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Abstract

Design optimization of geared transmissions has become more of a necessity than
ever before. Typically, conflicting design goals must be concurrently achieved. The
difficulty of such a multiobjective design optimization problem is exacerbated by the
fact that modern design practices rely on increasingly sophisticated, computationally-
expensive simulation tools for tooth contact analysis. Their intrinsic nonlinearities add
complexity to the problem, hampering gear designers’ efforts to obtain globally op-
timal solutions. Practical optimization problems of this class have often been solved
by evolutionary algorithms, but their computational burden may well be inappropri-
ate for CPU-intensive simulation models. The present work details an algorithmic
framework inspired by deterministic multiobjective optimization methods, specially
combined with a direct-search global optimization algorithm to obtain globally Pareto-
optimal solutions. Nonlinear constraints are enforced through an exact penalty for-
mulation. A comprehensive description of all theoretical and algorithmic details is
provided, with the intention of enabling gear designers to implement or adapt the pro-
posed methodology to their design optimization purposes. Two tests on a challenging
gear design problem, namely ease-off topography optimization of a hypoid gear set
for maximum efficiency and minimum contact stress, demonstrate that the proposed
method can efficiently obtain solutions belonging to the global Pareto front.

Declarations of interest: none.

Keywords: gear design, gear optimization, multi-objective optimization, global
optimization, simulation-based, hypoid gears

1. Introduction

A number of challenging factors, such as global competition and increasingly strict
regulations, are having a significant impact on modern engineering practices. Gear
design optimization has become more of a necessity than ever before. In particular,
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a strong emphasis is being placed on multiobjective gear design optimization (e.g.,
[1, 2, 3, 4]), as typical design problems have a number of conflicting objectives (cost or
objective functions to be concurrently minimized or maximized). In complex system
design, multiobjective optimization approaches have become ubiquitous and a sine qua
non for effective design solutions.

Two major requirements have to be satisfied for successful multiobjective gear de-
sign optimization: modeling of the system at hand needs to be accurate (and vali-
dated), and applied optimization methodologies have to be practical, effective, and
robust. Meeting the first requirement typically involves computational physics in the
form of simulation-based approaches, such as those based on finite/boundary element
methods. As a consequence, the second requirement can only be fulfilled by optimiza-
tion algorithms designed to cope with two relevant issues of simulation-based design,
namely computational burden and numerical noise.

In terms of CPU time, the computational burden of computer-simulated tooth con-
tact analysis (under load) can range from fractions of a second to hours. As a result,
practicable optimization strategies would benefit from computationally efficient algo-
rithms that keep the number of function evaluations to a minimum.

Numerical noise typically appears in the form of discretization error. Numeri-
cal methods implemented in most simulation tools are based on different levels of
discretization (e.g., the finite element mesh) that result in the output functions being
discontinuous and/or having discontinuous derivatives. With nonsmooth functions,
derivative-based optimization methods, i.e. all methods requiring accurate evaluation
of the gradient and Hessian of the (underlying possibly smooth) objective functions,
may easily fail.

The vast majority of gear design optimization problems also include constraints
that determine a feasible region in the design variable space. In their most general
form, they appear as nonlinear constraints (equalities and inequalities), involving the
design variables in a nonlinear and often complicated fashion. They also appear in
the form of bound constraints, which define an admissible (hyper)box containing all
practical values the design variables may take on. Clearly, optimization algorithms at
issue need to be able to handle such constraints.

Multiobjective optimization (MOO) methods have received a great deal of attention
over the last few years. A distinction can be made between classical methods, mostly
deterministic, and evolutionary methods, metaheuristic algorithms based on stochastic
operators. Textbooks [5] and [6] are great references for the two classes. Reference [7]
provides a detailed review of the state of the art in MOO methods. Evolutionary meth-
ods based upon genetic algorithms, such as NSGA-II [8] and SPEA2 [9], have proved
to be effective in tackling various MOO problems. Since they do not need derivatives,
they can easily deal with nonsmooth objective functions/constraints. An initial popula-
tion of individuals (future solutions) is defined that progress generation after generation
(increase their fitness) as a result of stochastic operators, and they can effectively obtain
Pareto-optimal solutions with a good spread over the Pareto front. Despite their often
excellent performance, their computational cost may be prohibitive in terms of func-
tion evaluations if one seeks accurate optima, particularly when nonlinear constraints
are present: as an example, the number of objective function evaluations in [4] ranges
from a minimum of 50000 up to 30 million (the objective functions and the constraints
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therein are simple, closed-form analytical expressions, and not the result of computer
simulations). Interesting, further confirmations in this sense are given by the recent
works [10, 11, 12] on MOO of geared transmissions, where up to tens of thousands
of function (fitness) evaluations are required for convergence. In addition to the fact
that good performance often requires a proper tuning of the algorithm, which is usually
problem-dependent, how to select principled termination conditions for MOO evolu-
tionary methods is not straightforward: they are often stopped once a certain number
of generations (or CPU time) have been reached. As a consequence, the search pro-
cess may be stopped prematurely, and the final solutions, albeit optimal with respect
to the final population, do not necessarily belong to the global, or even local, Pareto-
optimal set. Or, on the other hand, wasteful extra-iterations are run after convergence
has actually been achieved.

For the above reasons, the framework described in this paper draws upon clas-
sical deterministic methods. For the sake of clarity, it is worth specifying that the
method proposed here is not appropriate for problems where a function evaluation re-
quires several hours or days of CPU time: in such cases, viable approaches may be
offered by metamodeling techniques (response surfaces, kriging models, artificial neu-
ral networks, etc.), which aim to approximate the computationally expensive simula-
tion models through data-driven surrogate models that are cheaper to evaluate. As can
be understood from [13] and [14] (to name but a few), the usage of surrogate models
appears to be currently hampered by a number of factors, such as difficulties in select-
ing the appropriate form of the model, in estimating its parameters, and in assessing
its resulting accuracy (model validation). However, recent research on metamodeling
has identified some promising approaches, as discussed in [15]. A recent example
of surrogate-assisted evolutionary algorithms for gear MOO is offered by Korta and
Mundo [16].

This paper proposes a deterministic approach to solve simulation-based, multiob-
jective gear design optimization problems, in the presence of general nonlinear con-
straints on the design variables. Besides gear design, engineering problems such as
size and shape optimization fit naturally into this framework. The proposed formula-
tion, originally conceived to solve the gear optimization problems described in [17, 18],
is geared toward computational efficiency, accuracy, and global optimality. The present
contribution expands on such works by providing the gear community with all theoreti-
cal aspects, relevant references, and improved algorithmic details, with the intention of
enabling interested readers, particularly gear designers, to implement or adapt the pro-
posed method to their design optimization purposes. In addition, constraint handling
has been also improved and generalized. This method is particularly tailored for non-
linear, nonsmooth problems with a low to medium number of design variables, where
engineering expertise/know-how is available to specify reasonable design goals, prac-
tical resolution of the design variables as well as operational upper and lower bounds
on them. The design variables are assumed to be continuous. The performance of the
proposed method on a challenging gear design problem, namely MOO of the micro-
geometry of a hypoid gear drive, will also be shown.
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2. Problem Description and Formulation

2.1. The MOO problem

The general constrained MOO problem considered in the present work can be ex-
pressed as

minimize
x

f(x)

subject to l ≤ x ≤ u, g(x) ≥ 0, h(x) = 0
(1)

where the symbols denote the following vectors

f = ( f1, . . . , fm) ∈ Rm, (conflicting) objective functions
x = (x1, . . . , xn) ∈ Rn, design variables
l = (l1, . . . , ln) ∈ Rn, lower bounds for x
u = (u1, . . . , un) ∈ Rn, upper bounds for x
g = (g1, . . . , gp) ∈ Rp, inequality constraints
h = (h1, . . . , hq) ∈ Rq, equality constraints

The set of constraints (l,u, g,h) defines the feasible region F. Problem (1) can be
rewritten in a more compact form as

min
x∈F

f(x) (2)

(If some objectives fi(x) must be maximized one simply needs to replace fi with − fi.)
We always assume here that bound constraints l and u are present, since in real-

world applications:

• The design variables typically vary within limited ranges. As an example, hard-
ware constraints in machine tools restrict machine setting variations.

• For most global optimization algorithms, computational efficiency benefits from
bound constraints as they limit the solution space to be searched.

• From a more mathematical point of view, bound constraints can act as a safe-
guard for optimization algorithms by preventing them from executing indefi-
nitely when an objective function is unbounded below.

Let us now direct our attention to the objectives f. As they generally conflict with
each other, MOO problems typically have infinitely many solutions, called Pareto-
optimal solutions (also named trade-off, compromise, non-dominated, efficient, and
non-inferior solutions). Ultimately, which solution to select depends on some sort of
preference expressed by the designer/decision maker. An MOO problem with n = 3
and m = 2 is shown in Fig. 1 (it can be extended to any dimension). The feasible
region F is a subset of the decision variable space R3, and it is defined by the problem
constraints. The objectives f(x) = ( f1(x), f2(x)), with x = (x1, x2, x3), map F into the
so-called feasible objective region Z (⊂ R2). The Pareto front, the solid black curve
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Figure 1: Example of an MOO problem (n = 3, m = 2).
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Figure 2: Examples of (a) a nonconvex, connected Pareto front and (b) a disconnected Pareto front.

between fa and fb in Fig. 1, is the locus of all the compromise (Pareto-optimal) solu-
tions for which one cannot further decrease one objective function without inevitably
increasing the other one.

The general nonlinear MOO problem can have convex or nonconvex objective func-
tions and constraints, with nonconvexity being typically the rule in complex simulation-
based applications. Nonconvex problems have local minima, which are reflected as
locally (as opposed to globally) Pareto-optimal sets in the objective space. Globally
and locally Pareto-optimal sets coincide only if the problem is convex. Obviously, one
seeks globally Pareto-optimal solutions, but points of locally Pareto-optimal sets are
often the computationally available solutions, since local minima “trap” most classical
optimization algorithms. An exception is offered by global optimization algorithms,
and one of them will be described and adopted in the present work.

Nonconvexity has another important meaning in MOO: it refers to the shape of
the Pareto-optimal set, as illustrated in Fig. 2(a). Nonconvexity can also result in a
disconnected Pareto front, as shown in Fig. 2(b). Nonconvex Pareto fronts can cause
certain MOO algorithms to obtain solutions only in restricted regions of such fronts,
missing other interesting or important solutions, and thus an algorithm that can handle
nonconvexity should always be adopted.

2.2. Solution of MOO problems by classical methods
As stated in the Introduction, the framework of this work is based on deterministic,

classical MOO methods, in an attempt to keep the number of function evaluations
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to a minimum. Theoretical foundations of these methods, optimality definitions and
conditions, duality results, as well as relevant theorems can be found in [5]. An in-
depth theoretical account of MOO is given in [19].

As mentioned in Section 2.1, the solutions of an MOO problem are theoretically
infinitely many: which solution to prefer over another depends on some measure of
preference. Preference is expressed by the gear engineer, or more generally by a so-
called decision maker (DM), who is ultimately responsible for the decision on the final
solution.

Most classical methods are based on the concept of scalarization, which is the pro-
cess of transforming an MOO problem into an equivalent single-objective optimization
problem with a scalar-valued objective function, termed scalarizing function. A single
Pareto-optimal solution can be obtained by minimizing the selected scalarizing func-
tion. Basically, the choice of the scalarizing function is what characterizes the different
methods. While the interested reader is referred to [5, 7, 19] for taxonomies and com-
prehensive descriptions of classical methods, just two of them will be discussed here:
the all too popular weighting method and the achievement function approach, which
will be our final choice.

2.2.1. Weighting method.
The simplicity of this method makes it a very popular one. People often use it with-

out necessarily recognizing it as an MOO method. It is based on a linear combination
(weighting) of the m objective functions. The problem to be solved is

min
x∈F

(
W(w; x) =

m∑
i=1

wi fi(x)
)

(3)

where the weights w = (w1, . . . ,wm) are selected such that wi ≥ 0 (for i = 1, . . . ,m) and∑m
i=1 wi = 1. Multiple solutions are generated by altering the weights. Such solutions

are guaranteed to be Pareto-optimal if the weights are strictly positive.
In order to avoid that different magnitudes and/or ranges of the objectives misdi-

rect the solution process, it is always advisable to normalize the objective functions
according to

f (n)
i =

fi − f (id)
i

f (nad)
i − f (id)

i

(4)

where f (id)
i and f (nad)

i are, respectively, (estimates of) the components of the ideal and
nadir objective vectors1. This reformulation is called normalization and provides im-
portant computational (and theoretical) advantages.

Although the weighting method is widely used to solve MOO problems, not all
users are aware that this method has a serious shortcoming: a subset of Pareto-optimal
solutions of nonconvex problems cannot be obtained, no matter how the weights are
chosen. This point can be easily taken with the help of Fig. 3, where a problem with a

1These are the objective vectors containing, respectively, the lower and upper bounds of the Pareto front.
The reader is referred to [5, pp.15–18] for a discussion on how to obtain them.
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Figure 3: The weighting method on a nonconvex problem.

nonconvex Pareto front is illustrated (the two objectives are normalized). The Pareto-
optimal solutions fa and fb can be obtained when the weights wa = (0.7, 0.3) and
wb = (0.2, 0.8) are used, respectively, in problem (3). However, any attempt to generate
any solution in the nonconvex portion of the Pareto front, i.e. between fc and fd, would
be unsuccessful. This is the major drawback of this method since it is generally difficult
to check real problems for convexity, especially if they are based, as in the present
scenario, on some black-box simulation model.

DMs often use the weighting method specifying a weighting vector w to weigh the
objectives differently. However, it can be proved that specifying sensible weights is not
an easy task, especially if some correlation between objectives is present.

2.2.2. Achievement function approach.
Achievement functions are scalarizing functions based on a discretionary reference

point f̃ specified by the DM, i.e. a set of ideal values (called aspiration levels) for the
objective functions at hand. As is well known in the MOO literature, the basic idea
of this method is to project f̃ onto the Pareto front (cf. Fig. 4): this can be done by
minimizing the selected achievement function s: (F ⊂ Rn)→ R as per

min
x∈F

s
(
f(x), f̃

)
(5)

where f̃ is the arbitrary reference point of aspiration levels, which can be feasible or
infeasible (i.e., inside or outside the feasible objective region Z).

An important class of achievement functions is that of penalty scalarizing func-
tions. Interesting insights into them are provided by Wierzbicki [20]. A differentiable
penalty scalarizing functions is

s2
(
f(x), f̃; ρ

)
= −

∥∥∥f(x) − f̃
∥∥∥2

+ ρ
∥∥∥(f(x) − f̃

)
+

∥∥∥2
(6)

where ρ > 1 is the penalty coefficient, the operator
∥∥∥·∥∥∥ denotes the Euclidean norm, and

the expression
(
f(x) − f̃

)
+ indicates the vector whose ith element is(

fi(x) − f̃i
)
+ = max

(
0, fi(x) − f̃i(x)

)
, i = 1, . . . ,m (7)
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For computational purposes, the normalized version of (6) should be used (as done
in [17]), that is

s2
(
f(x), f̃; ρ,ω

)
= −

m∑
i=1

(
ωi

(
fi(x) − f̃i

))2
+ ρ

m∑
i=1

max
(
0, ωi

(
fi(x) − f̃i

))2
(8)

where the coefficients ωi > 0 are fixed, i. e. they are not used as weights but as normal-
izing coefficients: along the lines of Eq. (4), one should use

ωi =
(
f (nad)
i − f (id)

i
)−1 (9)

Another non-differentiable but better-conditioned penalty scalarizing function is (see
also [18])

s∞
(
f(x), f̃; ρ,ω

)
= max

i=1,...,m

(
ωi

(
fi(x) − f̃i

))
+ ρ∞

m∑
i=1

(
ωi

(
fi(x) − f̃i

))
(10)

where ρ∞ > 0 (e.g., ρ∞ = 10−4) is a small augmentation coefficient required to avoid
weakly Pareto-optimal solutions. Minimization of (8) or (10) yields a Pareto-optimal
solution. The obtained solution technically depends on the selected metric, on the co-
efficients ωi, and on the chosen value of the penalty coefficient ρ, but the important
theoretical dependence is on the reference point used. The fact remains, however, that
such technical dependencies can make a difference in terms of computational perfor-
mance. The achievement function s∞ will be preferred to s2 hereafter.

It is important to highlight that, unlike other MOO methods, the achievement func-
tion approach projects both feasible and infeasible reference points onto the Pareto
front, as depicted in Fig. 4. Nonconvex problems can be easily handled by the method.
Unlike goal programming methods [5, 121–129], which cannot improve on feasible
(i.e., pessimistic) reference points, the achievement function approach can obtain a
Pareto-optimal solution even when a strictly feasible reference point is specified. In
general, achievement functions are very appealing for generating Pareto-optimal solu-
tions, since they can overcome most of the limitations associated with other methods of
this category. We finally selected this approach to avoid potentially dangerous pitfalls
of other classical MOO methods, which can be summarized as follows:

1( )f x

2( )f x
Z

if

if

1( )f x

2( )f x
Z

ff

ff

(b)(a)

contours of S∞

+

+
contours of S∞

+

+

Figure 4: A nonconvex MOO problem tackled by the achievement function approach: projection of an
infeasible reference point f̃i (a) and of a feasible reference point f̃ f (b) (with ωi = 1).
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• The popular weighting method and its variants are not able to obtain solutions
that belong to nonconvex regions of the Pareto front.

• Other methods are not able to improve on pessimistic (i.e., feasible) reference
points: this is the case, for instance, of the well-known goal programming method.

• With weighting metrics methods, specifying sensible values for the weighting
coefficients is intuitive only with linear MOO problems. In general, it is likely
that the intention expressed by the DM through the weighting coefficients is not
met in nonlinear problems.

• Some other methods, namely the ε-constraint method and its variants, require
a large amount of calculations to represent the Pareto-optimal set, which is in
contrast with our demand for computational efficiency.

2.3. Exploration of the Pareto front: the reference point method

Once a Pareto-optimal solution is obtained, the DM could be interested in exploring
the Pareto front around that solution, particularly in those cases where the DM’s back-
ground knowledge is insufficient to express a sensible, informed reference point. To
that end, the reference point method ([5, pp. 164–170], [7, pp. 38–45], and references
therein) can be employed to obtain and compare a number of nearby trade-off solutions.
As the name suggests, this method is based on reference points, feasible or infeasible,
which are reasonable or desirable to the DM. Combination with the achievement func-
tion approach is straightforward, as can be noted by considering the following basic
steps of the method:

1. Set h = 0 (iteration counter).
2. Ask the DM to specify a reference point f̃h ∈ Rm.
3. Minimize the selected achievement function (problem (5)) to obtain its corre-

sponding Pareto-optimal objective vector fh = f(xh), where xh is its Pareto-
optimal solution.

4. Obtain m new Pareto-optimal solutions using the following reference points in
problem (5)

f̃hi = f̃h + dhei, i = (1, . . . ,m) (11)

where dh =
∥∥∥f̃h − fh

∥∥∥ and ei are the unit vectors marking the axes of the objective
space.

5. If the DM is satisfied with one of the m + 1 solutions, stop. Otherwise, the DM
selects the most interesting reference point f̃hi , then set h = h + 1, f̃h+1 ↼ f̃hi , and
restart from step 3.

A pictorial representation of the first iteration of the reference point method is given
in Fig. 5. The ideal objective vector fid has been selected as initial reference point. The
DM will then decide to proceed with f̃1 ↼ f̃01 or f̃1 ↼ f̃02 , depending on which Pareto-
optimal objective vector (s)he will deem more interesting between f01 and f02 . Further
iterations may be carried out until the DM has obtained a satisfactory solution and/or a
sufficiently informative representation of the Pareto front.
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Figure 5: First iteration of the reference point method on an MOO problem with two objectives.

Figure 5 highlights the fact that the reference point method enables the DM to gain
a clearer conception of the Pareto front and of the possible solutions: when the DM
selects a reference point that is distant from the front, (s)he gets a wider representation
of the front itself, and as the distance of the reference point decreases, a progressively
finer (local) representation is obtained.

2.4. Dealing with constraints

The feasible region F is determined by the MOO problem’s constraints. The solu-
tion of problem (5) requires some strategy to handle the general nonlinear constraints
g(x) and h(x) (the simple bounds l ≤ x ≤ u will be dealt with later).

As discussed in [21, chap. 6] and [22, chap. 17], one could solve optimization
problems with nonlinear constraints by formulating and solving a sequence of uncon-
strained problems (ideally only one) that would eventually converge to a feasible solu-
tion. (Please replace “unconstrained” with ”bound-constrained” in this context.) One
of the best known methods belonging to this category is the penalty function method,
and the quadratic penalty function [21, sect. 6.2.1.1] is very popular and could be ap-
plied to solve problem (5) according to the following formulation

min
x

s∞
(
f(x), f̃; ρ,ω

)
+
µ

2

[ q∑
j=1

h2
j (x) +

p∑
k=1

(
max(−gk(x), 0)

)2
]

s. t. l ≤ x ≤ u

(12)

The non-negative penalty parameter µ (not to be confused with the penalty coefficient
ρ in Eq. (6)) penalizes constraint violations. Formulation (12) transforms the origi-
nal constrained optimization problem into a simpler bound-constrained one. However,
the problem with differentiable penalty functions is that µ should be increased theo-
retically to infinity to insure that the minimizer of problem (12) coincides with that
of the original problem. In practice, a sequence of bound-constrained problems (12)
need be solved, with increasing values of the penalty parameter, until constraints are
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“sufficiently” satisfied. The main drawback of such a method is that it suffers from in-
evitable ill-conditioning, with problem (12) becoming increasingly badly-conditioned
as µ increases. The most evident consequences of ill-conditioning are deterioration in
accuracy, increased computational effort, and even risk of failure of the optimization
algorithm.

The problems described for differentiable penalty functions are analogous to those
affecting differentiable logarithmic barrier functions [21, sect. 6.2.1.2]: even for smooth,
well-posed problems, these methods suffer from ill-conditioning and the need to solve a
sequence of subproblems, thereby placing an extra burden on computational resources.
Furthermore, considering the present scenario, there is no need to insist on a differen-
tiable penalty function if the model functions at hand are nonsmooth in the first place.

An alternative, non-differentiable, but well-conditioned approach is offered by the
absolute value penalty function [21, sect. 6.2.2], by which problem (12) can be refor-
mulated as

min
x

s∞
(
f(x), f̃; ρ,ω

)
+ µ

[ q∑
j=1

∣∣∣h j(x)
∣∣∣ +

p∑
k=1

max(−gk(x), 0)
]

s. t. l ≤ x ≤ u

(13)

The key distinction between the quadratic penalty function in Eq. (12) and the absolute
value penalty function in Eq. (13) is that, under mild conditions, µ does not need to
grow indefinitely, which makes the problem less ill-conditioned: for any µ > µ̄, the
solution of problem (13) coincides with the solution of the original problem. Unfor-
tunately, µ̄ is not known in general, therefore it must be estimated and increased if
necessary (see Section 3).

Lastly, let us point out that penalty functions may be unbounded below. However,
as mentioned in section 2.1, bound constraints act as a safeguard for the optimization
problems under consideration: by restricting the search region to a specific subset of
Rn, they prevent optimization algorithms from running indefinitely.

Several other methods exist to handle nonlinear constraints, and the interested
reader is referred to [21] and [22] for detailed and comprehensive descriptions.

3. Solution Method and Algorithms

With section 2.1, the groundwork has been laid for the solution process of general
simulation-based MOO problems. A computational framework that integrates the de-
scribed techniques is sketched in Fig. 6. What has not yet been discussed is how to
practically solve the central, single-objective optimization problem (13).

3.1. Main requirements
Let us recall and enumerate the main properties of the functions involved (see

also [23], which presents an interesting review of some direct-search methods):

1. The objective functions f in the achievement function s as well as the constraints
g are not available analytically. They are only computable, since they exist only
numerically through the simulation model at hand.
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Figure 6: Flowchart of the proposed optimization framework.

2. In the simulation-based optimization setting, the functions and constraints result-
ing from computer simulations and their post-processing typically suffer from
discretization error and numerical noise, which causes the calculation of partial
derivatives for gradient-based optimization algorithm quite impractical, even for
underlying smooth problems. Finite-difference approximations of the gradient
and Hessian would be generally unreliable.

3. Typically, the objective function of problem (13) has a number of local minima,
corresponding to locally Pareto-optimal solutions. Ideally, however, one seeks
global minima, corresponding to globally Pareto-optimal solutions. This is in-
deed a much harder task, but classical single-objective optimization algorithms
may be easily trapped into local, and potentially infeasible, solutions. Obtaining
global optima is also important for a correct application of the reference point
method: comparing different trade-off solutions is meaningless when some of
them are just locally Pareto-optimal (hence, dominated). This fact is often not
adequately stressed in classical MOO literature. A global optimization algorithm
is needed.

4. The optimization algorithm used to solve problem (13) must be able to handle
bound constraints.
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Summarizing, the solution of problem (13) calls for a derivative-free, global opti-
mization algorithm able to handle noisy, nonsmooth functions, with bound constraints
on the design variables. State-of-the-art research has yielded a plethora of methods
meeting the above-listed requirements [24, 25, 26]. Again, for the reasons discussed in
the preceding sections, evolutionary and metamodeling techniques are excluded from
consideration in the present setting.

Based on several reviews, such as those just cited, the DIRECT algorithm [27] and
Gablonsky’s implementation of it [28], called DIRECT-1, were deemed appropriate for
the category of optimization problems at issue. However, it should be brought to the
reader’s attention that other algorithms (individually or possibly combined into hybrid
strategies) may be better suited to specific problem types. For instance, Huyer and
Neumaier’s multilevel coordinate search (MCS) method [29] has proven successful and
computationally efficient on a number of smooth global optimization problems, and it
should be tried whenever the problem functions are basically smooth. Again, the reader
should be exposed to the algorithmic performance trends highlighted in [24, 25, 26] and
the references therein.

3.2. The DIRECT algorithm

The theoretical background of the DIRECT algorithm is presented in [27], and
a description of an extended version of it (which can handle inequality and integer
constraints) is offered by Jones in [30]. The locally-biased form of it, DIRECT-1, is
described by Gablonsky in [28]. Sequential and parallel Fortran implementations of
DIRECT exist, and some of them can be freely downloaded from the Web, where
free implementations of the implicit filtering method can also be retrieved: the latter is
reported to be effective when problem (13) is known to have noise-induced spurious lo-
cal minima, but an underlying smooth objective function with a single global solution.
Commercial versions of DIRECT, reportedly more efficient than the freely available
implementations, are included in the TOMLAB optimization environment (in Matlab).

The DIRECT (DIviding RECTangles) algorithm is a derivative-free pattern search
method that attempts to efficiently find a global optimizer of bound-constrained opti-
mization problems. It is designed to completely explore the variable space, even after
one or more local minima have been found. DIRECT-1 is more biased toward local
search, which has proved to perform better for problems with a single global mini-
mizer and only a few local minimizers.

As described in [17], the algorithm starts with one n-dimensional hyper-rectangle
(determined by the bounds on the variables) and, at each iteration, it updates a set of
hyper-rectangles by partitioning some of its members into smaller hyper-rectangles.
Each selected hyper-rectangle is trisected along one of its long sides, after which the
center points of the outer thirds are sampled. The algorithm continues until specific
termination criteria are met.

DIRECT-1 attempts to reduce the number of function evaluations by grouping the
hyper-rectangles according to a different metric and by trisecting just one of them at
each iteration. The idea is that the overall number of divisions will be reduced, and
that most of this reduction will occur in the large hyper-rectangles that are not near
the global optimum. The implementation described in [31] can also handle hidden
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constraints on the variables, i.e. all those cases where the objective function is not
defined or cannot be computed for specific values of the design variables.

DIRECT and DIRECT-1, like other global optimization methods, suffer from a
curse of dimensionality that limits them to lower-dimensional problems with up to,
say, 25-30 design variables.

3.2.1. Termination criteria.
A number of termination conditions are available, with two of them being appro-

priate for the problems under consideration: maximum number of function evaluations
(maxf) and minimum hyper-rectangle size (sigmaper, designated σp in the follow-
ing). The former is an approximate upper bound on the maximum number of function
evaluations, which is suitable for computationally demanding problems when only a
limited budget of function evaluations is allowed, while the latter specifies that the op-
timization is terminated when the hyper-rectangle containing the minimum function
value has size less than σp. The way the size of a hyper-rectangle R is measured de-
pends on the version of DIRECT: the original DIRECT uses the distance between the
center of R and one of its vertices, while DIRECT-1 takes the length of the longest side
of R.

For the vast majority of simulation-based problems, a resolution value τi can be
determined for each design variable xi, meaning that a variation τi in the i-th design
variable xi yields an unimportant (or not appreciable) variation in the objective func-
tions and constraints. For instance, let us consider a gear micro-geometry optimization
problem whose design variables have linear dimensions (like ease-off topography): it
is quite unlikely that variations of the order of hundredths of a micron can affect the
results. Considerable savings in computational resources can be made if one correctly
accounts for the resolutions of the design variables. To this end, it is important to note
that both versions of DIRECT normalize each variable xi between 0 and 1. Therefore,
with given resolutions (τ1, . . . , τn), the scaled resolution

τ̂ = min
i

(
τi

ui − li

)
(14)

can be used to terminate the optimization process when the current hyperrectangle size
drops below τ̂, i.e. σp = τ̂. In what follows, this termination condition will be adopted.

3.3. Solution process: algorithmic framework

The proposed algorithmic framework is illustrated by the pseudocode in Fig. 7,
which summarizes and gathers together the topics discussed to this point.

A value ρ∞ = 10−4 can be used for the penalty coefficient in Eq. (10). For the
penalty parameter µ (Eq. (13)), a starting value of 10 turned out to be effective when the
constraint violation terms are properly scaled with respect to the achievement function.
If this is not the case, it is certainly advisable to scale the constraint violation term
accordingly.
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Figure 7: Pseudocode of the proposed algorithmic framework.

4. Numerical Tests on a Gear Optimization Problem

Two real-world applications of the proposed method for multiobjective micro-geometry
optimization of spiral bevel and hypoid gears are described in the works [17, 18]. The
latter also describes how to incorporate robustness into the objective functions in order
to achieve robust design optimization.

In this section, a still real but more “educational” application of the method is
presented. The focus here is on providing more insight into the optimization problem
formulation and its solution(s).

4.1. Multiobjective micro-geometry optimization of spiral bevel and hypoid gears

Spiral bevel and hypoid gears (Fig. 8) represent a very general (and complex) type
of gears. While the former (zero shaft offset) are mostly employed in aircraft and
rotorcraft drive trains, the latter are extensively used in the differentials of rear- and
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four-wheel drive vehicles. Automotive and aerospace industries have been continually
demanding more power density and less noise from their transmissions, as well as re-
duced sensitivity to misalignments. Nowadays, a strong emphasis is also being placed
on maximizing their mechanical efficiency.

The tooth surfaces of typical spiral bevel and hypoid gears are mismatched, i.e. non-
conjugate (hence they are theoretically in point contact, instead of line contact), in an
attempt to avoid edge-contact, which could be catastrophic for the gear pair. Their
deviations (ease-off ) from their conjugate counterparts are extremely small, typically
tens to few hundreds microns. Contact properties are strongly affected by the tooth
surface micro-geometry, thus it plays an important role in their optimization.

Micro-geometry optimization of gears is a multiobjective optimization problem,
since common design goals are typically conflicting. It has long been a trial-and-error
(and time-consuming) process, mostly entrusted to the skills of expert gear engineers.
In addition, this problem has intrinsic nonlinearities that make the process nonintuitive.

In what follows, only two objectives will be considered, so that the Pareto front,
reference points, and solutions can be easily displayed in the objective space. Firstly,
a case with three design variables is presented, which serves mostly to “visualize” the
proposed method and to demonstrate its effectiveness. Secondly, the performance of
the method is observed after increasing the number of design variables to five, which
corresponds to a real design case.

4.1.1. Simulation tool.
The proposed optimization procedure relies on an LTCA (loaded tooth contact anal-

ysis) simulation tool. Such LTCA program, named HAP, was developed by Kolivand
and Kahraman [32] to assess contact properties under load, including mechanical effi-
ciency [33]. HAP requires significantly less computational effort than models based on
finite elements: on a 2.9-GHz-processor, 8-GB-RAM computer system, one full LTCA
analysis requires about 8 seconds.

4.1.2. Design variables.
As described in [17], ease-off is usually represented in the gear’s axial plane (r, z),

called gear projection plane, where the boundary cones of both the gear and the pinion

Figure 8: A hypoid gear drive.
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delimit the potential contact area (PCA): all contact zones will lie within the PCA.
The PCA can be approximated as a convex quadrilateral, and its shape and size are
affected by the relative position between pinion and gear, hence by misalignments.
For convenience we map the PCA to a rectangular domain, whose lengthwise and
profile directions are parameterized respectively by coordinates u and v. A contour plot
representation of an example ease-off surface along with a three-dimensional discrete
version of it (ease-off topography) are shown in Fig. 9.

We now need to define design variables that can effectively control the shape of the
ease-off surface. This can be done by modeling this surface as a suitable polynomial
surface whose coefficients can be used as design variables of the optimization problem
at hand. A polynomial of second degree was chosen for the present numerical tests,
as it embodies the most effective tooth surface modification elements. Higher-order
effects are considered in [17]. The selected polynomial ease-off pe is represented on
the PCA (u, v)-plane according to

pe(x; u, v) =

2∑
i=0

2−i∑
j=0

xi juiv j (15)

The five coefficients x = (x01, . . . , x20) are our design variables (x00 is dropped as it
would imply a change in tooth thickness). Each coefficient has a direct technological
implication: as an example, x20 and x02 of the quadratic terms u2 and v2 respectively
control lengthwise and profile crowning; x11 quantifies flank twist. Once the optimal
ease-off surface has been determined, an effective way to obtain the corresponding
machine-tool settings of the hypoid generator is described in [34].
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Figure 9: An example of ease-off surface on the gear-based PCA.
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4.1.3. Objective functions and constraints.
Two conflicting objectives will be considered:

1. Minimization of power loss, i.e. maximization of average mechanical efficiency.
2. Minimization of maximum contact pressure.

Obviously, the second objective is pursued to prevent localized stress concentrations
(and the ensuing pitting/micropitting problems). In mathematical terms, we have the
two following objective functions to be concurrently minimized:

1. f1(x) = Wl(x), power loss (in percentage points).
2. f2(x) = pmax(x), maximum contact pressure (in MPa).

Let us now consider constraints. To prevent edge- and corner-contact conditions,
f1 and f2 must be minimized while avoiding that any portion of the contact pattern
under load lies outside a predefined allowable contact area (ACA), quadrilateral (for
example) in shape and, obviously, within the PCA boundaries (Fig. 9). The ACA can
be specified according to the indications in [35, Annex F]. One then has to enforce
that the total contact load exerted outside the ACA be zero. This can be achieved by
initializing a scalar variable h to zero and augmenting its value by the (unwanted) load
detected at any contact cell outside the ACA boundaries throughout one mesh cycle.
This nonlinear equality constraint can be expressed by

h(x) = 0 (16)

where the total unwanted contact load h depends on the ease-off coefficients x.
Finally, selecting appropriate values for l and u (bound constraints) is a simple

matter. Coordinates (u, v) in Eq. (15) are rescaled so that they belong to the domain
[−1, 1]× [−1, 1]: the ith term uiv j can be at most 1 (or −1), and therefore its coefficient
xi j coincides with the maximum (minimum) ease-off value that can be attained with
that term at the PCA corners. This helps impose meaningful limits to the ease-off

values. The nonlinear equality constraint (16) along with the bounds l and u determine
the feasible region F.

4.1.4. Basic design data and initial reference point.
The present tests are conducted on the same automotive hypoid gear pair used

in [17]. Table 1 summarizes its basic design parameters, nominal operating condi-
tions, average mechanical efficiency η, and maximum contact pressure pmax calculated
by HAP.

The values of η and pmax associated with the basic design are useful to select a valid
reference point to start with. A 1% increase in η, i.e. Wl = 4%, was considered ideal,
as well as a value of 1100 MPa for pmax. Therefore,

f̃0 = (4%, 1100 MPa) (17)

was selected as initial reference point.
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Basic design parameters
Pinion tooth number 11
Gear tooth number 43
Shaft offset (mm) 30
Shaft angle (deg) 90
Transverse module (mm) 5.5
Operating conditions
Pinion torque (Nm) 250
Pinion speed (rpm) 2000
Lubricant type 75W-90
Lubricant temperature (◦C) 90
Pinion roughness Rq (µm) 1.3
Gear roughness Rq (µm) 1.7
Average mechanical efficiency η (%) 95.07
Maximum contact pressure pmax edge-contact

Table 1: Basic design parameters and nominal operating conditions of the hypoid gear pair [17].

4.2. Test case 1: three-variable two-objective MOO problem

This test case was created ad hoc to test the behavior of the proposed method and
to facilitate its visualization. DIRECT-1 was used. The problem was set up as follows:

• Design variables x = (x02, x11, x20), corresponding to profile crowning, flank
twist, and lengthwise crowning, respectively.

• Lower bounds l = (0.000,−0.100, 0.000) mm.

• Upper bounds u = (0.200, 0.100, 0.200) mm.

• Nonlinear equality constraint h(x) = 0 (no contact outside the ACA, Eq. (16)).

• Design variable resolution τ = 0.001 mm, corresponding to a DIRECT-1 con-
vergence tolerance σp = 0.005, as per Eq. (14).

The volume (cube) defined by l and u in the design variable space was sampled at
a large number of points arranged on an orthogonal grid, and an LTCA analysis was
performed for each of them using HAP. For each i-th analysis, the resulting objectives
f1(xi) = Wli and f2(xi) = pmaxi constitute a point (objective vector) in the objective
space. Also, according to Eq. (16), the value L(xi) determines whether point xi (de-
cision vector) is feasible (L(xi) = 0) or infeasible (L(xi) > 0). Collecting all decision
vectors xi and their corresponding objective vectors f(xi), Figure 10 was created, where
blue and red small circles denote feasible and infeasible decision vectors, respectively,
as well as their corresponding feasible and infeasible objective vectors. Extracting the
feasible region and the feasible objective region from it, Fig. 11 was obtained.

The application of the proposed methodology to this test case resulted in the solu-
tions shown in Fig. 12 and Table 2. As confirmed by Fig. 12, the method was able to
obtain global Pareto-optimal solutions, all of them feasible, non-dominated, and well
spread over the Pareto front. Preference was intentionally given to the reference point
f̃1 (= f̃02 ) to lead the exploration of the Pareto front toward a nonconvex region, and
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Figure 10: Test case 1: Decision variable space (left) and objective space (right). Feasible and infeasible
points are denoted by blue and red small circles, respectively.

the method yielded valid solutions. It is interesting to note (Table 2) that solutions
associated with notable increments in mechanical efficiency, like f1 and f12 , exhibit
larger contact pressures: the optimizer achieved this result by localizing the contact
areas to the tooth regions where the least sliding occurred. Eventually, which solution
to select depends on the DM’s judgment and the specific application: just by way of
example, one could choose the solution that is most robust against assembly errors or
manufacturing variance.

Regarding function evaluations, each corresponding to a HAP run, their numbers
are very reasonable (last column of Table 2). This attests to the computational effi-
ciency of the proposed method.

4.3. Test case 2: five-variable two-objective MOO problem

This test case corresponds to a realistic challenging scenario where optimal first-
and second-order ease-off components need to be determined. The problem was set up
as follows:

• Design variables x = (x01, x02, x10, x11, x20), corresponding to pressure angle cor-
rection, profile crowning, spiral angle correction, flank twist, and lengthwise
crowning, respectively.

Figure 11: Test case 1: Feasible region (left) and feasible objective region (right).
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Figure 12: Test case 1: reference points and corresponding Pareto-optimal objective vectors.

• Lower bounds l = (−0.100, 0.000,−0.100,−0.100, 0.000) mm.

• Upper bounds u = (0.100, 0.200, 0.100, 0.100, 0.200) mm.

• Nonlinear equality constraint h(x) = 0 (no contact outside the ACA, Eq. (16)).

• Design variable resolution τ = 0.001 mm, corresponding to a DIRECT-1 con-
vergence tolerance σp = 0.005, as per Eq. (14).

The results shown in Fig. 13 and Table 3 were obtained. Three reference points
were used. Again, all solutions are non-dominated and feasible: Let us remind that a
feasible solution implies that the optimal decision variables are within their bounds and
that the loaded contact pattern lies inside the ACA (no edge-loading). In Fig. 13, the
feasible objective region of test case 1 is also represented (grayed out) to appreciate the
superior solution objective vectors obtained using five design variables (more degrees
of freedom).

The three solutions obtained are very satisfactory in practical terms. The gear en-
gineer can select the solution that is best suited to the application of the gear drive

Ref. point (%, MPa) Sol. obj. vector (%, MPa) Solution vector (mm) Fun. eval.
f̃0 = (4.00, 1100.0) f0 = (4.25, 1500.6) x0 = (0.1222, 0.0667, 0.1049) 85

f̃01 = (4.38, 1100.0) f01 = (4.46, 1328.5) x01 = (0.0753, 0.0667, 0.0901) 93
f̃1 = (4.00, 1635.2) f1 = (4.06, 1705.1) x1 = (0.1938, 0.0922, 0.1551) 121

f̃11 = (4.08, 1635.2) f11 = (4.09, 1658.3) x11 = (0.1765, 0.0971, 0.1519) 111
f̃12 = (4.00, 1746.3) f12 = (4.04, 1809.2) x12 = (0.1996, 0.0255, 0.1560) 117

Table 2: Test case 1: results.
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Figure 13: Test case 2: reference points and corresponding Pareto-optimal objective vectors. (Feasible
objective region of test case 1 grayed out.)

at hand. Solution f01 offers a respectable increase in efficiency compared to the basic
design conditions and a very satisfactory value of the maximum contact pressure. So-
lution f02 , on the other hand, provides an excellent increase in efficiency (+1 pp) at the
expense of a larger value of the maximum contact pressure. Solution f0 represents a
nice trade-off between the other two.

In terms of function evaluations, albeit more than doubled with respect to test case
1, the results tend to attest once more that the proposed method can offer a very com-
petitive advantage over evolutionary approaches.

5. Conclusions

With the present paper, a computational framework has been proposed to solve mul-
tiobjective gear design optimization problems, especially those whose model functions
and constraints are obtained by computer-based simulation models. Special emphasis

Ref. point (%, MPa) Sol. obj. vector (%, MPa) Solution vector (mm) Fun. eval.

f̃0 = (4.00, 1100.0) f0 = (4.17, 1392.8)
x0 = (−0.0296, 0.0926, 0.0074,

0.0700, 0.1025)
231

f̃01 = (4.27, 1100.0) f01 = (4.30, 1314.2)
x01 = (−0.0198, 0.0893, 0.0000,

0.0988, 0.1000)
229

f̃02 = (4.00, 1479.7) f02 = (4.02, 1526.9)
x02 = (−0.0749, 0.1337,−0.0181,

0.0774, 0.0918)
311

Table 3: Test case 2: results.
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has been placed on computational efficiency and on the capability of handling nons-
moothness in the problem functions.

The proposed method draws upon techniques from deterministic MOO methods,
especially the achievement function approach and the reference point method, which
have proved to be effective in solving multiobjective optimization problems thanks
to a number of mathematical properties that other MOO methods do not possess.
Nonlinear constraints were handled via an absolute value penalty function, leading
to a problem with bound constraints only. The resulting single-objective optimization
problem was solved by DIRECT, an efficient deterministic direct-search global opti-
mization algorithm, in an attempt to obtain globally Pareto-optimal solutions. Global,
non-dominated solutions, whose practical importance is often overlooked, are crucial
to successful MOO, in that locally Pareto-optimal (dominated) solutions mislead the
DM’s conception of the Pareto front and can jeopardize the exploration process of the
front itself.

The proposed method was tested on a real simulation-based MOO problem, namely
micro-geometry optimization of spiral bevel and hypoid gears. Such a design prob-
lem is characterized by considerable nonlinearities (hence multiple local minima) and
simulation-induced nonsmoothness. Two numerical test cases were presented: In both
cases, the method produced globally Pareto-optimal (and feasible) solutions, well spread
over the Pareto front. The optimization required a very reasonable number of function
evaluations.

All theoretical aspects, relevant references, and algorithmic details have been fully
provided, along with practical considerations and technicalities, with the intention of
enabling interested readers, particularly gear designers, to implement or adapt the pro-
posed method to their design optimization purposes

No mention was made of parallelization, but it can significantly speed up the so-
lution process. It should be pointed out that at least two levels of parallelization are
possible here: (i), parallel evaluations of the objective function are available in DI-
RECT, and (ii), exploration of the Pareto front by the reference point method lends
itself well to parallelization.

The proposed framework, albeit developed with gear optimization in mind, is obvi-
ously broader in scope and should be put to test in other computer-assisted engineering
optimization problems.
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