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Abstract— This paper proposes a stochastic control strategy,
namely the unsynchronized Addictive Increase Multiplicative
Decrease (AIMD) algorithm, to manage the power flow of
interconnected microgrids (MGs). The proposed control aims
at achieving a trade-off between the individual utility function
of each MG while ensuring the stability of the grid. Both
centralized and decentralized AIMD approaches are considered
and compared. Extensive Monte Carlo simulations are performed
on the IEEE 39-bus system, and show that the proposed control
strategy is able to provide the sought trade-off.

Index Terms— Microgrid, energy management systems, dis-
tributed energy resources, decentralized stochastic control.

I. INTRODUCTION

Microgrids (MGs) are flexible cells operating at low voltage
distribution network, composed of Distributed Energy Re-
sources (DERs), including wind and solar plants, controllable
and non-controllable loads, storage devices and possibly elec-
tric vehicles. The main feature of MGs is that they can operate
both connected to the outer ac power grid and disconnected
from it, i.e., in islanded mode [1], [2]. The Energy Manage-
ment System (EMS) represents the intelligent core of the MG,
and is responsible for choosing the “optimal” operation mode.

Initially, MGs were intended as standalone electricity supply
systems in remote regions, but recent advances in gener-
ation technologies, including the increasing penetration of
distributed energy resources, have raised the interest of the
power community of splitting the existing power grids into
semi-independent MGs [3], [4]. This approach potentially
provides several advantages, e.g., it improves grid resiliency;
simplifies control hierarchy; and leads to efficient decentral-
ized regulation. Despite such promising premises, the idea of
shifting from a top-down power grid to a grid of interconnected
MGs is still in its infancy.

The scientific research carried out so far has mainly focused
its attention on the analysis of single, often islanded, MGs.
With this regard, research has mostly focused on the optimiza-
tion of the scheduling of generation units and loads [5]–[7];
and the stability analysis of a MG when is switches between
interconnected and islanded modes [8]–[10]. MGs also present

Pietro Ferraro and Emanuele Crisostomi are with the Department of Energy,
Systems, Territory and Constructions Engineering, University of Pisa, Italy.
(e-mails: pietro.ferraro@unipi.it, emanuele.crisostomi@unipi.it).

Robert Shorten and Federico Milano are with the School of Electrical and
Electronic Engineering of the University College Dublin, Belfield, Ireland.
(e-mail: robert.shorten@ucd.ie, federico.milano@ucd.ie).

Federico Milano is funded by Science Foundation Ireland under Grant
No. SFI/15/IA/3074 and by European Commission under the RESERVE
Consortium (grant No. 727481).

technical challenges related to the very low rotational inertia
introduced. An overview regarding the impact of the power
system frequency stability has been provided in [11]. Angle
and voltage stability as a function of penetration of MGs in
the ac grid, is analyzed in [12] and an analytical approach to
evaluate the effects of lowering the system inertia is proposed
in [13].

Very few works consider the effects of the interactions
among several grid-connected MGs, and the impact of the MG
energy management system on the power grid. This is mainly
due to the difficulty of modeling such a large-scale and high-
granularity power system with the required level of accuracy.
In this context, realistic simulations performed in [14] and
[15] showed that a large number of MGs that opportunistically
manage their power flow to optimize some individual internal
utility function (e.g., revenues in selling energies) may cause
large frequency deviations of the interconnecting transmission
system, eventually endangering the stability of the grid as a
whole. Conclusions drawn in [14] and [15] suggest the need
to design appropriate control methods to maintain the power
grid within safe operational boundaries as the number of MGs
increases.

A possible, yet conservative solution to the problem above
is proposed in [16], which considers a distributed stochastic
controller to improve the security of the grid and, at the
same time, allow each MG to maintain their operational
freedom. The rationale for a stochastic approach, as opposed
to a deterministic one, is that the latter would require heavy
communication, either among the many MGs or through a cen-
tralized base station, in order to be effective. This requirement,
besides the obvious economic disadvantages and robustness
issues [17], might also give rise to privacy concerns [18].

When dealing with a large number of independent units, a
stochastic approach ensures that, in average, the system will
converge to a predetermined average behavior without the need
for communication among the units. Moreover, the autonomy
of each unit and the introduction of stochasticity in the control
actions prevent the occurrence of harmful behaviors, such as
the undesired synchronization of the control actions of the
MGs, that can be harmful for the system stability [19].

Based on the models discussed in [15], [16], this paper pro-
poses a new strategy that allows MGs to operate autonomously
as much as possible, according to their individual utility
functions, and, at the same time, helps reducing frequency
deviations and, hence, power unbalance.

Specific contributions of this work are as follows.
• The unsynchronized Addictive Increase Multiplicative



PSfrag replacements

Noise

Microgrid
Turbine

Governor

Synchronous Machine

EMS Load

Load

DER

Storage

Demand

Transmission

Network

Electricity

Market

ωCOI

λ

λ

+ −

−

pD

pG

pdem

pgen pmech
pout

pref

pl

pl

pg pg

pst
s

Fig. 1: Structure of the interaction between MGs, load demand, generators, the transmission network and the electricity market.

Decrease (AIMD) algorithm [18] is used for the first
time in this context to mitigate the negative effects of
the penetration of MGs on the frequency deviation of the
transmission system.

• We compare a centralized solution of the AIMD-based
strategy, where a system-wide average frequency esti-
mation, e.g., the center of inertia, is utilized, with a
completely decentralized version, where measured local
bus frequencies are used instead. The comparison is
performed in terms of frequency stability, fairness and
operational flexibility.

• The proposed solution is shown to outperform the more
conventional control strategy proposed in [16], where
simple nonlinear PI-based controllers had been used to
decide when MGs had to switch from a “greedy” mode
to a cooperative mode.

The remainder of the paper is organized as follows. Section
II illustrates the models of the power system, the electricity
market, the MGs with their energy management systems, the
control problem and the bus frequency estimator. Section III
presents the AIMD algorithm and the proposed centralized and
decentralized stochastic control schemes. Section IV discusses
the case study where the proposed controls are compared.
To this aim, a set of Monte Carlo stochastic time domain
simulations are carried out based on the IEEE 39-bus system.
Finally, main conclusions are outlined in Section V.

II. MODELING

In this paper, each MG is modeled using stochastic dif-
ferential equations, taking into account loads, DERs and
storage units. These elements are coordinated by an EMS
which is responsible, among other tasks (e.g., load shedding,
internal power flow management, transition to island mode),
to establish the active power set point that the MG sells or
buys from the electrical grid [3]. The following assumptions
are made:
• MGs internal dynamics are, at least, one order of mag-

nitude smaller than the ones of the high voltage trans-
mission system [3], [20], [21]. On the basis of this
consideration, their dynamics is neglected and they are
treated as algebraic variables;

• Although each MG is composed of a different amount
of storage units, DERs and loads, to reduce the com-

putational burden, we used an aggregated model for all
these units. This assumption can be relaxed, assuming
distributed DERs, storage units and loads at the expense
of a higher computational burden.

Figure 1 shows a simplified scheme that illustrates the
interactions of MGs, generators and load demands with the
transmission system and the electricity market. For simplicity
of representation, only one MG, generator and load are rep-
resented in the figure. The remainder of this section describes
the mathematical models of all the elements that compose
Fig. 1 and that were implemented to carry out the simulations
of the case study, namely, the power system, the electricity
market, MGs, the estimation of bus frequencies, and the
control problem.

A. Power System Model

The model of the power system considered in the case study
is based on a set of hybrid differential algebraic equations [22],
as follows:

ẋ = f(x,y,u) (1)
0 = g(x,y,u)

where f (f : Rp+q+s 7→ Rp) are the differential equations; g
(g : Rp+q+s 7→ Rq) are the algebraic equations; x (x ∈ Rp)
are the state variables; y (y ∈ Rq) are the algebraic variables;
and u (u ∈ Rs) are discrete events, which model the EMS
logic of MGs.

The differential equations f in (1) include conventional
dynamic models of synchronous machines (e.g., 6th order
models), their controllers, such as, automatic voltage regu-
lators, turbine governors, and power system stabilizers. For
space limitations, we do not report here all dynamic models
considered in the case study. The interested reader can find a
thorough descriptions of all these models in [23].

The algebraic equations g in (1) model auxiliary variables
as well as the voltage phasors and power injections of trans-
mission network, whose lines and transformers are defined by
lumped models, as follows:

ph = vh
∑
k∈B

vk(ghk cos θhk + bhk sin θhk), h ∈ B (2)

qh = vh
∑
k∈B

vk(ghk sin θhk − bhk cos θhk), h ∈ B
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where B is the set of network buses; vh and vk are the voltage
magnitudes at buses h and k, respectively; θhk = θh − θk are
the differences of the voltage phase angles between bus h and
k; ghk + jbhk are the elements of the network admittance
matrix [23]; and ph and qh are the total active and reactive
power injections, respectively, at bus h.

As discussed in the remainder of this section, (1) also
include market dynamics (see Subsection II-B), and the MG
dynamic components, such as DERs, storage devices and loads
as well as the MG energy management system and control (see
Subsection II-C).

B. Electricity Market Model

In this work, it is assumed that the MGs try to maximize
their revenues. The decisions of the EMS of the MGs are thus
driven by the price of electricity and there is the need to prop-
erly account for the market behavior. As thoroughly discussed
in [14] and [15], in fact, the market plays a prominent role in
the dynamic response of the interconnected MGs. Hence, in
the case study, the electricity market is modeled as in [14].

This model is based on [24], where power system dynamics
are assumed to be coupled with a real-time – or spot – elec-
tricity market, also modeled based on differential equations.
These represent an ideal market for which the energy price λ,
assumed to be a continuous state variable, is computed and
adjusted rapidly enough with respect to the dynamic response
of the transmission system, e.g., PJM, California, etc.

For clarity, we give below the equations that describes
market dynamics. The main assumptions are:
• Price variations are driven by the grid energy imbalance.
• An excess of supply decreases the price of energy while

an excess of demand increases it.
• The market is ideal and that there is a single energy price.

If there are n power suppliers and m power consumers,
generator and load active powers dynamics are linked to the
market clearing price λ based on a dynamic version of their
bidding functions, as follows [24]:

TGiṗGi = λ− cGipGi − bGi (3)
TDiṗDi = −λ− cDipDi − bDi ,

where pGi are the power orders of the n suppliers connected
to the grid; pDj are the active power consumption of m loads
connected to the grid; cGi, cDi and bGi, bDi are proportional
and fixed bid coefficients, respectively, as in conventional
auction models; and TGi and TDi are time constants mod-
eling generator and demand, respectively, delayed response to
variations of the market clearing price λ.

The quantities pGi are the input signals to the turbine
governors of the synchronous machines. The actual active
power generation pgen of the synchronous machines follows
the dynamics of the governor, the turbine and the generator.
The quantities pDi, on the other hand, are the rated power
consumptions imposed by the load demands, which are as-
sumed to have a constant power factor. In Fig. 1, we have
indicated the actual consumption of the loads as pdem, to take
into account that actual load consumptions may depend on the
bus voltage magnitude [23].

The market clearing price λ is also modelled as a state
variable, with a continuous dynamic, as follows:

Tλλ̇ = KE(1− ωCOI)− λ , (4)

where KE and Tλ are parameters that depend on the design
of the market itself; and ωCOI is the frequency of the COI,
defined as

ωCOI =

∑r
i=1Hiωi∑r
i=1Hi

, (5)

where ωi and Hi are, respectively, the frequency and the
moment of inertia of the i-th synchronous machine, and r is
the number of conventional generators in the grid.1

In (4), ωCOI serves to define the overall power unbalance
of the system. If ωCOI > 1, in fact, the generation exceeds
the demand, while if ωCOI < 1, the demand exceeds the
generation. Since the transient behavior of ωCOI is a con-
sequence of the dynamic response of synchronous machines
which are connected to the load through the transmission
grid (see equation (2)), ωCOI implicitly takes into account the
effect of machine regulation as well as of network losses. The
interested reader can find more details on this model and its
notation in [14].

C. Microgrid Model

The elements that compose the microgrid are the load, the
DER, the storage device and the Energy Management System
(EMS). The latter is responsible for the MG active power set
point.

The dynamic of the aggregated storage device model is
ruled by the following equation, which is the continuous-time
equivalent of the model used in [25],

Tcṡ = pst = pg − pl − pout (6)

where s is the state of charge of the MG, Tc is the time
constant of the storage active power controller, pst is the power
generated or absorbed by the storage device (pst > 0 if the
storage is charging); pout is the power output of the MG;
and pg and pl are the produced active power and the local
loads, respectively, of the MG. s undergoes an anti-windup
limiter that models the charged (s = 1) and discharged (s = 0)
conditions.

According to the notation given in (2), at the buses where
the microgrids are connected, one has:

ph = pout . (7)

If there are other devices connected at bus h, their power
injection is simply add to the right hand side of (7). Note
that pout is positive when the MG behaves as a generator and
negative when the MG behaves as a load.

Uncertainty and volatility of both generation units and loads
are accounted for by modeling the net power produced by the
MG as a stochastic process according to

pnet = pg − pl = p̄gT − p̄lT + ηM (8)

1Note that, in general, n 6= r as not all power plants are equipped with
synchronous machines.
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where ηM is a white noise as in [28] with standard deviation
σM , and p̄gT and p̄lT are piece-wise constant functions that
account for uncertainty and change randomly with a period T
as discussed in [29]. The noise is modeled as a single stochas-
tic algebraic variable as the behavior of the MG depends on
the difference pnet = pg−pl and not on their absolute values.
Finally, the reference set point of the active power pref , is
defined by the EMS of the MG and it is imposed by the slack
variable pst, as shown in Figure 1. The interested reader can
find a detailed discussion on the model of the MG in [14].

D. Bus Frequency Estimation

While in a practical situation the frequency can be directly
measured, its estimation, in a time domain simulation based on
standard transient stability models, can be a challenging task.
In these models, in fact, only the frequencies (effectively, the
rotor speeds) of the internal electro-motive forces (emfs) of
synchronous machines are available.

To solve this issue, in this paper, we utilize the Frequency
Divider (FD), which is a local frequency estimation technique
proposed in [30]. The FD formula is:

(BBB + BB0)−1(ωB − 1) = BBG(ωG − 1) (9)

where 1, ωG and ωB are, respectively, a column vector
containing 1 on each entry, the vectors of the frequencies of the
synchronous machines and of the buses, while BBB, BB0 and
BBG are the imaginary part (susceptances) of the admittance
matrices YBB, YB0 and YBG that represent, respectively,
the standard network admittance matrix; a diagonal matrix that
accounts for the internal impedances of the synchronous ma-
chines at generator buses; and the admittance matrix obtained
using the internal impedances of the synchronous machines.

Equation (9) gives a simple algebraic expression between
the frequencies of the synchronous machines and the buses
that can be rapidly evaluated in any time domain simulation.

E. Energy Management System of the Microgrid

Extensive realistic simulation in [14] showed that MGs
that only focus on their own individual convenience, e.g., the
maximization of individual revenues, may lead the frequency
of the grid out of a safety range. Accordingly, in this paper
we propose a strategy that mitigates the impact of MGs on the
power grid while at the same time allows the MGs to continue
to operate advantageously according to their own policy. In
particular, we achieve this result by making the MGs switch
between two operating modes:
• Market based mode (M-Mode): The MG is free to maxi-

mize its revenues (e.g., selling and buying energy without
limitations);

• Frequency regulation mode (F-Mode): The MG partici-
pates to the primary frequency regulation of the power
grid.

In this paper, the overall goal is to allow as many MGs
as possible to behave according to their own policy (the M-
Mode in this case), while some of them regulate the frequency
in order to reduce frequency deviations and, hence, the power

unbalance of the ac grid. The M-Mode used in this paper
follows the same set of if-then rules proposed in [14], while
the F-Mode utilizes the conventional droop control equations
classically employed in the primary frequency regulation of the
power system [32]. Note that the two modes considered here
are only two possible choices. The control strategy discussed
in this paper can be applied as is to any other operating modes.
Alternative operating strategies are, for example, the set of
rules for the M-Mode given in [15]; and the Model Predictive
Control proposed in [31] for the F-Mode.

In this paper, we control the switching between the M-Mode
and the F-Mode of the i-th MG by a probability Psi(t) of
staying in the M-Mode. Whenever the frequency gets close to
the operational boundaries of the system, then the probability
Psi(t) decreases and each MG switches to the F-Mode with
probability 1 − Psi(t). Conversely, if the control signal lies
within safe boundaries, each MG switches back to the M-
Mode with a higher probability Psi(t). Thus, the smaller is the
value of Psi(t) over time, the larger is the probability for the i-
th MG to provide frequency regulation services. Accordingly,
the goal of the i-th MG is to maximize Psi(t) (i.e., keeping
it as close to 1 as possible) to maximize the time spent in the
M-Mode maximizing its own economic interests.

The optimization problem may be formulated as follows,
where the convex, strictly differentiable functions fi(·) :
[0, 1] 7−→ R quantify here the inconvenience of each of the n
MGs to provide ancillary services to the grid:

minimize
Ps(t)

n∑
i=1

fi(Psi(t))

subject to |ωi − ω0| 6 ωm,∀i ∈ Θ

(10)

where Ps(t) ∈ Rn is the vector whose i-th component
is Psi(t), Θ is a discrete set of indexes and ωm is the
maximum allowed deviation from the nominal frequency, ω0.
The functions fi(·) can be assigned to each MG by the System
Operator responsible for the specific area (e.g., this could be
based on CO2 emissions, size of the MG, its energy class,
etc).

The difficulty in solving the optimization problem (10) is
due to the fact that the relationship between the controlled
variables (Psi(t)) and the output (i.e., ωi) is unknown. In fact,
the dependency between the frequency oscillations and the
operational modes of the single MGs depend on the many
(time-varying) parameters of the underlying power grid, of
the single MGs, and also on the (unknown) behaviors of the
other MGs; and analogously, a single switching probability, or
a slight change in the strategy of a single MG, affects every
local frequency in the transmission system.

For this purpose, we propose the use of the AIMD algorithm
to solve the optimization problem (10). The rationale of this
choice is that AIMD, as outlined in greater detail in the
next subsection, has the advantage of having a decentralized,
model-free structure (i.e., it does not require any knowledge
of the specific system it is being applied to), with very low
communication requirements.
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III. AIMD ALGORITHM

The AIMD algorithm has been widely employed in the
Internet congestion control problem to optimally and fairly
share bandwidth among connected users [33]. In AIMD an
individual agent (e.g., a computer sending packets) gently
increases its transmission rate, during the Additive Increase
(AI) phase, until a packet loss signal is received. This is
called a congestion event (CE), and indicates that the sum of
individual bandwidths has exceeded the total capacity. Upon
detecting congestion, the agents instantaneously decrease their
transmission rate in a multiplicative fashion. This is the
Multiplicative Decrease (MD) phase of the algorithm. Note
that this algorithm does not require users to communicate
among themselves, e.g., to know how many users are currently
connected to the Internet.

Similarly, in this paper we assume that each MG gently
increases its probability of operating in the desired M-Mode
(AI phase), until it is notified of a CE (e.g., frequency close
to dangerous values). Then, the Psi(t

+
k ) will decrease by

the multiplicative factor β < 1, (MD step), to increase
the probability that some MG will start providing frequency
regulation services. Let t+k denote the instant after the i-th
MG performs the MD step at time tk. Its share of the resource,
Psi(t

+
k ) will decrease by the multiplicative factor β, as follows

Psi(t
+
k ) = βPsi(tk) . (11)

After this phase each agent returns to the AI phase, and
linearly increases its probability by a quantity α, until the
next CE occurs.

Accordingly, the behavior of the i-th agent can be described
by the following equation

Psi(t) = βPsi(tk) + α(t− tk), t ∈ (tk, tk+1) , (12)

where tk represents one of the times instants at which the CE
occurs. Note that the implementation of this simple strategy
does not require the MGs to exchange information among
themselves, and a single bit of communication is required to
notify the MGs of CEs.

The previous algorithm can be also implemented in an
unsynchronized version, where only a subset of the MGs
perform the MD step when a CE occurs, while the others
keep increasing their probability of operating in the convenient
M-Mode. In this way, it is possible to take into account the
different needs of single MGs, namely, their utility functions.
It can be proven that the unsynchronized version of the AIMD
can be used to obtain convergence of the long-term average
state to the optimal point of a particular class of optimization
problems, called optimal resource allocation problems [18].
In particular, if we consider the long-term average of the state
variables Psi(t)

Psi(t) =
1

T

∫ t

0

dτPsi(τ) , (13)

we can then make MG perform the MD step with probability

πi
(
Psi(t)

)
= Γ

f ′i
(
Psi(t)

)
Psi(t)

, (14)

where f ′i (·) denotes the derivative of the cost function while
Γ is a constant ensuring that 0 ≤ πi(xi) ≤ 1 for all Psi ∈
i = 1, ..., n. Equation (14) implies that each MG will react to
a CE independently from the other MGs, with a customized
probability πi

(
Psi(t)

)
. Then the MD step is performed on the

quantity Psi(t) according to (11).
Another advantage of the unsynchronized AIMD algorithm

is that it can be implemented in a plug-and-play fashion:
adding a new MG to the system requires no change to the ex-
isting control strategy as the algorithm will simply converge to
a new equilibrium. For further details on this subject we refer
the interested reader to [18] and [33]. Finally, both centralized
and decentralized versions of AIMD may be implemented,
depending on whether global or local frequencies are used to
give rise to CEs:
• Centralized AIMD algorithm: The broadcast signal is

provided by a central entity (e.g., a system operator). In
the following, we assume that the signal is the frequency
of the center of inertia (ωCOI).2

• Decentralized AIMD algorithm: The controllers of each
MG are fully decoupled. The broadcast signal is the local
frequency measured at the MG point of connection with
the grid.

The main practical difference between the two strategies lies
in that, during a transient, bus frequencies can be affected by
local oscillation modes and noise, while ωCOI filters such local
effects [34]. To take into account that the frequency does not
vary instantaneously and that it would be unrealistic for a MG
to change its active power set-point too often, the frequency
boundary is reduced by a multiplicative factor M < 1 and the
switching from F-Mode to M-Mode is allowed only at fixed
event times, occurring every Tp seconds. Algorithms 1 and
2, shown below, provide the pseudo codes of two proposed
versions of the AIMD algorithms. For the decentralized case,
we refer to the i-th MG and the same code is executed in
parallel on every MG in the transmission system. In both cases,
rand(1) is used to generate a random number from a uniform
distribution in [0, 1], as required to practically implement
Equation (14).

Algorithm 1 Centralized AIMD Algorithm

1: Initialization: k = 1, Ps = 0;
2: Broadcast the parameter Γ to the entire network;
3: while k < ksimulation do
4: if |ωCOI − ω0| ≤Mωm then
5: Ps(k + 1) = Ps(k) + α1
6: else
7: for i = 1, . . . , n do
8: if rand(1) ≤ πi(k) = Γ

f ′
i(Psi(k))
Psi(k)

then
9: Psi(k + 1) = βPsi(k)

10: k = k + 1

Remark: It is important to emphasize that the proposed
control schemes are designed to mitigate the effects of MGs

2Note that the frequency of a pilot bus of the system as measured by a
control center of the system operator can be utilized as well.
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Algorithm 2 Decentralized AIMD Algorithm

1: Initialization: k = 1, Psi = 0;
2: Broadcast the parameter Γ to the entire network;
3: while k < ksimulation do
4: if |ωBi

− ω0| ≤Mωm then
5: Psi(k + 1) = Psi(k) + α

6: else if rand(1) ≤ πi(k) = Γ
f ′
i(Psi(k))
Psi(k)

then
7: Psi(k + 1) = βPsi(k)

8: k = k + 1

on the power grid while allowing them to maintain, at least
partially, their operational freedom. However, this strategy is
not suitable to quickly react to exogenous contingencies. Due
to its stochastic nature, especially if the granularity of the
system is not large enough,3 the imposed boundaries on the
frequency can be point-wisely violated.

IV. CASE STUDY

This section discusses the dynamic response of a system
with inclusion of MGs, regulated by means of EMSs proposed
in the previous Section. The controllers are hereby compared
and discussed in various simulations to evaluate their overall
performance. Simulations are based on the IEEE 39-bus 10-
machine system [35]; this benchmark grid is chosen to have
both a fairly complex network and reduced state-space dimen-
sions to easily understand the impact of MGs on the system.

In this case study, 12 groups of 3 MGs are connected to 12
different buses of the IEEE 39-bus. This leads to a total of 36
MGs connected to the ac system. Relevant MGs parameters
are shown in Table II. In the table, the generated power p̄g and
the load consumption p̄l refer to the average values assumed
along the simulations. The values of σnet are chosen randomly
to take into account different variations of the load and the
DERs energy production of each MG.

Four different scenarios are proposed, as follows:

S1: 36 MGs with no control system;
S2: 36 MGs with the Algorithm 1 as control system. The

objective function for the i-th MG is

fi(Psi) =
1

2
P 2
si − Psi . (15)

S3: 36 MGs with the Algorithm 2 as control system. The
objective function for the i-th MG is

fi(Psi) =
1

2
P 2
si − Psi . (16)

S4: 36 MGs with the Algorithm 2 as control system and two
different objective functions. In this scenario we con-
sider again a decentralized controller, but two different
functions, fi1(·) and fi2(·) are adopted for the MGs.
This scenario shows how the choice of fi(·) impacts the

3A thorough discussion on the impact of granularity of MGs on system
dynamics is given in [14].

TABLE I: Controller parameters

Scenario α β M Tp [s] Γ

S2 0.015 0.95 0.9 30 -1
S3 0.015 0.95 0.9 30 -1
S4 0.015 0.95 0.9 30 -1

behavior of the control system:

fi1(Psi) =
1

2
P 2
si − Psi ,

fi2(Psi) =
1

4
P 4
si −

1

2
P 2
si .

(17)

Also, all objective functions above have their minimum in
Psi = 1 (given the domain [0, 1]) which fits the interpretation
of each MG trying to maximize the time spent in M-Mode
instead of regulating the frequency.

In Subsection IV-B the deviations of the frequency of the
third scenario obtained with the decentralized AIMD as control
system are compared with the ones obtained with a PI-based
controller in order to show the effectiveness of the strategy
proposed in this paper with respect to a simpler methodology.
The interested reader can refer to [16] for a detailed discussion
about the performance of the PI-based controller.

The state-space of the each case with 36 MG includes 432
state variables and 848 algebraic ones. The results for each
scenario are obtained based on a Monte Carlo method (all the
simulations are solved for each scenario). All simulations are
solved using Dome, a Python-based software tool for power
system analysis [36].

In all scenarios above, ω0 and ωm are set. respectively to 1
and 0.02 pu. Table I shows the controller parameters employed
in these simulations. The value of Γ is chosen in such a way
to make sure that πi(k) belong to the interval [0, 1].

The performance of the controllers is evaluated considering
the maximum among the infinity norms of the local frequen-
cies, according to

||ω||∞(t) = max{||ωi(t)||∞, i ∈ Θ} , (18)

and comparing the average of the switching probabilities
Psi(t), over time, according to

Ps(t) =
1

n

n∑
i=1

Psi(t) . (19)

A. Simulations Results

Figures 2a to 2d and 3a to 3f show the realizations of the bus
frequencies, the realizations of the switching probabilities and
their averages, computed according to (19), in the proposed
scenarios. Results shows that, for S1, frequency oscillations
are inadequate for the operation of the transmission system.
On the other hand, Figs. 2b to 2d show that the unsynchronized
AIMD utilized in S2-S4 mitigates the frequencies oscillations
bringing them within (or at least very close to) the desired
security band.

Table III and Figures 2b, 2c and 3c, 3d compare the
performances of the centralized and the decentralized con-
trollers. We observe that, despite Ps(t) presents larger values
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(d) Decentralized Controller with different objective functions

Fig. 2: Frequency trajectories, over all the realizations, of the 39 bus system.

TABLE II: Microgrid parameters

MG Bus p̄g [pu(MW)] p̄l [pu(MW)] σnet [pu(Hz)] Ts [s]

1 18 0.88 0.54 0.025 18000.0
2 3 0.77 0.20 0.040 25200.0
3 15 0.80 0.10 0.030 23400.0
4 17 0.40 0.20 0.020 28800.0
5 21 0.20 0.10 0.013 18000.0
6 28 0.20 0.40 0.040 25200.0
7 24 0.36 0.84 0.010 23400.0
8 17 0.20 0.50 0.020 28800.0
9 11 0.20 0.30 0.010 14400.0

10 5 0.10 0.80 0.010 18000.0
11 7 0.80 0.10 0.030 26640.0
12 12 0.40 0.40 0.025 24480.0

TABLE III: Controller performance

Scenario ||ω||∞ (pu Hz)

S1 1.060
S2 1.038
S3 1.028
S4 1.025

overall in S2 (see Figures 3a and 3b), the realizations of
the frequency oscillate outside the desired range more often
in the S2 (centralized controller) than in S3 (decentralized
controller) (see Figures 2b and 2c). Moreover, the frequencies
reach higher values with the centralized controller.

The rationale behind this is that, since in the S2 the CEs are
triggered by the ωCOI, the controller neglects local frequency
variations and, therefore, grants more operational freedom
to each MG. On the other hand, in S3, the decentralized

controller is able to keep each frequency within the operational
boundaries since CEs are triggered by local frequencies. This
implies that the decentralized controller behaves less conserva-
tively than the centralized one and therefore MGs are forced to
employ more active power for primary frequency regulation.

A further element of comparison are the Psi of each
MG. Fig. 3c and 3d show the switching probabilities Psi
of each MG averaged across all the realizations. In S2, the
numerical differences among the probabilities are very small
when compared to the third one, in which the Psi values are
very different among MGs. Again, this difference is caused
by the different control signals employed: in fact since in
the third scenario the CEs are triggered by variations of the
local frequencies ωBi

, some MGs might have to regulate the
frequency more often due to their geographical position – e.g.,
they might be close to a very sensitive synchronous machine
and therefore they enter the MD step more often than others.

The discussion above suggests a drawback in the decen-
tralized approach: it inherently makes the control mechanism
unfair, penalizing some agents and rewarding others on the
basis of their geographical position. To solve this issue and to
analyze the impact of different objective functions, in S4, the
36 MGs are divided into two groups of 18 MGs each. A group
is characterized by a penalizing cost function (fi1(·)), while
the other one is characterized by a rewarding cost function
(fi2(·)). The effects of this choice are shown in Figures 2d, 3e
and 3f and Table III. The frequency lies within the boundaries
imposed by ωm and the penalized group of MGs (Fig. 3e) has
a smaller Ps(t) with respect to the rewarded one (Fig. 3f).

The overall Ps(t) does not change with different choices
of the fi(·). This means that, changing the objective functions
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(b) Average Ps(t), over all the realizations, of the decentralized
controller

0.0 500.0 1000.0 1500.0 2000.0 2500.0 3000.0 3500.0
Time [s]

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P s

(c) All Psi (t) trajectories , over all the realizations, of each MG for
the centralized controller
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(d) All Psi (t) trajectories, over all the realizations, of each MG for
the decentralized controller
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(e) Average Ps(t), over all the realizations, with the penalizing
objective function
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(f) Average Ps(t), over all the realizations, with the rewarding
objective function

Fig. 3: Plots of the switching probabilities, averaged across all the realizations of the stochastic processes.

does not alter the overall performance of the controller but
it forces some agents to provide more ancillary services than
others. The utilization of different cost functions could then be
used to fix the fairness issue in the decentralized approach or to
reward or penalize the energy policies of the MGs participating
in the frequency regulation, e.g., a MG might be rewarded with
a lower regulation burden due to its low CO2 emissions.

Overall, the decentralized approach, which requires almost
no communication among agents and has a robust architecture,
provides better performance than the centralized controller.
The decentralized controller is, in fact, able to provide a
fair and adequate regulation of all the frequencies of the
system (the fairness can obtained through the tuning of the
objective functions fi(·)), whereas the centralized one, despite
being intrinsically fair, provides worse performance in terms
of regulation.

B. Comparison between the AIMD and a PI-based controller

In order to show the effectiveness of the AIMD, we hereby
compare the performances of the control strategy proposed
in this paper with the control strategy proposed in [16]. In
[16], the authors employed a PI-based controller to regulate the
switching between the M-Mode and the F-Mode, that is based
on the current and previous values of the standard deviation
of the frequency.

The probability Psi of the i-th MG is computed as follows.
Every Tpi seconds, the controller updates Psi to operate in
F-Mode in the next time window. The quantity Psi(kTpi), at
the k-th time window, is computed as

Psi(kTpi) =

3

[
γσh(kTpi) + (1− γ)

k−1∑
n=k−L

lnσh(nTpi)

]
ωm

,

(20)
where σh(kTpi) is the standard deviation of the frequency
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at the h-th bus (to which the i-th MG is connected) in the
time window [(k−1)Tpi , kTpi ]; γ is a parameter belonging to
[0, 1]; L represents the number of past values of σCOI that are
taken in consideration; and ln are positive coefficients chosen
such that

∑L−1
n=1 ln = 1. This control law resembles a discrete

PI controller, as it takes into account the actual value of the
controlled variable σCOI and its weighted integral.

Figure 4 shows the frequencies of the IEEE 39 bus with the
two approaches: it is clear by visual inspection that, despite
both controllers manage to keep the frequency bounded, the
PI-based control forces the MG to regulate the frequency
in a narrower interval, meaning that the average number of
switchings is greater than that obtained with the AIMD control
strategy. This implies that the MG regulated through the
PI-based control are operated in M-Mode during an overall
smaller time than the MG regulated with the AIMD approach,
and thus achieve a lower revenue.

In terms of the optimization problem (10) this means that the
variables Ps(t) obtained with the PI-based approach are larger
than the variables Ps(t) obtained with the AIMD strategy.
The second controller is therefore able to provide a better
solution to (10), with respect to the one provided by the PI-
based approach.

V. CONCLUSIONS

This work proposes an application of the unsynchronized
(decentralized) AIMD algorithm to mitigate the negative im-
pact on the power system of a large number of MGs that
manage their internal power flow according to their own
policy.

The main conclusion of the paper is that a large number of
MGs are able to adopt aggressive policies (e.g., maximizing
their revenues trying to exploit the energy market) as long
as they provide ancillary services, in the form of primary
regulation, to maintain the frequency stability of the transmis-
sion system. The unsynchronized AIMD algorithm appears to
be an excellent candidate to achieve this trade off due to its
robustness and ability to maintain the system frequency within
the operational boundaries with a decentralized architecture.

Simulations show that a decentralized approach is able to
reduce the fluctuations of the frequency in the desired range
while a centralized strategy fails to achieve the same results.
Moreover, proper tuning of the objective functions assigned to
each MG allow to obtain fairness (i.e., each MG will provide
the same amount of frequency regulation on average) or to
promote different policies among the MGs, through the use of
penalizing and rewarding functions.
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