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1. Int r oduct ion
Spat ial filtering has been central in the development of large eddy simulat ion

reduced order models (LES-ROMs) [8, 10, 11] and regularized reduced order mod-
els (Reg-ROMs) [6, 9] for efficient and relat ively accurate numerical simulat ion of
convect ion-dominated fluid flows. In this paper, we perform a numerical invest iga-
t ion of spat ial filtering. To this end, we consider one of the simplest Reg-ROMs,
the Leray ROM (L-ROM) [6, 9], which uses ROM spat ial filtering to smooth the
flow variables and decrease the amount of energy aliased to the lower index ROM
basis funct ions. We also propose a new form of ROM different ial filter [6, 9] and
use it as a spat ial filter for the L-ROM. We invest igate the performance of this new
form of ROM different ial filter in the numerical simulat ion of a flow past a circular
cylinder at a Reynolds number Re = 760.

2. Reduced Or der Model ing
For theNavier-Stokesequat ions(NSE), thestandard reduced order model (ROM)

is const ructed as follows: (i) choosemodes { ~ϕ1, . . . , ~ϕd} , which represent the recur-
rent spat ial st ructuresof thegiven flow; (ii) choosethedominant modes{ ~ϕ1, . . . , ~ϕr } ,
r ≤ d, as basis funct ions for the ROM; (iii) use a Galerkin t runcat ion ~ur =∑ r

j = 1 aj ~ϕj ; (iv) replace ~u with ~ur in the NSE; (iii) use a Galerkin project ion of
NSE(~ur ) onto theROM spaceX r := span{ ~ϕ1, . . . , ~ϕr } to obtain a low-dimensional
dynamical system, which represents the ROM:

~̇a = A ~a + ~a> B ~a ,(1)
where ~a is the vector of unknown ROM coefficients and A, B are ROM operators;
(iv) in an offline stage, compute the ROM operators; and (v) in an online stage,
repeatedly use the ROM (for various parameter set t ings and/ or longer t ime inter-
vals).

3. ROM Dif f er ent ial Fil t er
TheROM different ial filter is based on the classic Helmholtz filter that has been

used to great success in LES for turbulent flows [3]. Let δ be the radius of the
different ial filter. Then, for a given velocity field ~ur ∈ X r , the filtered flow field
F (~ur ) ∈ X f , where X f is a yet to be specified space of filtered ROM funct ions, is
defined as the solut ion to the Helmholtz problem
(2) Find F (~ur ) ∈ X f such that

(
(I − δ2∆ )F (~ur ),~v

)
= (~ur ,~v), for all ~v ∈ X f .

Weconsider two different versions for thechoiceof the rangeof theROM different ial
filter X f :
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Figur e 1. Contour plots of y velocity of the first and fifth POD
vectors from a 3D flow past a cylinder computat ion. We use the
FE version of the ROM different ial filter with δ = 0.5. The unfil-
tered POD vectors are on top and the filtered are on the bot tom.
The choice δ= 0.5 is too large for pract ical purposes, but demon-
st rates that filtering both removes kinet ic energy (the isosurfaces
are smaller) and enlarges the scales of mot ion (e.g., the first POD
vector goes from twelve st ructures to just nine.)

T he FE Version. This version corresponds to X f = X h , where X h is the finite
element (FE) space: we seek the FE representat ion of F (~u) and work in the full
discrete space when calculat ing the filtered ROM vectors. The FE representat ion
of F (~u) suffices in applicat ions becauseweuse it to assemble the components of the
ROM before t ime evolut ion: put another way, since filtering is a linear procedure,
it only has to be done once and not in every ROM time step, e.g., for FE mass and
st iffness matrices M and S we have that , modulo boundary condit ion terms,

(3) aj (M + δ2S)F (~ϕj ) = aj M ~ϕj ⇒ (M + δ2S)
r

j = 1
aj F (~ϕj ) = M

r

j = 1
aj ~ϕj .

Hence, applying the different ial filter to each proper orthogonal decomposit ion
(POD) basis vector ~ϕj , results in F (~ϕj ) /∈ X r . Due to the propert ies of the differ-
ent ial filter (see Fig. 1), these new ROM funct ions will correspond to longer length
scales and contain less energy.
T he ROM Version. Alternat ively, we can pick X f = X r , i.e., the ROM differ-
ent ial filter simply corresponds to an r × r Helmholtz problem.
(4) (M r + δ2Sr )F (~a) = M r~a ,
whereM r and Sr and theROM massand st iffnessmatrices, respect ively, and ~a and
F (~a) are thePOD coefficient vectors of ~ϕj and F (~ϕj ), respect ively. Here, unlike in
the FE version, the range of the Helmholtz filter is X r , so filtered solut ions retain
the weakly divergence free property.
Proper t ies. Both versionsof theROM different ial filter (2) shareseveral appealing
propert ies [2]. They act as spat ial filters, since they eliminate the small scales (i.e.,
high frequencies) from the input . Indeed, the ROM different ial filter (2) uses an
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ellipt ic operator to smooth the input variable. They also have a low computat ional
overhead. For efficiency, the algorithmic complexity of any addit ional filters should
be dominated by the O(r 3) cost in evaluat ing the nonlinearity. The ROM version
is equivalent to solving an r × r linear system; since the matrix only depends on
the POD basis, it may be factorized and repeatedly solved for a cost of O(r 2),
which is also dominated by the cost of the nonlinearity. The FE version requires
solving large FE linear systems, but these linear systems are solved in the offline
stage; thus, the online computat ional cost of the FE version is negligible. Finally,
weemphasize that theROM different ial filter uses an explicit length scaleδ to filter
the ROM solut ion vector. This is cont rast to other types of spat ial filtering, e.g.,
the ROM project ion, which do not employ an explicit length scale.

4. Ler ay ROM
Jean Leray at tempted to solve theNSEs in his landmark 1934 paper [5]. Hewas

able to prove the existence of solut ions for the modified problem

(5) ~wt =
1
Re∆ ~w − F ( ~w) · ∇ ~w − ∇ p,

where ∇ · ~w = 0, and F ( ~w) is a convolut ion with a compact support mollifier with
filter radius δ, or
(6) F ( ~w) = gδ ? ~w.
For addit ional discussion on the propert ies of different filters see [2, 4, 7]. We
approximate the convolut ion with the different ial filter
(7) F ( ~w) = (δ2∆ + 1)− 1 ~w.
In turbulencemodeling, Leray’s model is the basis for a class of stabilizat ion meth-
ods called the Leray-α regularizat ion models [4]. Leray’s key observat ion was that
the nonlinear term is the most problemat ic as it serves to t ransfer energy from
resolved to unresolved scales.
The Leray model has been recent ly extended to the ROM set t ing [6, 9]. The

result ing Leray-ROM (L-ROM) can be writ ten as

(8) ( ~wr )t =
1
Re∆ ~wr − F ( ~wr ) · ∇ ~wr − ∇ p,

which is the same as theGalerkin ROM up to the filtering of the advect ive term in
the nonlinearity.

5. Numer ical Resul t s
Weconsider theflow past a cylinder problem with parabolic Dirichlet inflow con-

dit ions, no-slip boundary condit ions on thewalls of thedomain, and zero tangent ial
flow at the outflow. We compute snapshots by running the deal.II [1] step-35 tu-
torial program for t ∈ [0, 500]. We use a kinemat ic viscosity value of 1/ 100, a
circular cylinder with diameter of 1, and parabolic inflow boundary condit ionswith
a maximum velocity of 7.6; this results in a Reynolds number Re = 760. We cali-
brate the filter radius δ by choosing a value for δ that gives the L-ROM the same
mean kinet ic energy as the original numerical simulat ion. Calibrat ing the ROM to
this filter radius also improves accuracy in some structural propert ies: this amount
of filtering removes enough kinet ic energy that the phase port rait connect ing the
coefficients in the ROM on the first and second POD basis funct ions are close to



4 L . C. BERSELL I , D . W ELLS, X . X IE, AND T . IL IESCU

the values obtained by project ing the snapshots onto the POD basis over the same
t ime interval.
Fig. 5 displays the t ime evolut ion of the L2 norm of the solut ions of the L-ROM

and DNS for r = 6 and r = 20. Fig. 5 shows that , for the opt imal δ value, the
L-ROM-DF accurately reproduces the average, but not the amplitude of the t ime
evolut ion of the L2 norm of the DNS results for both r = 6 and r = 20. Fig. 5

Figur e 2. 3D flow past a cylinder, L-ROM (green) and DNS
(blue). Mean (left column) and t ime evolut ion (right column) of
the L2 norm of the solut ion; r = 6 (top row) and r = 20 (bot tom
row). The t ime evolut ion of the L2 norm of the solut ion (right
column) is plot ted for the opt imal mean L2 norm of the solut ion
(left column): δ= 0.33 for r = 6 (top row) and δ= 0.18 for r = 20
(bot tom row).

displays thephaseport raits for thefirst and second POD coefficientsof theL-ROM-
DF and POD project ion of DNS data for r = 6 and r = 20. Fig. 5 shows that , for
the opt imal δ value, the L-ROM-DF yields moderately accurate results for r = 6
and accurate results for r = 20.

6. Concl usions
In this paper, we proposed a new type of ROM different ial filter. We used this

new filter with the L-ROM, which is one of the simplest Reg-ROMs. We tested
this filter/ ROM combinat ion in the numerical simulat ion of a flow past a circular
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Figur e 3. 3D flow past a cylinder, L-ROM-DF with opt imal δ
value (green) and POD project ion of DNS data (blue). Phase
port raits for a1 and a2; r = 6 (left ) and r = 20 (right ).

cylinder at Reynoldsnumber Re = 760 for r = 6 and r = 20. Thenew typeof ROM
different ial filter yielded encouraging numerical results, which were comparable to
those for the standard type of ROM different ial filter and bet ter than those for the
ROM project ion [9]. Weemphasize that amajor advantageof thenew typeof ROM
different ial filter over the standard ROM different ial filter is its low computat ional
overhead. Indeed, since the filtering operat ion in the new type of ROM different ial
filter is performed at a FE level (as opposed to the ROM level, as it is generally
done), the new filter is applied to each ROM basis funct ion in the offline stage. In
the online stage, the computat ional overhead of the new type of ROM different ial
filter is pract ically zero, since it simply amounts to using the filtered ROM basis
funct ions computed and stored in the offline stage.
The first results for the new type of ROM different ial filter are encouraging. We

plan to perform a thorough invest igat ion of the new filter, including a comparison
with the standard form of the ROM different ial filter and the ROM project ion, in
the numerical simulat ion of realist ic flows [9, 11].
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