10

11

12

13

14

15

16

17

Increased level of DNA damage in some organs of obese Zucker rats by y-H2AX analysis.

Alessia Azzarj Anna Chiaramonte Erika Filoment, Barbara Pintg Stefano Mazzofj Simona

Piaggf, Marig& Angela Guzzardji Fabrizio BruscHi Patricia lozzdand Roberto Scarpdto

'Unita di Genetica, Dipartimento di Biologia, Uniséy of Pisa, Via Derna 1, 56126 Pisa, Italy

“Dipartimento di Ricerca Traslazionale e delle NuBeenologie in Medicina e Chirurgia, Via Savi
10, 56126 Pisa, Italy

3CNR Institute of Clinical Physiology, Via Giusepp®ruzzi, 1, 56124 Pisa, Italy

Corresponding author: Roberto Scarpato, Unita digBea, Dipartimento di Biologia, University of

Pisa, Via Derna 1, 56126 Pisa, Italy
Phone number: +390502211509
Fax number: +390502211527

e-mail: roberto.scarpato@unipi.it

Keywords. obesity, DNA damage;H2AX, Zucker rat



10

11

12

13

14

15

16

17

18

19

20

21

Abstract

In a recent study, we showed that lymphocytes etelitalian children/adolescents displayed
levels of double strand breaks (DSB), assayedrasesE39-phosphorylated histone H2Ap (
H2AX), about eight-fold higher than normal weiglhtrols, and that 30% of this damage
generated micronuclei. These findings suggestddtiese children could be at increased risk of
obesity-mediated cancer later in life. We thereforeed to assess the levelefi2AX in a genetic
animal model of obesity (Zucker rat) to identifg@notoxic/carcinogenic risk in some organs. The
DSB marker was studied in 3-4-week-old rats ané-ir8-week old rats. Paraffin-embedded
sections of heart, thyroid, liver, pancreas, luadney, oesophagus and gut from the fa-/fa- (obese)
and the fat/fa- (lean) control animals were proedger immunohistochemistry detectionyef
H2AX. Pancreas (0.0624+0.0195), lung (0.1197+0.02d&sophagus (0.1230+0.0351), kidney
(0.1546+0.0149) and gut (0.1724+0.0352) of 9-13kneld obese rats showed a higher proportion
of y-H2AX positive nuclei, than their lean counterpgd€$092+0.0033, 0.0416+0.0185,
0.0368+0.0088, 0.0686+0.0318 and 0.0703+0.0239ectvely). No difference was seen in the 3-
4-week-old age group with regard to obesity, intingathat the DNA damage increased with older
age of the rats. We hypothesize that the orgatiseobbese animals showing high levels of DSB,

could represent target tissues for the developwienlbesity-related cancers.



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

1. Introduction

Obesity is a complex disease characterised by egseof fat in the body in which genetic,
physiological, environmental and socio-economi¢des; interacting with each other, predispose
and|BBRBI F contribute to its pathogenesis as setth ghe appearance of adverse effects lateran lif
[Wright et al., 2012; Trésallet et al., 2014; Mdleet al., 2014; Brenner, 2014; Drew, 2012]. This
pathological condition, in fact, can have severe@mes for human health, causing chronic
illnesses such as type 2 diabetes mellitus, astbandiovascular diseases [Mitchell et al., 2013;
Rosenkranz et al., 2005; Weiss et al., 2004; Devia# et al., 2015] and also some types of cancers
[Bardou et al., 2013; Calle et al., 2003; Karagozaal., 2014; Renehan et al., 2008]. In this
context, formation of double strand breaks (DSBhimithe genome, if unrepaired, lead to
mutations that, in turn, can initiate the carcinugg@s process. However, cells activate the DNA
damage response (DDR) to reconstitute the integfiyNA, in which phosphorylation at serine
139 of several histone H2AX molecules surroundirgdite of DSBy-H2AX foci) represents an
early and key evenHence, it has been assumed that the numbeH@AX foci can reflect
approximately the number of nuclear DSB formedstmakingy-H2AX an excellent marker of
early DNA damage [Rogakou et al., 1998; Wattera.e2009; Scarpato et al., 2011; Redon et al
2011] As a consequence, it was also possible to rdlatpresence gfH2AX in the nuclei to how
and how much a given cell population responds toimagenesis stimuli [Bartkova et al., 2005;
Nuciforo et al., 2007]. Recently, we have proviédetence that a group of obese Italian
children/adolescents had about eight-fold higheelleof DSB, expressed adH2AX nuclear foci,

in their peripheral lymphocytes than normal weigihibjects, and that 30% of this damage generated
micronuclei [Scarpato et al., 2011; Azzara et2016]. These findings suggested that obese
children could be at increased risk for develombgsity-mediated cancer later in life.

Genetic animal models have been developed in reder#fficiently study obesity and/or the

metabolic syndrome, and among these, the Zuckigrritoffers a reliablen vivo genetic system.
3
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The genome of this animal model carries the homazygnissense mutation that causes loss of
function of the leptin receptor gene [Takaya etE96]. As a consequence, the rats show
hyperphagia, hypercholesterolaemia, hyperglycaeaniad hyperinsulinaemia [Cozzi et al., 2009;
Geurts et al., 2009]. Leptin is encoded byldpegene and produced by adipocytes [Zhang et al.,
1994], regulating food intake in mammals via a srt@dk between the adipose tissue and central
nervous system that maintains energy balance amdahdody weight [Schwartz et al., 2000]. In
addition, as described in the literature, these wetre also used to investigate some mechanisms
connected to the obesity- or diabetes-mediatednzayenesis [Koch et al., 2008; Ishii et al., 2011,
Ishizaki et al., 2013; Imai et a., 2013]. Thus,aumed to gain information on the obesity-mediated
genotoxic risk by investigating, at tissue levlgé expression and time-course of Hd2AX

marker in eight organs of the Zucker rat model. Mdormed the study in the 3-4 week-old rats
and in 9-13-week-old rats in order to mimic andemwas much as possible, the human life period

spanning from childhood and adolescence to maturity

2. Materialsand Methods

2.1. Zucker rat models and biochemistry deter minations

Male Zucker fatty rats were purchased from ChaRe®r Laboratories International, Inc.,
(Wilmington, MA, USA), housed in the animal fagfliinder constant conditions of
temperature (24-25 °C) and artificial lighting (12ght—dark cycle), fed with standard rat
chow (calories provided by: 27.0% protein 13.1%afad 59.9% carbohydrates; Sandown
Scientific, Middlesex, England) and wastef libitum until used for the study. The Zucker
genome carries the homozygous missense mutatichAjGt nucleotide 806 of the leptin
receptor gene, with consequent GIn239Pro amingicasubstitution in the extra-cellular
domain of the receptor (féa animals), loss of function and acquisition of &ege phenotype.

The lean control group was represented by hetgmms/counterparts (fa” animals). We
4
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studied eight organs (heart, kidney, lung, oesophagut, pancreas, thyroid and liver)in 44
rats subdivided int@ 23 animals aged 9-13 weeksrand1 animals aged 3-4 weeks.
According to their body weight and the phenotyparmacteristic previously described, the 9-
13-week-old rats were categorized as obesge (n¥iB)ean (control) rats (n=20). In the 3-4-
week-old ratsf|19 arlél 12 animals were classifiesbase and normal weight (lean) animals,
respectively. Due to specific difficulties in calteng the thyroid and pancreas from animals
aged 3-4 weeks, we could not perform DNA damagéyaisan these organs.

Standard laboratory methods were used for glycgaansalin and total cholesterol level
determinationsA scil Vet ABC ™ Haematology Analyzer (scil anincdre company S.r.l.,
Milan, Italy) was used to measure blood glucosetatal cholesterol, while insulin plasma
levels were measured by a commercial immunoass$d¢kistal Chem Zaandam, Netherlands,
sensitivity = 1.5 plU/mL, CV < 10%). On the daytbé study, the animals were sacrificed by
inhalation of an overdose of isofluorane afteradion of blood samples for clinical
biochemistry measurements. In order to minimizeseixpental variability, groups of four to-
five obese and lean animals were processed at degfollowed the recommendations of
Italian legislation (DL No. 116, 1992), which impients the EEC directive 609/86 for the care
and use of laboratory animals.

Body weight, genetic and phenotypic characteristiod clinical biochemistry measurements

(glycaemia, insulin and total cholesterol levelsalbthe Zucker rats are reported in Table 1.

2.2. Tissue histology and immunohistochemistry protocol

After sacrifice, a piece of tissue was randomlyemied from each organ of each animal,
washed of blood residues, cut into two small piesesfixed in formalin until processed fpr
H2AX analysis by the immunohistochemistry protodescribed elsewhere [Del Ry et al.,
2015]. Briefly, the formalin fixed tissues were \uad in tap water to remove fixative,

dehydrated in an ethanol series, immersed two timesoparaffin for 1 h each (Panreac, Nova
5
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Chimica, Milan, Italy), and included in paraffinh@ paraffin-embedded organs were then
sectioned into 5-um slices using a Leica RM 215&rotome (Leica instruments, Wetzlar,
Germany). The slices were then placed on Supetthbst Plus® slides (Manzel-Glaser,
Thermo-Fisher, Milan, Italy) to guarantee firm étestatic adhesion of the sections. Two
coded slides, containing two sections of each grgane set up, processed and scored blindly
by three experienced persons. Following depardiinaehydration done in xylene/ethanol
series and heat-mediated antigen unmasking, thi@sgevere incubated in 3% hydrogen
peroxide (Sigma-Aldrich, Milan, Italy) for 10 miand then for 1 h in blocking solution (10%
FBS (Life Technologies, Monza, Italy), 0.3% Tritéhin 1X PBS). Then the slides were
incubated overnight at 4°C with an 1:200 dilutexnary polyclonal rabbit antiy-H2AX
antibody (Abcam, Prodotti Gianni, Milan, Italy),limved by incubation for two hours at RT
with an 1:100 diluted anti-rabbit horseradish pé&tage-conjugated secondary antibody
(Sigma-Aldrich, Milan, Italy) , subsequently revedlby application of the 3,3'-
diaminobenzidine tetrahydrochloride substrate (DARBjma-Aldrich, Milan, Italy). Finally,

the slides were counterstained in haematoxylinydetted and mounted in glass coverslips for
microscopy observation.

The presence gfH2AX positive nuclei within a haematoxylin-courd&ined cell population
was recognised by the formation of a homogeneawmsrbprecipitate covering partially or
entirely the DSB-damaged nuclei, which were eatigyinguished by their undamaged, blue-
coloured nuclei. Figures 1-2 show a panel of pasiéind negative sections for each organ.
Slides incubated without the primary or the secopdatibodies, as well as with 1000 U/ml of
alkaline phosphatase (Sigma-Aldrich, Milan, Itakygre also made to ensure on the proper
recognition of histone H2AX molecules phosphorydiad ser 139.

A (semi)-quantitative analysis was made with tlteadilmage J software (downloaded at
hppt://imagej.nih.goV/ij/). Briefly, four areas @ach section showing the signal feH2AX

were randomly identified, and the ratio betwedd2AX positive (brown-stained) to negative
6
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(blue-stained) nuclei was calculated. The averadgevirom the four areas, adjusted for the
degree off-H2AX positivity of the section expresses the DNAB marker in each section.
This was achieved by scanning the entire sectitim thhe 10X objective.

To delineate the time-course of nuclear phosphtoylan each organ from 3-4-week-old rats
to 9-13-week-old ratg-H2AX levels were expressed as the difference erétio between the
average values obtained in the two age groups., Thuthe lean or obese rats, two parameters
were calculated subtracting or dividing the avenagjaes of the 9-13-week-old rats to the

corresponding values of the 3-4-week-old group.

2.3. Statistical analysis

To detect differences in the level of DNA damag&i2AX values) of the organs or in the
values of the metabolic parameters between leaifféfg) and obese (fat+/fa-) rats, data were
statistically analysed, in each age group (3-4-wadkats and 9-13-week-old rats) by the
Student’s t-test using the Statgraphics Centurivrsiftware package (Statistical Graphics

Corp., Rockville, MD, USA)P-value was considered significant when < 0.05.

3. Reaults

The 9-13-week-old obese rats weighted (353.4 +gPapproximately 20% more than the lean
counterparts (289.3 + 21.4 g), and compared togituap, they showed significantly higher levels
of basal glycaemia (305.2 + 28.vg 209.4 + 35.6 gp < 0.05), insulin (2944 £ 341 pg/m. 750
+199 pg/mlp < 0.001) and total cholesterol (162.5 £ 12.8 mg#dl10.4 + 6.8 mg/dlp <0.05). As
previously mentioned, no difference was observeatién3-4-week-old rats between obese and lean

animals (see Table 1).
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In the two rat age groups, the results of the DNndge analysis, expressedr&d2AX levels, are
shown in Figure 3 or Figure 4 according to the nsga which a genotype effect was or was not
observed, respectively. For each sampled orgamljdveot detect a significant difference in the
basal DNA damage between fa+t/fa+ and fa+/fa- 3-ékaad rats. In the adult rats, the levelsyof
H2AX positive cells was quite variable among thalgsed tissues, with values ranging from
0.0092 + 0.0032 (pancreas) to 0.1210 = 0.0323 ¢ityiin the lean group, and from 0.0495 +
0.0246 (heart) to 0.1724 £ 0.0352 (gut) in the elgr®up. Statistically significant increases were
observed in five organs of obese as compared toréa (Figure 3), with the highest and lowest
difference observed in the pancreas (0.0624 + 6.9¢$90.0092 + 0.0033,= 0.0447) and in the
kidney (0.1546 + 0.0149 vs. 0.0686 = 0.03(1.8, 0.0186), respectively. The other values were
(obesevs. lean): lung (0.1197+0.02v5. 0.0416+0.0185=0.0352), gut (0.1724 + 0.0352.
0.0703 + 0.0239% = 0.0470) and oesophagus 0.1230 + 0.0850.0368 + 0.0088) = 0.0249).
Also grouping together theH2AX data from all the positive organs, we registesignificantly
higher values of DNA damage in the obese animais ih the lean rats (0.1264 + 0.02870.0453
+ 0.0139,p = 0.0234). In the heart, liver and thyroid, thedlae frequencies of obese animals

were, on average, comparable to those of the lemarpgFigure 4).

With regard to the time-course of DNA damage, frammals aged 3-4 weeks to animals aged 9-13

weeks, thg-H2AX levels of lean and obese rats showed a geimenaase in all the analysed
organs, suggesting that the basal frequencies & DSB increased with older age of the animal.
However, this increase was more pronounced inbleserats than in the lean ones, with the
exception of heart and liver (thyroid was not saedph 3-4-week-old rats): in these organs, in fact,
the elevated increase in the basal DSB levels cedwat a comparable extent in both fa+/fa+ and

fa+/fa- animals.

4. Discussion
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The response of animal organs to genotoxic insatsbeen widely demonstrated using
immunohistochemical detection ¥H2AX levels in lung tissue of rats exposed to farel

ultrafine dusts [Rittinghausen et al., 2013]. Etedammunostaining for this DSB marker has also
been reported in renal tissue of obese mice asaseétl the lungs of obese Zucker rats with altered
expression of the endothelin axis [Del Ry et @142 Mozaffari et al., 2012]. Despite the
physiological presence of individual and organ aaitity, our results indicate that, irrespectively
their genotype, the levels of the DNA damage mawkexe significantly lower in all analysed
organs of the 3-4-week-old rats as compared t@+th&week-old ones. Cell tissue alterations
occurred in the 3-4-week-old obese rats were mandrless widespread among body organs than
those observed in the corresponding 9-13-week-gddgaoup. In other words, the tissue damage
would seem to increase, at DNA level, as the agheo&inimals increased. This might be explained
by the fact that in 3-4-week-old rats the leveirdlammation/oxidative stress has not yet reached a
sufficient intensity to affect DNA integrity. It ignly in the 9-13-week old rats that the frequesicie
of cells containing DSB increase, in some orgass, function of the presence of genetic
predisposition to obesity. In fact, the levels M damage we detected in the analysed tissues of
the obese group delineated the following descenalidgr: gut, kidney, oesophagus, lung, pancreas
(organs that resulted significantly different frénose of the lean animals), thyroid, liver and hear
As the parameter we used to quanyHg2AX (percent of positive nuclei adjusted foe degree of
positivity to they-H2AX signal of the whole sectipgivesa rough estimate ahe actual
spontaneous levels g¢fH2AX in each tissue, any comparison among the various sigjaould be
properly interpreted. Thyroid was found to expresf2AX signal to an extent much higher than
other tissues such as, for example, the pancreasever, it is not relevant that thyroid was, in
general, the most reactive orgarytbl2AX immunostainingprobably dudo an overproduction of

H,O, by thyreocytes [Driessens et al., 2008is important that-H2AX levels in the
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corresponding tissue of the obese rats resultedamged (thyroid) or significantly increased
(pancreas). Moreover, although no informattorthe extent of DNA damage at single cell level
could be drawnas neither the number pH2AX foci nor any other parameter relatedhe
presence of DSB was assayed, the perceptH#AX positive nuclei is considered a useful marker
of DNA damage, and other authors used it to quai$B in some rodent tissudgittinghouse et

al. [2013] found about 150 positive nuclei per frimthe lung of female Wistar rats, while urinary
bladder of 5 weeks old F344 rats showed approximnate-H2AX positive nuclei per 1000 cells
counted [Toyoda et al., 2015]. Finally, no cellmihey-H2AX signal or a very slight amount of
nuclei was found in the brain of Wistar rats depelg lymphosarcomas [Masutani et al., 2014] or
in the duodenum of B6C3F1 mice, respectively [Theampet al., 2015].

The fa/fa’ animals are also affected, on average, by theekigiiucose levels that, indeed, is an
intrinsic characteristic of these rats [Serpilldrak, 2009]Hyperglycaemia is connected to
oxidative stress as it causes, via ROS- and NOXdraed glycoxidation, a pro-inflammatory
response and oxidative damage in the target tji¥ashida et al., 2000; Yang et al., 2011; Vlassara
et al., 2011]. We have recently demonstrated thialescents affected by type 1 diabetes but with
BMI in the range of normality, have elevated levalg-H2AX foci in their peripheral lymphocytes
[Giovannini et al.; 2014]. In this context, Nox &fitient hyperglycaemic mice exhibited reduced
levels of y-H2AX in their kidneys [Zhu et al., 2015]. We th&re suggest that the increased
frequency ofy-H2AX positive cells observed among our fat/fasnatis probably due to the
obesity status, in which a role might also be piblyg their constitutive hyperglycaemic condition,
which was preferentially expressed in gut, kidragsophagus, lung and pancreas rather than in
thyroid liver and heart.

With regard to a possible oncologic risk for humaos the animal data, we should take into
account that DSB are still reparable DNA lesioms] the presence gfH2AX positive cells

indicates the recruitment of the appropriate catluésponse to remove the damddewever,

10
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although only eight organs were studied, the ob&se showing an increased occurrence of this
type of DNA lesion, might be considered at increlasek of developing malignancies, especially in
the above mentioned tissud$ie excess of H2AX phosphorylation we have obsenvélde fa/fa’
animals actually reflects the obesity conditiort isacapable of generating DSB and, in turn, organ
damage. However, it cannot be ruled out that tlkd$2AX foci represent unrepaired DSB that
persist and accumulate in the tissues, as alsestegby other authors [Siddiqui et al., 2013;
Bhogal et al., 2010].

The presence of endocrine-metabolic alteratioesigpatible with an imbalance in plasma and
intracellular antioxidant/pro-oxidant activitiesatiproduce DNA-reactive molecules through
generation of chronic inflammation. In accordandwur data, some studies observed, in
humans, a tight association between inflammatosetdung diseases, colon and pancreatic
cancers, and obesity, probably due to the excessrafm levels of leptin that can cause an
imbalance of the immune response [Shore, 2010;t8ehal., 2013; Youssef et al., 2013], or
trigger a pro-inflammatory and anti-apoptotic resp®[Bardou et al., 2013; Huang et al., 2009;
Yeo, 2015; Drew, 2012]. In addition, a prolonge@siby condition sustained by oxidative stress
can trigger renal damage, as demonstrated in 3hvadtfa/fa Zucker rats [Poirier et al., 2000].
Also oesophageal cancer and Barrett's oesophaguschearly linked to adult obesity through
overproduction of the insulin-like growth facto(IGF-1), together with a reduced presence of
IGF-binding proteins, due to hyperinsulinaemia [Eak al., 2003; Kamat et al., 2009; Greer et al.,
2012]. Indeed, the increase in the occurrenceld2AX we observed in the cells of the respective
tissues could reflect these conditions. It hanlwesmonstrated that in mice, rats and hamsters the
induction and persistence pH2AX by ionizing radiation occurs in a tissue-siffieamanner, this

in turn depends on the different ability of theam{s tissues to divide themselves [Koike et al.,
2008 Firsanov et al., 2012]. The lack of an increastnélevels of DSB in the heart, thyroid and

liver of obese rats, might, at least partiallyyreh the proliferative status of the three orgams.

11
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fact, heart is a non-dividing tissue and thyroid &wver are considered quiescent tissues with & slo
proliferation ability. These tissues, therefore ihdobe less responsive to the low-grade oxidative
stimuli present in the obesity condition than moreliferating tissues such as gut and lung.
Variation among the analysed organs may also deperddifferent expression and/or functioning
of their antioxidant systems. At the same time,taective action of some natriuretic peptides
produced by the cardiac tissue and of adipokinel aa visfatin cannot be ruled out [Rittinghausen
et al., 2013; Habbu et al., 2006; Xiao et al., 3J00Breover, additional researches to investigate
these topics should be performed.

The present study conducted in Zucker fatty radecates there may be an association between
obesity and the occurrence of potentially genotoaicinogenic lesions such as DSB. In addition,
although we could not detect these signs of DNAaigerearlier in animal lifa.é. in the rats of age
comparable to that of children/adolescents) asidiénca previous study [Scarpato et al., 2011], the
Zucker model has shown the potential to identifyams which could be considered at risk of

developing obesity-mediated cancers later in hulif@an
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Table 1. Genetic, phenotypic characteristics and biocheynmeasurements of male Zucker rats
grouped according to age. All values are expreasadeanzS.E.

Animal Genotypé Body Hyperphagia Blood Insulin Total
groups weight (g) glucose (pg/ml) cholesterol
(mg/dl) (mg/dl)
9-13 weeks
Lean fa+/fa- 289.3+21.4 no 209.4+£35.6 750+199 1460.3
Obese fa-ffa-  353.4+19.3 yes 305.2+98.12944+34%  162.5+12.8
3-4 weeks
Lean fa+/fa- 67.6+4.6 no 159.8+9.4
Obese fa-/fa- 64.1+5.3 no 175.0+14.5

®fa- indicates the presence of the missense muté@iom) at nucleotide 806 of the leptin receptor gene.
PSignificantly differentvs] lean rats§ < 0.05, Student’s t-test).
“Significantly differentvs. lean ratsgf < 0.001, Student’s t-test ).
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Figurelegends

Figurel. Images of organ sections from Zucker rat aftenimohistochemistry witlfr-H2AX
primary antibody detected with an anti-rabbit homgesh peroxidase-conjugated secondary
antibody (hematoxylin counterstaining). A-D: ared®esophagus, kidney, thyroid and heart
showing only blue stainegH2AX-negative nuclei; E-H, areas of the same osgatrowing several

brown coloured-H2AX-positive nuclei. A-F, 200X magnification; Gid H, 400X magnification.

Figure 2. Images of organ sections from Zucker rat aftenumohistochemistry witlfrH2AX
primary antibody detected with an anti-rabbit hoaglesh peroxidase-conjugated secondary
antibody (hematoxylin counterstaining). A-D: areédpancreas, lung, liver and gut showing only
blue stained-H2AX-negative nuclei; E-H, areas of the same osgettowing several brown
colouredy-H2AX-positive nuclei. A, 100X magnification; C, [, F and G, 200X magnification; B

and H, 400X magnification.

Figure3. Levels of the DNA damage markgri2AX) in 3-4 week-old rats and 9-12 week-
old rats. Data refer to those organs in which atggre effect was observed (fat+/fa+ = lean
rats, fa+/fa- = obese rat§}H2AX levels are expressed as percentagetd2AX positive

nuclei adjusted for the degree of positivity to yd2AX signal of the whole section. Bars
represents the mean + S.E. of each animal grewgpréplicate sections per animal). Asterisks

denote a significant difference |f*< 0.05, Student’s t-testp. the respective fa+/fa- rats.

Figure4. Levels of the DNA damage markgri2AX) in 3-4 week-old rats and 9-12 week-
old rats. Data refer to those organs in which aggre effect was not observed (fat/fat = lean
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rats, fat/fa- = obese rat§})H2AX levels are expressed as percentagetd2AX positive
nuclei adjusted for the degree of positivity to yHed2AX signal of the whole section. Bars

represents the mean + S.E. of each animal grewupréplicate sections per animal).
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