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Abstract. We present a framework for the construction of linearizations for scalar and matrix
polynomials based on dual bases which, in the case of orthogonal polynomials, can be described by
the associated recurrence relations. The framework provides an extension of the classical lineariza-
tion theory for polynomials expressed in non-monomial bases and allows to represent polynomials
expressed in product families, that is as a linear combination of elements of the form φi(λ)ψj(λ),
where {φi(λ)} and {ψj(λ)} can either be polynomial bases or polynomial families which satisfy some
mild assumptions.

We show that this general construction can be used for many different purposes. Among them,
we show how to linearize sums of polynomials and rational functions expressed in different bases. As
an example, this allows to look for intersections of functions interpolated on different nodes without
converting them to the same basis.

We then provide some constructions for structured linearizations for ?-even and ?-palindromic
matrix polynomials. The extensions of these constructions to ?-odd and ?-antipalindromic of odd
degree is discussed and follows immediately from the previous results.

Key words. Matrix polynomials, Rational functions, Non-monomial bases, Palindromic matrix
polynomials, Even matrix polynomials, Strong linearizations, Dual minimal bases

AMS subject classifications. 15A18, 15A22, 65F15, 65H04

1. Introduction. In recent years much interest has been devoted to finding
linearizations for polynomials and matrix polynomials. The Frobenius linearization,
i.e., the classical companion, has been the de-facto standard in polynomial eigenvalue
problems and polynomial rootfinding for a long time [21, 23]. Nevertheless, recently
much work has been put into developing other families of linearizations. Among these
some linearizations preserve spectral symmetries available in the original problem
[25,29,31], others linearize matrix polynomials formulated in non-monomial bases [1,9]
and also some variations are based on an idea of Fiedler about decomposing companion
matrices into products of simple factors [2, 10,12,19].

In this work we take as inspiration the results of Dopico, Pérez, Lawrence and Van
Dooren [14] that characterize the structure of some permuted Fiedler linearizations
by using dual minimal bases [20]. We extend the results in a way that allows us
to deal with many more formulations, and we use it to derive numerous different
linearizations. We also use these examples to prove the effectiveness of this result as
a tool for constructing structured linearizations (thus preserving spectral symmetries
in the spirit of the works cited above) and also linearizations for sums of polynomials
and rational functions.

In particular, we consider the rootfinding problem for polynomials that are ex-
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pressed as linear combination of elements in a so-called product family; the most
common case where this can be applied is when considering two different polynomial
bases {φi} and {ψj} and representing polynomials as sums of objects of the form
φi(λ)ψj(λ). This apparently artificial construction has, however, many interesting
applications, such as finding intersections of polynomials and rational functions de-
fined in different bases. This problem arises naturally in computer aided design, where
curves are defined locally as polynomials or rational functions using different interpo-
lation bases and their intersections are needed for clipping (see [33] and the references
therein). Moreover, functions defined as the sums of polynomials or rational func-
tions in different bases are often found in the analysis of closed loop linear systems.
The latter case involves also matrices of rational functions when MIMO systems are
considered [26].

In Section 2 we give a formal definition of what we call a product family of polyno-
mials, denoted by φ⊗ψ. We define the vector πk,φ(λ) to be the one with the elements
of the family as entries and we show that πk,φ⊗ψ(λ) is given by πk,φ(λ) ⊗ πk,ψ(λ).
We present a theorem that allows to linearize every polynomial written as a linear
combination of elements in a product family, and we also generalize the construction
to the product of more than two families in Section 2.4. We consider a certain class
of dual polynomial bases (with the notation of the classical work by Forney [20]) of
a polynomial vector πk,φ(λ), which we identify with a matrix pencil Lk,φ(λ) such
that Lk,φ(λ)πk,φ(λ) = 0, which will be used as a tool to build linearizations. In Sec-
tion 3 we introduce an explicit construction for linearizing polynomial families arising
from orthogonal and interpolation bases. We cover the case of every polynomial ba-
sis endowed with a recurrence relation, and we provide explicit constructions for the
Lagrange, Newton, Hermite and Bernstein cases. We describe the dual bases for all
these cases and, as shown by Theorem 15, they are the only ingredient required to
build the linearizations.

The rest of the paper deals with the problem of exploiting this freedom of choice
to obtain many interesting results.

In Section 4 we show how to linearize the sum of two scalar polynomials or rational
functions expressed in different bases, without the need of an explicit basis conversion.
This can have important applications in the cases where interpolation polynomials are
obtained from experimental data (that cannot be resampled - so there is no choice
for the interpolation basis) or in cases where an explicit change of basis is badly
conditioned.

Infinite eigenvalues may appear when linearizing the sums of polynomials. We
report numerical experiments that show that they do not affect the numerical robust-
ness of the approach in many cases. Moreover, we show that for the rational case,
under mild hypotheses, it is possible to construct strong linearizations which do not
have spurious infinite eigenvalues.

In Section 5 we turn our attention to preserving spectral symmetries and we pro-
vide explicit constructions for linearizations of ?-even/odd and ?-palindromic matrix
polynomials. We show that a careful choice of the dual bases for use in Theorem 15
yields linearizations with the same spectral symmetries of the original matrix poly-
nomial. Finally, in Section 6, we describe a numerical approach to deflate the infinite
eigenvalues that are present in some of the constructions, based on the staircase al-
gorithm of Van Dooren [34]. In Section 7 we draw some conclusions and we propose
some possible development for future research.

2. A general framework to build linearizations.
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2.1. Notation. In the following we will often work with the vector space of
polynomials of degree at most k on a field F, denoted as Fk[λ]. We will denote by F
its algebraic closure.

In the study of strong linearizations is also important to consider the rev operator,
which reverses the coefficients of the polynomial when represented in the monomial
basis.

Definition 1. Given a non-zero matrix polynomial P (λ) =
∑k
i=0 Piλ

i we define
its degree as the largest integer i > 0 such that Pi 6= 0, that is the maximum of all
the degrees of the entries of P (λ). We denote it by degP (λ).

Definition 2. Given a matrix polynomial P (λ), its reversed polynomial, denoted
by revP (λ), is defined by revP (λ) := xdeg P (λ)P (λ−1). We often refer to revP (λ) as
the reversal of P (λ).

Intuitively, a linearization for a matrix polynomial P (λ) is a matrix pencil L(λ)
such that L(λ) is singular only when P (λ) is. However, this is not sufficient in most
cases since there is also the need to match eigenvectors and partial multiplicities, so
the definition has to be a little more involved. We refer to the work of De Terán,
Dopico and Mackey [13] for a complete overview of the subject.

Definition 3. An m×m matrix polynomial E(λ) is said to be unimodular if it
is invertible in the ring of m ×m matrix polynomials or, equivalently, if detE(λ) is
a non-zero constant of F.

Definition 4 (Extended unimodular equivalence). Let P (λ) and Q(λ) be matrix
polynomials. We say that they are extended unimodularly equivalent if there exist
positive integers r, s and two unimodular matrix polynomials E(λ) and F (λ) of ap-
propriate dimensions such that

E(λ)

[
Ir

P (λ)

]
F (λ) =

[
Is

Q(λ)

]
.

Definition 5 (Linearization). A matrix pencil L(λ) is a linearization for a ma-
trix polynomial P (λ) if P (λ) is extended unimodularly equivalent to L(λ).

In order to preserve the complete eigenstructure of a matrix polynomial, it is
of interest to maintain also the infinite eigenvalues, which are defined as the zero
eigenvalues of the reversed polynomial. To achieve this we have to extend Definition 5.

Definition 6 (Spectral equivalence). Two matrix polynomials P (λ) and Q(λ)
are spectrally equivalent if P (λ) is extended unimodularly equivalent to Q(λ) and
revP (λ) is extended unimodularly equivalent to revQ(λ).

Definition 7 (Strong linearization). A matrix pencil L(λ) is said to be a strong
linearization for a matrix polynomial P (λ) if it is spectrally equivalent to L(λ).

2.2. Working with product families of polynomials. The linearizations
that we build in this work concern polynomials expressed as linear combinations of
elements of a product family. Let us add more details about this concept.

With the term family of polynomials (or polynomial family) we mean any set of
elements in F[λ] indexed on a finite totally ordered set (I,6). To denote these objects
we use the notation {φi(λ) | i ∈ I} or its more compressed form {φi(λ)} or even {φi}
whenever the index set I and the variable λ are clear from the context. Often the
set I will be a segment of the natural numbers or a subset of Nd endowed with the
lexicographical order, as in Definition 8.



4 L. ROBOL, R. VANDEBRIL, P. VAN DOOREN

An important example of such families are the polynomials φi(λ) forming a basis
for the polynomials of degree up to k. Another extension that deserves our attention
is the following.

Definition 8. Given two families of polynomials {φi} for i = 0, . . . , ε and {ψj}
for j = 0, . . . , η, we define the product family as the indexed set defined by:

φ⊗ ψ := {φi(λ)ψj(λ), i = 0, . . . , ε, j = 0, . . . , η}.

with the lexicographical order (so that (i, j) 6 (i′, j′) if either i < i′ or i = i′ and
j 6 j′).

We introduce some notation that will make it easier in the following to deal with
these product families and their use in linearizations. We use the symbol πk,φ(λ) to
denote the column vector

πk,φ(λ) :=

φk(λ)...
φ0(λ)

 .
We will often identify πk,φ(λ) with the family {φi | i = 0, . . . , k} since they are just
different representations of the same mathematical object.

Notice that Definition 8 is easily extendable to the product of an arbitrary number
of families. In this case we always consider the lexicographical order on the new family,
which is particularly convenient because then we have

πk,φ(1)⊗...⊗φ(j)(λ) = πε1,φ(1)(λ)⊗ . . .⊗ πεj ,φ(j)(λ).

Remark 9. Whenever the family {φi} is a basis for the polynomials of degree at
most k, every polynomial p(λ) ∈ Fk[λ] can be expressed as

p(λ) =

k∑
j=0

ajφj(λ).

In particular, the scalar product with πk,φ(λ) is a linear isomorphism between Fk+1

and the vector space of polynomials of degree at most k. We have

Γφ : Fk+1 −→ Fk[λ]

a 7−→ Γφ(a) := a>πk,φ(λ)
.

With the above notation Γ−1
φ (p(λ)) is the vector of coordinates of p(λ) expressed

in the basis {φi}.
We recall the following definitions that can be found in [20].

Definition 10. A matrix polynomial G(λ) ∈ F[λ]k×n is a polynomial basis if its
rows are a basis for a subspace of the vector space of polynomial n-tuples.

Definition 11 (Dual basis). Two polynomial bases G(λ) ∈ F[λ]k×n and H(λ) ∈
F[λ]j×n are dual if G(λ)H(λ)> = 0 and j + k = n.

We are interested in a particular subclass of dual bases which are relevant for our
construction. We will call them dual linear bases.

Definition 12 (Full row-rank linear dual basis). We say that a k×(k+1) matrix
pencil Lk,φ(λ) is a full row-rank linear dual basis to πk,φ(λ) (or, analogously, for a
polynomial family {φi}) if Lk,φ(λ)πk,φ(λ) = 0, and Lk,φ(λ) has full row rank for any
λ ∈ F.
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Often we just say that Lk,φ(λ) is a full row-rank linear dual basis, meaning that
it is dual to πk,φ(λ). Since the family {φi} is reported in the notation that we
use for Lk,φ(λ), there is no risk of ambiguity. In the context of developing strong
linearizations, we also give the following definition (which can again be found in [20]):

Definition 13 (Minimal basis). A polynomial basis G(λ) ∈ F[λ]k×n is said to be
minimal if the sum of degrees of its rows is minimal among all the possible bases of
the vector space that they span.

We are particularly interested in dual minimal bases, that is bases that are both
minimal and dual bases. In [20] it is shown that this is equivalent to asking that G(λ)
and H(λ) are of full row rank for any λ ∈ F and the same holds for the matrices with
rows equal to the highest degree coefficient of every row of G(λ) and H(λ). When
the leading coefficients of G(λ) and H(λ) have only non-zero rows this corresponds
to their leading coefficient.

Remark 14. In the rest of the paper we will often consider full row-rank linear
dual bases (which will sometimes be minimal) related to polynomial families {φi}. In
order to make the exposition simpler we will call these bases dual, without adding
the term linear and full row-rank. However, it must be noted that these are a very
particular kind of dual bases and most of the results could not hold in a more general
context.

2.3. Building linearizations using product families. Let P (λ) be a poly-
nomial (or a matrix polynomial) expressed as a linear combination of elements of a
product family φ⊗ ψ. In this section we provide a way of linearizing it starting from
the coefficients of this representation. In order to obtain this construction we rely on
the following extension of [14, Theorem 5.2], which covers the case where both {φi}
and {ψi} are monomial bases.

Theorem 15. Let Lε,φ(λ) ∈ C[λ]ε×(ε+1) and Lη,ψ(λ) ∈ C[λ]η×(η+1) be dual linear
bases for two polynomial families {φi} and {ψi}. Assume that the elements of each
polynomial family have no common divisor, that is there exists a vector wk,? such that
πk,?(λ)

>wk,? = 1 for (k, ?) ∈ {(ε, φ), (η, ψ)}. Then the matrix polynomial

L(λ) :=
[
λM1 +M0 Lε,φ(λ)

> ⊗ Im
Lη,ψ(λ)⊗ In 0ηn×εm

]
, M0,M1 ∈ Cm(ε+1)×n(η+1)

is a linearization for P (λ) = (πε,φ(λ) ⊗ Im)>(λM1 + M0)(πη,ψ(λ) ⊗ In), which is
an m × n matrix polynomial expressed in the product family φ ⊗ ψ. Moreover, this
linearization is strong1 if the reversals of Lk,?(λ) have full row rank.

Proof. We mainly follow the proof given in [14]. Let (k, ?) be either (ε, φ) or
(η, ψ). Then, recall that we can find bk,? such that the matrix polynomial

Sk,?(λ) :=

[
Lk,?(λ)
b>k,?

]
is unimodular [4], and we know that Sk,?(λ)πk,?(λ) = αk,?(λ)ek+1. This can be
rewritten as πk,?(λ) = αk,?(λ)S

−1
k,?(λ)ek+1. Since the entries of πk,?(λ) do not have

1Notice that the linearization is guaranteed to be strong for the matrix polynomial formally
defined by (πε,φ(λ)⊗ Im)>(λM1 +M0)(πη,ψ(λ)⊗ In). In particular, this expression might provide
a matrix polynomial with leading coefficient zero, but we still need to consider that polynomial and
not the one with the leading zero coefficients removed, otherwise the strongness might be lost.



6 L. ROBOL, R. VANDEBRIL, P. VAN DOOREN

any common factor we conclude that αk,?(λ) is a non-zero constant (and so we can
drop the dependency on λ). We remark that rescaling the vector bk,? by a non-
zero constant preserves the unimodularity of Sk,?(λ) (since it is equivalent to left
multiplying by an invertible diagonal matrix). For this reason we can assume that
bk,? is chosen so that Sk,?(λ)πk,?(λ) = ek+1. We define Vk,?(λ) := Sk,?(λ)

−1 so that
Vk,?(λ)ek+1 = πk,?(λ). With these hypotheses we have that

Lk,?(λ)Vk,?(λ) =
[
Ik 0

]
, V >

k,?(λ)L
>
k,?(λ) =

[
Ik
0

]
Now observe that the matrix pencil L(λ) can be transformed by means of a unimodular
transformation in the following way:[
V >
ε,φ(λ)⊗ Im X(λ)

0 Iηn

] [
λM1 +M0 L>

ε,φ(λ)⊗ Im
Lη,ψ(λ)⊗ In 0ηn×εm

] [
Vη,ψ(λ)⊗ In 0

Y (λ) Iεm

]
=: P̃ (λ)

where P̃ (λ) can be chosen as follows:

P̃ (λ) :=

 0 0 Iεm
0 P (λ) 0
Iηn 0 0

 , P (λ) = (πε,φ(λ)⊗ Im)>(λM1 +M0)(πη,ψ(λ)⊗ In).

One can check, by direct substitution, that the following choices for the matrices X(λ)
and Y (λ) provide the above structure:

X(λ) := −(V >
ε,φ(λ)⊗ Im)(λM1 +M0)(Vη,ψ(λ)⊗ In)

[
Iηn

0n×ηn

]
,

Y (λ) := −
[
Iεm

0m×εm

]>
(Vε,φ(λ)

> ⊗ Im)(λM1 +M0)(Vη,ψ(λ)⊗ In)
[
(eη+1e

>
η+1)⊗ In

]
,

which yields the zeros in the block entries (1, 1), (1, 2) and (2, 1). The appearance of
P (λ) in the block entry (2, 2) follows using the relation Vk,?ek+1 = πk,?(λ).

We now check that the linearization is strong. Similarly to the previous step, we
can find a constant vector uk,? such that

S̃k,?(λ) =

[
uk,?

revLk,?(λ)

]
, ? ∈ {φ, ψ},

and S̃k,?(λ) rev π(λ) = α̃k,?(λ)e1. Since the entries of πk,?(λ) do not share any com-
mon factor, we get that α̃k,? is a non-zero constant. As in the previous case, applying
a diagonal scaling does not change the unimodularity so we can assume that α̃k,? = 1.

Define Wk,?(λ) = S̃k,?(λ)
−1 so that Wk,?(λ)e1 = rev πk,?(λ).

We can perform another unimodular transformation on the reversed polynomial.
Let A(λ) be defined as follows:[
W>
ε,φ(λ)⊗ Im X̂(λ)

0 Iηn

] [
M1 + λM0 revL>

ε,φ(λ)⊗ Im
revLη,ψ(λ)⊗ In 0ηn×εm

] [
Wη,ψ(λ)⊗ In 0

Ŷ (λ) Iεm

]
.

Notice that revLk,?(λ)Wk,?(λ) = [0 Ik] so we can write

A(λ) =

A1,1(λ) 0 0
0 0 I
0 I 0


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by appropriately choosing X̂(λ) and Ŷ (λ) as before. In particular we have

A1,1(λ) = (rev πε,φ(λ)⊗ Im)>(M1 + λM0)(rev πη,ψ(λ)⊗ In) = revP (λ)

if the degree of P (λ) is maximum (i.e., if the coefficient that goes in front of the
maximum degree term in the previous relation is not zero).

Remark 16. In the following Theorem 15 will often be applied in the case where
{φi} and {ψi} are polynomial bases. It is worth noting that, in this case, the hypoth-
esis on the existence of wk,? in the Theorem 15 is always satisfied, since this is just
the vector containing the coefficients of the constant 1 in the prescribed basis.

We emphasize that asking the reversal of Lk,?(λ) to have full row rank has a
connection with the minimality property. In fact, a sufficient condition for this to
hold is that Lk,?(λ) is minimal and has all row degrees equal to 1 [20].

Theorem 15, as stated here, holds for m × n matrix polynomials, but in the
following we will mainly deal with m ×m square ones, and we will drop the symbol
n for the second dimension.

2.4. An extension to more than two bases. Given the above formulation
for a linearization of a polynomial expressed in a product family, it is natural to ask
if the framework can be extended to cover more than two bases, that is to product
families of the form

φ(1) ⊗ . . .⊗ φ(j) := {φ(1)i1 . . . φ
(j)
ij

| is = 0, . . . , ks, s = 1, . . . , j}

where {φ(s)i | i = 0, . . . , ks} are families of polynomials for s = 1, . . . , j.
We show that there is no need to extend Theorem 15, but it is sufficient to

construct two appropriate dual bases Lε,φ(λ) and Lη,ψ(λ) to deal with this case. We
only need to prove that the hypotheses of Theorem 15 are satisfied.

Definition 17. Let Lε,φ(λ) ∈ Cε×(ε+1)[λ] and Lη,ψ(λ) ∈ Cη×(η+1)[λ] be two dual
bases for two families {φi} and {ψi}. Let w be a constant vector such that w>πη,ψ(λ)
is a non-zero constant, and A an invertible (ε+ 1)× (ε+ 1) matrix. We say that the
k × (k + 1) matrix

Lk,φ⊗ψ(λ) =

[
A⊗ Lη,ψ(λ)
Lε,φ(λ)⊗ w>

]
, k := (ε+ 1)(η + 1)− 1,

is a product dual basis of Lε,φ(λ) and Lη,ψ(λ). We denote it as Lε,φ(λ)×Lη,ψ(λ).
The name “dual basis” used in the above definition is justified by Lemma 19,

where we show that this matrix pencil is in fact a dual basis for a certain polynomial
family.

Notice that, since the product dual basis is not unique, the previous notation
actually denotes a family of such matrices so we should be writing Lk,φ⊗ψ(λ) ∈
Lε,φ(λ)×Lη,ψ(λ). However, in the following we will often write, by slight abuse of
notation, Lk,φ⊗ψ(λ) = Lε,φ(λ)×Lη,ψ(λ).

The above definition can be extended easily to a product of arbitrary families, by
means of the following.

Definition 18. We say that, for any families of polynomials {φ(1)i }, . . . , {φ(j)i },
the matrix Lk,φ(1)⊗...⊗φ(j)(λ) is a product dual basis for these families, and we denote
it as Lε1,φ(1)× . . .×Lεj ,φ(j)(λ), where

Lk,φ(1)⊗...⊗φ(j)(λ) = (Lε1,φ(1)(λ)× . . .×Lεj−1,φ(j−1)(λ))×Lεj ,φ(j)(λ).



8 L. ROBOL, R. VANDEBRIL, P. VAN DOOREN

Notice that the above formula provides a recursive manner for computing such
product dual bases. In the next lemma we show that they can be used to construct
linearizations in the spirit of Theorem 15.

Lemma 19. Let Lk,φ⊗ψ(λ) = Lε,φ(λ)×Lη,ψ(λ) be a product dual basis. Then
(i) If πk,φ⊗ψ(λ) is the vector containing the elements of the product family φ ⊗ ψ,

then Lk,φ⊗ψ(λ)πk,φ⊗ψ(λ) = 0.
(ii) Lk,φ⊗ψ(λ) is a rectangular matrix with full row rank for all values of λ.
In particular, Lk,φ⊗ψ(λ) is a dual basis for the family associated with πk,φ⊗ψ(λ).

Proof. We first check condition (i). Notice that we have πk,φ⊗ψ(λ) = πε,φ(λ) ⊗
πη,ψ(λ), according to the ordering specified in Definition 8. For this reason we can
write

Lk,φ⊗ψ(λ)πk,φ⊗ψ(λ) =

[
Aπε,φ(λ)⊗ Lη,ψ(λ)πη,ψ(λ)
Lε,φ(λ)πε,φ(λ)⊗ w>πη,ψ(λ)

]
= 0.

Regarding the full row rank claim in (ii) we shall check that, for any λ, the only
vectors in the right kernel of Lk,φ⊗ψ(λ) are multiples of πk,φ⊗ψ(λ). Let v(λ) be such
a vector, so that Lk,φ⊗ψ(λ)v(λ) = 0. We can partition v(λ) = [v0(λ) . . . vε(λ)]

> in
blocks of size η + 1, according to the block structure of Lk,φ⊗ψ(λ) so, recalling that
A is invertible, we have

Lk,φ⊗ψ(λ)v(λ) = 0 ⇐⇒

{
Lη,ψ(λ)vj(λ) = 0

(Lε,φ(λ)⊗ w>)v(λ) = 0
j = 0, . . . , ε.

The first relation tells us that vj(λ) = αj(λ)πη,ψ(λ), since Lη,ψ(λ) has full row rank.
If we set α(λ) = [α0(λ) . . . αε(λ)]

> we have v(λ) = α(λ) ⊗ πη,ψ(λ), so that the
last equation becomes Lε,φ(λ)α(λ)⊗ w>πη,ψ(λ) = 0. Since w>πη,ψ(λ) 6= 0, the only
solution, up to scalar multiples, is given by α(λ) = πε,φ(λ).

Remark 20. The proof of Lemma 19 shows that this construction is not the only
possible one. As an immediate example, we could have defined Lε,φ(λ)×Lη,ψ(λ) to
be the matrix

L̃k,φ⊗ψ(λ) =

[
w> ⊗ Lη,ψ(λ)
Lε,φ(λ)⊗A

]
, k := (ε+ 1)(η + 1)− 1,

with the hypotheses of Definition 17, and the proof would have been essentially the
same.

Remark 21. Lemma 19 justifies the notation Lk,φ⊗ψ(λ) that we have used until
now, since the product dual basis is a dual basis for the product family φ⊗ ψ.

Remark 22. Given the structure of the matrix Lε,φ×Lη,ψ(λ) that we have defined
above it might be natural to ask if the more general matrix

M(λ) =

[
A⊗ Lη,ψ(λ)
Lε,φ(λ)⊗B

]
, A ∈ Ck1×(η+1), B ∈ Ck2×(ε+1),

and such that k1η+ k2ε = (η+1)(ε+1)− 1 can be a product dual basis when A and
B are of full row rank. The answer is negative unless k1 = ε+ 1 or k2 = η + 1 and so
we are again back in the above two cases, as the next lemma shows.

Lemma 23. Let M(λ) be a matrix of the form

M(λ) =

[
A⊗ Lη,ψ(λ)
Lε,φ(λ)⊗B

]
, A ∈ Ck1×(ε+1), B ∈ Ck2×(η+1),
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with Lε,φ(λ) and Lη,ψ(λ) being dual bases for πε,φ(λ) and πη,ψ(λ), A and B of full
row rank, and k1η + k2ε = (ε + 1)(η + 1) − 1. Then, if there exists one λ such that
either Aπε,φ(λ) 6= 0 or Bπη,ψ(λ) 6= 0, the right kernel of M(λ) has dimension at least
1 + (ε+ 1− k1)(η + 1− k2).

Proof. We start by proving that k1 6 ε + 1 and k2 6 η + 1. Assume, by contra-
diction, that k1 > ε+ 1. Then we would have

(η + 1)(ε+ 1)− 1 = k1η + k2ε > (ε+ 1)η + k2ε

which implies (k2 − 1)ε < 0. Since k2 > 1 and ε is positive, this cannot happen and
k1 6 ε+ 1. The statement for k2 can be proven in the same way.

Let SA = {v | Av = 0} and SB = {w | Bw = 0} be the right kernels of A and
B which have dimensions (ε + 1 − k1) and (η + 1 − k2), respectively. We have that
the span of πε,φ(λ)⊗ πη,ψ(λ) and SA ⊗ SB are included in the kernel of M(λ). Since
Aπε,φ(λ) 6= 0 (or, analogously, Bπη,ψ(λ) 6= 0) for at least one λ we have that the
dimension of the union of these two spaces is at least 1 + (ε + 1 − k1)(η + 1 − k2),
which concludes the proof.

Lemma 19 can be generalized to the product of more families of polynomials,
yielding the following.

Corollary 24. Let Lε1,φ(1)(λ)× . . .×Lεj ,φ(j)(λ) be a product dual basis of j dual
bases. Then it has full row rank and the only elements in its right kernel are multi-
ples of πk,φ(1)⊗...⊗φ(j)(λ), independently of the construction chosen (either the one of
Lemma 19 or Remark 20)

Proof. Exploit the recursive definition of Lε1,φ(1)(λ)× . . .×Lεj ,φ(j)(λ) and apply
Lemma 19.

The construction of these product dual bases allows us to formulate the following
result, which can be seen as an extension of Theorem 15 that makes it possible to
handle more than two bases at once.

Theorem 25. Let {φ(1)i }, . . . , {φ(j)i } and {ψ(1)
i }, . . . , {ψ(l)

i } be families of polyno-
mials. Then the matrix pencil

L(λ) =
[

λM1 +M0 (Lε1,φ(1)× . . .×Lεj ,φ(j)(λ))>

Lη1,ψ(1)× . . .×Lηl,ψ(l)(λ) 0

]
is a linearization for the polynomial

P (λ) = (πε1,φ(1)(λ)⊗ . . .⊗ πεj ,φ(j)(λ))>(λM1 +M0)(πη1,ψ(1)(λ)⊗ . . .⊗ πηl,ψ(l)(λ)).

Proof. Apply Theorem 15, whose hypothesis are satisfied because of Lemma 19
and Corollary 24.

The above result can be used to linearize a polynomial in the form:

(1) p(λ) =
∑

i1,...,il+j

ai1,...,il+j
φ
(1)
i1

(λ) . . . φ
(j)
ij

(λ)ψ
(1)
ij+1

(λ) . . . ψ
(l)
ij+l

(λ),

where ai1,...,il+j
is a (l + j)-dimensional tensor with the first l dimensions equal to

ε1, . . . , εl and the remaining ones to η1, . . . , ηj . We recall that a (l, j)-flattening of such
a tensor is the matrix F obtained by rearranging the elements in a (ε1 · · · εl)×(η1 · · · ηl)
matrix maintaining the lexicographical order. This is exactly what the MATLAB
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function reshape does. With this choice one has that, for each choice of vectors
v1, . . . , vl and w1, . . . , wj of dimensions ε1, . . . , εl and η1, . . . , ηj , respectively,

(2)
∑

i1,...,il+j

ai1,...,il+j
v1,i1 . . . vl,ilw1,il+1

. . . wj,il+j
= (v1 ⊗ . . .⊗ vl)F (w1 ⊗ . . .⊗ wj).

Corollary 26. Let p(λ) be a scalar polynomial as in (1). Let M1 ≡ 0 and
M0 be the (l, j)-flattening of the tensor ai1,...,il+j

. Then, the matrix pencil L(λ) is a
linearization for p(λ).

Proof. Applying Theorem 25 and exploiting the relation (2) yields the thesis.

Now we provide an example of the structure that the matrix Lε,φ×Lη,ψ(λ) can
have in a simple case. Let {φi} be the Chebyshev basis, and the family {ψi} be any
degree graded polynomial family. The matrix Lε,φ×Lη,ψ(λ) can be realized as follows
by choosing A = I and w = eη+1

2:

Lε,φ×Lη,ψ(λ) =



Lη,ψ(λ)
Lη,ψ(λ)

. . .

Lη,ψ(λ)
Lη,ψ(λ)

1 · e>η+1 −2λ · e>η+1 1 · e>η+1

. . .
. . .

. . .

1 · e>η+1 −2λ · e>η+1 1 · e>η+1

1 · e>η+1 −λ · e>η+1


.

In order to give an example of how these dual bases behave in practice, we consider
what happens when taking the product basis of several monomial bases.

The monomial basis, in this setting, is rather special. In fact, the elements of
the product family of two monomial bases are of the form λiλj = λi+j and so they
correspond to elements of a (larger) monomial basis. However, notice that this is not
true in general, as for example when considering φi(λ) belonging to other polynomial
bases.

We can exploit this fact by rephrasing any polynomial expressed in the monomial
basis as a polynomial in the product family of two monomial bases (like in [14]) or
also in the product family of more bases, by using the framework above.

Let p(λ) =
∑3
i=0 piλ

i a degree 3 polynomial; we consider three different lineariza-
tions for it, obtained by rephrasing it in different bases φ and ψ in the context of
Theorem 15 and 25.

As a first example, choosing {ψi} = {1, λ, λ2} and {φi} = {1} yields the classical
Frobenius form:

L(λ) =

 λp3 + p2 p1 p0
1 −λ

1 −λ

 .
We can instead choose {ψi} = {φi} = {1, λ} and obtain a symmetric linearization

2 The definition of Lε,φ(λ) for {φi} being the Chebyshev basis will be given in the next Lemma 27.
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(this is only one of the possibilities for distributing the coefficients):

L(λ) =

 λp3 + p2
1
2p1 1

1
2p1 p0 −λ
1 −λ 0

 .
But we can also choose to set {ψi} = {1, λ} ⊗ {1, λ} and {φi} = {1}, and we obtain:

L(λ) =


λp3 + p2

1
2p1

1
2p1 p0

1 −λ
1 −λ

1 −λ

 .
One thing can be noticed immediately: we have increased the dimension of the prob-
lem. In fact the dual basis to {1, λ}⊗{1, λ} that we have used in the lower part has its
dimension increased by 1 since λ is represented two times. This has the consequence
that while it has full row rank its reversal does not, and so the linearization is not
strong. In fact, here we have a spurious infinite eigenvalue.

3. Construction of dual bases. In this section we show how to construct dual
bases Lk,φ(λ) for many conrete families of polynomials {φi}. These will be the main
ingredient needed in the application of Theorem 15 and Theorem 25.

3.1. Handling orthogonal bases. This section is devoted to study the different
structure of the dual basis Lk,φ(λ) when {φi} is an orthogonal basis. More precisely,
we consider the case where the basis {φi} is degree graded and satisfies a three-terms
recurrence relation of the form

(3) αφj+1(λ) = (λ− β)φj(λ)− γφj−1(λ), α 6= 0, j > 0,

which includes all the orthogonal polynomials with a constant three term recurrence
(with the possible exception of the first two elements of the basis). Notice, however,
that the result can be easily generalized to more general recurrences.

Lemma 27. Let {φi} be a degree graded basis satisfying the three-terms recurrence
relation (3). Then the matrix pencil Lk,φ(λ) of size k × (k + 1) defined as follows

Lk,φ(λ) :=


α (β − λ) γ

. . .
. . .

. . .

α (β − λ) γ
φ0(λ) −φ1(λ)


has full row rank for any λ ∈ F and is such that

Lk,φ(λ)πk,φ(λ) = 0, with πk,φ(λ) :=

φk(λ)...
φ0(λ)

 .
Moreover, the leading coefficient of Lk,φ(λ) has full row rank.

Proof. It is immediate to verify that Lk,φ(λ)πk,φ(λ) = 0, since each row of
Lk,φ(λ) but the last one is just the recurrence relation of (3) and the last one yields
φ0(λ)φ1(λ)− φ1(λ)φ0(λ) = 0.
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We can then check that the matrix has full row rank. Notice that the first k
columns of Lk,φ(λ) form an upper triangular matrix with determinant αk−1φ0(λ).
The basis is degree graded so φ0(λ) is an invertible constant and Lk,φ(λ) contains an
invertible matrix of order k × k, thereby proving our claim.

It is immediate to verify the last claim, since the leading coefficient of Lk,φ(λ)
with the first column removed is a diagonal matrix with non-zero elements on the
diagonal, and so it is invertible.

We can immediately construct some examples for the application of the lemma.
Consider the Chebyshev basis of the first kind {Ti(λ)}, which satisfies a recurrence
relation of the form:

Tj+1(λ) = 2λTj(λ)− Tj−1(λ), T0(λ) := 1, T1(λ) := λ.

Then we have that the matrix pencil

L(λ) =
[
λM1 +M0 Lε,T (λ)

>

Lη,T (λ) 0

]
, Lk,T (λ) :=


1 −2λ 1

. . .
. . .

. . .

1 −2λ 1
1 −λ


is a linearization for the polynomial p(λ) =

∑ε
i=0

∑η
j=0(λM1 +M0)i,jTi(λ)Tj(λ). As

shown in [27], the product Ti(λ)Tj(λ) can be rephrased in terms of sums of Chebyshev
polynomials, and this can be used to build a linearization for polynomials expressed
in the Chebyshev basis (without product families involved).

3.2. Handling interpolation bases. The framework covers orthogonal bases,
but there are some other interesting cases, as for example the interpolation bases such
as Lagrange, Newton and Hermite.

In this section we study their structures. Recall that, by Theorem 15, to construct
the dual basis Lk,φ(λ) for one of these bases we need to ensure that Lk,φ(λ)πk,φ(λ) = 0
and that Lk,φ(λ) has full row rank. In order to have a strong linearization we also
require the reversal of the dual basis to have full row rank.

3.3. The Lagrange basis. Let σ
(1)
1 , . . ., σ

(1)
ε and σ

(2)
1 , . . ., σ

(2)
η two (not nec-

essarily disjoint) sets of pairwise different nodes in the complex plane. Then we can
define the weights and the Lagrange polynomials by

t
(s)
i :=

∏
j 6=i

(σ
(s)
i − σ

(s)
j ), l

(s)
i (λ) :=

1

t
(s)
i

∏
j 6=i

(λ− σ
(s)
j ), s ∈ {1, 2}.

In the following let φj(λ) = l
(1)
j (λ) and ψj(λ) = l

(2)
j (λ), coherently with the notation

used before. The linearization for a polynomial expressed in a product family, built
according to Theorem 15, has the following structure:

L(λ) =
[
λM1 +M0 Lε,φ(λ)

>

Lη,ψ(λ) 0

]
where

Lk,φ(λ) =


t
(1)
1 (λ− σ1) −t(1)2 (λ− σ2)

. . .
. . .

t
(1)
k−1(λ− σk−1) −t(1)k (λ− σk)


and Lk,ψ(λ) can be defined in an analogous way.
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Lemma 28. The matrix Lk,φ(λ) defined above is a dual minimal basis for the
Lagrange basis {φi} constructed on the nodes σ1, . . . , σk (that is, it is dual to πk,φ(λ)).

Proof. It is easy to verify that Lk,φ(λ) ∈ C[λ]k×(k+1) and

Lk,φ(λ)πk,φ(λ) = 0, πk,φ(λ) :=


l
(1)
k (λ)
...

l
(1)
0 (λ)

 .
We now need to show that the matrix Lk,φ(λ) has full row rank for any λ ∈ F. For all
values of λ that are not equal to the nodes the first k columns are upper triangular
with non-zero elements on the diagonal, and so the hypotheses is satisfied. It remains
to deal with the cases where λ = σi for some i = 1, . . . , k − 1.

We note that in this case one of the columns of the matrix is zero, but removing
it yields a square matrix which is block diagonal with only two diagonal blocks. The
top-left one is upper triangular and invertible, while the bottom-right one is lower
triangular and invertible, since they both have non-zero elements on the diagonal.

Notice that the first k columns of the leading coefficient of Lk,φ(λ) are upper
triangular with non-zero elements on the diagonal. This implies that the leading
coefficient has full row rank, thus proving the minimality of Lk,φ(λ).

3.4. Constructing a classical Lagrange linearization. Besides building lin-
earizations for polynomial expressed in product families of Lagrange bases, the above
formulation can be used to linearize a polynomial expressed in a Lagrange basis built
on the union of the nodes.

In fact, we observe that if we have two Lagrange polynomials l
(1)
i (λ) and l

(2)
j (λ)

defined according to the previous notation then their product is almost a Lagrange
polynomial for the union of the nodes. More precisely, assume that we have a set

of nodes σ1, . . . , σn and let l
(1)
i (λ) and l

(2)
j (λ) be Lagrange polynomials relative to

the nodes σ1, . . . , σk and σk+1, . . . , σn, respectively. Then if li(λ) are the Lagrange
polynomials associated with all the nodes we have that

li(λ) =

{
l
(1)
i (λ) · l(2)j (λ) · λ−σj+k

σi−σj+k

∏
s6=j

σj+k−σs

σi−σs+k
i 6 k

l
(1)
j (λ) · l(2)i−k1(λ) ·

λ−σj

σi−σj

∏
s6=j

σj−σs

σi−σs
i > k

.

It is worth noting that these formulas become much more straightforward if one
considers unscaled Lagrange polynomials by getting rid of the normalization factor,
since in that case we obtain:

li(λ) =

{
l
(1)
i (λ) · l(2)j (λ) · (λ− σj+k) i 6 k

l
(1)
j (λ) · l(2)i−k1(λ) · (λ− σj) i > k

.

The part missing from the product of two Lagrange polynomials in order to obtain the
one with the union of the nodes is always linear and so can be placed as a coefficient
in the top-left matrix pencil λM1 +M0.

Remark 29. We can choose two equal nodes in σ1, . . . , σk and σk+1, . . . , σn. This
allows to obtain a Lagrange linearization with repeated nodes, which is a special case
of Hermite linearization, where it is possible to interpolate a polynomial imposing the
value of its first derivative at the nodes. By using the product dual bases it is possible
to extended this construction to higher order derivatives. However, such a construc-
tion would have redundancy in the polynomial family, thus leading to linearizations
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which has infinite eigenvalues. In Section 3.6 we present a direct construction of the
dual basis for the Hermite basis that does not.

3.5. Explicit construction for the Newton basis. Another concrete example
is the construction of the Newton basis linearization. We can consider, similarly to
the Lagrange case, a set of nodes σ1, . . . , σn and assume to have two Newton bases,
one built using σ1, . . . , σk, and the other built using σk+1, . . . , σn.

To construct the linearization we need to find Lk,φ(λ) which satisfies the require-
ments of Theorem 15. A possible choice is given by the following

Lk,φ(λ) :=

1 σk − λ
. . .

. . .

1 σ1 − λ

 , πk,φ(λ) =


∏k
j=1(λ− σj)

...
λ− σ1

1

 .

The matrix Lk,φ(λ) has the correct dimensions k × (k + 1), full row rank for any λ,
and is such that the product Lk,φ(λ)πk,φ(λ) = 0. Moreover, the leading coefficient
has full row rank so we also have the minimality and all the hypotheses of Theorem 15
are satisfied.

3.6. Linearizations in the Hermite basis. Recently a linearization for poly-
nomials expressed in the Hermite basis has been presented by Fassbender, Pérez and
Shayanfar in [18], and previous work on this topic by Corless and Lawrence can be
found in [28].

The Hermite basis can be seen as a generalization of the Lagrange basis where
not only the values of the functions at the nodes are considered, but also the values
of their derivatives.

Assume that we have a set of nodes σ1, . . . , σn, and that we have interpolated a
function assigning the derivative up to the s-order, for some s > 1 (the case s = 1
gives the Lagrange basis). The order s can also vary depending on the node. We can
then consider the basis given by the following vector polynomial:

πk,φ(λ) =



ω(λ)
(λ−σ1)s1

...
ω(λ)

(λ−σ1)

...
ω(λ)

(λ−σn)sn

...
ω(λ)

(λ−σn)


, ω(λ) :=

n∏
j=1

(λ− σj)
sj , k =

n∑
j=1

sj .

A generic polynomial expressed in this basis can be written as p(λ) = p>πk,φ(λ) where
p is the column vector with the coefficients in the Hermite basis.

We want to show that it is possible to formulate a linearization for the Hermite
basis in our framework. We already have the vector πk,φ(λ) so we just need to find a
matrix pencil Lk,φ(λ) of the correct dimension that has full row rank and such that
Lk,φ(λ)πk,φ(λ) = 0.
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Lemma 30. The matrix pencil Lk,φ(λ) defined as follows

Lk,φ(λ) =


Jσ1

(λ) −(λ− σ2)es1e
>
s2

. . .
. . .

Jσn−1(λ) −(λ− σn)esn−1e
>
sn

J̃σn
(λ)

 ,
with

Jσj (λ) :=


λ− σj −1

. . .
. . .

. . . −1
λ− σj

 , J̃σj (λ) :=

λ− σj −1
. . .

. . .

λ− σj −1

 ,
is a dual basis for the Hermite basis {φi} of orders si, i = 0, . . . , n.

Proof. We can check directly that Lk,φ(λ)πk,φ(λ) = 0, and so it only remains to
verify that the row rank is maximum. We notice that for any λ 6= σj the matrix
is upper triangular with non-zero elements on the diagonal and so the condition is
obviously satisfied. For λ = σj the diagonal block Jσj (λ) is singular. Assume, for
simplicity, that j = 1, and consider the matrix S obtained by removing the first
column of Lk,φ(λ). We notice that S has the following structure:

S :=



−I
0>s1−1 −(σ1 − σ2)e

>
s2

Jσ2(σ1) −(σ1 − σ3)es2e
>
s3

. . .
. . .

Jσn−1(σ1) −(σ1 − σn)esn−1e
>
sn

J̃σn
(σ1)


.

To prove that S is invertible we consider the trailing submatrix S̃ obtained by remov-
ing the first block row and column. We can transform S̃ by means of block column
operations so that

S̃X =

[
ũ> σ1 − σn

B(σ1) −ek−σ1−1

]
, u(λ) =


−(σ1 − σ2)es2

...
−(σ1 − σn−1)esn

0sn−1

 ,
and B(σ1) is block diagonal with the Jσj

(σ1) of size sj on the block diagonal, except
the last one which is of size sn − 1. Since u>B(σ1)

−1ek−σ1−1 = 0 we can write

det S̃X = detB(σ1) ·
[
(σ1 − σn) + ũ>B(σ1)

−1ek−σ1−1

]
=

=

n−1∏
j=1

(σ1 − σj)
sj · (σ1 − σn)

sn−1(σ1 − σn) =

n∏
j=1

(σ1 − σj)
sj 6= 0.

This proves that S̃X is invertible, concluding the proof.

The above lemma guarantees the applicability of Theorem 15 for the case of
Hermite polynomials (and matrix polynomials), so we have an explicit way of building
linearizations in this basis.
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3.7. Bernstein basis. A last example that is relevant in the context of computer
aided design is the Bernstein basis, which is the building block of Bézier curves [7,
15–17]. Given an interval [α, β], we can define the family of Bernstein polynomials of
degree k as follows:

φi(λ) :=

(
k

i

)
(λ− α)i(β − λ)k−i, i = 0, . . . , n

We show that also these polynomials fit in our construction.

Lemma 31. The matrix pencil Lk,φ(λ) defined as follows

Lk,φ(λ) :=


(
k
k−1

)
(λ− β)

(
k
k

)
(λ− α)
. . .

. . .(
k
0

)
(λ− β)

(
k
1

)
(λ− α)


is a dual minimal basis for the Bernstein polynomials of degree k defined above.

Proof. A direct computation shows that Lk,φ(λ)πk,φ(λ) = 0. Moreover, notice
that for any λ 6= β the first k columns of Lk,φ(λ) form a square upper triangular
matrix with non-zero diagonal elements, and for any λ 6= α the last k columns are
an invertible lower triangular matrix. This guarantees that the row rank is maximum
for any λ ∈ F. Since the leading coefficient has the first k columns which are upper
triangular and invertible we also have the minimality.

Remark 32. One might be interested, in order to control the size of the coefficients
in the interpolation process, to scale the polynomial basis. We notice that this process
does not change all the previous results, since it is equivalent to left multiplying πk,φ(λ)
by an invertible diagonal matrix D. It is then immediate to verify that if Lk,φ(λ) is
dual to πk,φ(λ) then Lk,φ(λ)D

−1 is dual to Dπk,φ(λ).

4. Linearizing sums of polynomials and rational functions.

4.1. Linearizing the sum and difference of two polynomials. In this sec-
tion we present another example of linearization which deals with the following prob-
lem: assume that we are given two polynomials p(λ) and q(λ) of which we want to
find the intersections, that is the values of λ such that q(λ) = p(λ), and assume that
p(λ) and q(λ) are expressed in different bases.

Normally one would solve the problem by considering the polynomial r(λ) =
p(λ)− q(λ) and finding its roots, for example, by using a linearization. However, this
requires to perform a change of basis on at least one of the two polynomials, and this
operation is possibly ill-conditioned (see [22] for a related analysis).

In the case of interpolation bases, such as Newton or Lagrange, this could be
also useful when one wants to find intersections of functions that have been sampled
in different data points. In this case it might even not be possible to resample the
function (think of measured data). Another application arises from computer aided
design, where computing the intersection of polynomials (and rational functions) is
an important task [33].

Here we show how to linearize the problem directly.

Theorem 33. Let p(λ) and q(λ) be two polynomials of the following form:

p(λ) :=

ε∑
j=0

pjφj(λ), q(λ) :=

η∑
j=0

qjψj(λ).
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and let Lε,φ(λ) and Lη,ψ(λ) be dual bases for {φi} and {ψi}. Let p and q be the vectors
containing the coefficients of p(λ) and q(λ), respectively, so that p(λ) = p>πε,φ(λ) and
q(λ) = q>πη,ψ(λ). Then the matrix pencil

L(λ) :=
[
pw>

ψ − wφq
> L>

ε,φ(λ)

Lη,ψ(λ) 0

]
, w? := Γ−1

? (1), ? ∈ {φ, ψ}

where Γ−1
? (1) is the vector of the coefficients of the constant 1 in the basis ? (see

Remark 9), is a linearization for r(λ) := p(λ)− q(λ).

Proof. w? := Γ−1
? (1) means that w?πk,?(λ) = 1 for ? ∈ {φ, ψ} where k is either ε

or η depending on the choice of ?. By Theorem 15 we know that L(λ) is a linearization
for

π>
ε,φ(λ)(pw

>
ψ − wφq

>)πη,ψ(λ) = p(λ) · 1− 1 · q(λ) = r(λ).

This concludes the proof.

Remark 34. We notice that the linearization above, according to Theorem 15, is
a strong linearization for a polynomial of degree d := ε + η, but r(λ) is of degree
max{ε, η} 6 d. The reason for this is that this is actually a linearization for a
polynomial of grade d that could have some leading zero coefficients, thus having
degree smaller than d. The grade is defined as the maximum degree of the monomials,
while the degree is the maximum of the non-zero ones.

The difference between grade and degree cause infinite eigenvalues to appear when
we solve the eigenvalue problem obtained through Theorem 33 numerically. However,
the finite eigenvalues that we get are still the actual roots of r(λ).

The framework of Section 2.4 could be used to extend the above result to the sum
of an arbitrary number of polynomials (possibly all expressed in different bases). This
can be obtained by combining the proof of Theorem 33 with the result of Theorem 25.

We now present some numerical experiments in order to further justify the use of
the linearization presented in this section.

Numerical experiment 1. In this example we test the framework on the following
example. Let p1(λ) =

∑n
i=0 pi,1λ

i and p2(λ) =
∑n
i=0 pi,2Ti(λ) be two polynomials

expressed in the monomial and Chebyshev basis of the first kind, respectively. We
want to find the roots of their sum q(λ) = p1(λ) + p2(λ). The columns of Table 1
represent, in the following order, the result of these different approaches to solve the
problem that we tested:

1. Converting p2(λ) to the monomial basis and using the Frobenius linearization
to find the roots of the sum (by means of the command roots in MATLAB).

2. Converting p1(λ) to the Chebyshev basis and using the colleague linearization
[3,24] to find the roots of the sum of p1(λ) and p2(λ). The colleague pencil’s
eigenvalues have been approximated using the QZ method in MATLAB.

3. Constructing the linearization of Theorem 33 and computing its eigenvalues
with the QZ method (using eig in MATLAB).

4. Constructing the linearization of Theorem 33 and deflating the spurious infi-
nite eigenvalues by means of the strategy that will be proposed in Section 63.

The polynomials have also been, by means of symbolical computations, converted to
the monomial basis and the roots have been computed using MPSolve [8] to guarantee

3The approach of Section 6 has been moved to the end of this work because it is fairly general
and does not add much information about the structure of this linearization. Moreover, it can be
applied to other examples that will follow.
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Fig. 1. Conditioning of the change of basis matrix between the monomial and Chebyshev basis.
The dashed line represents the level 1

u
, where u is the machine precision. Beyond that point no

correct digits can be guaranteed on the computed coefficients.

16 accurate digits. These results have been used as a reference to measure the errors,
which have been summarized in Table 1 and Figure 2. In all the cases the infinite
eigenvalues have either been deflated a priori, or have been detected by the QZ algo-
rithm and so we could deflate them a posteriori, so the numbers that we report refer
to the errors on the finite eigenvalues. In particular, we reported the 2-norm of the
vectors containing the absolute errors in the computed roots. The coefficients of the
polynomials have been generated by using the randn function. Each experiment has
been repeated 50 times and only the average error is reported.

The bad results obtained in the cases where a basis conversion has been performed
can be explained by looking at the conditioning of the matrix representing the change
of basis between monomial and the Chebyshev bases.

The conditioning is exponentially growing (see [22] for a related discussion), and
as n grows above 50 it cannot be guaranteed to compute even a single correct digit in
double precision (see Figure 1, where the exponential growth is clearly visible), and
so the results start to deteriorate very quickly.

4.2. Finding intersections of the sum of two rational functions. The
results of Section 4.1 admit an interesting extension to finding the zeros of a sum
of ratios of polynomials. This has the pleasant side effect of mitigating the numer-
ical issues that might be encountered when dealing with a large number of infinite
eigenvalues. Let f(λ) be a rational function of the form

f(λ) :=
p(λ)

q(λ)
+
r(λ)

s(λ)
,

with p(λ), q(λ), r(λ), and s(λ) being polynomials, of which we want to find the zeros.
We assume, in the following, that the numerators do not share any common factor
with the denominators, and that the two ratios do not have common poles. With
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Degree Monomial Chebyshev Theorem 33 Theorem 33 + deflation
5 7.03e-16 5.19e-16 5.44e-16 8.40e-16
10 1.23e-14 2.07e-15 2.00e-15 2.33e-15
20 1.95e-11 4.48e-15 2.49e-15 4.08e-15
40 1.25e-04 1.15e-14 5.59e-15 6.45e-15
80 1.29e+00 7.62e-09 9.76e-15 1.69e-14
160 4.37e+00 1.05e-01 6.90e-14 3.63e-14
320 9.85e+00 2.97e+00 1.07e-13 7.57e-14
640 1.91e+01 1.52e+01 4.40e-13 1.27e-13

Table 1
Numerical errors in the computation of the (finite) roots of the polynomial p1(λ)+ p2(λ) of the

numerical experiment 1.
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Fig. 2. Norm of the absolute errors in the computation of the roots of p1(λ) + p2(λ), where
p1(λ) is a polynomial expressed in the monomial basis while p2(λ) is one expresesed in the Chebyshev
one.

these assumptions, we have that the roots of f(λ) are the ones of f(λ)q(λ)s(λ) that
is of the polynomial

t(λ) := p(λ)s(λ) + r(λ)q(λ).

In this section we will linearize the polynomial t(λ). However, for simplicity we will
sometimes inappropriately say that a linearization for t(λ) is also a linearization for
f(λ), since they share the same zeros.

For simplicity we first consider the case in which all the polynomials are given in
the monomial basis, and we will handle the case where two different bases are used
to define the polynomials p(λ), q(λ), r(λ) and s(λ) later.

Theorem 35. Let f(λ) = p(λ)
q(λ) +

r(λ)
s(λ) be a rational function obtained as the sum

of two rational functions expressed in the monomial basis (so that p(λ), q(λ), r(λ),
and s(λ) are all polynomials). Assume that the numerators and the denominators
do not share any common factor, and let ε := max{deg p(λ),deg q(λ)} and η :=
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max{deg s(λ),deg r(λ)}. Then the matrix pencil

L(λ) =
[
ps> + qr> L>

ε (λ)
Lη(λ) 0

]
is a linearization for f(λ), where p, q, r and s are the column vectors containing the
coefficients of the polynomials (padded with some leading zeros if the dimensions do
not match and ordered according the basis elements in πε(λ) and πη(λ)) and Lk(λ) is
the dual basis for the monomial basis of degree k.

Proof. By following the same reasoning of the proof of Theorem 33 we obtain
that L(λ) is a linearization for

π>
ε (λ)(ps

> + qr>)πη(λ) = p(λ)s(λ) + r(λ)q(λ) = f(λ)s(λ)q(λ),

which concludes the proof.

The result can also be extended to the case where different polynomial bases are
involved. More precisely, we have the following corollary.

Corollary 36. Let p(λ), q(λ), r(λ), and s(λ) be polynomials defined as follows:

p(λ) =

ε∑
i=0

piφi(λ), q(λ) =

ε∑
i=0

qiφi(λ), r(λ) =

η∑
i=0

qiψi(λ), s(λ) =

η∑
i=0

siψi(λ)

for some polynomial bases {φi} and {ψi}. Let ε := max{deg p(λ),deg q(λ)} and η :=
max{deg s(λ),deg r(λ)} and Lε,φ(λ) and Lη,ψ(λ) be dual bases to {φi} and {ψi},
respectively. Assume that p, q, r, and s are vectors containing the coefficients of the
above polynomials in the order coherent with πε,φ(λ) and πη,ψ(λ). Then the matrix
pencil

L(λ) =
[
ps> + qr> L>

ε,φ(λ)

Lη,ψ(λ) 0

]
is a linearization for both f1(λ) =

p(λ)
q(λ) +

r(λ)
s(λ) and f2(λ) =

p(λ)
r(λ) +

q(λ)
s(λ) , where p, q, r

and s are the column vectors containing the coefficients of the polynomials (padded
with some leading zeros if the dimensions do not match).

Proof. By following the same proof of Theorem 35 we obtain that L(λ) is a
linearization for the polynomial

t(λ) = π>
ε,φ(λ)(ps

> + qr>)πη,ψ(λ) = p(λ)s(λ) + q(λ)r(λ)

which has the same roots as the rational functions

f1(λ) =
p(λ)

q(λ)
+
r(λ)

s(λ)
, f2(λ) =

p(λ)

r(λ)
+
q(λ)

s(λ)
.

This concludes the proof.

Remark 37. The above result shows that we can handle two specific cases. First,
the case where each rational function is defined using polynomials in a certain basis,
and second, the one where both the denominators and the numerators share a common
basis.
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An application of the above results is to find the intersection of two rational
functions. As in the previous case, according to Theorem 15, L(λ) is linearization for
a polynomial of grade ε+η+1 = max{deg p(λ),deg q(λ)}+max{deg r(λ),deg s(λ)}+1
while the degree of the polynomial f(λ)s(λ)q(λ) is max{deg p(λ)+deg s(λ),deg r(λ)+
deg q(λ)}.

Since the first quantity is always larger than the second one, the linearization
introduces at least one infinite eigenvalue. However, in many interesting cases, such
as when the degree of the numerator and the denominator are the same in each
rational function, we only have one spurious infinite eigenvalue, that can be deflated
easily.

The result can however be improved and, for these cases, we can build a strong
linearization relying on the following.

Theorem 38. Let f(λ) be a rational function with the same hypotheses and no-
tation of Corollary 36, and assume that there exist two ε× (ε− 1) matrices A and B
such that

πε,φ(λ) = (λA+B)πε−1,φ(λ)

Then the matrix pencil

L(λ) =
[
(λA+B)>ps> − (λA+B)>qr> L>

ε−1,φ(λ)

Lη,ψ(λ) 0

]
is a strong linearization for f1(λ) and f2(λ).

Proof. By applying again Theorem 15 we obtain that L(λ) is a linearization for

t(λ) = π>
ε−1,φ(λ)

[
(λA+B)>ps> − (λA+B)>qr>

]
πη,ψ(λ)

= π>
ε,φ(λ)

(
ps> − qr>

)
πη,ψ(λ)

= p(λ)s(λ) + q(λ)r(λ).

Since t(λ) has degree ε + η, which is the size of L(λ), there are no extra infinite
eigenvalues, and so this is a strong linearization.

Remark 39. The hypotheses of Theorem 38 are satisfied in many cases. Some
concrete examples are the following:
(i) When {φi} is a degree-graded basis for Fk[λ] then φk+1(λ) has degree k+1 and

we can find a so that λk = a>πk,φ(λ). If we choose α to be the leading coefficient
of φk+1(λ) we have

φk+1(λ)− λαa>πk,φ(λ) = b>πk,φ(λ)

for some b ∈ Fk+1, since the left-hand side has degree k. This implies that

πk+1,φ(λ) =

λ


αa>

0 . . . 0
...

...
0 . . . 0

+


b>

1
. . .

1


πk,φ(λ).

(ii) When {φi} is an orthogonal basis then it is also degree-graded and so the above
result applies. In this case, however, it is very easy to get an explicit expression
for α, a and b, since they just contain the coefficients of the recurrence relation
that allows to obtain φk+1(λ) starting from the previous terms.
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(iii) If {φi} is the Lagrange basis we can still find suitable matrices A and B so that
the hypothesis are satisfied. Assume that πk,φ(λ) is the Lagrange basis on the
interpolation nodes σ1, . . . , σk and that πk+1,φ(λ) has the additional node σk+1.
Then we have

πk+1,φ(λ) =


α(λ− σk)e

>
1

λ−σk+1

σk−σk+1

. . .
λ−σk+1

σ1−σk+1

πk,φ(λ),

where α = 1
σk+1−σk

∏k−1
j=1

σk−σj

σk+1−σj
.

Remark 40. Notice that the requirement needs to hold only for one of the two
families of polynomials. If the relation holds on {ψi} instead of {φi} the procedure is
analogous.

As a concrete example, we report here how the (non strong) linearization looks
when considering the following rational function:

f(λ) =
2λ2 − 1

λ2 + λ+ 3
+
T1(λ) + T0(λ)

T1(λ)− T0(λ)
,

where Tj(λ) are the Chebyshev polynomials of the first kind and we have chosen
{φi} = {1, λ, λ2} and {ψi} = {T0(λ), T1(λ)}. We have that p, q, r, and s are given by

p =

 2
0
−1

 , q =

11
3

 , r =

[
1
1

]
, s =

[
1
−1

]
.

We get

L(λ) =
[
ps> + qr> L>

ε,φ(λ)

Lη,ψ(λ) 0

]
=


3 −1 1 0
1 1 −λ 1
2 4 0 −λ
1 −λ 0 0

 .
By Theorem 38 we can also obtain a strong linearization for f(λ). In the monomial
case the A and B matrices of the hypothesis are given by

A = e
(k+1)
1 (e

(k)
1 )>, B =


0 . . . 0

Ik

 ,
where e

(k)
i is the i-th column of Ik. A straightforward application of Theorem 38

yields the linearization

L(λ) =

 3λ+ 1 1− λ 1
2 4 −λ
1 −λ 0


which is a strong linearization for the rational function f(λ).

In the following we report some numerical experiments that show the effectiveness
of the approach.
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Degree Theorem 35 Theorem 38
5 3.29e-16 2.98e-16
10 4.37e-16 4.01e-16
20 5.47e-16 5.07e-16
40 6.87e-16 5.75e-16
80 1.14e-15 7.93e-16
160 1.72e-15 1.40e-15
320 2.57e-15 2.06e-15
640 4.21e-15 3.53e-15

Table 2
Norm of the absolute error on the computed (finite) roots of the rational function f(λ).
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Fig. 3. Norm of the absolute error on the computed roots of the rational function f(λ). Both
the strong and non-strong version of the linearization have been tested.

Numerical experiment 2. Here we test the linearization for the solution of the
sums of rational functions. We generate four polynomials p(λ), q(λ), r(λ) and s(λ)
of the same degree n, and with p(λ), q(λ) being in the monomial basis and r(λ) and
s(λ) in the Chebyshev one. Their coefficients have been generated using the randn

function in MATLAB.
We then find the zeros of the rational function

f(λ) :=
p(λ)

q(λ)
+
r(λ)

s(λ)

by applying Theorem 35 and Theorem 38 and using the QZ algorithm on the obtained
linearizations. We compare the results with those obtained by symbolically computing
the coefficients of the polynomial t(λ) := p(λ)s(λ)+ r(λ)q(λ) and computing its roots
with 16 guaranteed digits using MPSolve [8]. The experiments have been repeated
50 times and an average has been taken. The results are reported in Table 2 and
Figure 3.

5. Preserving even, odd and palindromic structures. In this section we
deal with the following problem: we consider the case where a matrix polynomial has
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a ?-even, ?-odd or ?-palindromic structure. These are often found in applications and
are of particular interest since they induce some symmetries on the spectrum.

For this reason it is important to develop linearizations that enjoy the same
structure, so the symmetries in the spectrum will be preserved. Many authors have
investigated this problem in recent years, providing different solutions [11, 29, 31, 32].
Linearizations for these structures have been found by exploiting the generality of
the L1 and L2 spaces of linearizations introduced in [30], or the flexibility offered by
Fiedler companion forms. Our approach leads to very similar results (in fact, the
linearizations that we build can be recovered following the methods in the previous
references), but is instead based on the freedom in choosing the polynomial families
{φi} and {ψi}.

Here we often use ? in place of the transpose or conjugate transpose operator,
since the constructions are valid for both choices. We give the definitions of these
structures.

Definition 41. A matrix polynomial P (λ) is ?-even if P (λ) = P (−λ)?. Simi-
larly, we say that P (λ) is ?-odd if P (λ) = −P (−λ)?.

Definition 42. A matrix polynomial P (λ) is said to be ?-palindromic if P (λ) =
revP (λ)?. Similarly. we say that P (λ) is anti ?-palindromic if P (λ) = − revP (λ)?.

Notice that all these relations induce a certain symmetry on the coefficients in
the monomial basis. In particular, we have the following, whose proof can be found
in [29].

Lemma 43. Let P (λ) a matrix polynomial. Then,
(i) If the matrix polynomial is ?-palindromic or anti ?-palindromic the eigenvalues

come in pairs (λ, 1
λ ) when ? = > and (λ, 1

λ ) when ? = H
(ii) If the matrix polynomial is ?-even or ?-odd the eigenvalues come in pairs (λ,−λ)

when ? = > and (λ,−λ) when ? = H.
Moreover, all the paired eigenvalues have the same algebraic and geometric multiplic-
ities.

5.1. Even and odd polynomials. In this section we deal with linearizing even
and odd polynomials. In practice we only consider the case of even polynomials since
the other is analogous.

Theorem 44. Let P (λ) =
∑2k+1
i=0 Piλ

i be a ?-even matrix polynomial of grade
2k + 1. Then the even matrix pencil

L(λ) =



(−1)k(λP2k+1 + P2k) I
. . . −λI

. . .

. . .
. . . I

λP1 + P0 −λI
I λI

. . .
. . .

I λI


is a linearization for P (λ).

Proof. It is immediate to verify that the pencil is ?-even. In order to check that
it is a linearization for the correct polynomial we can see that the top-right block and
bottom-left block are of the form Lk,φ(λ) ⊗ Im and Lk,ψ(λ) ⊗ Im, respectively, with
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Lk,?(λ) being dual bases for

πk,φ(λ) =


λk

...
λ
1

 , πk,ψ(λ) =


(−1)kλk

...
−λ
1

 .
Applying Theorem 15 guarantees that L(λ) is a linearization for the matrix polynomial

(πk,φ(λ)⊗ Im)> diag((−1)j(λP2j+1 + P2j))j=0,...,k(πk,ψ(λ)⊗ Im) = P (λ),

which concludes the proof.

5.2. Palindromic polynomials. A similar procedure can be applied to obtain
?-palindromic linearizations for ?-palindromic polynomials. However, the construction
in this case is slightly more complicated. We first prove the following lemma, which
provides linearizations with a ?-palindromic structure, and then we show how to
choose the top-left block to linearize a concrete ?-palindromic matrix polynomial.

Theorem 45. Let {φi} and {ψi} be the polynomial bases defined by

φi = λk−i, ψi = λi, i = 0, . . . , k.

Then two dual minimal bases Lk,φ(λ) and Lk,ψ(λ) for {φi} and {ψi}, respectively, are
given by

Lk,φ(λ) =

1 −λ
. . .

. . .

1 −λ

 , Lk,ψ(λ) =

λ −1
. . .

. . .

λ −1


and the ?-palindromic pencil

L(λ) =
[
λM +M? Lk,φ(λ)

? ⊗ Im
Lk,ψ(λ)⊗ Im 0

]
, M =

M0,0 . . . M0,k

...
...

Mk,0 . . . Mk,k

 ,
where Mij ∈ Cm×m, is a linearization for the degree 2k+1 matrix polynomial defined
by

P (λ) =

k∑
i,j=0

M?
j,iλ

k+j−i +

k∑
i,j=1

Mi,jλ
k+j−i+1.

Proof. It is immediate to verify that the given matrices Lk,φ(λ) and Lk,ψ(λ) are
indeed dual minimal bases. By applying Theorem 15 we get P (λ) as

P (λ) =
[
λkIm · · · Im

]
(λM +M?)

 Im
...

λkIm

 .
The result above can be used to construct ?-palindromic linearizations for a ?-

palindromic matrix polynomial P (λ) =
∑n
j=0 Pjλ

j . We want to describe a procedure
to choose the block coefficients ofM in Theorem 45 in order to make L(λ) a lineariza-
tion for P (λ).
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Definition 46 (Block Diagonal Sum). Let M be a square matrix of size mk ×
mk, partitioned in m×m blocks, denoted by [M ]i,j. Then we define X = bdsm(M,d)
as the sum of the matrices along the d-th block diagonal of the matrix M , that is

bdsm(M,d) :=
∑
j−i=d

[M ]i,j ,

where we set [Mi,j ] = 0 if i or j are smaller than 1 or if i > k or j > k. We refer to
X as the d-th block diagonal sum of M .

Remark 47. The pencil L(λ) defined in Theorem 45 is a linearization for a matrix
polynomial P (λ) of degree 2k + 1 if and only if the relation

(4) Ps = bdsm(M, s− k − 1) + bdsm(M,k − s)?

holds for any s = 0, . . . , 2k + 1, where P (λ) =
∑2k+1
s=0 Psλ

s.

Notice that Remark 47 can also be used to build the linearization starting from
its coefficients. In fact, the relation (4) for s ∈ {0, 2k + 1} simplifies to:

P0 =M?
1,k+1, P2k+1 =M1,k+1.

Having determined the term in position (1, k), one can then proceed to fill in the
others by imposing the condition of Remark 47.

Here we provide a concrete example of such a construction. However, we stress
that is not the only possible choice.

Theorem 48. Let P (λ) =
∑2k+1
i=0 Piλ

i be a ?-palindromic matrix polynomial with
degree 2k + 1. Then the pencil of Theorem 45 with

(5) M =

0m · · · 0m P ?0
...

...
...

0m · · · 0m P ?k


is a ?-palindromic linearization for P (λ).

Proof. Notice that, in (5), we have that the only non-zero block diagonal elements
of M are in the last block column and Mi,k+1 = P ?i−1 = P2k+2−i. We now check that
(4) holds for every s = 0, . . . , 2k + 1. If 0 6 s 6 k we have bdsm(M, s − k − 1) = 0
and bdsm(M,k − s)? = M?

i,k+1, where i is such that k + 1− i = k − s (being on the
(k−s)-th block diagonal). This implies that i = s+1 and so M?

i,k+1 = Ps, as desired.
On the other hand, if k + 1 6 s 6 2k + 1 we similarly have bdsm(M,k − s) = 0 and
bdsm(M, s − k − 1) = Mi,k+1 with k + 1 − i = s − k − 1 so that i = 2k + 2 − s.
This again implies that Mi,k+1 = P2k+2−i = P2k+2−(2k+2−s) = Ps. This concludes
the proof.

6. Deflation of infinite eigenvalues. We have observed that in the polynomial
sum case of Section 4.1 the linearization built according to Theorem 33 is generally
not strong and might have many infinite eigenvalues.

In this section we show what the structure of the infinite eigenvalues is and a
possible strategy to deflate them based on a simplified approach inspired by [5, 34].
In our case we have the advantage of knowing exactly which eigenvalue we want to
deflate and we can completely characterize the structure of the block in the Kronecker
canonical form corresponding to the infinite eigenvalue.
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Lemma 49. Let L(λ) be the linearization obtained from Theorem 33 for the sum
of two arbitrary polynomials. Then there exist two unitary bases Q and Z and
A0, A1, B0, B1, with B1 invertible, such that

QHL(λ)Z =

[
I − λJ λA1 −A0

0 λB1 −B0

]
, J =


0 1

. . .
. . .

. . . 1
0

 .

Proof. Such a decomposition can be obtained by following the deflation procedure
for the infinite eigenvalue described in [5] and [34]. We only need to prove that the
pencil obtained in the top-left entry of the transformed matrix is exactly I − λJ . Let
A,B be matrices such that L(λ) = A − λB. We note that B has nullity equal to 1
in our construction. Recall that the columns of Q and Z are orthogonal bases of the
sequence of spaces defined by

Zi =

{
{0} if i = 0

B−1Qi−1 otherwise
, Qi = AZi,

where B−1 is the pre-image of B. The fact that B has nullity 1 implies that the
dimension of Zi can increase at most of 1 at each step. This means that there exist a
unique diagonal block in the Kronecker canonical form corresponding to the infinite
eigenvalue, whose size is exactly equal to its algebraic multiplicity. Since λB1 − B0

does not have infinite eigenvalues, B1 is invertible as requested.

We can use the algorithm described in [5] to compute the matrices Q and Z and
then compute the eigenvalues of the pencil λB1 − B0 instead of L(λ). Experiments
using this strategy were reported in Section 4.1.

For a more in-depth discussion of the above approach to deflation see the work of
Berger and Reis [6] which is based on the analysis originally carried out by Wong [35].

7. Conclusions. We have provided an extension of the main theorem of [14] to
construct linearizations. This new result makes it easier to construct many lineariza-
tions for, among others, sums of polynomials, rational functions, and allows to realize
structure preserving pencils.

We think that the flexibility offered by the adjustment of the dual basis in the
pencil L(λ) allows even for further improvement and for the coverage of more struc-
tures. We think that in many cases this construction provides an alternative to other
known approaches to find structured linearizations, such as looking in the spaces L1

and L2 from [30].

Acknowledgements. This paper presents research results of the Belgian Net-
work DYSCO (Dynamical Systems, Control, and Optimization), funded by the In-
teruniversity Attraction Poles Programme initiated by the Belgian Science Policy
Office.

We wish to thank Piers Lawrence, who helped to understand the construction
of dual bases for polynomials defined in the Lagrange basis, and Thomas Mach for
inspiring discussions.

Moreover, we wish to thank the anonymous referees for their comments, that
helped to improve the quality and the organization of the paper.



28 L. ROBOL, R. VANDEBRIL, P. VAN DOOREN

REFERENCES

[1] A. Amiraslani, R. M. Corless, and P. Lancaster, Linearization of matrix polynomials
expressed in polynomial bases, IMA Journal of Numerical Analysis, 29 (2009), pp. 141–157.

[2] E. N. Antoniou and S. Vologiannidis, A new family of companion forms of polynomial
matrices, Electronic Journal Linear Algebra, 11 (2004), pp. 78–87.

[3] S. Barnett, A companion matrix analogue for orthogonal polynomials, Linear Algebra and its
Applications, 12 (1975), pp. 197–202.

[4] T. G. J. Beelen and P. Van Dooren, A pencil approach for embedding a polynomial matrix
into a unimodular matrix, SIAM Journal on Matrix Analysis and Applications, 9 (1988),
pp. 77–89.

[5] T. G. J. Beelen and P. Van Dooren, An improved algorithm for the computation of Kro-
necker’s canonical form of a singular pencil, Linear Algebra and its Applications, 105
(1988), pp. 9–65.

[6] T. Berger and T. Reis, Controllability of linear differential-algebraic systems – a survey, in
Surveys in Differential-Algebraic Equations I, Springer, 2013, pp. 1–61.

[7] D. A. Bini, L. Gemignani, and J. R. Winkler, Structured matrix methods for CAGD: an
application to computing the resultant of polynomials in the Bernstein basis, Numerical
Linear Algebra with Applications, 12 (2005), pp. 685–698.

[8] D. A. Bini and L. Robol, Solving secular and polynomial equations: A multiprecision algo-
rithm, Journal of Computational and Applied Mathematics, 272 (2014), p. 276292.

[9] R. M. Corless, On a generalized companion matrix pencil for matrix polynomials expressed in
the Lagrange basis, in Symbolic-numeric computation, Trends Mathematics, Birkhäuser,
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