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ABSTRACT 21	

Reconstructing the paleofluid evolution in mature fault zones, which typically have complex 22	

structural architectures, is a challenging task because re-activation of pre-existing 23	

deformation structures and dissolution-reprecipitation processes are very abundant. 24	

Understanding why specific structural elements are preferentially mineralized and what are 25	

the factors leading to rapid fluid migration and accumulation, bears geological and economic 26	

implications, especially in seismically active fault zones. We studied the Compione Fault on 27	

the Tyrrhenian Sea side of the Northern Apennines orogenic wedge, Italy, which is a segment 28	

of the 30 km long Northern Lunigiana high-angle extensional fault system still active today. 29	



The Compione Fault propagated from the metamorphic basement and accumulated about 1.5 30	

km of displacement. We used structural, petrographic, isotopic, microthermometric, 31	

compositional and organic matter analyses to constrain fluid and host rock properties during 32	

fault zone evolution. This approach allowed us to quantify the thermal anomaly in the fault 33	

zone and to infer the processes responsible for such a disequilibrium. Specifically, we show 34	

that in the fault process zone ahead of the upper fault tip, which is twice as wide as the 35	

damage zone, seismic pumping caused suprahydrostatic fluid pressures and that local dilation 36	

promoted the nucleation of a highly permeable mesh of conjugate extensional shear fractures 37	

hosting calc-silicate mineralization. The thermal difference between hydrothermal minerals in 38	

the conjugate fracture mesh and the host rock is 60-90 °C. The mineralizing fluids were 39	

deeply-sourced from metamorphic reactions. Propagation of the upper fault tip caused 40	

process zone folding and incorporation into the fault damage zones. As the upper fault tip 41	

breached through shallower structural levels, it favored mixing between deep and meteoric 42	

fluids. 43	

 44	

1. INTRODUCTION 45	

Fluid-rock interactions have been widely studied to better understand fluid migration and 46	

accumulation and their effects on compositional, petrophysical and rheological rock modifications 47	

during deformation (Nesbitt and Muehlenbachs, 1989; Evans and Battles, 1999, Roure et al., 2005; 48	

Vilasi et al., 2009; Vandeginste et al., 2012). Textural, geochemical and microthermometric 49	

analyses of syntectonic vein cements allow constraint of paleofluid properties, such as their origin, 50	

migration pathways, temperature and pressure of crystallization and the local state of stress during 51	

deformation (Mullis, 1979, 1987, 1988; Carter and Dworkin, 1990; Fisher et al., 1995; Muchez et 52	

al., 1995; Milliken et al., 1998; Montomoli et al., 2001; Montomoli, 2002; Clemenzi et al., 2014; 53	

Honlet et al., 2017). In particular, when deformation is thick-skinned, regional-scale fault systems 54	



with kilometric offsets are characterized by highly-connected fracture networks in their damage 55	

zones, which are preferential sites for fluid migration and mixing from the metamorphic basement 56	

up to surficial aquifers (Gratier et al., 2002; Beaudoin et al., 2011; Doglioni et al., 2014; Mamadou 57	

et al., 2016; Laurent et al., 2017; Wüstefeld et al., 2017). Cements hosted in fault-related fractures 58	

commonly record a multi-stage paleofluid and deformational evolution characterized by 59	

dissolution-reprecipitation processes and repeated, episodic fracturing (Phillips, 1972; Ramsay, 60	

1980; Parry and Bruhn, 1987; Fisher et al., 1995; Parry, 1998). The latter can be related to the 61	

earthquake cycle that, depending on whether seismic pumping or fault-valve occurred (Sibson et al., 62	

1975, 1988), causes high fluid pressures in fault zones after or before earthquake ruptures, 63	

respectively (McCaig, 1988; Boullier and Robert, 1992; Cox, 1995; Robert et al., 1995; Cox, 1999). 64	

Therefore, cement patterns in seismically active fault damage zones can provide important exhumed 65	

analogues to better understand the properties of fluids involved in seismic ruptures at depth. The 66	

permeability of fault zones major components, which can act as either conduits, barriers or mixed 67	

conduits-barriers systems, exerts a first-order control on the generation of fluid pressures and fluid 68	

flow. Fault zones with kilometric displacement affecting sandstones are typically characterized by 69	

low-permeability cores and highly-permeable damage zones (Caine et al., 1996; Faulkner and 70	

Rutter, 2001; Faulkner et al., 2010). The latter, however, are heterogeneous rock volumes, which 71	

can be subdivided in wall damage zones, tip damage zones and linking damage zones (sensu Kim et 72	

al., 2004) according to their structural position. Tip damage zones, or process zones (sensu Cowie 73	

and Shipton, 1998) and linking damage zones, at the tips of propagating faults, have higher 74	

permeability due to extensive fracture nucleation with multiple orientations and are preferential 75	

sites for fluid flow compared to wall damage zones (Curewitz and Karson, 1997). Accordingly, 76	

process zones and linking damage zones can enhance deep fluid advection, producing positive 77	

temperature anomalies and chemical and barometric disequilibrium between fluids and host rocks. 78	

However, fluid sources and pathways and, consequently, the scales of fault-controlled fluid flow 79	



deserve further investigations, as well as the relationships between vein infilling phases and damage 80	

zone evolution during fault growth. 81	

In this contribution we present the results of a study of the structural architecture and paleofluid 82	

evolution recorded in fault-related veins of the Compione fault zone, a segment of the about 30 km 83	

long Northern Lunigiana high-angle basin-boundary extensional fault system cross-cutting the 84	

whole nappe pile in the inner portion of the Northern Apennines (Fig.1). The Northern Lunigiana 85	

Fault started developing since Early Pliocene times during the uplift and exhumation of the 86	

Apenninic tectonic wedge and is still active today (Boncio et al., 2000; Eva et al., 2014; Bonini et 87	

al., 2013). The Compione Fault accumulated about 1.5 km of displacement (Bernini and Lasagna, 88	

1988; Bernini, 1991; Bernini and Papani, 2002) and offers suitable exposure conditions for 89	

performing a representative structural transect across the fault zone. A multidisciplinary dataset was 90	

collected, including independent geothermometers to evaluate thermal anomalies, and geochemical 91	

analysis to constrain the fluid sources. Structural analysis was combined with vein cement 92	

petrography and optical cold cathodoluminescence, SEM-EDS analysis, carbon and oxygen stable 93	

isotope analysis and microthermometry. Moreover, maximum paleotemperatures recorded in the 94	

Macigno Sandstones Formation were constrained by vitrinite reflectance of organic matter and 95	

thermal modeling.  96	

Our results show that hydrothermal calc-silicate mineralization occurred in the process zone 97	

fracture mesh during upward propagation of the Compione Fault, from fluids at temperatures higher 98	

than at the burial peak in the host rock and synchronously with methane migration. Crystallization 99	

temperatures of hydrothermal minerals in the footwall damage zone record the progressive 100	

cooling/exhumation and folding of the process zone fracture network by extensional fault-101	

propagation folding (Withjack et al., 1990; Schlische, 1995; Hardy and McClay, 1999; Ferrill et al., 102	

2004a; Jin and Groshong, 2006), causing shear reactivation of favorably oriented hydrothermal 103	

fractures. We propose a model where mineralization preferentially forms in process zones ahead of 104	



propagating fault-tips and fluids responsible for fault-related mineralization are supplied by the 105	

metamorphic basement and by the different stratigraphic horizons cut by the fault zone through a 106	

seismic pumping mechanism. 107	

 108	

2. GEOLOGIC SETTING 109	

The Apennines segments of the Alpine-Himalayan orogenic belt were growing in Cenozoic times 110	

due to the southwestward subduction and related slab retreat of the Adria micro-plate below the 111	

overriding European plate (Principi and Treves, 1984; Malinverno and Ryan, 1986; Royden, 1988; 112	

Dewey et al., 1989; Patacca et al., 1990; Doglioni, 1991; Jolivet et al., 1998). Two major 113	

paleogeographic domains are telescoped in the Apennines: the ocean-derived Jurassic to Paleogene 114	

Ligurian succession and the Adria passive margin domain (Boccaletti et al., 1971; Elter and 115	

Pertusati, 1973, Elter et al., 1975). The Subligurian domain was originally located in the ocean-116	

continent transition (Plesi, 1975; Montanari and Rossi, 1982; Vescovi, 1998). Building up of the 117	

Northern Apennines thrust wedge included underthrusting up to 15-20 km depth and greenschist 118	

facies metamorphism (Apuan Alps in Fig. 1; Di Pisa et al., 1985; Franceschelli et al., 1986; Jolivet 119	

et al., 1998; Molli et al., 2000a, 2000b, 2002); while the non-metamorphic successions (Tuscan, 120	

Subligurian, Ligurian, Epiligurian successions in Fig. 1) were affected by synorogenic extension 121	

episodes (Carmignani and Kligfield, 1990; Carmignani et al., 1994; Decandia et al., 1998; Jolivet et 122	

al., 1998; Molli, 2008; Clemenzi et al., 2014) and out-of-sequence thrusting (Storti, 1995; Argnani, 123	

2002; Boccaletti et al., 2011; Bonini et al., 2013; Clemenzi et al., 2014). Extensional faulting and 124	

magmatism took place since upper Miocene to Pleistocene times and migrated northeastward 125	

behind the advancing thrust fronts (Elter et al., 1975; Serri et al., 1993; Bartole, 1995; Carmignani 126	

et al., 1995; Barchi et al., 1998; Martini et al., 2001). 127	

Conditions of deformation in the non-metamorphic, dominantly carbonatic thrust sheets of the 128	

Northern Apennines have been determined through different methodologies: vitrinite reflectance 129	



(Reutter et al., 1981; Corrado et al., 2010; Carlini et al., 2013), illite crystallinity (Cerrina Feroni et 130	

al., 1983; Carosi et al., 2003; Carlini et al., 2013), stable isotopes (Carter and Dworkin, 1990; 131	

Milliken et al., 1998; Mazzarini et al., 2010; Clemenzi et al., 2014), calcite-dolomite 132	

geothermometry (Carosi et al., 2003), fluid inclusion microthermometry (Montomoli et al., 2001; 133	

Montomoli, 2002; Mazzarini et al., 2010; Clemenzi et al., 2014) and apatite and zircon fission 134	

tracks (Abbate et al., 1994; Zattin et al., 2002; Balestrieri et al., 2003; Bernet et al., 2004; Fellin et 135	

al., 2007; Corrado et al., 2010; Thomson et al., 2010; Carlini et al., 2013). The estimated maximum 136	

burial is about 7 km at temperatures ranging between 200 and 250 °C. Geothermal gradients 137	

calculated with different methodologies span a wide range from 18 °C/km to 41 °C/km with a mean 138	

value of 31 ± 4 °C/km (Molli et al., 2011). 139	

 140	

2.1 The Northern Lunigiana Basin 141	

The Northern Lunigiana Extensional Basin (NLB) is about 25 km long and 10 to 15 km wide. It is 142	

the northwesternmost onshore extensional basin in the Northern Apeninnes and is located to the 143	

northwest of the Alpi Apuane metamorphic complex, on the Tyrrhenian Sea side of the orogenic 144	

wedge (Fig. 1). The Northern Lunigiana Basin is separated from the Southern Lunigiana Basin by 145	

the Secchia transversal line (Fig. 1B; Ghelardoni, 1965). The Northern Lunigiana Basin developed 146	

in the hanging wall of a regional-scale out-of-sequence thrust (Storti, 1995; Vescovi, 2005; 147	

Clemenzi et al., 2014; Molli et al., 2018) that caused duplexing of the Northern Apennines nappe 148	

pile, i.e. subligurian rocks overthrusting the Adria-derived Tuscan succession and overlain by 149	

Ligurian thrust sheets (Fig. 1D). As a result of such multiple thrusting events, the basin-boundary 150	

fault system juxtaposes the Cretaceous Ligurian Ottone Flysch Formation in the hanging wall, 151	

against the Late Oligocene-Early Miocene Macigno Sandstones Formation in the footwall (Figs. 1B 152	

and 1D; Elter and Schwab, 1959; Giglia, 1974; Elter et al., 1975; Bernini and Lasagna, 1988). The 153	

Campanian to early Maastrichtian Ottone Flysch Formation has a maximum thickness of 300-400 m 154	



and is composed of marly-calcareous turbiditic and calcarenitic to lithoarenitic strata. The Chattian 155	

to Aquitanian Macigno Sandstones Formation is in the studied area about 2300 m thick and is 156	

composed of massive sandstone strata in the lower and upper part of the formation, separated by 157	

clay- and silt-rich strata (Ghibaudo, 1980). Massive sandstone beds are up to 5 m thick, while the 158	

silty and clayey facies beds are a centimetre up to maximum 1.5 m thick. Macigno Sandstones are 159	

arkoses and contain abundant quartz, feldspars, biotite, muscovite and chlorite.  160	

The onset of extension in the NLB has been dated using palynology and mammal fauna (Azzaroli, 161	

1950, 1977; Federici, 1978, 1981; Raggi, 1985; Bertoldi, 1988, 1995) in the fluvial-lacustrine 162	

deposits that rest on the Ottone Flysch Formation in the depressed central area. These data indicate 163	

that two sub-basins developed in response to extensional tectonics: Aulla-Olivola in the SE and 164	

Pontremoli in the NW, starting from Early Pliocene and Early Pleistocene times respectively. The 165	

deposits follow a regressive trend from lacustrine to alluvial-fan at the top. In the SE they are 166	

characterized by two unconformities, the first Late Pliocene in age and the second dated at Middle-167	

Pleistocene times, which occurs also in the Pontremoli depocenter (Boccaletti et al., 1992; 168	

Boccaletti and Sani, 1998; Bernini and Papani, 2002). Extension is interpreted to be active during a 169	

general uplifting phase of the inner Apenninic belt (Bartolini et al., 1982; Cerrina Feroni et al., 170	

1983; Bernini et al., 1990; Di Naccio et al., 2013).  171	

Both the Northern and the Southern Lunigiana extensional basins are tectonically active, as 172	

indicated by extensional earthquakes occurring at depths typically shallower than 15 km, as well as 173	

few contractional ones having their hypocenters at about 50 km (Bossolasco et al., 1973; 174	

Bossolasco et al., 1974; Augliera et al., 1990; Frepoli and Amato, 1997; Boncio et al., 2000; Eva et 175	

al., 2014; Bonini et al., 2013). This is further supported by morphotectonic evidence (Di Naccio et 176	

al., 2013). The NLB formed above a northeastward-dipping low-angle detachment fault (Artoni et 177	

al., 1992; Camurri et al., 2001; Argnani et al., 2003; Di Naccio et al., 2013) and it attains a half-178	

graben geometry produced by the activity of the NW-SE striking, SW dipping Northern Lunigiana 179	



basin-boundary extensional fault system (Bernini, 1988; Bernini and Lasagna, 1988; Bernini, 1991; 180	

Bernini and Papani, 2002). The asymmetric topography, with the Apenninic watershed to the NE 181	

(Fig. 1D), the northeastward tilt of syn-extensional deposits (Bernini, 1988) and morphotectonic 182	

evidence (Di Naccio et al., 2013) support the importance of the Northern Lunigiana extensional 183	

fault system in controlling the development of the NLB. In the study area, the NLB is bounded to 184	

the NE by the Compione Fault (Figs. 1B, 1D, 2 and Fig. DR11) which can be considered the SE 185	

prosecution of the Groppodalosio fault (Fig. 3). Subsurface information provided by a seismic line 186	

located in the study area (Figs. 1B, 2) is quite scarce due to the poorly imaged geological 187	

complexity of the region (Fig. 2). The proposed geometry shows the Compione Fault cutting 188	

through the thrust sheet pile and penetrating into the seismic basement, as previously mapped 189	

(Argnani et al.; 2003; Camurri et al., 2001), at around 6 to 7 km depth with an almost planar 190	

geometry (Fig. 2), confirming its role in shaping the NLB. At the surface, the Compione Fault is 191	

located at the forelimb-crest transition of the anticline associated with the regional-scale out-of-192	

sequence thrust (Figs. 1D; 3A and 3B; Vescovi, 2005; Clemenzi et al., 2014; Molli et al., 2018). 193	

Synthetic fault zones occur in the footwall, whereas several synthetic and antithetic fault zones 194	

dissect the hanging wall (Bernini, 1991; Bernini and Papani, 2002).  195	

 196	

3. METHODS 197	

3.1 Structural Analysis  198	

About 600 structural data were collected at six structural sites, five of which located in the fault 199	

damage zones and one in the footwall host-rock, for comparative purposes. Structural data are 200	

reported according to the right-hand rule (strike/dip), and stereographic projections (lower 201	

hemisphere of Schmidt net) are plotted with the Daisy3 software (Salvini, 2017).  202	

 203	



3.2 Petrography and Cathodoluminescence 204	

Fifty veins were sampled in fault damage zones and in the hanging wall host rocks. Moreover, three 205	

more sampling sites were identified along strike of the footwall damage zone, to the west of the 206	

study transect, at a distance of 0.7, 1.75 and 15 km from it (Figs. 3A and 3C). Each sample was cut 207	

in two slabs, one of which was stained with Alizarin Red S and potassium ferricyanide to 208	

discriminate the different carbonates such as calcite and dolomite and their iron-rich equivalents 209	

(Dickson, 1966). Thin sections and wafers were obtained from the other slab. Petrographic and 210	

microstructural analyses were carried out on fifty 30 µm thick thin sections, through standard 211	

optical and cold CL microscopy. A Zeiss Axioplan 2 microscope was used for optical petrography. 212	

A Technosyn 8200 Mark II cold CL stage, mounted on a LEICA DM2700P optical microscope, 213	

was used at 15 kV and 220-250 µA gun current to perform CL analysis. Compositional analyses 214	

were carried out on prehnites with a Jeol 6400 SEM equipped with an Oxford EDS. Operating 215	

conditions were 15 kV and 1.2 nA, an electron beam with a diameter of about 1 µm and a counting 216	

time of 100 s. Errors are ±2–5% for major elements and ±5–10% for minor components. Standards 217	

used to calibrate the EDS include pure elements, simple oxides and simple silicate compositions 218	

(cobalt, anorthoclase, apatite, augite, microcline and olivine). 219	

 220	

3.3 Carbon and Oxygen Stable Isotopes 221	

Stable isotope analyses for oxygen and carbon were performed on host rocks carbonate components 222	

and on calcite cements previously identified by petrography and CL. Carbon isotope results are 223	

expressed in Vienna Pee Dee Belemnite (V-PDB) while oxygen isotope results are expressed both 224	

in V-PDB and in Vienna Standard Mean Ocean Water (V-SMOW) for convention purposes. δ18O 225	

values were converted using the equation (Friedman and O’Neil, 1977):  226	

δ18O SMOW = 1.03086 ⋅ δ18O VPDB +30.86 (1) 227	



Stable isotope analyses for oxygen and carbon (cf. paragraph 5.2) were carried out on 98 sub-228	

samples of veins and host rocks. Sub-samples were drilled directly from 33 thin sections using an 229	

ESI New Wave Research Micromill with a 6.7X to 40X optical zoom, 3.3 mm to 24.5 mm field-of-230	

view, automated 50 mm travel in X, Y and Z directions stage with sub-micron step resolution and a 231	

milling chuck speed ranging from 1200 rpm to 35000 rpm. 100-150 µg of pure carbonate powder 232	

for each sub-sample were loaded into a GasBenchII autosampler interspaced with three isotopically 233	

different kinds of reference materials (NBS18, NBS19 and MAB99). After flushing the vessels with 234	

ultrapure helium (5.5 grade) in order to replace the air, powders were reacted with 100% 235	

orthophosphoric acid at 25 °C for 12 h (McCrea, 1950). Resulting gases were analyzed 236	

automatically using a Thermo Finnigan Delta V+ mass spectrometer.	 For each sample, four 237	

reference gas peaks were measured and the sample gas was introduced ten times into the mass 238	

spectrometer. Εach sample was analyzed at least in double so the uncertainty on the samples value 239	

may be considered ±0.10‰ and ±0.23‰ for δ13C and δ18O respectively. Isotope fractionation 240	

curves were calculated according to O’Neil et al. (1969). 241	

 242	

3.4 Micro-Raman 243	

Micro-Raman measurements were performed using a Jobin-Yvon Horiba LabRam spectrometer 244	

equipped with a He-Ne laser (emission line 632.8 nm) and motorized XY stage. The spectral 245	

resolution is about 2 cm-1. The confocal hole was adjusted in order to obtain a spatial resolution 246	

(lateral and depth) of 1-2 µm. Spectra were obtained using a 50X objective (0.75 N.A. [numerical 247	

aperture]). The calibration was made using the 520.7 cm-1 Raman line of silicon. The scanned 248	

spectral range spans from 1100 to 3300 cm-1. Acquisition time was 120 s. The power on the sample 249	

surface is around 1 mW but the power on the analysed inclusions has to be considered lower due 250	

light reflection and scattering. 251	



 252	

3.5 Fluid Inclusion Microthermometry 253	

Fluid inclusions were studied in 44 wafers, i.e. doubly polished sections with a thickness of about 254	

100 µm. Fluid inclusion petrography was carried out on a standard petrographic microscope in 255	

order to distinguish assemblages, trails and isolated inclusions. Fluid inclusion assemblages (FIAs) 256	

are groups of inclusions that occur along growth zones or randomly in the minerals and represent 257	

the fluid conditions during precipitation or recrystallization (Goldstein and Reynolds, 1994). FIAs 258	

were systematically measured. Fluid inclusion trails (FITs) are related to fracturing events after 259	

crystallization of at least part of the host mineral and were not considered during 260	

microthermometric analysis. Isolated inclusions were measured and were considered reliable if they 261	

showed comparable temperatures to the inclusions organized in FIAs in the same sample. After 262	

fluid inclusion petrography, the doubly polished wafers were broken in smaller pieces (chips) and 263	

analyzed in a Linkam THMSG600 heating-freezing stage. The instrument was calibrated weekly 264	

using SynFlinc synthetic standards. Calibration lines were calculated from melting temperature of 265	

CO2, final melting temperature of clathrate, homogenization temperature of CO2, NaCl eutectic 266	

temperature, final ice melting temperature of pure H2O and the critical homogenization temperature 267	

of pure H2O. Three temperatures were acquired in aqueous biphase inclusions: 1) homogenization 268	

into the liquid phase (Thtot) indicating the minimum temperature of fluid entrapment; 2) first 269	

melting temperature (Tfm), related to the fluid composition; 3) ice melting temperature (Tmice), 270	

which is inversely proportional to the amount of solutes in the liquid phase, i.e. the salinity of the 271	

fluid. Heating was always performed before freezing runs to avoid artificial stretching of the 272	

inclusions during freezing. Monophase gaseous inclusions at room temperature develop a liquid 273	

meniscus during cooling in the heating-freezing stage.  In these gaseous inclusions, only Thtot was 274	

measured and homogenization occurred into the vapour phase. Monophase aqueous inclusions were 275	

kept in a freezer for 2 weeks at -20 °C to nucleate bubbles in metastable inclusions. Inclusions that 276	



did not nucleate the vapour phase, were cyclically heated and frozen to induce artificial stretching. 277	

In this way, it was possible to measure Tmice in monophase inclusions. Homogenization 278	

temperatures are evidently not measured in artificially stretched aqueous inclusions. Accuracy of 279	

measurements is ± 2 °C for homogenization temperatures (Thtot) and ± 0.2 °C for first melting 280	

(Tfm) and ice melting temperatures (Tmice). 281	

 282	

3.6 Organic Matter Optical Analysis and Thermal Modelling 283	

Ten organic-rich laminae were sampled in the footwall damage zone (Sites 4 and 5) and in the 284	

footwall host rock (Site 14) to constrain the thermal maturity of the Macigno Sandstones Formation 285	

through vitrinite reflectance analyses. Vitrinite is the product of thermal maturation of terrestrial 286	

plant remnants included in sediments and it is one of the most reliable indicator of peak 287	

temperatures at maximum burial depth because it is very sensitive to temperature increase and not 288	

affected by retrograde processes (Tissot and Welte, 1984; Teichmüller, 1987). Samples for vitrinite 289	

reflectance analyses were crushed and then mounted in epoxy resin and polished, according to the 290	

method of Bustin et al. (1990). Samples were analysed in reflected, non-polarized, monochromatic 291	

light (λ = 546 nm) under oil immersion (ν = 1.518) using a Zeiss Axioplan MPM400 microscope 292	

equipped with a J&M Analytik Tidas S 800 spectrometer and calibrated with CRAIC vitrinite 293	

reflectance standards. Up to 40 Ro% (randomly oriented vitrinite reflectance in oil immersion) 294	

measurements per sample were acquired. Thermal modeling was carried out using the BasinMod2 295	

software, based on the Easy%Ro kinetic model of Burnham and Sweeney (1989). The software 296	

requires organic maturity indicators, sedimentary successions lithologies, thicknesses and ages 297	

along with paleo-heat flow or paleo-geothermal gradient as basic input data. Sample stratigraphic 298	

locations were modelled as a pseudo-well according to Oncken, 1982; Di Paolo et al., 2012; 299	

Caricchi et al., 2015; Schito et al., 2018. The main assumptions for the modeling are: (1) 300	

decompaction of the burial curves is corrected according to the method of Sclater and Christie 301	



(1980); (2) sea-level changes are neglected, as the thermal evolution is influenced more by sediment 302	

thickness than water depth (Butler, 1992); (3) thrusting is considered instantaneous when compared 303	

with the duration of sedimentation, as generally suggested in theoretical models (Endignoux and 304	

Wolf, 1990); (4) geothermal gradient (25-30°C/km) is calculated from the correlation of vitrinite 305	

reflectance data based on the kinetic model of vitrinite maturation of Burnham and Sweeney (1989). 306	

 307	

4. STRUCTURAL ARCHITECTURE OF THE COMPIONE FAULT  308	

The area near Compione village was mapped in detail to describe the structural architecture of the 309	

Compione Fault, which strikes ~NW-SE and dips to the SW (Fig. 3C). The two different lithologies 310	

observed determine different deformation patterns in the footwall and in the hanging wall, 311	

respectively (Figs. 4A-C). In the footwall, Macigno Sandstones Formation strata dip 5°-10° towards 312	

the NE in the footwall far from the fault zone. Approaching the footwall damage zone, bedding is 313	

progressively tilted towards the SW to become horizontal at around 0.7 km distance from the fault 314	

core, then SW-dipping of ~40° at around 0.5 km, and up to 55° at the damage zone-fault core 315	

transition. Similarly, the Ottone Flysch Formation in the hangingwall is characterized by strata that 316	

dip ~60° SW in proximity of the fault core and become subhorizontal outside the hanging wall 317	

damage zone (Figs. 3B and 3C). A major E-W striking, S dipping fault zone occurs to the ESE of 318	

Compione village (Fig. 4C), abutting the Compione Fault, as well as subsidiary fault segments, to 319	

the south (Fig. 3C). The Compione fault zone has a core of up to 50 meters wide, consisting of 320	

deformed shear lenses of mostly Macigno Sandstones Formation, bounded by anastomosed shear 321	

bands of comminuted, incoherent sand and gouge (Bernini and Lasagna, 1988). In the northwestern 322	

corner of the map, the Compione Fault affects a Pleistocene conglomerate consisting of boulders 323	

and pebbles of Macigno Sandstones Formation, named Iera Conglomerate (Fig. 3C, Bernini and 324	

Papani, 2002) 325	

 326	



4.1 Footwall Damage Zone 327	

The most abundant deformation structures in the footwall damage zone are conjugate shear vein 328	

pairs inclined at ~60° to bedding in both dipping directions and with bisector lines perpendicular to 329	

bedding regardless of bedding dip (Figs. 5A and 5B). Outside the damage zone, 900 meters to the 330	

fault core, veins occur only associated to subsidiary extensional faults with metric offset. In the 331	

outer boundary area, where strata are subhorizontal, vein orientation is N306°, 60° for the antithetic 332	

set and ~N120°-N140°, 60°-80° for the synthetic (Figs. 4A and 5B). Conjugate shear vein arrays are 333	

passively rotated with bedding at decreasing distance from the fault core (Figs. 5C and 5D). Such a 334	

rotation and the activity of late subsidiary fault zones causes significant dispersion of vein strike, 335	

which varies from NNW-SSE to E-W. This is evident when shear vein data collected in subsidiary 336	

fault-bounded blocks to the north and south of the major E-W striking fault zone are rotated to 337	

restore local bedding attitude to horizontal (Fig. 6). The dip direction in non-rotated data varies 338	

from north- to eastward (Fig. 6A). Rotation systematically produces conjugate arrays striking either 339	

NW-SE or E-W, respectively (Fig. 6B). In addition to fault-parallel conjugate shear vein arrays, 340	

cross-fault veins striking almost perpendicular to the Compione Fault are also abundant (Fig. 4).  341	

Most fault-related veins are reactivated as strike-slip (cross-fault veins) or conjugate extensional 342	

faults (fault-parallel veins; Fig. 5E). Strike-slip faulting in the area is related both to lateral 343	

propagation of the Compione fault zone and to the far-field stress of the left-lateral Secchia 344	

transversal line, 4 km to the E of the study area. These fault-related shear veins and faults 345	

(extensional and strike-slip) are well developed especially in coarse strata, have offsets ranging 346	

from centimetres to meters, and are characterized by millimetre to centimetres slickenfibers. Strike-347	

slip and extensional faults mutually crosscut and their slip surfaces frequently show evidence for 348	

variable directions of movement (Fig. 5F). In sites 4 and 5, conjugate extensional faults have a more 349	

complex pattern that includes two synthetic trends, oriented 255°, 70° and 290°, 56° and two 350	

antithetic ones, oriented 350°, 10° and 240°, 30°, respectively. It is important to note that, after 351	

bedding restoration to the horizontal, the synthetic sets are 127°, 75° and 75°, 77° and the antithetic 352	



sets are 308°, 60° and 257°, 74°, respectively, and that ~E-W striking conjugate veins show re-353	

activation as strike-slip to oblique-slip subsidiary faults. Reverse kinematics are apparent, indicating 354	

that normal to oblique faulting, with top-to-the-WNW shearing, was ongoing during passive 355	

bedding rotation in the damage zone sector comprised between the Compione fault core and major 356	

E-W footwall splay fault (Fig. 6B). As a result, S and SW dipping extensional faults in Fig. 6B 357	

were re-activated antithetically as soon as they attained a NE dipping attitude due to bedding 358	

rotation. Late-stage faults strike from N110° to N130°, dip 60-80° either to the NE or SW (Fig. 4) 359	

and have cores made of cataclastic loose sand and clay smears, bounded by thin slip zones 360	

including extremely comminuted material. These late-stage faults occur up to 400 meters from the 361	

fault core. 362	

 363	

4.2 Hanging Wall Damage Zone 364	

Subsidiary fault zones mainly arranged in synthetic anastomosed arrays are abundant in the hanging 365	

wall damage zone near the fault core, isolating extensional shear lenses affected by intense pressure 366	

solution as indicated by abundant shallow-dipping stylolites (Fig. 4). Moving away from the fault 367	

core, both synthetic and antithetic subsidiary faults and fault zones occur, frequently with a ramp-368	

flat geometry. Here very thick beds are cut at high angle and the marly and clayish interlayers are 369	

exploited as flat segments, (e.g. site 2 in Fig. 4) producing significant block tilting about horizontal 370	

axes. Eventually, at about 300-400 m away from the fault core of the Compione Fault, the 371	

deformation pattern is dominated by high-angle antithetic faults and fault zones (e.g. site 1 in Fig. 372	

4). Overall, subsidiary faults and fault zones in the hanging wall strike NW-SE, i.e. parallel to the 373	

master fault strike, with a subordinate population striking ~E-W and dipping S (e.g. site 2 in Fig. 4). 374	

Abundant veins nearly perpendicular to bedding occur in the hanging wall and crosscut pre-existing 375	

bedding-parallel veins. Both populations grew by crack-seal opening (cf. Ramsay, 1980) before the 376	

onset of extensional fault-related deformation, during thrusting and stacking of the Ligurian 377	

successions. Subvertical veins are passively rotated in the hanging wall blocks of subsidiary fault 378	



zones and are commonly re-activated as low-displacement shear surfaces showing slickensides 379	

coherent with extensional, almost dip-slip, kinematics. 380	

 381	

5. VEIN CEMENT ANALYSIS    382	

5.1 Petrographic Description 383	

Fault-related veins in the footwall damage zone have an aperture varying from 2 to 27 mm and 384	

show evidence for antitaxial multiple opening (cf. Durney and Ramsay, 1973; Ramsay and Huber, 385	

1983; Passchier and Trouw, 2005; Bons et al., 2012). Vein cement consists of prehnite, quartz and 386	

three different calcite generations, labelled as MC1A, MC1B and MC2, respectively (Fig. 7A). 387	

Prehnite crystals are generally euhedral to subhedral and their dimension can reach 1500 µm 388	

parallel to the c axis and 750 µm orthogonal to it. Prehnite was the first mineral phase to crystallize 389	

in columnar-radiating structures that are overgrown by or inter-grown with euhedral to subhedral 390	

quartz (Figs. 7A and 7B). When analysed in cold CL, prehnite luminescence color switches 391	

abruptly from “olive green” to “lime green”, from the cores towards the rims (Fig. 7B; Huber et al., 392	

2007). Compositional analyses were carried out by SEM-EDS on three prehnite crystals sampled 393	

from site 5. Ten areas were analysed both along the long and the short axes of the crystals to 394	

investigate compositional variations during crystallization. Sixty spectra were acquired and eight of 395	

them did evidence calcite contamination, which is often found as isomorphous replacement of 396	

prehnite (Figs. 7C and 7D). Analyses results did not evidence any trend in amounts of Fe3+- Al3+ 397	

along crystal axes from the cores to the rims of crystals. Al2O3 ranges between 24.5 and 25.5 wt%, 398	

with a mean value of 25.07 ± 0.19 wt%. The mean abundance of SiO2 is 45.04 ± 0.20 wt%, with 399	

values ranging between 44.6 and 45.5 wt%. CaO is comprised between 27.3 and 29 wt% and has a 400	

mean value of 27.76 ± 0.23, in agreement with the prehnite formula Ca2Al2Si3O10(OH)2. FeO was 401	

detected in twenty-four spectra and was always below 1 wt%. Quartz sometimes displays bridge 402	

structures, growth competition textures and dissolution embayments (Fig. 7C; Hilgers and Urai, 403	



2002; Bons, 2001; Okamoto and Sekine, 2011). MC1 calcite grew both as isomorphous 404	

replacement of prehnite crystals and in the remaining open sites, mostly at the centre of fractures. 405	

The latter are characterized by poikilotopic rhomboedric crystals up to 1 cm in dimension with 406	

abundant Type I and Type II twinning (cf. Burkhard, 1993; Ferrill et al., 2004b) and sweeping 407	

extinction (Figs. 7A, 7C, and 7G).  Stained MC1 is pink, (Fig. 7E) indicating that calcite is non-408	

ferroan (Dickson, 1966). MC1 calcite crystals can be subdivided in MC1A and MC1B: B is mostly 409	

characterized by twinning Type I and a “clearer texture” compared to A, which displays abundant 410	

twinning Type II. Moreover, MC1A has dark red color in CL while MC1B is red to orange (Fig. 7B 411	

and 7D). Multiple antitaxial opening events (cf. Holland and Urai, 2010; Virgo et al., 2014) caused 412	

the cyclic repetition of prehnite + quartz + MC1 calcites bands infilling the veins (Figs. 7E-G). 413	

Shearing of veins caused quartz dynamic recrystallization and formation of straight, micrometric 414	

wide mirror surfaces, which truncate vein crystals (Figs. 7E, 7F and 7G). MC2 is the last cement 415	

and is composed of microsparitic to blocky calcite up to maximum 500 µm crystal size, sometimes 416	

displaying Type I twinning (cf. Burkhard, 1993). MC2 calcite has bright orange to yellow colors 417	

under CL and is hosted in sub-millimetric fracture networks that exploit cleavage surfaces 418	

orthogonal and parallel to the c axis of prehnite (Fig. 7A), twinning planes in MC1 calcite and re-419	

opened shear surfaces. Even MC2 calcite, in places, occurs as prehnite isomorphous replacement 420	

(Figs. 7H). Veins nearest to the fault core are more intensely affected by shearing, quartz 421	

recrystallization, isomorphous replacement of prehnite by MC1 crystals and by MC2 calcite 422	

cementation (Figs. 7G and 7I). In the fault core, in fact, the host rock is disaggregated and cemented 423	

by MC2 calcite, which displays an interparticle cement texture (Fig. 7J). Footwall fault-related 424	

veins in silt and clay beds have MC1 and MC2 calcite cements (labelled as Macigno host rock 425	

calcite cement), but they show a microsparitic texture, whereas prehnite and quartz are absent.  426	

Hanging wall veins, hosted in the Ottone Flysch Formation, are composed of two generations of 427	

calcite, labelled as OC1 and OC2, and contain traces of quartz. OC1 calcite veins are considered for 428	

comparative purposes only because they formed before the onset of extensional deformation in the 429	



studied area. OC2 calcite veins formed by multiple antitaxial fracturing-precipitation events (cf. 430	

Holland and Urai, 2010) and crosscut or run parallel to OC1 calcite (Figs. 7K and 7L). OC2 calcites 431	

have a blocky texture with a “clear” appearance and dimensions up to 1 mm (Fig. 7K), showing 432	

rarely Type I twinning (cf. Burkhard, 1993). Their color under CL is red, slightly brighter than OC1 433	

calcites, but it changes depending on structural position (Fig. 7L). In particular, samples collected 434	

less than 50 meters from the fault core have OC2 calcites with the same dull luminescence as the 435	

OC1 calcites. Quartz crystals smaller than 100 µm sometimes occur in association with OC2 436	

calcites (Figs. 7M and 7N). A crack-seal bedding parallel vein in the hanging wall damage zone, in 437	

proximity of the fault core, shows quartz associated with OC2 calcite, which preserve the prismatic 438	

habit of prehnite, similarly to the footwall damage zone cement textures (Fig. 7N). Moreover, close 439	

to the fault core, OC2 calcite cement shows a proto-breccia texture in extensional S-C (S—440	

schistosity, C—cisaillement [French for shear]) lithons (Fig. 7O).  441	

 442	

5.2 Stable Isotopes 443	

Results of carbon and oxygen stable isotopes analyses are summarized in Table 1. MC1 calcites 444	

have the most depleted δ18O values, from +11.8‰ to +14.0 V-SMOW while MC2 calcites range 445	

from +13.4‰ to +17.9‰ V-SMOW. Mean δ18O is +13.1‰ and +15.8‰ V-SMOW for MC1 and 446	

MC2 calcites respectively (Fig. 8A). δ13C in footwall MC1 and MC2 calcites ranges from -5.8‰ to 447	

-0.9‰ and from -7.1‰ to -0.4‰ V-PDB respectively. Plotting δ18O vs. distance from the 448	

Compione fault core for MC1 and MC2 calcites, a slight trend appears (Fig. 8B). In particular, δ18O 449	

values become enriched approaching the fault core. The same plot for δ13C shows that MC1 and 450	

MC2 calcites are characterized by different values depending on structural position (Fig. 8C). Site 5 451	

is located in a different footwall block, compared to other structural sites, and shows depleted δ13C, 452	

ranging from -7.1‰ to -3.8‰ V-PDB, compared to other sampling sites whose δ13C is comprised 453	



between -2.8‰ and -0.4‰ V-PDB (Fig. 8C). MC1 and MC2 calcites from a sample collected near 454	

the NW tip of the Compione Fault (Site 13) have δ18O and δ13C values that are enriched compared 455	

to the bulk of the samples that are located along the studied cross-section of the fault zone (Fig. 456	

8A). The footwall host rock carbonate component is composed of microsparitic calcite crystals, 457	

present in silt and clay-sized intervals. It shows δ18O values between +13.9‰ and +16.0‰ V-458	

SMOW and δ13C from -3.2‰ to -0.7‰ V-PDB. 459	

Hanging wall OC1 and OC2 calcites present enriched and more clustered δ18O and δ13C values 460	

compared to footwall MC1 and MC2 calcite veins. δ13C values are comparable for hanging wall 461	

host rock and both the hanging wall OC1 and OC2 calcite generations. δ13C in hanging wall 462	

carbonates ranges mostly between +1.2‰ and +2.4‰ V-PDB, excluding outliers. Mean δ13C is 463	

+1.9‰ V-PDB for hanging wall host rock and OC1 calcites, and +1.8‰ V-PDB for OC2 calcites. 464	

δ18O values, however, display large variability between hanging wall host rock, OC1, and OC2 465	

calcites, defining a clear horizontally elongated trend in Fig. 8A. Host rock δ18O is between 466	

+26.9‰ and +27.5‰ V-SMOW; OC1 calcites δ18O are similar to the host rock, ranging from 467	

+23.5‰ to +26.9‰ V-SMOW, while OC2 calcites show depleted δ18O values, comprised between 468	

+13.1‰ and +19.7‰ V-SMOW (Fig. 8A). Mean δ18O are +25.7‰ and +16.5‰ V-SMOW for OC1 469	

and OC2 calcites, respectively. The OC2 outlier has a δ13C value of -0.46‰ V-PDB, comparable to 470	

footwall fault-related veins and corresponds to the replacive calcite, associated with quartz, shown 471	

in Fig. 7N. 472	

 473	

5.3 Fluid Inclusions 474	

Microthermometry measurements were done on 11 footwall and on 6 hanging wall veins and their 475	

results are summarized in Table 2. Quartz in footwall veins shows abundant and clearly visible 476	

trails of decrepitated and leaked inclusions. Two types of inclusions have been recognized: biphase 477	



aqueous (Q1) and monophase gaseous (Q2). Both of them have a maximum length ranging from 5 478	

to 15 µm and rounded shapes (Figs. 9A and 9C). Only one Q1 primary FIA and two isolated 479	

inclusions were large enough to be measured. Vapour to liquid phase ratios are constant and the 480	

vapour bubble is less than 15% of the total inclusion volume. Homogenization, always into the 481	

liquid phase, occurs between 127 °C and 215 °C (Fig. 10B) with a mean value of 157 °C. First 482	

melting temperatures are in the range of -50 °C to -45 °C, suggesting a NaCl-CaCl2-H2O system 483	

(Roedder, 1984), and are followed by the hydrohalite melting temperature between -32 °C and -28 484	

°C. Ice melting temperatures range from -4.8 °C to -11.4 °C (Fig. 10C) with a mean value of -7.2 485	

°C, which corresponds to salinities of 7.6, 15.4 and 10.7 wt% NaCl eq., respectively (Bodnar, 486	

1993). Q2 monophase gaseous inclusions have dimensions similar to Q1 inclusions and a rounded 487	

shape. They were measured in three FIAs. Homogenization was into the vapour phase at 488	

temperatures ranging from -89 °C to -83 °C (Fig. 10A). Mean homogenization temperature is -88 489	

°C. No solid was formed in these gaseous inclusions. Q2 inclusions were analysed through micro-490	

Raman spectroscopy to check their composition. Results of Raman analysis are briefly illustrated in 491	

Fig. 9B and show a peak at 2914 cm-1, which corresponds to the Raman shift of CH4. 492	

Homogenization temperatures, in agreement with Raman results, indicate that Q2 are monophase 493	

CH4 inclusions. 494	

Fluid inclusions in footwall MC1A calcite are biphase aqueous, with a size from 3 µm to 10-15 µm. 495	

They have a negative crystal shape and constant vapour/liquid ratio (Fig. 9D). The vapour phase 496	

fills 10 to 15% of the inclusion’s volume. Inclusions in MC1A calcite are organized in FIAs and in 497	

fluid inclusion (FI) trails that follow twinning planes. FI trails and inclusions near twinning planes 498	

were not taken into account during microthermometric measurements. Some inclusions leaked at 499	

their homogenization temperatures and some bubbles did not reappear upon cooling. These 500	

inclusions were also discarded. A total amount of twenty-two MC1A inclusions were measured, 501	

distributed in six FIAs and three isolated inclusions. MC1A inclusions show homogenization 502	



temperatures ranging from 178 °C to 198 °C. The mean Thtot is 189 °C and the modal peak is 503	

between 190 and 195 °C (Fig. 10B). First melting in MC1A inclusions occurred at temperatures 504	

between -17 °C and -21 °C, indicating a H2O-NaCl composition. The MC1A ice melting 505	

temperatures range from -0.8 °C to -6.2 °C, corresponding to salinities between 1.4 and 9.3 wt% 506	

NaCl eq. Mean Tmice is -2.7 °C, which corresponds to 4.5 wt% NaCl eq. (Bodnar, 1993; Fig. 10C).  507	

Fluid inclusions hosted in impurity-poor MC1B calcite crystals are slightly smaller than MC1A 508	

inclusions, ranging from 2 to 10 µm. They have rounded to negative crystal shape and constant 509	

vapour/liquid ratio where vapour fills around 10% of the inclusion’s volume. Nineteen MC1B 510	

inclusions were measured, distributed in five FIAs. They show homogenization temperatures 511	

between 140 °C and 161 °C with a mean value of 151 °C and a modal peak at 150-155 °C (Fig. 512	

10B). First melting temperatures of MC1B inclusions range between -8 °C and -20 °C in three FIAs 513	

while they are -31.5 °C in another FIA. Ice melting temperatures for MC1B inclusions range 514	

between -0.8 °C and -17.2 °C, which corresponds to salinities ranging from 1.4 to 20.3 wt% NaCl 515	

eq. The mean Tmice is -5 °C, corresponding to 7.9 wt% NaCl eq. (Bodnar, 1993; Fig. 10C). Only the 516	

four MC1B inclusions belonging to the FIA characterized by first melting temperatures of -31.5 °C 517	

showed Tmice lower than -6.2 °C, i.e. ranging from -10.1 °C to -17.7 °C. 518	

Footwall MC2 calcite contains biphase aqueous inclusions with the same petrographic 519	

characteristics as MC1 inclusions but they were not found aligned in FI trails. Six MC2 FIAs and 520	

two isolated inclusions were measured, representing 20 inclusions. They have rounded shapes and 521	

dimensions ranging from 2-3 up to 10 µm. Homogenization temperatures range from 69 °C to 115 522	

°C with a mean value of 88 °C (Fig. 10B). Ice melting temperatures range from -0.7 °C to -20.7 °C, 523	

corresponding to salinities from 1.2 to 22.9 wt% NaCl eq. The mean Tmice is -8.7 °C and the mean 524	

salinity 12.5 wt% NaCl eq. (Bodnar, 1993) even if the distribution is formed by two clusters, with 525	

Tmice comprised between -16.7 °C and -20.7 °C, and -0.7 °C and -5.8 °C, respectively. The modal 526	

peak is comprised between -1 °C and -2 °C (Fig. 10C). MC2 inclusions belonging to the first cluster 527	



froze at temperatures lower than -70 °C and showed melting evidence at temperatures comprised 528	

between -34 °C and -27 °C as Q1 inclusions. The first melting temperatures were difficult to 529	

evaluate but their similar behaviour with Q1 inclusions (this paragraph) suggests a NaCl-CaCl2-H2O 530	

system. Only a first melting temperature of -17.8 °C, indicating a NaCl-H2O system, was 531	

measurable in MC2 inclusions belonging to the second cluster.  532	

Hanging wall OC2 calcite is characterized by fluid inclusions that are monophase and biphase 533	

aqueous with rounded shapes and smaller than 10 µm (Fig. 9F). The vapour phase in biphase 534	

inclusions fills 5 to 10% of their volume. Small monophase OC2 inclusions did not nucleate 535	

bubbles after two weeks at -20 °C. Two FIAs and an isolated inclusion for a total of sixteen were 536	

measured. Homogenization temperatures range from 60 °C to 75 °C in the first FIA and from 110 537	

°C to 115 °C in the second FIA (Fig. 10D). First melting temperature was never observed. Ice 538	

melting temperatures range from -1.3 °C to -6.9 °C, with a mean value of -4.4 °C (Fig. 10E) and 539	

they correspond respectively to salinities of 2.2, 10.4 and 7 wt% NaCl eq. (Bodnar, 1993). OC2 540	

inclusions have higher salinities at lower homogenization temperatures. 541	

Homogenization vs. ice melting temperatures of measured inclusions are plotted in Fig. 11. Fluid 542	

inclusions from quartz in footwall veins show a rather constant salinity, around 10-15 wt% NaCl 543	

eq., at different homogenization temperatures. Calcites MC1A, MC1B and MC2 in footwall veins 544	

are characterized by a different temperature-salinity trend, generally displaying less than 5 wt% 545	

NaCl eq. at 180-200 °C (subgroup MC1A) and an increasingly wider range of salinities at 546	

decreasing temperatures. Subgroup MC1B with homogenization temperatures between 140-160 °C, 547	

can have salinities up to 20 wt% NaCl eq. At lower temperatures, between 70 and 110 °C, MC2 548	

inclusions have salinities up to 23 wt% NaCl eq. The data belonging to hanging wall fluid 549	

inclusions OC2 show a trend similar to footwall calcites, characterized by higher salinities at lower 550	

homogenization temperatures. 551	

 552	



6. VITRINITE REFLECTANCE AND THERMAL MODELLING 553	

Results of vitrinite reflectance measurements acquired in footwall Macigno Sandstones Formation 554	

are summarized in Table 3. Ten samples were analyzed from sites 14, 4 and 5. Samples from sites 555	

4-5 are located in the footwall damage zone while site 14 is located outside the damage zone. Mean 556	

values range between 0.42 and 0.70 Ro% and standard deviations are generally below 0.1 Ro%. 557	

More in detail, vitrinite reflectance measured on samples in the footwall damage zone (sites 4 and 558	

5) show very dispersed average values ranging from 0.42 to 0.61 Ro% (Table 3), which were based 559	

on the in situ vitrinite. The lowest values were measured on very small and fractured fragments with 560	

dark oxidized rims along the irregular micro-fissure in the vitrinite particle, making the reflectance 561	

assessment scarcely reliable, while only few sufficiently large and unfractured fragments were 562	

found showing generally slightly higher values around 0.65-0.70 Ro%. A further family of vitrinite 563	

fragments, excluded from the aforementioned average, was found showing values between 1.0 and 564	

1.30 %. These fragments were interpreted as reworked vitrinite.  565	

On the other hand, samples from site 14, far from the damage zone, indicate average values 566	

between 0.66 and 0.70 Ro% (Table 3). In situ vitrinite is here represented by large and unfractured 567	

fragments even if averages are based on a small number of measurements (between 8 and 19). Also 568	

in these samples reworked vitritine showing higher values (between 1.10 and 1.80 Ro%) was found. 569	

Nevertheless, the lowest mean values between 0.42 and 0.61 Ro% are found systematically in the 570	

footwall damage zone. These values are always associated with oxidized and pervasively fractured 571	

vitrinite fragments and thus were not considered in the calibration of the thermal model. Samples in 572	

the footwall sandstones outside the Compione fault damage zone, on the other hand, show 573	

consistent Ro% values between 0.66 and 0.70. 574	

Assumptions about the burial/exhumation history and heat flow in the MacignoSandstones  575	

Formation have to be made, as they are input data necessary for the thermal modelling: (1) 576	

stratigraphic location of the samples is comprised between 600 m and 1100 m from the top of the 577	



Macigno Sandstones Formation, which is 2300 m thick (Ghibaudo, 1980). In detail, samples from 578	

site 14 are located between 600-800 m and samples from sites 4-5 between 900-1100 m; (2) the 579	

Macigno Sandstones Formation was rapidly buried below the 4000-6000-m-thick allochtonous 580	

Ligurian and Subligurian units (Carlini et al., 2013); (3) syncontractional exhumation took place up 581	

to Late Messinian times through low angle normal faulting in the inner part of the orogenic wedge 582	

(Fellin et al., 2007; Carlini et al., 2013; Molli et al., 2018). Moreover, heat flow in the Northern 583	

Apeninnes foredeep has values lower than 30°C/km due to rapid burial and thrusting of foredeep 584	

units, whose thermal regime is far from equilibrium (Mongelli et al., 1991; Della Vedova et al., 585	

1995).  586	

Ro% values at maximum burial depth could only be fitted using 3000 m of Ligurian and 587	

Subligurian units overburden, lower than the minimum thickness estimates of allochtonous units 588	

(according to Carlini et al., 2013) and adopting a geothermal gradient of 25-30°C/Km. Thinning of 589	

the overburden thickness moving towards the foreland is logical considering the wedge-shaped 590	

overall geometry of fold and thrust belts (Davis et al., 1983). The best fit between calculated 591	

maturity profile and measured vitrinite reflectance was attained using a geothermal gradient of 592	

25°C/Km up to the end of Miocene that gradually increased up to a present-day value of 30°C/Km. 593	

As a consequence, the Macigno Sandstones Formation stratigraphic sector, hosted in the Compione 594	

fault footwall damage zone, at 5 km depth, experienced peak temperatures between 140-150°C 595	

(Fig. 12). 596	

 597	

7. DISCUSSION 598	

7.1 Process Zone Width  599	

An outstanding feature of the Compione Fault is the abundance in the footwall damage zone of 600	

veins that, when bedding is rotated to the horizontal, restore to a pattern of conjugate shear fractures 601	



with a vertical bisector, i.e. the typical geometry produced in an extensional tectonic regime 602	

(Anderson, 1951; Sibson, 1996). This evidence supports vein formation in an early evolutionary 603	

stage of the Compione Fault, when bedding in the process zone was still horizontal, before 604	

extensional folding and shear localization. Accordingly, the area affected by such extensional shear 605	

veins can be interpreted as the process zone sector preserved in the footwall of the Compione Fault, 606	

which formed ahead of the upward-propagating master shear zone (cf. Lockner et al., 1992; Reches 607	

and Lockner, 1994; Cowie and Shipton, 1998; Vermilye and Scholz, 1998). In the studied across-608	

fault transect, the width of the footwall process zone is about 900 m. The present-day tectonic 609	

juxtaposition of the Ottone Flysch Formation in the hanging wall prevents any possibility to 610	

quantify the total width of the process zone in the Macigno Sandstones Formation. However, by 611	

assuming that the Upper Triassic Burano Evaporites provided a thick plastic layer suitable to 612	

enhance initial extensional folding in the overburden (Schlische, 1995; Withjack and Callaway, 613	

2000), it is possible to hypothesize that the tip of the master shear zone was temporarily arrested at 614	

the base of the Burano Evaporites while their top, now at around 6 to 7 km depth, provided the 615	

apical point of the extensional fault-propagation fold (Fig. 13). By applying the geometric 616	

construction of Jin and Groshong (2006) and assuming a linear velocity field in the trishear zone 617	

ahead of the propagating upper fault tip (Hardy and Ford, 1997) it is possible to infer a total process 618	

zone width of about 1800 m and an apical angle of ~10° (Fig. 13). Taking into account that the total 619	

displacement of the Compione Fault is around 1.5 km (Bernini and Lasagna, 1988), our estimate of 620	

the process zone width is out-of-scale compared to displacement (D) to damage zone (DZ) ratios 621	

reported in the literature, even though D/DZ is strongly dependent on the criteria used to define 622	

damage zone thickness and on lithological properties (Knott et al., 1996; Fossen et al., 2007; Childs 623	

et al., 2009; Fossen, 2010; Torabi and Berg, 2011; Solum and Huisman, 2016). In fact, assuming 624	

that late-stage extensional fault zones are the structural elements that define the damage zone width, 625	

then the D/DZ ratio of the Compione Fault would be comparable to those reported in published 626	

datasets. 627	



 628	

7.2 Cyclical Vein Development and Earthquake Cycle 629	

Footwall damage zone fault-related veins show multiple subparallel fracturing-sealing events 630	

indicating that fracturing, cementation, dissolution and shearing were cyclic (Figs. 14A-C; Ramsay, 631	

1980; Boullier and Robert, 1992; Boullier et al., 1994; Sibson, 1996; Renard et al., 2000; Sibson, 632	

2004). The majority of veins is interested by localized shear-reactivation, forming abundant mirror 633	

surfaces and, in cases displaying straight micrometric wide slip surfaces truncating crystals, which 634	

are interpreted as evidence for coseismic slip (Smith et al., 2011; Fondriest et al., 2013; Smeraglia 635	

et al., 2017). Fracturing-sealing cycles caused strain-softening promoting localization of younger 636	

fracturing and shearing events at vein-host rock interfaces or in between different openings (Jessell 637	

et al., 1994; Virgo et al., 2014). Prehnite exhibits euhedral crystals, organized in columnar-radiating 638	

aggregates while quartz shows euhedral to subhedral crystals, in cases also displaying growth 639	

competition (Fig. 14A). Both textures require fractures to remain fluid-filled and open during 640	

crystal growth (Fisher et al., 1995; Koehn and Passchier, 2000; Oliver and Bons, 2001; Bons et al., 641	

2012), thus implying fluid pressures higher than the local σ3 for fault-parallel extensional veins. 642	

Conversely, blocky rhombohedric calcite texture (Figs. 14A-C), which occludes completely the 643	

remaining fracture space, could be caused by different processes: a) supersaturation in response to a 644	

pressure drop; b) texture obliteration due to repeated fracturing; c) fast crystal nucleation caused by 645	

a sudden arrest of an ascending fluid (Oliver and Bons, 2001). Moreover, prehnite dissolution can 646	

promote permeability enhancement and, consequently, pressure reduction (Figs. 14B and 14C; 647	

Boullier et al., 1994). In the literature models such as the fault-valve and seismic pumping have 648	

been proposed to relate cyclical fracturing-sealing events to the seismic cycle (Sibson et al., 1975, 649	

1988; McCaig, 1988; Boullier and Robert, 1992; Robert et al., 1995; Cox, 1995, 1999).  650	

Our microstructural data support a model of extensional faulting in the upper crust, triggered by 651	

shortening and thrusting in a seismically active metamorphic basement (McCaig, 1988). At shallow 652	



crustal levels, as in this specific case, fluid pressure is governed by seismic-pumping (Sibson et al., 653	

1975), while the fault-valve mechanism explains supralithostatic pressures at deeper crustal levels 654	

(Sibson et al., 1988). In the hypothesis that precipitation of the described prehnite-quartz-calcite 655	

assemblages was triggered by seismic activity during upward fault propagation from the basement, 656	

silicates (prehnite and quartz) may have crystallized at suprahydrostatic fluid pressure conditions 657	

(Pf) after seismically-induced fracturing, i.e. in the post-seismic stages (Figs. 14D and 14E). 658	

Suprahydrostatic Pf in the extensional process zone may have been generated by ascending fluids 659	

that breached a low-permeability layer at depth (Sibson et al., 1988; McCaig, 1988), reasonably 660	

provided by the thick evaporitic sequences at the top of the metamorphic basement, which is 661	

deformed in a regional scale antiformal stack structure (e.g. Molli et al., 2018). The decrease of Pf 662	

to hydrostatic values led to supersaturation of calcite, which precipitated in the remaining voids thus 663	

completing vein infilling and favouring a new cycle of pore fluid pressure increase (Figs. 14D and 664	

14E). The causal link between seismic activity and precipitation of the mineralogical assemblage in 665	

rotated shear veins exposed in the footwall damage zone of the Compione Fault is tentatively 666	

proposed as a working hypothesis that deserves further studies specifically designed for acquiring a 667	

comprehensive dataset suitable to either support or reject this possibility.  668	

 669	

7.3 Process Zone Temperature Anomaly 670	

Paleothermal data obtained from the host Macigno Sandstones Formation and from the shear vein 671	

network allow estimating the thermal disequilibrium associated with the upward migrating fluids 672	

that infiltrated the process zone in the early stages of faulting and related extensional folding.  673	

An anomalous feature is the maturity difference between sites 4 and 5 with respect to site 14, which 674	

cannot be explained by different burial since low maturity samples have a lower stratigraphic 675	

position. Actually, lower Ro% values from sites 4 and 5 locate into the footwall damage zone and 676	

were obtained from very small and fractured fragments with oxidized rims around fractures. This 677	



suggests that anomalously low reflectance values are due to oxidation from mixed meteoric and 678	

deep fluid weathering occurring probably during the last pulse of fluid circulation around the fault. 679	

The increase in permeability during the last stage of the fault’s activity created conditions that 680	

favoured oxidation of the surface of the organic matter which is subsequently degraded during 681	

weathering (Petsch et al., 2000). 682	

Accordingly, the thermal model was calibrated using data from site 14. Thermal modelling of 683	

vitrinite reflectance data provided peak temperatures in the footwall damage zone ranging between 684	

140-150 °C at maximum depths of about 5 km and geothermal gradients between 25-30°C/km (Fig. 685	

12). In addition, published data from apatite fission tracks in the Macigno Sandstones Formation 686	

sampled in the study area show complete annealing (Thomson et al., 2010; Carlini et al., 2013), 687	

which generally indicates temperatures higher than 110 °C (Ketcham et al., 1999). This supports 688	

results from our model.  689	

 Microthermometric data from quartz Q1 and calcite MC1A cements show homogenization 690	

temperatures of 155 °C and 180 °C, respectively. Accordingly, MC1A calcite in the footwall 691	

damage zone fracture network shows homogenization temperatures at least 30 °C higher than the 692	

surrounding Macigno Sandstones Formation. If we correct data by pressure, assuming that MC1A 693	

crystallized crystallized at about 5 km depth in hydrostatic conditions at the onset of exhumation, 694	

real fluid trapping temperatures are predicted to be around 210-230 °C (Fig. 15A). Moreover, 695	

prehnite in the studied veins, despite the impossibility to provide direct constraints on 696	

paleotemperatures may suggest minimum temperature values of about 230 °C based on occurrences 697	

in hydrothermal and in geothermal systems in Tuscany, Italy, and other areas showing calc-silicate 698	

mineralization (Browne, 1978; Arnason et al., 1994;). It is worth noting that uncertainty is 699	

associated with this inference because crystallization conditions might depend on fluid chemistry. 700	

Hydrothermalism is abundant and ongoing on the Tyrrhenian Sea side of the Apennines and is 701	

related to high-temperature-low-pressure contact metamorphism due to the intrusion of igneous 702	



bodies into the crust associated with the Tyrrhenian extension (Cavarretta et al., 1982; Boccaletti et 703	

al., 1997; Gianelli et al., 1997; Dini et al., 2005; Boiron et al., 2007 and many others). If our 704	

assumptions are correct, then the difference in temperature between hydrothermal fluids that 705	

circulated through the fracture network in the process zone and the surrounding host Macigno 706	

Sandstones Formation was between 60 and 90 °C. Such a high thermal disequilibrium is supported 707	

both by the geometry of the process zone, which displays a low apical angle (Fig. 13), and by supra-708	

hydrostatic fluid pressures that promote fast advection of hot fluids from the basement in a 709	

channelized, highly-fractured and narrow deformation zone (Sibson et al., 1988, 1996, 2000; 710	

Renard et al., 2000; Gratier et al., 2002; Beaudoin et al., 2011). This result highlights the 711	

importance of combining different methodologies to constrain host rock and fault-related fluid 712	

paleotemperatures (Mamadou et al., 2016; Honlet et al., 2017; Laurent et al., 2017; Wustefeld et al., 713	

2017). 714	

 715	

7.4 Fluid Sources and Migration Pathways 716	

Assuming that Q1 and Q2 inclusions are cogenetic, this would imply that the source fluid 717	

underwent fluid immiscibility before entrapment. Cogenetic aqueous biphase and CH4 gaseous 718	

monophase inclusions have already been documented in authigenic quartz in sandstones of the 719	

Northern Apennines (Mullis, 1979, 1987, 1988; Montomoli et al., 2001; Montomoli, 2002; 720	

Mazzarini et al., 2010). This fluid immiscibility is generally caused by decreasing fluid pressure 721	

during upward fluid migration in the fault damage zone, (Parry and Bruhn, 1987, 1990; Sibson et 722	

al., 1975, 1988, 2000). MC1B inclusions show the same composition and salinity as MC1A 723	

inclusions except for a FIA in Site 5, with higher salinity and lower first melting temperatures, 724	

indicating a NaCl-CaCl2-H2O composition as Q1 inclusions. 725	

Assuming equilibrium precipitation, the calculated δ18Ofluid for MC1 calcites is shown in Fig. 15B 726	

(Friedman and O’Neil, 1977), and is between +2‰ and +4‰ V-SMOW for MC1A calcite and 727	



between 0‰ and +2‰ V-SMOW for MC1B calcite indicating 18O enriched waters due to different 728	

degrees of water-rock interaction (e.g. Muchez et al., 1995). Taking into account the different 729	

lithologies cut by the Compione Fault (Figs. 1C and 2), δ13C values of MC1 calcites may indicate 730	

different degrees of mixing between methane fluid originating from the thermal maturation of 731	

organic matter inside the Macigno Sandstones Formation, inorganic marine carbon-rich fluids from 732	

the underlying Mesozoic carbonates and, also, a contribution of metamorphic fluids coming from 733	

the basement (cf. Hoefs, 1997; Milliken et al., 1998; Mazzarini et al., 2010; Boschetti et al., 2017). 734	

The latter is supported by the occurrence of prehnite crystallization in stage 1, which is a typical 735	

mineral of anchizone metamorphism (Merriman and Frey, 1999). Moreover, fluid trapped in MC1A 736	

inclusions shows low-salinity and high temperature, which can be ascribed to devolatilization 737	

reactions in the underlying metamorphic basement (Walther and Orville, 1982; Oliver, 1996; 738	

Connolly, 2010; Ingebritsen and Manning, 2010), while locally higher salinities in MC1B reflect a 739	

decreasing contribution of metamorphic fluids. 740	

 Hanging wall calcite OC2 is interpreted to be associated with stage 2 on the basis of structural, 741	

microstructural and isotopic observations: a) OC2 cements in microfractures that display, locally, 742	

quartz crystals along rims; b) OC2 in Fig. 7N occurs, as in the footwall, as isomorphous 743	

replacement of prehnite; c) isotopic analysis results of OC2 calcite in the same sample shows a δ13C 744	

shift towards MC1 calcites values indicating local mixing between hanging wall and footwall fluids 745	

at stage 2 (Fig. 8). Isotopic results of OC2 calcite show that δ13C values, except the outlier in Fig. 746	

7N, are similar to OC1 ones, indicating no external source of carbon in the Ottone Flysch 747	

Formation. δ18Ofluid from which OC2 precipitated is characterized by a wide variability (Fig. 15B), 748	

ranging from around -6‰ to 0‰ V-SMOW. This range could be interpreted as a fluid mix between 749	

Ottone Flysch formational waters and meteoric waters (δ18O around -8‰ to -6‰ V-SMOW, cf. 750	

Longinelli and Selmo, 2003; Giustini et al., 2016) even this is difficult to prove since we do not 751	

have data on the composition of the fluid.  752	



MC2 calcite crystallized in micro-fractures in the internal footwall damage zone during stage 3. As 753	

in stage 1 and 2, even MC2 locally replaces prehnite crystals. The wide range of homogenization 754	

temperatures of MC2 inclusions could indicate they were stretched. We, therefore, assume the 755	

lower temperatures ranging from 70 to 90 °C as representative for these inclusions. MC2 inclusions 756	

with low-salinity (< 10 wt% NaCl eq.) have a NaCl-H2O composition while those with high-salinity 757	

(up to 22.9 wt% NaCl eq.) have a NaCl-CaCl2-H2O composition. The high salinity could indicate 758	

the dissolution of salts in the subsurface (Goldstein and Reynolds, 1994; Boschetti et al., 2017). 759	

Carbon forming MC2 calcites was derived from the same sources discussed for MC1 while δ18OFluid 760	

values, comprised between -6‰ and -2‰ V-SMOW, could indicate mixing between MC1 source 761	

fluid and meteoric waters (Fig. 15B). 762	

Phase diagrams of log (a Ca2+ / a2 H+) vs. log a SiO2 (aq) in Figs. 16A and 16B have been plotted 763	

for, respectively, temperatures of 200 and 150 °C show the stability fields of the mineral 764	

assemblages in stage 1 and stage 2. In this framework, at the beginning of stage 1, the upward 765	

migrating fault-related fluid is initially recorded by crystallization of prehnite and quartz, which at 766	

200 °C (Fig.16A) are stable at lower log (a Ca2+ / a2 H+) and log a SiO2 (aq) compared to 150 °C 767	

(Fig.16B; cf. Bird and Helgeson, 1980, 1981; Cavarretta et al., 1982). Then it evolved, at lower 768	

temperatures, causing prehnite crystals dissolution and further precipitation of quartz and calcite 769	

(MC1 A and B), both in stages 1 and 2. Replacive calcite indicate a dissolution-reprecipitation 770	

process, lowering CO2 content and increasing H2O, silica and alumina activity in the fluid. Quartz 771	

cementation is coeval with upward methane migration which, in contrast, is not recorded in calcite. 772	

It can be inferred that quartz crystallization was inhibited when methane was no longer in the fluid 773	

and was oxidized to CO2, necessary to precipitate calcite. Silicates precipitation from an upward 774	

migrating and cooling hot fluid is easily explained by decreasing silica solubility at lower 775	

temperatures and pressures, while precipitation of calcite, which solubility increases with 776	

decreasing temperature and pressure, is promoted by decreasing fCO2 (cf. Bird and Helgeson, 1980, 777	

1981; Cavarretta et al., 1982).  778	



MC1 and MC2 calcite cements in Site 5, located in the footwall block between the Compione fault 779	

core and the E-W footwall splay, show lighter carbon values compared to other sites (Fig. 8C). This 780	

δ13C variation indicates that the sectors of the process zone were characterized by different 781	

quantities of organic matter maturation-derived carbon during upward migration. Stable isotope 782	

values of MC1 and MC2 in the sample from Groppodalosio (Fault NW tip area, Site 13) are slightly 783	

enriched in 18O (triangles in Fig. 8A) compared to Compione, while minimum temperatures of 784	

entrapment were the same. Therefore, the δ18OFluid composition in the NW were slightly heavier 785	

compared to the Compione area.  786	

 787	

7.5 Evolutionary Model 788	

The structural fabric preserved in the footwall of the Compione Fault indicates that fault activity in 789	

the Macigno Sandstones Formation started with the formation of a km-scale network of shear 790	

fractures in conjugate arrays with vertical σ1 bisector, as expected in extensional Andersonian 791	

faulting (Anderson, 1951; Sibson, 1996). The strike of the fractures was mainly parallel to the main 792	

trend of the Compione Fault, but also E-W, i.e. parallel to the major footwall fault splay occurring 793	

in the study area. This suggests that linkage within and among the major footwall segments 794	

constituting the Northern Lunigiana fault system (Fig. 3) occurred in the very early stages of 795	

extensional deformation. Such an early fracture network formed the process zone (Lockner et al., 796	

1992; Reches and Lockner, 1994; Cowie and Shipton, 1998; Vermilye and Scholz, 1998) of the 797	

Compione Fault in the Macigno Sandstones Formation, ahead of the upward-propagating master 798	

fault surface. The process zone was a preferential site for effective fluid circulation and advection of 799	

a hydrothermal plume at minimum temperatures of 210-230 °C, i.e. the trapping temperature of 800	

MC1A inclusions assuming hydrostatic conditions at 5 km depth, and possibly exceeding ~230 °C, 801	

as suggested by fracture cementation with prehnite (Fig. 17A). Results from microthermometry and 802	

stable isotope geochemistry indicate an open system circulation with upward directed and 803	



channelized high-temperature and low-salinity fluids coming from the metamorphic basement 804	

(Mazzarini et al., 2010; Boschetti et al., 2017) which mixed with carbon derived from the 805	

maturation of organic matter in the Macigno host rock. Petrographic evidence supports cross-806	

formational fluid flow up to the base of the Ottone Flysch Formation in this early stage.  807	

With increasing extension, the vein network in the process zone was progressively tilted by 808	

extensional fault-propagation folding (Withjack et al., 1990; Schlische, 1995; Hardy and McClay, 809	

1999; Ferrill et al., 2004a; Jin and Groshong, 2006) and bedding attained a synthetic dip attitude. 810	

During folding, the fault-parallel extensional conjugate vein arrays was preferentially reactivated by 811	

antithetic shearing, accompanied by precipitation of quartz and MC1B calcite (Fig. 17B). 812	

Mineralization occurred at minimum temperatures between 140 and 160 °C and increasing fluid 813	

salinities indicating mixing with a fluid characterized by lower temperature and higher salinity. At 814	

this stage there was still stratigraphic continuity across the Compione fault zone, which near surface 815	

expression was likely a flexure in the crestal region of the regional-scale anticline deforming the 816	

previously stacked thrust sheets of Tuscan and Ligurian rocks. The presence of the clay-rich 817	

Subligurian succession at the top of the Macigno Sandstones Formation and the change from 818	

siliciclastic to carbonate composition helps explain why conjugate fracture arrays comparable to the 819	

underlying ones did not develop in the Ottone Flysch Formation. In the latter, deformation was 820	

accommodated through a network of fault segments that partially exploited the pre-existing 821	

structural inheritance, accompanied by precipitation of OC2 calcite and rare quartz, at a temperature 822	

lower than 110 °C (Fig. 17B). 823	

When bedding dip in the extensional monocline reached values exceeding ~50°, fault propagation 824	

and breakthrough was accompanied by formation of a footwall damage zone with a width of about 825	

half that of the corresponding process zone. Many rotated shear veins and subsidiary faults were re-826	

activated and together with newly-formed ones, produced a network of high-angle faults with 827	

cataclastic cores of disaggregated and gouge layers. MC2 calcite precipitated in fractures of the 828	



damage zone, from fluids at temperature between 70° and 90° C, resulting from mixing between 829	

deeply-sourced fluids and meteoric waters which likely interacted, at different degrees, with the 830	

Burano Evaporites in the subsurface (Fig. 17C). This would explain the high salinity of a low 831	

temperature fluid with a stable isotopic composition typical of meteoric fluids. The damage zone in 832	

the hanging wall had a comparable width as the footwall but was affected by less intense fracturing, 833	

partly replaced by dissolution and discrete subsidiary faulting. 834	

 835	

8. CONCLUSION 836	

The Compione Fault is part of the Northern Lunigiana regional-scale extensional fault system, 837	

exposed for around 30 km along strike, which accumulated about 1.5 km offset since Early Pliocene 838	

times. It is located in the inner portion of the Northern Apennines, at the forelimb-crest transition of 839	

a major out-of-sequence thrust-related anticline, that deformed the previously stacked thrust sheet 840	

pile. The Compione Fault can be traced in seismic reflection profile down to the seismic basement 841	

top at about 6 to 7 km depth and dissects the previously produced contractional architecture. This 842	

fault zone offers the possibility to study the interaction between deformation, fluid flow and fracture 843	

cementation that progressed from a depth of ~5 km up to near surface conditions. The following 844	

major points can be drawn from this multidisciplinary study of the Compione Fault cross-sectional 845	

architecture, resulting from the combination of structural, petrographical, geochemical, 846	

microthermometric, and paleothermal analyses. 847	

- The footwall damage zone, affecting thick sandstone strata, is characterized by a network of 848	

shear veins with bisectors perpendicular to bedding, which was passively rotated by 849	

extensional fault-propagation folding during upward fault growth. Such a fracture mesh 850	

testifies for the presence of a wide process zone ahead of the fault tip in the early 851	

evolutionary stages. A comparable deformation pattern does not occur in the hanging wall 852	

damage zone because of either the carbonate composition of the Ottone Flysch Formation 853	



that favored an important role of dissolution, or the presence of clay-rich sediments 854	

tectonically juxtaposed at its base, which provided a strong mechanical discontinuity, or 855	

both. 856	

- Mineralization of the process zone fracture network by a prehnite-quartz-calcite assemblage 857	

from a fluid at a minimum temperature of 210 °C, possibly exceeding 230 °C indicates that: 858	

(i) the process zone provided a well-connected fracture mesh that significantly improved 859	

porosity and favored effective circulation and upward fluid migration; (ii) such a deep fluid 860	

volume constituted a hydrothermal plume in strong thermal disequilibrium with the host 861	

rock outside the fault zone, which experienced maximum temperatures of less than 140-150 862	

°C. 863	

- Shear vein cementation in the process zone was cyclic and episodic, indicating fluid 864	

pressure variations that might relate to the earthquake cycle. According to this hypothesis, 865	

seismic pumping may have promoted fast channelized fluid migration from the 866	

metamorphic basement, along the fault zone and up to the process zone. 867	

- Synthetic rotation about a horizontal axis of the process zone caused antithetic re-activation 868	

of pre-existing shear veins as subsidiary faults and formation of new, non-mineralized high-869	

angle extensional faults. This event of deformation localization represents the formation of 870	

the fault damage zones sensu-stricto. 871	

- The structural and paleofluid framework exposed in the thick sandstone beds at the footwall 872	

of the Compione Fault highlights the importance of the process zone for both fault scaling 873	

properties and hydrology. Process zone width is twice that of the damage zone sensu-stricto, 874	

produced by deformation localization during fault slip. This means that the total volume of 875	

footwall fractured rocks, typically included into the damage zone as a whole, is much 876	

thicker than what can be expected from statistical scaling laws and has a structural fabric 877	

mainly imprinted at the process zone stage. Furthermore, it developed diachronously during 878	

fault evolution, with maximum permeability and fluid advection ahead of the upward 879	



propagating fault tip, followed by fracture cementation, deformation localization, and 880	

porosity and permeability reduction in more mature stages. 881	

- Development of a process zone at the onset of extensional faulting can significantly 882	

contribute creating economically valuable fractured reservoirs ahead of fault tips. 883	

Extensional fault-propagation folding favors migration and accumulation of fluids from 884	

deeper stratigraphic horizons and the metamorphic basement into the extensional process 885	

zone, where high fluid pressures may likely occur. Eventually, fault breakthrough causes 886	

reservoir compartmentalization and sealing, preserving favorable conditions for fluid storage 887	

in the footwall damage zone and the corresponding process zone sector. 888	

- Depending on the first-order mechanical stratigraphy, development of crustal-scale 889	

extensional fault systems can create a strong vertical variability of fractured rock volumes 890	

resulting from the interplay among several factors, including: (i) the dominant deformation 891	

mechanisms, (ii) fault-propagation versus slip rates, (iii) possible development and width of 892	

a vertically-compartmentalized process zone ahead of the upward-migrating fault tip, (iv) 893	

competition between faulting and folding, etc. Such a large variability and vertical 894	

compartmentalization of the cross-sectional damage zone width strongly impacts fluid 895	

storage potential and partitioning in rift-related fault-bounded blocks, as well as the seismic 896	

behavior of fault zones. 897	

 898	
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Figure 1. (A) Location of the study area, in the inner part of the Northern Apennines, Italy. (B) 1434	

Tectonic sketch map of the region where the Lunigiana extensional basin developed (modified from 1435	

Bernini, 1997); the black and white traces indicate the geologic cross-section represented in (D) and 1436	

the seismic line in Figure 2, while the black and white rectangle represents the area shown in Figure 1437	

3A. NLB—Northern Lunigiana basin; SLB—Southern Lunigiana basin. (C) Schematic column of 1438	

the inner Northern Apennines stratigraphy. (D) Geological cross-section passing through the studied 1439	

segment of the Compione extensional fault zone (after Bernini and Papani, 2002). OTT—Ottone 1440	

Flysch Formation; MAC—Macigno Sandstones Formation; SUBL.—Subligurian Succession; m 1441	

(a.s.l.)—meters above sea level.  1442	

Figure 2. (A) Depth converted seismic line and (B) line drawing highlighting the geometry of the 1443	

Compione Fault, Northern Apennines, Italy, in the subsurface (segment of a seismic reflection 1444	

profile acquired from Eni S.p.A.). The seismic reflection profile is depth converted with the Move 1445	

Software (provided by Midland Valley Exploration Ltd.). By using the “User defined 1446	

tables/checkshots” method, 13 Time/Interval Velocity tables were defined for the common mid-1447	

point (CMP) gathers (CMP1–CMP13 in A). The interval velocities derive by Dix conversion of 1448	

stacking velocity used for the processing sequence as provided for this seismic profile. The Dix 1449	

interval velocities are in between 3130 and 7644 m/sec, they had an overall increase down to 5 sec 1450	

(two-way time) in the seismic reflection profile before depth conversion. v=h—vertical equals 1451	

horizontal.  1452	

Figure 3. (A) Simplified structural map of the Northern Lunigiana, Northern Apennines, Italy, 1453	

extensional basin showing the main extensional fault zones that constitute the Northern Lunigiana 1454	

extensional fault system, bounding the basin to the NE. The black and white trace A–B and the 1455	

rectangle refer to (B) and (C), respectively. (B) Schematic geological cross-section showing the 1456	

Geometry of the extensional fault propagation fold in the footwall damage zone of the Compione 1457	



extensional fault zone, overprinting the out-of-sequence (O-of-Seq) thrust-related fold geometry. 1458	

(C) Structural map of the study area showing structural and sampling sites (S).  1459	

Figure 4. (A) Geologic cross-section across the Compione fault damage zone, Northern Apennines, 1460	

Italy, and stereographic projections of structural data (Schmidt lower hemisphere). The trace of the 1461	

section is indicated in Figure 3C. Ex.F. c.i.—Extensional Faults contouring interval; S-s.F. c.i.—1462	

Strike-slip Faults contouring interval; FW non-tilted PZ c.i.—Footwall non-tilted Process Zone 1463	

contouring interval; meters a.s.l.—meters above sea level. (B) Outcrop picture and line drawing of 1464	

the hanging wall damage zone at Site 2, showing synthetic extensional faults in the Ottone Flysch 1465	

Formation. (C) Outcrop picture and line drawing of the footwall damage zone at Site 4, showing the 1466	

major E-W footwall splay extensional fault zone; red areas highlight the master slip surface.  1467	

Figure 5. (A) Outcrop picture and line drawing of conjugate shear veins and extensional faults in 1468	

the footwall damage zone to background transition (44°19′56.65″N 10°3′41.49″E). (B) 1469	

Stereographic projection of structural data in this area; dashed lines represent bedding. (C) Outcrop 1470	

picture and line drawing of Site 5; dashed white line corresponds to bedding, white lines highlight 1471	

conjugate shear veins and faults, and dashed black lines indicate late cataclastic faults; white (black) 1472	

arrows indicate kinematics before (after) bedding rotation. (D) Stereographic projection of 1473	

structural data collected at this site. (E) Detail of (C) showing a shear vein reactivated along a 1474	

synthetic subsidiary fault and later crosscut along an antithetic one. (F) Slickenfibers on a synthetic 1475	

subsidiary fault showing multiple slip directions; coin for scale.  1476	

Figure 6. (A) Stereographic projections (Schmidt lower hemisphere) of footwall shear veins and 1477	

extensional subsidiary conjugate faults, measured at sites 4 and 5, and separated for sectors 1478	

compartmentalized by late-stage large-scale cataclastic faults. In (B) data are restored to horizontal 1479	

using the related bedding orientation; black (white) dots indicate normal (reverse) kinematics; 1480	

reverse kinematics are apparent because of shear reactivation after bedding rotation. S—sampling 1481	

sites. 1482	



  1483	

Figure 7. Microphotographs of veins hosted in the footwall and hanging wall damage zones of the 1484	

Compione extensional fault. (A) Prehnite (Prh) crystals overgrown by quartz (Qz) and MC1 calcite; 1485	

MC2 calcite grew in dissolution fractures outlined by small dotted white lines (cross-polarized 1486	

light). (B) Prh growing in columnar-radiating structures, characterized by an abrupt change in 1487	

luminescence color and MC1A calcite crystals recrystallized in MC1B calcite along crystal 1488	

fractures, cathodoluminescence (CL) image. (C) Vein composed of euhedral to subhedral Qz rims 1489	

and MC1 replacive (rep) and rhombohedric (rho) calcite crystals in the center (cross-polarized 1490	

light). (D) CL detail of (C) showing MC1A and MC1B replacing prismatic Prh crystals. (E) Stained 1491	

hand sample displaying pink MC1 calcite and composed of five fracturing-sealing increments 1492	

and/or shear reactivations. (F) Detail of (E) illustrating micrometric wide slip surfaces formed by 1493	

coseismic slip (cross-polarized light). (G) Shear bands composed of recrystallized Qz subgrains and 1494	

replacive MC1 calcite crystals (cross-polarized light). (H) Isomorphous replacement of Prh crystals 1495	

by MC2 calcite (CL). (I) MC1A isomorphous replacements of prehnite crystals cut by late 1496	

microfractures cemented with MC2 calcite (CL). (J) Sample near the Compione fault core showing 1497	

disaggregated texture cemented by MC2 calcite. (K) Cross-polarized light image showing OC1 1498	

“dirty” and OC2 “clear” calcites textures. (L) CL image highlighting contrast in luminescence 1499	

colors between OC1 and OC2 calcites from dull red to bright red and pressure solution affecting 1500	

both OC1 and OC2. (M) Host rock clast in OC1 and late fractures filled by OC2 calcite and quartz 1501	

(qz). (N) CL image showing detail of a bedding parallel vein where OC2 calcite, associated with qz, 1502	

isomorphously replaces prehnite crystals. (O) Thin section scan of a breccia-vein composed of OC2 1503	

calcite cement collected in extensional S-C (schistosity-cisaillement) structures near the Compione 1504	

fault core. MC—Macigno Sandstones Formation calcite cements; OC—Ottone Flysch Formation 1505	

calcite cements.  1506	



Figure 8. Stable isotope data. (A) δ18O vs. δ13C plot of calcite from veins and host rocks; the dashed 1507	

grey rectangle indicates the range of isotopic values of Cretaceous limestone (Lms.) (after Veizer et 1508	

al., 1999) and the dashed black rectangle indicates those of Late Oligocene– Early Miocene 1509	

Macigno Sandstones Formation (after Milliken et al., 1998). (B, C) Plots of δ18O (B) and δ13C (C) 1510	

vs. distance (m) from the Compione fault core, Northern Apennines, Italy. FC—Fault core; 1511	

VSMOW—Vienna standard mean ocean water; VPDB—Vienna Pee Dee belemnite. In the legend 1512	

Ottone refers to calcite cements hosted in the Ottone Flysch Formation.  1513	

Figure 9. Microphotographs in plane polarized light of fluid inclusion types, in the analyzed veins. 1514	

(A) Monophase gaseous inclusions Q2 cooled at –100 °C. (B) Raw spectra of Raman analysis 1515	

performed on Q2 inclusions showing peaks corresponding to CH4. (C) Fluid inclusion assemblages 1516	

(FIA) of Q1 aqueous biphase inclusions in quartz from a footwall vein. (D) FIA of aqueous biphase 1517	

inclusions with a negative crystal shape in MC1. (E) FIA of aqueous biphase inclusions in MC2. (F) 1518	

FIA of aqueous monophase inclusions in OC2, overprinting a OC1 vein, big inclusions in OC2 are 1519	

biphase aqueous. MC—Macigno Sandstones Formation calcite cements; OC—Ottone Flysch 1520	

Formation calcite cements.  1521	

Figure 10. Frequency distribution plots of homogenization (Thtot) and ice melting (Tmice) 1522	

temperatures. (A) Thtot of Q2 monophase gaseous inclusions in quartz. (B) Thtot of biphase 1523	

aqueous inclusions in footwall veins. (C) Tmice of biphase aqueous inclusions in footwall veins. 1524	

(D) Thtot of biphase aqueous inclusions in hanging wall veins. (E) Tmice of monophase and 1525	

biphase aqueous inclusions in hanging wall veins. Macigno Calcite—Macigno Sandstones 1526	

Formation calcite cements; OC—Ottone Flysch Formation calcite cements; Footwall veins, hosted 1527	

in the Macigno Sandstones Formation, from Sites 4, 5, 7, and 13 in Figures 3A and 3C; Hanging 1528	

wall veins, hosted in the Ottone Flysch Formation, from Sites 2, 3, 8, 9, and 10 in Figure 3C.  1529	

Figure 11. Plot of homogenization temperatures (Thtot) vs. ice melting temperatures (Tmice) of 1530	

measured fluid inclusions. Ice melting temperatures are reported along with salinity in NaCl eq. 1531	



wt%, according to Bodnar (1993). Macigno Calcite—Macigno Sandstones Formation calcite 1532	

cements; Ottone Calcite—Ottone Flysch Formation calcite cements; Footwall veins, hosted in the 1533	

Macigno Sandstones Formation, from Sites 4, 5, 7, and 13 in Figures 3A and 3C; Hanging wall 1534	

veins, hosted in the Ottone Flysch Formation, from Sites 2, 3, 8, 9, and 10 in Figure 3C.  1535	

Figure 12. Burial and thermal history of the Macigno Sandstones Formation, Northern Apennines, 1536	

Italy, shaded in grey, using a geothermal gradient of 25 °C/km up to the end of the Miocene and of 1537	

30 °C/km since the Pliocene (P.). Striped areas represent the stratigraphic range of Site 14.  1538	

Figure 13. Trishear predicted geometry of the Compione Fault, Northern Apennines, Italy, using the 1539	

method of Jin and Groshong (2006). Monocline width is around twice the footwall monocline width 1540	

assuming a linear velocity field in the trishear zone. Striped unit above the basement correspond to 1541	

Burano Evaporites.  1542	

Figure 14. Sketch illustrating the typical paragenetic evolution of conjugate veins in the footwall of 1543	

the Compione Fault, Northern Apennines, Italy. (A) Pristine crystal textures of the initial infilling 1544	

event. (B) Microstructural modifications after shear reactivation. (C) After late-stage reactivation. 1545	

(D) Schematic table showing the cyclic events, indicating the relative chronology of fracturing, 1546	

precipitation, and dissolution processes, along with their temperature range. (E) Schematic 1547	

evolution of fluid pressure, reported as ratio to lithostatic pressure, and shear stress in time relative 1548	

to earthquake rupturing and to shearing, fracturing, precipitation, and dissolution processes (D) in 1549	

fault-related veins. Prh—prehnite, Qz—quartz; MC—Macigno Sandstones Formation calcite 1550	

cements. P—pressure; tau—shear stress; EQ— seismic rupture.  1551	

Figure 15. Data are from Sites 4, 5, 7, and 13 in the footwall damage zone (MC) and from Sites 2, 1552	

3, 8, 9, and 10 in the hanging wall damage zone (OC); see Figures 3A and 3C. (A) Isochores are 1553	

plotted for the different fluid inclusion types. Peak burial derived from vitrinite reflectance 1554	

modelling is used as an independent constraint to calculate a maximum trapping temperature for 1555	

MC1A (shaded area). (B) Oxygen isotope fractionation during equilibrium calcite precipitation. The 1556	



fluid oxygen composition is reported as a function of calcite oxygen composition and temperature. 1557	

Square symbols and error bars represent the mean value and range of footwall calcite MC1A, 1558	

MC1B, and MC2. OC2 calcite is represented by the white circles. Dashed lines describe the inferred 1559	

fluid evolution during time. MC—Macigno calcite cements; OC—Ottone Flysch Formation calcite 1560	

cements; VR (Ro%)—Maximum burial depth estimated from vitrinite reflectance measurements; 1561	

VSMOW—Vienna standard mean ocean water.  1562	

Figure 16. Phase diagrams for calcium and alumina minerals in terms of Ca2+/(H+)2 activity ratio 1563	

and of aqueous SiO2 activity at 200 °C (A) and at 150 °C (B).  1564	

Figure 17. Cartoon showing the proposed evolution of the Compione Fault, Northern Apennines, 1565	

Italy. (A) Onset of extensional deformations overprinting the previously stacked Sub-Ligurian and 1566	

Ligurian thrust sheets onto the Macigno foredeep sandstones (MAC). A wide process zone forms, 1567	

mainly consisting of conjugate shear fractures that enhance the advection of hydrothermal fluids 1568	

and rapid cementation. (B) Extensional fault-propagation folding during upward fault migration, 1569	

causing bending of part of the process zone closer to the prospect master shear zone and re-1570	

activation of conjugate shear veins as both synthetic and antithetic subsidiary extensional faults. (C) 1571	

Shear localization, fault breakthrough and accommodation of most of the displacement in the fault 1572	

core, hanging wall, and footwall subsidiary fault zones. Black arrows are formational fluids, white 1573	

and black ones are high-temperature low-salinity hydrothermal fluids, white and grey ones are 1574	

meteoric fluids and black and grey ones are low-temperature high-salinity fluids. OTT—Ottone 1575	

Flysch Formation; Prh—prehnite, Qz—quartz; MC—Macigno calcite cement; OC—Ottone Flysch 1576	

Formation calcite cements.  1577	

Table 1. Suummary of petrographic observations and stable isotope analyses results of the different 1578	

carbonate cements. 1579	

Table 2. Summary of petrographic observations and microthermometry analyses results of quartz 1580	

and carbonate cements. 1581	



Table 3. Summary of results of vitrinite reflectance measurements. 1582	

 1583	

Figure DR1. Seismic reflection profile of Fig. 2 before being depth-converted. 1584	

Figure DR2. (A-B) Outcrop pictures of coarse sandstones strata in footwall damage zone Site 5. 1585	

White dotted lines represent bedding, white lines are conjugate extensional shear veins and fractures 1586	

with σ1 orthogonal to bedding, black dashed lines are late-stage extensional shear fractures and red 1587	

dashed lines indicate strike-slip shear veins and fractures. White arrows indicate pre-bedding 1588	

rotation kinematics while black arrows indicate kinematics after bedding rotation. (C) Stained hand 1589	

specimen of footwall fault-related shear vein; black dotted lines separate different opening events. 1590	

(D) XPL image showing, as in C, multiple openings (separated by white dotted lines), of which 1591	

some interested by shearing and quartz recrystallization. (E) PPL image of vein showing both 1592	

MC1A and MC2 replacive calcite crystals along with quartz and rhombohedric MC1A. (F-G-H) CL 1593	

images showing progressive prehnite dissolution and replacement by MC calcites. 1594	

Figure DR3. Fluid inclusion assemblage in quartz of footwall damage zone fault-related shear veins 1595	

showing aqueous inclusion (white), gaseous CH4 inclusions (black) and an inclusion containing 1596	

liquid H2O and gaseous CH4 (black and white). In (A) at 20 °C and in (B) at -100 °C. 1597	

 1598	

1GSA Data Repository item 2018xxx, including structural sites and samples list, and stable isotopic, 1599	

microthermometric and SEM-EDS analyses results, is available online at 1600	

www.geosociety.org/pubs/ft20XX.htm, or on request from editing@geosociety.org or Documents 1601	

Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA. 1602	
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TABLE 1. SUMMARY OF PETROGRAPHIC OBSERVATIONS AND STABLE ISOTOPES ANALYSIS RESULTS OF 

THE DIFFERENT CARBONATE CEMENTS    

 

 
Cement 
 

 
 

Texture description 



range 



18O ‰  
(V-SMOW)  

mean 






st. dev. 






range 



13C ‰ 
(V-PDB)  

mean 






st. dev. 
 

Ottone host 
rock 
(n=4) 

 

Anhedral calcite microcrystals in matrix; Non 
luminescent in clay-silt size beds; dull 
luminescent in silt-fine sands beds. 

 

+ 26.9 
to 

+ 27.5 

 
 

+ 27.2 

 
 

± 0.2 

 

+ 1.7 
to 

+ 2.0 

 
 

+ 1.9 

 
 

± 0.1 

 
 

Ottone 
calcite 1 
(n=26) 

 

Well developed, rhomboedric “dirty” crystals 
with abundant twinning Type I, undulose 
extinction, intercrystalline slip and dissolution 
surfaces; non to dull luminscence. 

 
+ 23.5 

to 
+ 26.9 

 
 

+ 25.7 

 
 

± 0.7 

 
+ 1.6 

to 
+ 2.4 

 
 

+ 1.9 

 
 

± 0.2 

Ottone 
calcite 2 
(n=16) 

Clean translucent crystals in late fractures with 
rare twinning Type I; non to dull luminscence. 

+ 13.1 
to 

+ 19.7 
+ 16.5 ± 1.6 

- 0.5 
to 

+ 2.2 
+ 1.8 ± 0.7 

 

Macigno 
host rock 
(n=3) 

 
 

Anhedral calcite microcrystals in matrix of fine 
clay-silt beds; red to orange luminescence. 

 

+ 13.9 
to  

+ 16.0 

 
 
 

+ 14.7 

 
 
 

± 1.1 

 

- 3.2 
to 

- 0.7 

 
 

- 2.1 

 
 

± 1.3 

 

Macigno 
calcite 1 
(n=21) 

 

Crystals characterized by twinning Type I and 
rare Type II, displaying rhomboedric and 
isomorphously replacing Prh; red (MC1A) to 
orange (MC1B) luminescence. 

 

+ 11.8 
to 

+ 14.0 

 
 

+ 13.1 

 
 

± 0.6 

 

- 5.8 
to 

- 0.9 

 
 

- 3.3 

 
 

± 1.8 

 

Macigno 
calcite 2 
(n=18) 

 

Crystals in late fractures crosscutting Prh, Qz, 
MC1 and locally replacing Prh; orange to yellow 
bright luminescence. 

 

+ 13.4 
to 

+ 17.9 

 
 

+ 15.8 

 
 

± 1.2 

 

- 7.1 
to 

- 0.4 

 
 

- 2.7 

 
 

± 2.0 

 



 

TABLE 2. SUMMARY OF PETROGRAPHIC OBSERVATIONS AND MICROTERMOMETRY ANALYSIS RESULTS 

OF QUARTZ AND CARBONATE CEMENTS 

 

 

 

 
Cement 

 
FIA origin & type 

Homogenization 
temperature (°C) 

range/mean 

Ice melting 
temperature (°C) 

range/mean 

Salinity  
(eq. wt% NaCl) 

range/mean 
Macigno 
quartz 1 

Primary/Pseudosecondary two-
phase aqueous 

 

127 to 212 / 157 
 

- 4.8 to - 11.4 / - 7.2 
 

7.6 to 15.4 / 10.7 
Macigno 
quartz 2 

 

Primary Monophase gaseous CH4 
 

- 83 to -89 / -88 
 

N.D. 
 

N.D. 

Macigno 
calcite 1A 

Primary/Pseudosecondary two-
phase aqueous 

178 to 198 / 189 - 0.8 to - 6.2 / -2.7 1.4 to 9.3 / 4.5 

Macigno 
calcite 1B 

Primary/Pseudosecondary two-
phase aqueous 

140 to 161 / 151 - 0.8 to - 17.2 / - 5 1.4 to 20.3 / 7.9 

Macigno 
calcite 2 

 

Primary two-phase aqueous 69 to 115 / 88 - 0.7 to - 20.7 / -8.7 1.2 to 22.9 / 12.5 

Ottone  
calcite 1 

Reequilibrated two- and one-phase 
aqueous 

< 50 to 113 0 to - 1.6 / - 0.8 0 to 2.7 / 1.4 

Ottone  
calcite 2 

Primary two- and one-phase 
aqueous 

< 50 to 115 - 1.3 to - 6.9 / - 4.4 2.2 to 10.4 / 7 



 

TABLE 3. SUMMARY OF RESULTS OF VITRINITE REFLECTANCE MEASUREMENTS 

 

 

Site n. Sample n. R0 mean R0 S.D. Data n. 
14 1 0.70 0.08 11 
14 2 0.66 0.12 8 
14 3 0.69 0.10 19 
14 4 0.67 0.12 7 
4 1 0.61 0.04 8 
4 3 0.42 0.06 40 
4 4 0.42 0.10 12 
5 1 0.46 0.07 29 
5 2 0.55 0.05 12 
5 3 0.49 0.06 11 
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