ1 and β > β0(α)− 1. It remains to analyse the increments.
Case 1. Consider first the case τ − χ1 ≤ α < 2τ − χ1. Here we have β0(α) −

1 ∈ [0, 1), so in view of the initial remark, it is not restrictive to assume that
β ∈ (β0(α)− 1, 1). Let s ≤ t ≤ T , then

tβηt − sβηs = (tβ − sβ)ηt + sβ(ηt − ηs ).

Consider the first term. It is elementary to see that for λ ∈ [0, 1] (the case λ = 0
is obvious, the case λ = 1 follows by Taylor expansion, the intermediate cases by
interpolation),

tβ − sβ . t(1−λ)βs(β−1)λ(t− s)λ,
thus by Lemma 4.9,

E
∫ T

0

∫ t

0

‖(tβ − sβ)ηt ‖pα
|t− s|1+γp

ds dt .
∫ T

0

∫ t

0

tβp(1−λ)−β1psλp(β−1)

|t− s|1+(γ−λ)p
E[(tβ1‖ηt ‖α)p] ds dt

.
∫ T

0

tβp(1−λ)−β1p
∫ t

0

ds

sλp(1−β)|t− s|1+(γ−λ)p
dt

.
∫ T

0

t−p(γ+β1−β) dt,

where β1 ∈ (β0(α) − 1, β), and we need λp(1 − β) < 1, 1 + (γ − λ)p < 1, and
p(γ + β1 − β) < 1. In the limit λ ↓ γ and β1 ↓ β0(α) − 1, we obtain the two
conditions

(4.5) γp(1− β) < 1, p
(
γ − (β + 1− β0(α))

)
< 1.

Similar considerations applied to the second term yield additional conditions on
γ, p. These can be summarized as follows: given β ∈ (β0(α)− 1, 1), find γ ∈ (0, 1)
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and p ≥ 1 such that

(4.6)

γ < 1
1−β

1
p
, γ − 1

p
< β + 1− β0(α), γ − 1

p
> 0,

γ < 2− β0(α),
1

p
>
(
χ0

τ

)
+
− β.

Notice that by the choice of β, we have that β + 1 − β0(α) < 2 − β0(α) and
(χ0/τ)+−β < 1−β < 2−β0(α). Figure 1 shows the non–empty area of all values
of γ and 1/p that meet all the requirements.

γ

1
p

1

1

1
−
β

β + 1 − β0(α)

2 − β0(α)

2
−
β
0
(α

)

( χ 0 τ
) +

−
β

Figure 1. The white area contains all values (γ, 1/p) that satisfy (4.6).

Case 2. Assume α < τ − χ1, then β0(α) < 1 and, due to the initial remark, we
can assume β < 0. This time we decompose the increment as

tβηt − sβηs = tβ(ηt − ηs ) + (tβ − sβ)ηs .

Similar estimates as above yield the following conditions on p, γ: given β ∈
(β0(α)− 1, 0), find γ ∈ (0, 1) and p ≥ 1 such that

�(4.7) β0(α)p < 1, p
(
γ − (β + 1− β0(α))

)
< 1.

5. Additional examples

5.1. Non–symmetric nonlinearity. Our Assumption 4.2 (as well as Assump-
tion 3.2 in the case of an optimal inequality) means essentially that B is, at small
scales, like Da((Dbu)2). If this is not the case, the inequalities on which we base
our analysis are not optimal and the results are at most as good as those in the
symmetric case. A first order expansion though is still sufficient.

Consider for instance the following one–dimensional problem

∂tu = Au+ uuxx.
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We can write uuxx = 1
2
(u2)xx − (ux)

2, and notice that the three terms B(u, u) :=
uuxx, B1(u, u) := (u2)xx, and B2(u, u) = (ux)

2 scale with the same scaling, with
σ = τ−2. Thus, using the theory detailed in these pages, we can solve the problem
in X 1,β

T , for a suitable β. This is an optimal choice for B2, but not for B1. This
discrepancy explains the non–optimal results in such cases.

5.2. The case without mass conservation. We have worked so far under the
assumption of mass conservation, namely that the solution averages to zero in the
spatial domain. In this section we wish to briefly show that the general case follows
likewise, without too much hassle when mass conservation does not hold.

Consider B quadratic, and let U be solution of

∂tU = AU +B(U,U).

Decompose U = ξ + u, where ξ is the space average of U , and u has spatial mean
zero. Recall thatM is the projection onto the zero mass space, so that u =MU .
Assume we work under Assumptions 4.1 and 4.2 (this time including the zero
modes), then the equations for u and ξ are{

ξ̇ =M⊥B(u, u) +B(ξ, ξ),

∂tu = Au+MB(u, u) + 2MB(u, ξ),

since MB(ξ, ξ) = 0 and M⊥B(u, ξ) = 0.
We first notice that, if the initial condition has infinite mean, there is in general

no hope to have a finite mean at positive times. We thus consider in the rest of
this section the case of an initial condition with finite mean.

Assume, to fix ideas, that the numbers a, b are integers. We notice that if a ≥ 1,
then MB = B, M⊥B = 0, and B(ξ, ξ) = 0, while if b ≥ 1 then immediately
B(ξ, ·) = 0. Moreover, MB(M·,M·) satisfies our original Assumption 4.2 (that
is, a nonlinearity that preserves the mass). We have three cases.

• If a ≥ 1, then ξ is a finite constant (in space and time) and the equation of
u is of the same kind we have studied so far, with the addition of the term
of lower order MB(u, ξ) that does not change our analysis.
• If a = 0, b ≥ 1, the equation for u decouples from ξ, and is of the same

kind we have studied so far. Once u is known, then ξ can be computed by
the equation ξ̇ = M⊥B(u, u). An additional difficulty is that if we solve

the problem for u in X β,b
T , then we cannot ensure that M⊥B(u, u) is well

defined. Indeed, for instance in the one–dimensional case (this is only to
avoid ambiguity in the understanding of the generic term Db),

M⊥B(u, u) ∼
( ∑
m+n=0

mbnbumun

)
e0 ∼ ‖u‖2

Hb ,

and C b = Bb
∞,∞ is not in Hb = Bb

2,2.
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• Likewise, if a = b = 0, the equation for u contains the lower order term
MB(u, ξ), while the equation for ξ contains the polynomial term B(ξ, ξ)
and again

M⊥B(u, u) =
( ∑
m+n=0

umun

)
e0 ∼ ‖u‖L2

with L2 = B0
2,2.

In the last two cases a easy workaround is to solve the problem in X b+ε,β
T , since

for α ≥ 0, p ≥ 1, and ε > 0,

C α+ε = Bα+ε
∞,∞ ⊂ Bα

2,2.

5.3. Higher powers in the nonlinearity. The overall picture provided by qua-
dratic nonlinearities does not change for non–linear terms with higher powers.
Indeed, assume B is m–linear, with m > 2, then under an assumption analogous
to (3.2), we see that if δ > 1

m
then Theorem 3.5 is enough for initial conditions up

to (and including) the critical space. If δ < 1
m

the random initial condition method
becomes effective and allows to solve the initial value problem for rougher initial
conditions (but not as rough as the critical space in general). We observe that also
in the multi–linear case a first order expansion is sufficient, because the method
fails for integrability of the analogous of η before failing due to the smallness of
(the analogous of) η in a suitable space.

Likewise, if we relax the condition of mass conservation we can still solve the
problem without having divergences (so in the language of [15], there is no need
to include renormalization in the analysis).

5.4. An example with renormalization. In this section we briefly discuss a
case when one can prove an existence result for supercritical renormalized ran-
dom initial conditions. The case is very specific and makes use of a nonlinear
transformation.

Consider the KPZ equation, which is the following PDE,

(5.1) ∂th = ∆h+ |∇h|2

on the two dimensional torus T2, whose critical space is at the level of C 0.
Let X be a Gaussian Free Field on the two dimensional torus, which is known to

belong to C −κ for any κ > 0. We will now construct the solution of (5.1) started
with γX, where γ is a positive constant strictly less than

√
2, and show that, in

order to do so, it is necessary to suitably renormalise the initial condition.
Let % be a smooth compactly supported function, %ε(·) := ε−2%(·/ε) for ε > 0,

and Xε := X ? %ε. Let hε be the solution to (5.1) such that hε0(·) := hε(0, ·) :=
γXε(·). By Cole-Hopf transform, uε := eh

ε
solves

(5.2) ∂tu
ε = ∆uε, uε(0) = eγX

ε

.
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In [12], it is shown that the measure eγX
ε

converges if and only if it is suitably
renormalized. More precisely, define the measure µε as

(5.3) µε(dz) := eγX
ε(z) ε

1
2
γ2 dz,

then as ε goes to 0, µε almost surely converges weakly to a random measure µ such
that, if A is a set of positive Lebesgue measure, then µ(A) > 0 almost surely. The

previous implies that, upon setting ũε(t, x) := uε(t, x)εγ
2/2, we have

(5.4) ũε(t, x) =

∫
T2

Pt(x− y)µε(dy)
ε↓0−→
∫
T2

Pt(x− y)µ(dy) =: u(t, x),

where Pt is the usual heat kernel. Now, u is almost surely bounded (actually
smooth) and strictly positive at every strictly positive time (the last follows by the
fact that µ does not vanish on sets of positive Lebesgue measure).

Getting back to our original problem, thanks to the strict positivity of u, one
can simply define h(t, x) := log u(t, x) as the solution of (5.1). Moreover, we have
that

(5.5) h̃ε(t, x) := log(ũε(t, x)) = log(uε(t, x))− 1

2
γ2 log ε−1

converges to h as ε goes to 0 and h̃ε is the solution to (5.1) started with a renor-

malized initial condition given by γXε − γ2

2
log ε−1.

5.5. A counterexample. Consider the following problem on [−π, π] with peri-
odic boundary conditions, and zero mean,

(5.6)

{
∂tu = uxx + (u ? u)x, x ∈ [−π, π], t ≥ 0,

u is a odd function,

where ? denotes convolution on (−π, π). The equation has scaling invariance, with
τ = 2, σ = 2, thus the critical space is at the level of C −2.

In the rest of this section we show that we can find (infinitely many) Gaussian

initial conditions Ξ that are in C −
3
2
− a. s., but such that there is no solution of the

above problem with initial condition Ξ.

The problem has a very simple formulation in Fourier coordinates. A mean zero
periodic odd function on [−π, π] has the Fourier expansion

u(x) =
∑
k∈Z

uk eikx = 2
∞∑
k=1

ξk sin kx,

with uk = −iξk, ξk ∈ R, and ξ−k = −ξk for all k. The equation, in terms of the
new variables (ξk)k≥1, is

d

dt
ξk = −k2ξk + kξ2

k, k ≥ 1.
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Each equation can be explicitly integrated, and one can easily see that each com-
ponent ξk may blow up at the finite time

(5.7) τk = − 1

k2
log
(

1− k2

kξk(0)

)
and we set τk =∞ if the argument in the logarithm in (5.7) is negative, or when
the formula for τk gives a negative number. Elementary computations show that
τk <∞ when ξk(0) > k.

We have the following trichotomy

• infk≥1 τk = 0: no local existence for (5.6),
• infk≥1 τk > 0 and finite: local existence for (5.6),
• infk≥1 τk =∞: global existence for (5.6).

In view of the probabilistic argument, we notice that infk τk > 0 if and only if
there is ε > 0 such that τk ≥ ε eventually.

5.5.1. Random initial condition. We consider as initial condition a Gaussian ran-
dom field Ξ(x) =

∑
k≥1 ξk sin kx with independent ξk with Gaussian law N (0, σ2

k).

Lemma 5.1. If there are λ >
√

2 and ε > 0 such that

σk ≤
k

λ
√

log k(1− e−εk2)
, k ≥ 1,

then infk≥1 τk > 0, a. s. for the problem with initial condition −iΞ. Moreover

Ξ ∈ C −
3
2
−.

Proof. The first part follows immediately by a Borel–Cantelli argument, since

∞∑
k=1

P[τk ≤ ε] <∞.

Indeed,

P[τk ≤ ε] = P
[
ξk ≥

k

(1− e−εk2)

]
= P

[
Z ≥ k

σk(1− e−εk2)

]
≤

≤ P[Z ≥ λ
√

log k] .
1

λ
√

log k
e−

1
2
λ2 log k =

1

λk
1
2
λ2
√

log k
,

where Z is a real standard Gaussian random variable. Therefore the series above
converges since 1

2
λ2 > 1 by the choice of λ.

To prove that Ξ ∈ C −
3
2
− we use Kolmogorov’s continuity theorem. Indeed, let

E = (−∆)−1Ξ (notice that the Laplace operator is invertible on the subspace of
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zero mean functions), then

E[|E(x)− E(y)|2] =
∞∑
k=1

σ2
k

k4
(sin kx− sin ky)2 ≤

≤ 1

λ2(1− e−ε)2

∞∑
k=1

(1 ∧ k|x− y|)2

k2 log k
. |x− y|.

Since E is Gaussian, we deduce that E ∈ C
1
2
− and therefore Ξ ∈ C −

3
2
−. �

On the other hand, with the same regularity, we can provide an initial condition
that gives non–existence.

Lemma 5.2. Set

σk =
k√

2 log k(1− e−k2εk)
,

with εk ↓ 0. Then τk ≤ εk infinitely often, a. s. In particular infk τk = 0 a. s. and
there is no solution with initial condition −iΞ with probability one. Moreover, if
infk k

2εk > 0, then Ξ ∈ C −
3
2
−, a. s.

Proof. For the first part we use again a Borel–Cantelli argument. As above,

P[τk ≤ εk] = P[Z ≥
√

2 log k] &
1√

2 log k
e− log k =

1

k
√

2 log k
,

but this time the series diverges and τk ≤ εk for infinitely many k with probability
one.

The regularity follows as in the previous lemma, since for E = (−∆)−1Ξ,

E[|E(x)− E(y)|2] =
∞∑
k=1

σ2
k

k4
(sin kx− sin ky)2 ≤

≤ 1

2(1− e−δ)2

∞∑
k=1

(1 ∧ k|x− y|)2

k2
. |x− y|.

where δ = infk k
2εk. �

6. A logarithmically sub–critical result

In this section we discuss the existence of solutions with random initial condi-
tions in the critical case. We focus, as a standing example, on the Burgers equation
in dimension d = 1, which is the equation for the derivative of the solution of KPZ,

(6.1) ∂tu− uxx = (u2)x.

Notice that we have not changed the parameter δ from Assumption 3.2. The
critical space on the other hand is (clearly) shifted by one derivative.

6.1. Setting of the problem.
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6.1.1. Random initial data. We consider random initial data

u0 =
∑
k∈Zd

φkξkek,

where (ξk)k∈Zd are centred complex valued Gaussian random variables such that
ξ̄k = ξ−k for all k and with covariance as in (4.2), and (φk)k∈Zd are a sequence of
weights such that φ0 = 0 (mass conservation), and

(6.2) |φk| ∼ |k|θ(log(1 + |k|))−ν−
1
2 ,

with θ = 1− d
2

= 1
2
.

Using [16, Theorem 6.3] as in formula (4.3), we see that

‖∆ju0‖∞ ≤ Cj−ν2j,

for a random constant C. Thus ν = 0 corresponds to critical initial data, and
ν > 0 to logarithmically sub–critical initial data.

By Proposition 4.5 it follows that

(6.3) ‖∆jη ‖∞ ≤ Cj−ν2j e−22jt,

for the same random constant C as above.

6.1.2. The solution space. We will solve the problem as in Section 3.2. We set
u = v + η and consider the problem

(6.4) ∂tv − ∂xxv = (v2)x + 2(vη )x + η ,

The term η , obtained by applying the heat kernel to η , has enough regularity for
what we will do. The troublemaker is (vη )x, since given the regularity of v and
η , the singularity in time at t = 0 is not integrable. Before illustrating how to
circumvent the problem, we introduce the space where the problem will be solved.

Define the space C α
κ as the closure of smooth functions with respect to the norm

‖u‖(α,κ) := sup
j≥−1

(1 + |j|κ)2αj‖∆ju‖∞.

This is as the space C α
κ , but with a logarithmically corrected growth. We state

a few properties of these spaces we shall need later. To this end, define a tamed
logarithm ` : (0,∞)→ R as

`(t) = log(1
t
∨ 2).

Lemma 6.1. The following properties hold,

• if α > 0 and κ ∈ R, or if α = 0 and κ > 1, then C α
κ · C α

κ ⊂ C α
κ ,

• C α+ε ⊂ C α
κ ⊂ C α, for every ε > 0,

• if α′ < α and any κ, κ′, or if α = α′ and κ ≥ κ′, then for every t > 0 and
u ∈ C α′

κ′ ,

‖ et∆ u‖(α,κ) . t−
1
2

(α−α′)`(t)κ−κ
′‖u‖(α′,κ′).
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Proof. For the first property, if u, v ∈ C α
κ , with ‖u‖(α,κ) ≤ 1, ‖v‖(α,κ) ≤ 1,

‖∆j(u <© v)‖∞ ≈
∥∥∥∆j

( j−2∑
m=−1

(∆mu)(∆nv)
)∥∥∥
∞
.

≈
j−2∑
m=−1

‖∆mu‖∞‖∆jv‖∞ . j−κ2−αj
j−2∑
m=−1

m−κ2−αm . j−κ2−αj,

and

‖∆j(u =© v)‖∞ .
∞∑
m=j

‖∆mu‖∞‖∆mv‖∞ .
∞∑
m=j

m−2κ2−2αm . j−κ2−αj.

The second property is immediate by the definition of norms. For the third,
using [17, Proposition 2.4],

jκ2αj‖∆j(e
t∆ u)‖∞ . jκ2αj e−22jt ‖∆ju‖∞ =

= (jκ
′
2α
′j‖∆ju‖∞)jκ−κ

′
2(α−α′)j e−22jt . Hκ−κ′,α−α′,2(t)‖u‖(α′,κ′),

and the conclusion follows from Lemma 6.8. Here the quantity Hκ−κ′,α−α′,2 is
defined in (6.11). �

6.2. A “classical” case. Let us solve first a fixed point theorem for

∂tu = ∆u+ (u2)x,

with a norm better suited for the critical level,

‖u‖• := sup
t≤T

t
1
2 `(t)a‖u(t)‖(0,κ),

with κ > 1. Then by Lemma 6.1 we obtain

‖V (u)‖(0,κ) ≤
∫ t

0

‖ e(t−s)∆(u2)x‖(0,κ) ds .
∫ t

0

‖ e(t−s)∆ u2‖(1,κ) ds

. ‖u‖2
•

∫ t

0

(t− s)−
1
2 s−1`(s)−2a ds . t−

1
2 `(t)1−2a‖u‖2

•,

where in the last step we used that if β ∈ (0, 1) and a ≥ 0, or β = 1 and a > 1 by
an elementary computation we have∫ t

0

(t− s)−
1
2 s−β`(s)−a ds .

{
t
1
2
−β`(t)−a, β < 1,

t−
1
2 `(t)1−a, β = 1.

Therefore, if a > 1,

‖V (u)‖• ≤ `(T )−(a−1)‖u‖2
• .

Consider the initial condition. By Lemma 6.1,

‖ et∆ u(0)‖(0,κ) . t−
1
2 `(t)κ−κ

′‖u(0)‖−1,κ′
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thus

‖ et∆ u(0)‖• . `(T )κ−κ
′+a‖u(0)‖(−1,κ′)

if κ − κ′ + a < 0, that is κ′ > κ + a. This allows to prove a fixed point theorem
with initial condition in C −1

κ′ .
In view of a comparison with the results in the next sections, consider an initial

condition with

‖∆ju(0)‖∞ ∼ j−ν2j,

then

‖u(0)‖(−1,κ′) = sup
j
jκ
′
2−j‖∆ju(0)‖∞ ∼ sup

j
jκ
′−ν ,

is finite if ν ≥ κ′. Hence we have ν ≥ κ′ > κ + a > 2. We will find, for random
initial conditions in Section 6.3 below, the condition ν > 1, and in Section 6.4 the
condition ν > 1

2
. Both guarantee less regularity than in the deterministic case.

6.3. A “classical” case, with random initial condition. Let Y κ,β
T be the

space defined as X 0,β, but with the C 0 norm replaced by the C 0
κ norm. By

Theorem 4.10 we know that η ∈ X 0,β
T (actually V 0,β) for β > β0(0) − 1 = 1

4
.

The same argument shows that η ∈ V 2ε,β for β > 1
4

+ ε, with ε > 0, thus by

Lemma 6.1 η ∈ Y κ,β
T for β > 1

4
and κ ≥ 0, with

(6.5) ‖η ‖Y κ,β
T
≤ C gT ,

where C is a random constant and gT . T ε for small enough ε > 0 (depending
on the value of β).

Moreover the previous lemma ensures that for β ∈ (1
4
, 1

2
) and κ > 1,

(6.6) ‖V(v, v)‖Y κ,β
T
. gT‖v‖2

Y κ,β
T

,

with gT . T ε as above. This shows that the term (vη )x is the “troublemaker”,
as is the term that so far prevents us to apply a fixed point theorem to problem
(6.4) in Y κ,β

T

In this section we analyse the term (vη )x, and show that if ν > 1, then
V (v <© η ) is well defined and the fixed point strategy can be completed.

Proposition 6.2. Consider a random initial condition as in Assumption 4.4, with
coefficients as in (6.2). If ν > 1, then there is a random time T , with T > 0 a. s.,

such that problem (6.4) has a unique solution in Y κ,β
T , where β ∈ (1

4
, 1

2
), and

κ ∈ (1, ν].

Proof. Let v ∈ Y κ,β
T with ‖v‖Y κ,β

T
≤ 1. By (6.3) we have

‖∆j(v >© η )‖∞ . ‖∆jv‖∞
j−2∑
n=0

‖∆nη ‖∞ . j−κt−β
j−2∑
n=0

n−ν2n e−22nt,
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where we have used the fact that, to compute ∆j(v >© η ), the relevant modes of v
are those at levels m ≈ j (for simplicity of computations we have only considered
m = j, but due to the estimates we have on ∆jv and ∆jη , the result is the same
up to a multiplicative constant). Thus
(6.7)

tβjκ
∥∥∥∆j

∫ t

0

e(t−s)∆(v >© η )x ds
∥∥∥
∞
. tβjκ

∫ t

0

2j e−22j(t−s) ‖∆(v >© η )‖∞ ds

. tβ
j−2∑
n=2

n−ν2n
∫ t

0

2j e−22j(t−s) e−22ns s−β ds

.
√
t

j−2∑
n=2

n−ν2n e−22nt

=
√
tG−ν,1,2(t),

where G−ν,1,2 is defined in (6.11). From Lemma 6.8 we know that
√
tG−ν,1,2(t)

is bounded if ν ≥ 0, and converges to 0 as t → 0 if ν > 0. We notice that in
particular we do not need the assumption on κ here.

Likewise, using again the regularity of η given by (6.3), we derive

‖∆j(v =© η )‖∞ .
∞∑
n=j

‖∆nv‖∞‖∆nη ‖∞ .

. j−κt−β
∞∑
n=j

n−ν2n e−22nt . j−κt−βG−ν,1,2(t).

Thus, by Lemma 6.8,

(6.8)

tβjκ
∥∥∥∆j

∫ t

0

e(t−s)∆(v =© η )x ds
∥∥∥
∞
. tβjκ

∫ t

0

2j e−22j(t−s) ‖∆(v =© η )‖∞ ds

. tβ
∫ t

0

2j e−22j(t−s) s−βG−ν,1,2(s) ds

. tβ
∫ t

0

(t− s)−
1
2 s−βG−ν,1,2(s) ds

and, as before, it is sufficient to assume that ν > 0.
Finally, since κ > 1, by (6.3),

‖∆j(v <© η )‖∞ . ‖∆jη ‖∞
j−2∑
n=0

‖∆nv‖∞ . j−ν2j e−22jt

j−2∑
n=0

n−κt−β . j−ν2j e−22jt t−β,
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therefore

(6.9)

tβjκ
∥∥∥∆j

∫ t

0

e(t−s)∆(v <© η )x ds
∥∥∥
∞
. tβjκ

∫ t

0

2j e−22j(t−s) ‖∆j(v <© η )‖∞ ds

. jκ−ν22jt e−22jt

. tHκ−ν,2,2(t).

The quantity Hκ−ν,2,2(t), whose definition is given in formula (6.11), is such that
tHκ−ν,2,2(t) is bounded for κ ≤ ν, and tHκ−ν,2,2(t) → 0 for κ < ν, by Lemma 6.8.

�

6.4. Local description. Consider the case ν ≤ 1. From the proof of Proposi-
tion 6.2, we see that there is a random constant C, independent of T ≤ 1, such
that

‖V (v ≥© η )‖Y κ,β
T
≤ Cgν,T‖v‖Y κ,β

T

for every v ∈ Y κ,β
T , with gν,T ↓ 0 as T ↓ 0, and in the above formula by V (v ≥© η )

we mean that only the part v ≥© η of the product vη appears in V . Thus the
irregularity of a solution of (6.4) is due to the term V (v <© η ).

For a given v ∈ Y κ,β, set

R(v) := V (v, v) + η + 2V (v ≥© η )

Lemma 6.3. Let u0 be a random field as in Assumption 4.4, with coefficients as
in (6.2), and ν ∈ (1

2
, 1]. If κ ∈ (1, 2ν) and v, v′ ∈ Y κ,β

T , then

tβjκ`(t)ν‖∆jR(v)‖∞ . (1 + ‖v‖Y κ,β
T

)‖v‖2

Y κ,β
T

.

Moreover,

‖V (R(v) <© η )‖Y κ,β
T
. `(T )κ−2ν(1 + ‖v‖Y κ,β

T
)‖v‖Y κ,β

T
.

and

‖V (R(v) <© η )− V (R(v′) <© η )‖Y κ,β
T
. `(T )κ−2ν(1 + ‖v + v′‖Y κ,β

T
)‖v − v′‖Y κ,β

T
.

Proof. The first statement follows by (6.5), (6.6), (6.7), and (6.8). For the second
statement, for v such that ‖v‖Y κ,β

T
≤ 1 and by (6.3),

tβjκ‖∆jV (R(v) <© η )‖∞ ≈ tβjκ
∫ t

0

2j e−22j(t−s) ‖∆j(R(v) <© η )‖∞ ds

≈ tβjκ
∫ t

0

2j e−22j(t−s) j−ν2j e−22js

j−2∑
n=0

s−β`(s)−νn−κ

. tHκ−ν,2,2(t)`(t)−ν

. `(T )κ−2ν ,

using Lemma 6.8 (where the definition of the quantity Hκ−ν,2,2(t) is also given),
since we have chosen κ < 2ν. The third statement follows likewise. �
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Our original equation, can be written as

v = 2V (v <© η ) +R(v),

where, as we have seen, R(v) is an essentially “smooth” perturbation. The above
equality represents both our equation and a decomposition of the solution in its
regular and irregular part. We thus replace v with its decomposition in the irreg-
ular part of the equation, to get

v = 2V (v <© η ) +R(v)

= 2V
(
((2V (v <© η ) +R(v)) <© η )

)
+R(v)

= 4V (V (v <© η ) <© η ) + 2V (R(v) <© η ) +R(v) .

Theorem 6.4. Let u0 be a random field as in Assumption 4.4, with coefficients
as in (6.2). If ν ∈ (1

2
, 1], then there is a random time T , with T > 0 a. s., such

that the equation

(6.10) v = 4V (V (v <© η ) <© η ) + 2V (R(v) <© η ) +R(v)

has a unique solution in Y κ,β
T , where β ∈ (1

4
, 1

2
), and κ ∈ (1, 2ν].

Proof. Everything boils down to an estimate of V (V (v <© η ) <© η ). All other

terms are taken care of by Lemma 6.3. Consider v ∈ Y κ,β
T , with ‖v‖Y κ,β

T
≤ 1. The

estimate (6.9) yields

‖∆jV (v <© η )‖∞ . j−ν22jt1−β e−22jt .

Thus, by the regularity of η given in (6.3) and by Lemma 6.8,

‖∆j(V (v <© η ) <© η )‖∞ . j−ν2j e−22jt

j−2∑
n=0

‖∆nV (v <© η )‖∞

. j−ν2j e−22jt

j−2∑
n=0

n−ν22n e−22nt t1−β

= j−ν2j e−22jt t1−βH−ν,2,2(t)

. j−ν2j e−22jt t−β`(t)−ν ,

(see (6.11) for the definition of H−ν,2,2(t)) and therefore,

tβjκ‖∆jV (V (v <© η ) <© η )‖∞ . tβjκ−ν22j

∫ t

0

e−22j(t−s) s−β e−22js `(s)−ν ds

. tjκ−ν22j e−22jt `(t)−ν

≤ tHκ−ν,2,2(t)`(t)−ν

. `(T )κ−2ν .

This is sufficient to prove a fixed point theorem, with existence time dependent on
the random constants in the above estimate and in Lemma 6.3. �
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Remark 6.5. We wish to point out that the necessity of a local description to
set up a problem amenable to a fixed point argument as we have done above,
emerges only for initial conditions in (almost) critical spaces. Indeed, we know (see
Remark 3.6) that if δ > 1

2
, then Theorem 3.5 is sufficient to find solutions with

initial conditions in critical spaces. The challenge for random initial conditions
rests in the case δ ≤ 1

2
. If δ = 1

2
the only open case is the critical case and can be

sorted out as we have done in this section.
Consider the case δ < 1

2
. It is not difficult to see that, as long as we require

that the initial condition is sub–critical and η is well defined (that is η has a
integrable singularity at t = 0), then the term V (v, η ) makes sense in the right
space and Theorem 3.8 provides a solution. The case of initial conditions in critical
spaces is a different story. Here we need again the methods we have illustrated in
this section. The computations are very similar.

Finally, we wish to discuss to what extent the solution provided by Theorem 6.4
is a solution of problem (6.4), and in turn of problem (6.1).

Proposition 6.6. Under the assumptions of Theorem 6.4 above, if v is the solution
defined on [0, T ] provided by the above–mentioned theorem, then (6.4) holds in

X 0,β
T ′ for some a. s. positive random time T ′ ≤ T .

Proof. We give a quick sketch. If we define the norm

‖ · ‖κ,ν,β,T := sup
[0,T ]

tβ`(t)ν‖∆j · ‖∞ ,

then the arguments in the proofs of Lemma 6.3 and Theorem 6.4 show that

• ‖w‖κ,ν,β,T <∞ =⇒ ‖V (w <© η )‖κ,2ν−κ,β,T <∞,

• w ∈ Y κ,β
T =⇒ ‖V (V (w <© η ) <© η )‖κ,2ν−κ,β,T <∞.

Thus, a solution of (6.10) satisfies ‖v‖κ,2ν−κ,β,T <∞.
Let now (un0 )n≥1 be a sequence of smooth random fields (obtained for instance

from u0 by convolution) such that un0 → u0, in the sense that supj j
−1/22−j‖∆j(u

n
0−

u0)‖∞ → 0, with similar convergence for ηn and ηn (in the appropriate norms),

where η and η are the stochastic objects derived from un0 . If, for every n, vn is

the solution of (6.4) (with ηn and ηn), then there is an a. s. positive random time

T such that supn ‖vn‖κ,2ν−κ,β,T <∞. Set wn = vn− v, pn = ηn− η , qn = ηn − η ,
then

Rn(vn)−R(v) = V (vn + v, wn) + qn + 2V (wn ≥© ηn) + 2V (v ≥© pn),

where Rn is the remainder with ηn and ηn . and, using estimate similar to those in
the proof of Lemma 6.3, we see that ‖Rn(vn)−R(v)‖κ,ν,β,T → 0. Likewise, since

wn = 4V (V (wn <© ηn) <© ηn) + 4V (V (v <© pn) <© ηn)+

+ 4V (V (v <© ηn) <© pn) + 2V ((Rn(vn)−R(v)) <© ηn)+

+ 2V (R(v) <© pn) +Rn(vn)−R(v),
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we have that ‖wn‖κ,2ν−κ,β,T → 0 (using also estimates as those in Theorem 6.4).
Now

vn = V (vn, vn) + 2V (vn, ηn) + ηn = Rn(vn) + 2V (vn <© ηn)

and it remains to show that the term V (vn <© ηn) converges. Indeed,

tβ‖∆jV (wn <© η )‖∞ ≈

≈ ‖wn‖κ,2ν−κ,β,T tβ
√
j22j

∫ t

0

e−22j(t−s) e−22js

j−2∑
n=0

s−βn−κ`(s)−ν ds .

. tH 1
2
,2,2(t)`(t)−ν‖wn‖κ,2ν−κ,β,T . ‖wn‖κ,2ν−κ,β,T ,

and likewise for V (vn, pn). �

Remark 6.7. We remark that an attempt to run a fixed point in the space defined
by the norm ‖ · ‖κ,ν,β,T would fail when trying to prove the self mapping property
for the term V (v <© η ).

We conclude with an elementary analytical lemma.

Lemma 6.8. Set for every ν ∈ R, p ≥ 0, τ > 0, and t > 0,

(6.11) Gν,p,τ (t) =
∞∑
n=1

nν2pn e−2τnt, Hν,p,τ (t) = sup
n≥1

nν2pn e−2τnt .

Then for p > 0 and ν ∈ R,

Hν,p,τ ≤ Gν,p,τ (t) . t−
p
τ `(t)ν .

Moreover, if p = 0, ν ∈ R,

Hν,0,τ ≤ `(t)ν+ .
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