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Alkaline-earth(-like) atoms, trapped in optical lattices and in the presence of an external gauge field, can
form insulating states at given fractional fillings. We will show that, by exploiting these properties, it is
possible to realize a topological fractional pump. Our analysis is based on a many-body adiabatic
expansion, on simulations with time-dependent matrix product states, and, for a specific form of atom-atom
interaction, on an exactly solvable model of fractional pump. The numerical simulations allow us to
consider a realistic setup amenable of an experimental realization. As a further consequence, the measure of
the center-of-mass shift of the atomic cloud would constitute the first measurement of a many-body Chern

number in a cold-atom experiment.
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Introduction.—Since the invention of the Archimedean
screw, it has been known that matter and energy can be
transported, or pumped, without imposing any external
bias, but with a periodic modulation of some system
parameters. Investigations of pumping in quantum systems
encompass a wide range of phenomena and applications
(see, e.g., Refs. [1,2]). In the adiabatic limit, quantum
pumping is of geometric nature, being related to the Berry
phase (or its generalizations) accumulated during the cycle
[3]; in some cases, the phase has a further fopological
nature and displays quantization properties. This is what
Thouless first considered [4], showing that in certain one-
dimensional insulators the pumped charge is quantized; the
experimental demonstration had to wait for three decades
till its recent realization with cold atoms [5,6].

Interest in states of matter supporting forms of fraction-
alization (e.g., interacting topological systems [7—12]) grew
enormously in recent years. An appealing exploration
avenue is the search for signatures in measurable quantities,
such as the quantization to rational values of the conduct-
ance characterizing the fractional quantum Hall effect
(QHE) [13]. With this motivation, we here investigate
the probe of phases of matter supporting the topological
pump of a fractional charge.

In this Letter, we focus on cold atoms, where, despite
numerous experimental results for free systems [14—18],
evidence for fractional topological properties is still miss-
ing. We discuss a realistic fractional pumping experiment
for interacting alkaline-earth(-like) atoms trapped in one-
dimensional optical lattices and subjected to an external
gauge field. The measurement of the center-of-mass motion
of the gas gives access to the pumped charge and thus to the
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many-body Chern number of the ground states [19,20].
This is different from measuring the Chern number of the
energy bands of free systems, as reflected by the quantiza-
tion to fractional values of the pumped charge (or better
mass, since atoms are neutral).

Our work is motivated by several previous theoretical
studies. The connection between Chern numbers and
center-of-mass motion of the cloud was considered in
Refs. [21-24]. Using a static analysis of the Hamiltonian
spectral flow, some aspects of fractional pumping were
discussed for specific bosonic models [25] and fermionic
ladders [26], although in the latter case quantization is not
expected due to gapless edge modes. Topological pumping
was addressed in interacting bosons on a lattice with
inversion symmetry breaking [27,28] and in photonic
systems with nonlinear resonators arrays [29].

Our proposal for a fractional topological pump is already
realizable thanks to the progress of experiments with alkaline-
earth(-like) gases [5,30-39], encompassing the observations
of interaction effects [34] and the engineering of synthetic
gauge fields [35]. This calls for a detailed dynamical analysis
of pumping in this system: we accomplish this task using an
adiabatic expansion and time-dependent many-body algo-
rithms based on matrix product states. We address finite-size
and nonadiabatic corrections, the role of the trap, and the
detection protocol [5,40]. By elucidating the relation between
the pump and the topology of many-body states, we also
clarify their relation with the fractional QHE [13,41].

Model.—We consider a one-dimensional gas of N
alkaline-earth(-like) fermions with 27 + 1 nuclear spin
states [31,34] coupled through Raman beams [35-37,42]
and trapped in an optical lattice (see Fig. 1 for Z = 1).
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FIG. 1. Left: Three contiguous nuclear spin states of '3Yb
(F =5/2) are coupled through independent Raman couplings
which adiabatically eliminate long-lived excited states (P,
F’ =17/2). Energies are not in scale. By coupling only a subset
of the nuclear spin states, an effective spin Z = 1 is obtained.
Right: The system geometry with periodic boundaries is a thin
torus with a long real dimension and a length-three synthetic one.
Two fluxes, @ and Dy, pierce the noncontractible circles. A flux
y trades every synthetic plaquette.

The Hamiltonian, in the single-band approximation, reads
(h=1)
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The operator ¢; , annihilates (creates) a fermion of nuclear

spin m=-Z1,...,7 at site j=1,...,L (here, 7;, =
and 7; =3,7;,). The first term in the rhs
represents the hopping along the optical lattice, with
amplitude 7. The second term accounts for spin flips induced
by Raman beams (Fig. 1); we take € independent of m since
experimental schemes exist which allow for setting them to
the approximatively same value [43]. The term correspond-
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ing to ?:;I ¢;.7+1 should be understood as (A:;Ié .1, Tequiring
a similarly engineered Raman transition [43]. As exper-
imentally realized [35], the angle between Raman beams
induces a site-dependent complex amplitude e~7/, with y
mimicking a static gauge potential. Interactions are typically
short-ranged and SU(2Z + 1) invariant [32,44]; this leads to
the choice U7 = (U/2)[1 = 8,,,,4]8; ; + V&; ;1.1 With on-
site and nearest-neighbor couplings U and V, respectively.
The experimentally relevant case V = 0 is discussed in the
final part of the Letter. The last term in Eq. (1) is the
harmonic confinement of strength w,, centered around
Jo = (L + 1)/2. We will study a lattice of L sites both with
periodic and open boundary conditions; while the former
case allows for an elegant analytical approach, the latter one
is experimentally relevant.

The Hamiltonian Eq. (1) can be seen as a spinless-
fermion model on a L x (2Z + 1) cylinder (torus) for open
(periodic) boundaries [45] pierced by a flux per plaquette y
[42]. The spin index m acquires the meaning of a lattice
label in the synthetic direction (Fig. 1); in this Letter, the
system always has periodic boundary conditions in the
synthetic dimension. At fractional values of filling [46],
v=2zN/[(2Z + 1)Ly] = p/q, a gapped phase may form
[36]; here, the ground states display both density and spin
order. The charge order is visible, for example, in the left-
hand panel of Fig. 3. Because of the presence of a spiral-like
ordering in the (nuclear-spin) magnetization, these phases
have been termed magnetic crystals [36].

In order to realize a pump, the amplitudes ¢ and Q in
Eq. (1) must vary in time [37]; i.e., t — #(z) = te'®=(D)/L
and Q — Q(7) = Qe'®s(?/C1+1) The phases ®p () re-
present time-dependent fluxes piercing, respectively, real
and synthetic circles (Fig. 1). The crystals realize a frac-
tional topological pump by adiabatically varying them from
0 to 2z in a period 7. This scheme parallels Laughlin’s
argument for QHE [47].

Topological fractional pump.—We first consider peri-
odic boundaries and no trap. We characterize the pump by
performing a next-to-adiabatic expansion [48] of the
Schrodinger equation T7'id|W(s))=H(s)|¥(s)) with
rescaled time s =7/T and assuming a slow periodic
variation of the phases ® (7). The magnetic crystals at
filling v = p/q are g-fold degenerate on a torus. For any
instantaneous energy level E,, (s), we introduce the multiplet
of eigenvectors |n"(s)). Thus, |0"(s=0)), withh = 1, ..., q,
represents one of the ground states in which the system is
initialized.

We focus on pumping along the real direction, with
®g(7) = 277/T and Dy kept constant in time (one can
similarly analyze a possible pump in the synthetic dimen-
sion [49]). The atomic mass transferred in one period when

the system is initialized in [0"(s = 0)) is Q;h)(T), where
Q§h> (0)=T>_, OT/TdsO(.R) (@) and the current oper-

J.m

ator is jﬁi(d)R):ite"q’R/Lé;méjH.erH.c. We use the
notation Q) for values averaged over different sites,
dropping 7 when referring to one cycle. This expression
can be expanded in powers of T~! using the next-to-
adiabatic expansion for |¥”(s)) mentioned above (see also
Refs. [50,51]). The zeroth-order term accounts for the
ground-state persistent current, and vanishes when @, = 0.
The quantized pumped mass Qp follows from the first-
order term; higher-order ones account for nonadiabatic
corrections. Further details are given in the Supplemental
Material [49].

Since the pumped mass Qp is independent of the initial
eigenstate, it is convenient to average over the g possible
initial states, Qp = q_IZhQ(h), obtaining [49]

.2 1
Op = l[) d‘bsaZ[ng]hh- (2)

h

230402-2



PRL 118, 230402 (2017)

PHYSICAL REVIEW LETTERS

week ending
9 JUNE 2017

Because of ground-space degeneracy, Qp is related to the
Wilczek-Zee (WZ) [52] curvature matrix [Qyz]"" =
(016,07 |15, 0"") 3 (0,07 [07) (0], 0" )] + Hc. By
averaging over the constant flux ®x, we obtain

2
I#dCD hh:qu_ 5)

The closed surface integral over the trace of the curvature
C, is the integer topological invariant known as the non-
Abelian first Chern number [53]. Equation (3) is crucial for
our proposal: it shows that a system whose ground state is
degenerate can pump a charge that is topological, frac-
tional, and related to the many-body Chern number. In the
following, we demonstrate that model Eq. (1) features such
a property when its parameters are such that the ground
state is a magnetic crystal.

A first glimpse of topological pumping with magnetic
crystals is provided by the following exactly solvable model.
We consider a hard-core interaction of range £ in the real
dimension, U;.’f,t'”/ — oo for |i — j| < & and zero otherwise.
We can eliminate the £ empty rungs to the right of the N — 1
particles along the real dimension, and write an effective
model on a system of reduced length, L' = L — (N — 1)&
[49,54,55] (for open boundary conditions). Hard-core par-
ticles hop in the reduced lattice similarly to before: this part of
the Hamiltonian is formally unchanged [49]. The spin flip is
also formally unchanged, but the site-dependent phase y is
replaced by yj + y& Z;,_:l | iy, thus introducing a nonlocal
term. When the flux satisfies yé = 2za, with a € N, the
model turns local again. Through this flux-attachment trans-
formation [56], we obtain a model characterized by hard-core
on-site interactions with modified filling 2/ = vL/L’. Thus,
when L'/L = ¢ (¢ € N), the mapping relates the fractional
filling v/ = p/q to the integer filling v = p. In these cases,
we can relate the topological integral (Qp)e, in Eq. (3) to
(Q%)e, (the pumping in the effective model) by observing
that ®p/L in the time-dependent Hamiltonian equals
®rq/L’, thus obtaining: (Qp)e, =(Qp)e,/q [49]. To com-
pute (Q)q,, We observe that for zero on-site interaction the
system is in a gapped phase characterized by (Q}p)g, = P
Since we expect that repulsive interactions stabilize the gap
without encountering phase transitions, (Q) 4, = p also for
our effective model [49]. Concluding, (Qp)e, = P/q-

The corrections to pumping due to finite-size and non-
adiabatic effects are estimated as [57]

Qp =Ci/q+O(L™) + O((TA) f(TA)).  (4)
where A is the time-averaged energy gap. The first
correction stems from the fact that, in general, changing
a twisted boundary condition into an open one introduces a
difference scaling as 1/L (averaging over @y cancels the
error even at finite size). Nonadiabatic corrections descend

from explicit inspection, and f(x) ~ A + Bcos(x + ¢) (A
B, ¢ are computable constants) [49].

Numerical simulations.—The model presented above is
not experimentally relevant at present. We thus simulate
Eq. (1) for Z =1 and y = n/3, focusing on the fractions
v=1/2 (with no counterpart in 2D Hall physics) and
v = 1/3. Nearest-neighbor interactions are needed to stabi-
lize both crystals [36]. Simulations are based on a time-
dependent matrix-product-state approach: the evolution oper-
ator is decomposed using a fourth-order Trotter approxima-
tion with time steps between 10=3#~! and 1072~ keeping a
bond link up to 200 [58]. Open boundaries and pumping in
the real dimension (® = 0), relevant for experiments, are
considered.

The left-hand panel of Fig. 2 shows, at fixed 7', the space-

resolved pumped charge Qﬁ-h)(r) for a specific crystal
labeled by hA. Since it is inhomogeneous, it displays a
dependence on j, with periodicity £ = 4 for v = 1/2 and
¢ = 6 forv = 1/3 (7 is the space periodicity of the density
profile; here, # =n~!, where n = N/L is the particle
density). As the average over 7 sites Q,, does not depend

on & [while Q;h) (7) does, due to the hard boundaries], we can

drop the apex (&) and quantization is restored after perform-
ing a spatial average over ¢ sites. In the right-hand panels,
we show that the 7" dependence of this averaged value
Q.. (t = T) oscillates around the quantized values, with a
vanishing amplitude in the adiabatic limit (the charge
transferred in a fraction of the pumping period is also
quantized [59]).

The quantization of Q,, can also be observed by looking
at the dynamics of magnetic crystals. In the left-hand panel
of Fig. 3, we show the time evolution of density profiles at
v =1/3: for large T, the particles moved by two sites
[25,37]. To understand this, we consider the eigenvalues of
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FIG. 2. Pumped charge after one period for a system with hard-
wall boundaries, L =48,y = /3, U/t = o0, V/t = 10; Q/t =
1 forv =1/2 and Q/t = 0.25 for v = 1/3. Left: Space-resolved
charge Qﬁ»m (z) for v =1/2 and T = 24. Right: Pumped charge
Q. (T) as a function of period T for v = 1/2 (top) and v = 1/3
(bottom). Dashed lines show quantized values. The pumped
charge is independent of the initial eigenstate.
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FIG. 3. Left: Time evolution of the density profile at v = 1/3.
The parameters are specified in the caption of Fig. 2; T = 100,
For such a value of T, the system is essentially in the instanta-
neous ground state at all times. Right: Flux dependence of

€j.1—0(®Ps).

the spin-flip term [the one proportional to  in Eq. (1)],
€;,(®g) = cos[(224 — Dg) /(2T + 1) +yj], which are
labeled by 4 =0, ...,2Z. They correspond to momentum
states along the synthetic dimension. In the right-hand
panel we plot their adiabatic time evolution for j = 1,...,6
and A = 0. Because of hopping, the crossings turn into
avoided crossings which can be adiabatically followed for
large enough 7. A particle initially sitting at j =3 is
transported to j =4 at t = T/2 (or @y = ) and then to
J=5atz =T (or ®g = 2x). From the definition of ¢; , we
infer that, in a pump period, particles are adiabatically
transported along Aj = 2x/[(2Z + 1)y] sites. The net
pumped mass is given by the product nAj = v, which is
fractional, and agrees with our numerics.

Itis intriguing that the pumped charge is related to a many-
body Chern number, the topological invariant that character-
izes the wave functions of the fractional QHE by twisting the
boundary conditions. Since magnetic crystals are related to
the QHE in the thin-torus limit, where the second dimension is
the shortest length scale, this shows that in this limit the
topological invariant persists. However, these states do not
display topological order, as reflected by the existence of
crystals at all fillings v = p/q, whereas in two dimensions the
fractional QHE states only appear for odd ¢. Thus, fractional
pumping does not require the existence of a counterpart
gapped state in the two-dimensional version of the QHE and
appears in all fractional gapped states of the anisotropic limit.

Experimental detection.—In order to ascertain the pos-
sibility of measuring the fractional pump, we consider the
role of a trapping potential and analyze measurable quan-
tities that carry information about pumping. We switch to
y = 2x/3, which allows the appearance of magnetic crystals
at v=1/2 in the relevant case of no nearest-neighbor
interaction, V = 0.

The pumped charge can be experimentally estimated
through the center-of-mass displacement of the cloud

40 50

30
T[]

FIG. 4. Center-of-mass displacement of the cloud A, (T)/¢
(top) and pumped charge Q,,(7T) (bottom) versus 7 for a
magnetic crystal with » = 1/2 in a harmonic potential. Dashed
lines show quantized values. In order to observe the oscillations
due to nonadiabatic corrections, a time resolution ~¢~! is needed.
The figure indicates that the small metallic wings at the crystal
edges, due to the harmonic potential, do not significantly affect
the quantization. Parameters: y = 27z/3, U/t = 00, Q/t =1,
wo/t = 0.01, L =48, N = 10.

A. . (T) [40]. At low fillings, like in Fig. 4, the system is
almost entirely in a magnetic crystal and the motion of the
whole cloud can be directly related to pumping. In the top
panel, we plot A, (T) = A.,.(T)/¢ [40]. We observe a
good quantization of A, , and an excellent comparison
with the pumped charge Q,,(T) (bottom panel), apart from
the expected nonadiabatic corrections. The harmonic trap
helps the pumping, because the soft boundaries act as source
and drain leads.

Ultracold '3Yb gases with Z = 1 have already been
realized [34,35], and realistic schemes exist for multi-
photon coupling between m = +1 states [37,43]. Oy is a
global phase associated to the spin-flip Raman beams, and
can be manipulated in time [37]. ®p is instead irrelevant.
Measurements of center-of-mass displacements can be
performed [5], and executing several pump cycles can
make the effect more detectable. Real-space currents can be
detected by asymmetries in the spin-resolved momentum
distribution function measured with time-of-flight imaging
[35,38]. The largest value T = 507! in Fig. 4 corresponds
to 80 ms, taking ¢ ~ 2z x 100 Hz.

In conclusion, we comment on two additional sources of
imperfect quantization: the presence of multiple copies of the
system and the effect of finite temperature. A microscope with
single-site addressing resolution would allow the possibility
of analyzing only the tubes where the density-flux commen-
surability requirement is matched. Alternatively, following
the approach of Ref. [6], an optical superlattice can be used to
adiabatically turn a Mott insulator with one particle every two
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sites into a magnetic crystal. We performed numerical
simulations to analyze an adapted version of the adiabatic
preparation to our case; the results, detailed in the last section
of Ref. [49], show that this approach can be very fruitful.
Following Ref. [6], almost all tubes are carved out of the Mott
insulator, and thus produce the fractional pumping discussed
thus far. The presence of a thin surrounding superfluid shell,
introducing a spurious signal, was tamed in Ref. [6] and thus
is predicted to be inessential also here. Regarding temper-
ature, it should be lower than the gap (see Ref. [4] for the
integer Thouless pump); for v = 1/2, the gap is comparable
to ¢ [36].

If experimentally realized, this measurement would
constitute a pioneering direct observation of a many-body
Chern number.
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Note added.—Recently, we became aware of a related work
by Zeng, Zhu, and Sheng [60] for the fractional pumping in
interacting bosonic systems.
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