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Abstract. Lung cancer in young patients appears to have  
distinct clinicopathological features. The present study focused 
on the role of the serine/threonine kinase liver kinase B1 (LKB1), 
a known tumor suppressor gene, and its miRNA regulation in 
lung adenocarcinoma, particularly in young versus elderly 
patients. A total of 88 patients with lung adenocarcinoma 
were retrospectively analysed. A simultaneous quantification 
was performed of the expression of LKB1 mRNA and 
15 microRNAs (miRNA/miRs; miRs ‑93, ‑96, ‑34a, ‑34c, ‑214, 
‑33a, ‑30b, ‑145, ‑182, ‑30c, ‑183, ‑29b, ‑29c, ‑153 and ‑138) 
involved in the LKB1 pathway, as well  as of 5  identified 
target mRNAs [cyclin D1 (CCND1), catenin β‑1 (CTNNB1), 
lysyl oxidase (LOX), yes‑associated protein 1 (YAP1) and 
survivin], using NanoString technology. KRAS mutations were 
investigated by pyrosequencing analysis. Patients ≤50 years 
were defined as a younger group, while patients >50 years old 
as an older group (n=44/group). No difference between the two 
groups was identified in terms of survival times analysed using 
the Kaplan‑Meier method or KRAS mutations. Subsequently, 
the LKB1 signalling pathway was focused on, as a target for 
therapy in lung adenocarcinoma, and assessed with regards 
to clinicopathological features; we found that LOX levels in 
adenocarcinoma patients were significantly associated with 
histological subtype (P=0.03), stage (P<0.0001) and prognosis 
(P=0.02 for disease‑free interval and P=0.005 for overall 
survival), but not with age. Furthermore, the miRNA target 
prediction model indicated that miR‑93 and miR‑30b appeared 
to have functional binding sites and downregulate the gene 
expression of LKB1 and LOX, respectively. In conclusion, 
young patients appeared have similar survival rates to elderly 
patients. The assessment of LKB1, its downstream genes and its 
regulation by miRNAs may have an impact on future research 
on lung adenocarcinoma in young and elderly patients. Further 

investigations will be necessary to elucidate the potential of 
this pathway as a novel target for therapy.

Introduction

Lung cancer remains the main cause of cancer‑related deaths 
worldwide (1). Cases of non‑small cell lung cancer (NSCLC) 
in young patients (≤50 years old) represent a small percentage 
of the total cases, and indeed this disease typically affects 
older individuals (>50  years old), and the incidence rate 
among elderly patients is increasing (2). Previous studies have 
compared young and aged NSCLC patients, using the range 
of 40 to 50 years to define the young group (2‑8); however, 
to date, it is not clear if lung cancer, particularly adenocarci-
noma, in young patients may have distinct clinicopathological 
features. In the present paper, liver kinase B1 (LKB1) and its 
downstream signalling pathways were investigated as a thera-
peutic target in lung adenocarcinoma, a subtype of NSCLC (9), 
and compared between different age groups. LKB1, also 
known as serine/threonine kinase 11, is a tumor suppressor 
gene involved in cellular responses including growth, polarity 
and metabolism (10). LKB1 is a master kinase, controlling 
14 substrates involved in the translation of several cell growth 
regulators  (11). LKB1 was been initially identified as the 
tumor suppressor responsible for Peutz‑Jeghers syndrome, an 
inherited cancer predisposition (12). Several sporadic tumors  
exhibited LKB1 promoter hypermethylation, reduced LKB1 
expression and somatic LKB1  mutations, indicating a role 
of the loss of LKB1 in cancer development and progression, 
potentially with additional oncogenic factors (13). LKB1 may 
also be repressed as a result of post‑transcriptional regulation 
by microRNAs (miRNA/miRs) (10), which generally serve to 
repress mRNA translation or promote mRNA degradation via 
partial complementary binding to the 3' untranslated region 
(3'‑UTR) of target mRNAs (14).

The role of LKB1 in NSCLC has previously been analysed; 
however, study is made difficult by the fact that the LKB1 
pathway involves multiple substrates that act on metabolism, 
apoptosis and the tumor microenvironment. Carretero et al (15) 
reported that NSCLC cells with loss of LKB1 exhibited higher 
nuclear expression of catenin β‑1 (CTNNB1); LKB1, in fact, 
appears to suppress the Wnt/CTNNB1 pathway, inhibiting 
the expression of downstream genes, including cyclin  D1 
(CCND1) and survivin. Additionally, lysyl oxidase (LOX) 
has been reported to be negatively regulated by LKB1 in 
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lung cancer, and yes‑associated protein 1 (YAP1) has been 
reported to be activated in lung adenocarcinoma as a result of 
a lack of LKB1 (16). In the present study, the mRNA expres-
sion of LKB1, CCND1, CTNNB1, LOX, YAP1, survivin and 
15 miRNAs involved in the LKB1 pathway was investigated 
using NanoString technology. LKB1 loss has been reported 
to be more common within KRAS‑mutant lung adenocar-
cinomas  (17), and therefore, KRAS mutations were also 
investigated.

The results presented provide indication that LKB1 pathway 
genes, with the involvement of miRNA regulation, may have 
a role in lung adenocarcinoma progression, representing novel 
potential targets for lung cancer therapy.

Patients and methods

Patients. A total of 88 lung adenocarcinoma patients were 
retrospectively selected from patients who were operated 
between January 2003 and December 2013 at the Unit of 
Thoracic Surgery of the University Hospital of Pisa (Pisa, 
Italy). Histological diagnoses were made according to the 
World Health Organization classification (9,18,19). Data on 
clinicopathological characteristics were collected for all 
patients (Table I). The study was conducted in accordance 
with the 1964 Helsinki declaration and the ethical standards of 
Institutional Research Committee of the University of Pisa, for 
the collection of lung cancer samples following surgery and 
the related informed consensus for molecular analysis. Patients 
≤50 years old were defined as the younger group (n=44), and 
patients >50 years old as the older group (n=44).

Target prediction. A total of 15 miRNAs (miRs ‑93, ‑96, ‑34a, 
‑34c, ‑214, ‑33a, ‑30b, ‑145, ‑182, ‑30c, ‑183, ‑29b, ‑29c, ‑153 
and ‑138) were selected based on their involvement in the 
LKB1 pathway (20‑29). Alignment of miRNAs with target 
genes (LKB1, CCND1, CTNNB1, LOX, YAP1 and survivin) was 
predicted by using the microRNA target prediction program 
(http://www.microrna.org).

DNA and RNA isolation. DNA, RNA and miRNAs were isolated 
from 5‑10 µm sections of formalin‑fixed (buffered formalin, 
for 24‑48 h at room temperature) and paraffin‑embedded 
(FFPE) resected tissues, performed immediately following 
surgery, following manual tumor macrodissection using a 
QIAamp DNA Mini kit (Qiagen GmbH, Hilden, Germany) 
and a miRNeasy FFPE kit (Qiagen GmbH), respectively, 
according to the manufacturer's instructions. The quality and 
concentration were assessed using a NanoDrop spectropho-
tometer (Thermo Fisher Scientific, Inc., Waltham, MA, USA).

NanoString nCounter® assay, data normalization and 
analysis. Expression of the 6 targeted mRNAs and 15 selected 
miRNAs was measured using the NanoString nCounter 
Technology system, according to the manufacturer's protocol 
(NanoString Technologies, Inc., Seattle, WA, USA). The 
nCounter measures the total counts of mRNAs/miRNAs 
through a multiplex hybridization assay, followed by scanning 
and digital readout of fluorescent probes in a high‑throughput 
manner (30). The nCounter custom code set used in the current 
study included the 6 targeted genes and 3 housekeeping genes 

as references (tubulin β, hypoxanthine phosphoribosyltrans-
ferase and phosphoglycerate kinase  1). Raw NanoString 
counts for each gene were subjected to technical and biological 
normalization using the positive control probe sets and three 
reference genes, respectively. miRNAs were normalized using 
a scaling factor based on the 5 miRNAs with the lowest vari-
ability coefficients according to the manufacturer's protocol.

KRAS mutation analysis. Pyrosequencing analysis was 
performed using the PyroMark Q96 ID platform (Diatech 
Pharmacogenetics SRL, Jesi, Italy) following the manufacturer's 
instructions in order to determine KRAS status. Codons 12, 
13, 61, 117 and 146 of the KRAS gene were analysed.

Statistical analysis. The normalized RNA hybridization data, 
presented as direct counts of digital reports, were analysed by 
using nSolver 2.5 analysis software (NanoString Technologies, 
Inc.). The χ2 test was applied to analyze lung adenocarcinoma 
patient characteristics in the two age groups and to deter-
mine the association between LKB1 and miR‑93 expression. 

Table I. Lung adenocarcinoma patient characteristics in the 
two groups.

Variable	 Young	 Old	 Total	 P‑value

Sample size	 44	 44	 88	‑
Age, years 	 46.3±3.9	 71.5±5.2	 58.9±13.4	‑
Sex	 0.02
  Male	 23	 33	 56
  Female	 21	 11	 32
Adenocarcinoma				    0.0004
prevalent pattern
  Lepidic	 13	 16	 29
  Solid	   9	 17	 26
  Acinar	 19	   3	 22
  Papillar	   3	   8	 11
Tumour grading				    0.07
  G1	   3	   0	   3
  G2	 30	 28	 58
  G3	 11	 16	 27
Stage				    0.79
  IA	   8	   9	 17
  IB	 14	   9	 23
  IIA	   6	   7	 13
  IIB	   4	   5	   9
  IIIA	 10	 13	 23
  IIIB	   1	   0	   1
  IV	   1	   1	   2
KRAS status 				    0.07
  Wild‑type	 31	 23	 54
  Mutant	 13	 21	 34

Age is provided as the mean ± standard deviation; all other values 
represent case number.
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Differential gene expression was determined by applying 
the non‑parametric t test and analysis of variance. Survival 
analyses were performed using the Kaplan‑Meier method 
with the log‑rank test and the Cox proportional hazard model. 
Statistical analyses were performed using JMP 10 software 
(SAS Institute, Inc., Cary, NC, USA), and two‑tailed P<0.05 
was considered to indicate statistical significance.

Results

Comparison of patient characteristics between the age groups. 
The current study was conducted in 88 patients with lung 
adenocarcinoma (56 males and 32 females). Patients ≤50 years 
old were defined as the younger group, and patients >50 years 
old as the older group. Among all patients, different histo-
logical subtypes of adenocarcinoma were identified; the most 
common histological subtypes were lepidic (29/88, 33.0%), 
solid (26/88, 29.5%), acinar (22/88, 25.0%), and papillar (11/88, 
12.5%). The median age at diagnosis was 54.5 years old (range, 
30‑81 years; mean, 58.9±13.4 years). Regarding grading, 3 
tumors (3.4%) were G1, whereas 58 (65.9%) and 27 (30.7%) 
were G2 and G3, respectively. The adenocarcinomas were 
all invasive, and stages 17 IA, 23 IB, 13 IIA, 9 IIB, 23 IIIA, 
1 IIIB, and 2 IV were identified, according to the World Health 
Organization classification  (9,18,19). The follow‑up data, 
disease-free interval (DFI) and overall survival (OS) were 
available for all patients and were last updated on March 2015.
Disease progression (recurrence/metastasis) was observed 
in 50 patients (56.8%; data not shown). Regarding smoking 
habits, there were 17 non‑smokers, 16 former smokers and 
23 current smokers; for 33 patients, the smoking data were 
not available. Regarding clinicopathological characteristics, 
overall gender distribution (P=0.02) as well as histological 

subtype distribution (P=0.0004) were significantly different 
between the younger and older cases (Table I).

Comparison of survival between the age groups. The median 
DFI and OS times of total patients (n=88) were 21 months 
(range, 0‑148) and 31.5 months (range, 3‑148), respectively.

The median DFI times were 22 months in younger patients 
and 21 months in older patients; the median OS times were 
36 and 23 months in the younger and older groups, respec-
tively. Survival analysis using the Kaplan‑Meier method with 
DFI and OS as endpoints did not identify a significant differ-
ence between younger patients and their elderly counterparts 
(Fig. 1).

LKB1 pathway expression. To investigate the role of the LKB1 
pathway in lung adenocarcinoma, first the levels of LKB1 were 
screened. As presented in Table II, there was no significant 
association of LKB1 expression with patient age, prevalent 
adenocarcinoma pattern or tumor grading; however, the data 
indicated a significant association of low LKB1 expression 
with male gender (P=0.03) and overall clinical stage (P=0.01) 
as well as a trend with the solid variant. Next it was investi-
gated whether the expression of downstream genes and their 
regulation was directly affected by LKB1 levels. Low LKB1 
expression was associated with low expression of CCND1 
(P<0.0001), CTNNB1 (P<0.0001) and YAP1 (P=0.0024; data 
not shown), suggesting regulation by LKB1. To test if LOX, 
one of the other LKB1 network partners, was an important 
downstream mediator of lung adenocarcinoma progression, its 
expression level was also assessed in the present adenocarci-
noma series. Notably, LOX levels in adenocarcinoma patients 
were significantly associated with histological subtype 
(P=0.03), as well as with stage (P<0.0001; Table III) distri-
bution, indicating that LOX activation may promote tumor 
progression. The samples were divided into high and low 
LOX expression groups based on the median LOX fold‑change 
value (median fold‑change, 132; mean, 141.82±88.9). Survival 
analysis was performed using the Kaplan‑Meier method with 
the post‑operative DFI and OS times as endpoints in order to 
evaluate the association between LOX expression and prog-
nosis in the adenocarcinoma patients. It was identified that 
adenocarcinoma cases with high LOX mRNA expression were 
associated with significantly shorter median DFI and OS times 
compared with the cases with low LOX expression (P=0.02 
and P=0.005, respectively; Fig. 2).

Taken together, these data support LKB1 signalling as a 
key pathway in lung adenocarcinoma, with a potential relevant 
role for LOX.

miRNA selection and expression. The microRNA target 
prediction program (http://www.microrna.org) was used to 
identify putative miRNA‑mRNA interactions in the LKB1 
pathway, and subsequently, the impact of the 15 selected 
miRNAs (miRs ‑93, ‑96, ‑34a, ‑34c, ‑214, ‑33a, ‑30b, ‑145, ‑182, 
‑30c, ‑183, ‑29b, ‑29c, ‑153 and ‑138) on the expression of target 
genes. Fig. 3 depicts the expression profiles across all the 
adenocarcinoma samples in the two age groups. The younger 
and older patients shared similar gene expression profiles; 
any differentially expressed genes in the LKB1 pathway were 
associated with modulated miRNA expression, suggesting 

Figure 1. Kaplan‑Meier curves for the analysis of (A) disease‑free interval 
and (B) overall survival in younger and older lung adenocarcinoma patients 
(n=44/group).
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that they were the gene targets of the modulated miRNAs. The 
seed region of miR‑93 was predicted to bind to one site, posi-
tion 287, in the human LKB1 3'‑UTR (Fig. 4). The samples were 
divided into high and low miR‑93 expression groups based on 
the median miR‑93 fold‑change value (median fold‑change, 
3.933; mean, 4.845.91±3.056 ); LKB1 expression was reduced 
in samples with high miR‑93 expression (χ2 test; P=0.0007; 
data not shown), indicating that this endogenous miRNA 
may suppress LKB1. No statistically significant association 
was identified between CCND1 and miR‑93 expression, even 
though decreased CCND1 levels tended to be observed in 
cases with high miR‑93 expression (P=0.11) and an alignment 
at position 1013 of the 3'‑UTR was identified (Fig. 4). LOX 
downregulation was observed in the lung adenocarcinoma 
specimens with high miR‑30b expression (P=0.04), and a 
direct interaction of this miRNA and the 3'‑UTR of the LOX 
gene at position 594 was identified (Fig. 4). Other potential 
miRNA binding sites within the LOX 3'‑UTR were identified 
(for miRs ‑145, ‑182, ‑30c, ‑183, ‑29b, ‑29c and ‑153); potential 
miRNA binding sites were also identified in YAP1 (miR‑138) 
and survivin (miR‑214‑3p), but neither of them were indicated 
to influence the expression levels of their mRNA targets (data 
not shown).

KRAS mutation analysis. Pyrosequencing analysis was 
performed to identify mutational hot‑spots of the KRAS 
gene. Among the 88 tumor specimens, 34 tumors (38%) were 

Table II. LKB1 expression in the 88 lung adenocarcinoma 
patients.

	 LKB1 expression,	
Variable	 mean ± SD	 P‑value

Age group		  0.21
  Younger (≤50 years)	 173.9±13.4
  Older (>50 years)	 149.8±13.4
Sex		  0.03
  Male	 146.9±11.6
  Female	 188.0±15.4
Prevalent		  0.24
adenocarcinoma pattern
  Lepidic	 184.9±16.4
  Solid	 137.9±17.3
  Acinar	 154.0±18.8
  Papillar	 173.1±26.7
Tumour grading		  0.14
  G1	 244.8±50.9
  G2	 166.1±11.5
  G3	 143.4±16.9
Stage		  0.01
  I	 192.2±13.5
  II	 129.8±18.2
  III‑IV	 142.3±16.7

LKB1, liver kinase B1; SD, standard deviation.

Table III. LOX expression in the 88 lung adenocarcinoma 
patients.

	 LOX expression,
Variable	 mean ± SD	 P‑value

Age group		  0.7
  Younger (≤50 years)	 137.6±13.4
  Older (>50 years)	 146.1±13.4
Sex	 0.05
  Male	 156.1±11.6
  Female	 116.9±15.4
Prevalent		  0.03
adenocarcinoma pattern
  Lepidic	 131.0±16.0
  Solid	 162.9±17.0
  Acinar	 159.6±18.4
  Papillar	 85.0±26.1
Tumour grading		  0.52
  G1	 147.5±51.5
  G2	 134.0±11.7
  G3	 157.9±17.1
Stage		  <0.0001
  I	 102.9±11.9
  II	 126.4±16.1
  III‑IV	 214.8±14.8

LOX, lysyl oxidase; SD, standard deviation.

Figure 2. Kaplan‑Meier curves for the survival analysis of (A) disease‑free 
interval and (B) overall survival in the 88 adenocarcinoma patients according 
to LOX expression level. LOX, lysyl oxidase.
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determined to have point mutations, 13/44 among younger and 
21/44 among older patients. However, no significant difference 
was identified in KRAS mutation distribution between the two 
age groups (P=0.07; Table I). Concerning the KRAS muta-
tion type, the G12C substitution was present in 15 samples 
(7 younger and 8 older patients); the G12V point mutation in 
11 samples (3 younger and 8 older patients); the G12D muta-
tion in 3 samples (1 younger and 2 older patients); the G12A 
mutation in 2 samples from the older cohort; the G12S and 
G13D in 1 sample each among younger patients, and Q61L 
mutations in only 1 older patient (Table IV).

Discussion

Lung cancer remains the main cause of cancer‑related mortality 
worldwide, and the age at diagnosis has been decreasing in 
recent years (2,4). Younger patients with lung cancer appear 
to exhibit distinct clinicopathological features: They are more 
commonly non‑smokers and female, and present a prevalence 
for adenocarcinoma and advanced disease; however, there is 
controversy regarding the outcome as it has been reported 
as improved by certain studies  (4,31) and unaffected by 
others (31‑34). Data on the management of adenocarcinoma 
in the elderly are insufficient (35‑39), and thus, whether young 
lung cancer patients have specific molecular and pathologic 

features or different survival outcomes remain unclear. In the 
present study, 44 lung adenocarcinoma patients ≤50 years old 
were selected as the younger group and 44 cases >50 years as 
the older group; a predominance of females was identified in 
the younger group, and the acinar pattern was most prevalent, 
which was in accordance with previous studies (4,40‑42). There 
were no significant differences in survival, in terms of DFI and 
OS, in young lung adenocarcinoma patients compared with 
the older age group. At present, there is no general consensus 
on the influence of age on survival, and this issue is open to 
question. Any discrepancies between reports may be due to the 
limited number of studies and to the specific cut‑off age used 
to separate younger from older patients; the current study used 
50 years old as the cut‑off value, according to several previous 
reports (2,43,44).

An aim of this retrospective study was also to focus on 
the expression pattern of LKB1 and its downstream signalling 
pathways, in order to evaluate their associations with clinico-
pathological features and prognoses in lung adenocarcinoma, 
comparing younger patients with their elderly counterparts.

Although there are currently no drugs in routine clinical 
use that specifically target LKB1, there is a growing number 
of approaches that may differentially benefit patients with a 
dysregulated LKB1 pathway (45‑49). A critical role for LKB1 
has been suggested in catenin‑beta1 signalling in lung cancer 
through its modulation of CCND1 and survivin gene expres-
sion (50). Additionally, LOX has been reported to be efficiently 
suppressed by LKB1, and YAP1 has been reported to be 
initially activated by LKB1 loss in lung ADC.

A mRNA panel was customized of the 6 abovementioned 
genes and 15 miRNAs involved in the LKB1 pathway, and 
expression profiling was performed with NanoString tech-
nology, a recently developed platform that can make direct 
multiplexed measurements of expression through digital 
readouts of the abundance of mRNA/miRNA transcripts (51). 
Several studies have indicated that the NanoString technique 
is a reliable and flexible method for the assessment of gene 
expression in limited FFPE tissues, and it has exhibited similar 
results using fresh‑frozen tissue (52‑54). This field appears to 
be of importance, since FFPE represents most of the specimens 

Figure 3. Comparison of gene expression profiles of younger and older lung adenocarcinoma patients. A heat map is presented of unsupervised hierarchical 
clustering of 6 genes and 15 miRNAs from the Nanostring gene panel based on samples from young (AG) and old (AMG) lung adenocarcinoma patients. Green 
indicates relatively underexpressed genes; and red indicates relatively overexpressed genes. The genes and miRNAs tested did not separate younger and older 
patients. miRNA/miR, microRNA; hsa, homo sapiens; LKB1, LKB1, liver kinase B1; CTNNB1, catenin β‑1; CCND1, cyclin D1; LOX, lysyl oxidase; YAP1, 
yes‑associated protein 1.

Figure 4. MicroRNA alignment with (A) LKB1, (B) CCND1 and (C) LOX 
mRNA by the target prediction program (http://www.microrna.org). SVR 
indicates the miRNA‑target prediction algorithm based on a supervised 
vector regression (SVR) model. miR, microRNA; hsa, homo sapiens; LKB1, 
liver kinase B1; CCND1, cyclin D1; LOX, lysyl oxidase.
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collected in routine diagnostic pathology, and it will allow for 
the connection of clinical follow‑up data to large numbers of 
patients (55); therefore, the NanoString methodology may be 
readily adapted clinically as a highly reproducible alternative 
to quantitative polymerase chain reaction and sequencing 
methods (56).

LKB1 has different molecular targets, and thus, screening 
of the LKB1 signalling pathway appears a necessary step to 
explain its suppressive function in cancer cell biology. No 
differences in LKB1 levels and KRAS mutation rates were 
identified between young and older patients, possibly due to 
the biological heterogeneity of KRAS‑mutant lung adenocar-
cinomas, to the relatively small group size, and/or to other 
underlying molecular differences such as epidermal growth 
factor mutations or anaplastic lymphoma kinase transloca-
tions (18). Notably, low LKB1 expression was apparent in the 
solid histological subtype, and high expression in females and 
early clinical stage, which suggest an important role for LKB1 
in inhibiting the growth of lung cancer cells, considering that 
the solid subtype, male gender and advanced stages are report-
edly survival disadvantages in lung adenocarcinoma  (57). 
However, it remains unclear how LKB1 loss contributes to 
lung carcinogenesis, and the post‑transcriptional regulation 
of LKB1 may play a central role. The current results also 
predicted that miR‑93 may be able to downregulate LKB1 and 
CCND1, consequently leading to the loss of LKB1‑dependent 
tumor suppression; such is in agreement with previous studies 
reporting that high levels of miR‑93 (58) and low levels of 
LKB1 (59) as well as CCND1 (60) were correlated with poor 
survival among lung cancer patients.

The current study also attempted to elucidate the involve-
ment of LOX. It is reported that the tumor microenvironment 
serves a critical role in tumorigenesis (61), and that LOX, due 
to its influence on the cellular microenvironment, may be a 
target for cancer therapy  (62,63). The current data further 
indicated that aberrant LOX expression was involved in lung 
carcinogenesis and cancer progression, revealing that LOX 
levels in adenocarcinoma patients were significantly associated 
with overall stage distribution and poor prognosis regardless of 

age at diagnosis. Furthermore, the findings indicated that the 
observed positive prognostic effect of LOX was associated, at 
least in part, to miR‑30b regulation, confirming the conclusions 
by Zhong et al (64) regarding a central role of this miRNA 
in NSCLC suppression. However, the impact of LOX remains 
incompletely clear; it is possible that there exists multiple forms 
of LOX proteins (65), and it is not known whether the signal-
ling components downstream of LKB1, including LOX, may be 
involved in an LKB1‑independent manner; further studies will 
be required to reach a conclusive point.

The finding that LKB1 and LOX may be repressed 
by specific miRNAs establishes a regulatory link within 
the LKB1 tumor suppressor pathway; miRNA‑dependent 
post‑transcriptional regulation of LKB1 may be an alterna-
tive to inactivating LKB1 mutations, which are rare among 
sporadic tumors (10). Additional study on LKB1 pathways 
and other components of the LKB1 complex may expand 
knowledge regarding tumor metabolism and growth potential 
in lung adenocarcinoma.
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