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Symmetry breaking for a problem in optimal insulation
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Abstract

We consider the problem of optimally insulating a given domain Ω of Rd; this amounts
to solve a nonlinear variational problem, where the optimal thickness of the insulator is
obtained as the boundary trace of the solution. We deal with two different criteria of
optimization: the first one consists in the minimization of the total energy of the system,
while the second one involves the first eigenvalue of the related differential operator.
Surprisingly, the second optimization problem presents a symmetry breaking in the sense
that for a ball the optimal thickness is nonsymmetric when the total amount of insulator
is small enough. In the last section we discuss the shape optimization problem which is
obtained letting Ω to vary too.
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1 Introduction

In the present paper we deal with the problem of determining the best distribution of a given
amount of insulating material around a fixed domain Ω of Rd which represents a thermally
conducting body; the thickness of the insulating material is assumed very small with respect
to the size of Ω, so the material density is assumed to be a nonnegative function defined on
the boundary ∂Ω. A rigorous approach is to consider a limit problem when the thickness
of the insulating layer goes to zero and simultaneously the conductivity in the layer goes to
zero; this has been studied in [2], [1], where the family of functionals

Fε(u) =
1

2

∫

Ω
|∇u|2 dx+

ε

2

∫

Σε

|∇u|2 dx−

∫

Ω
fu dx

is considered on the Sobolev space H1
0 (Ω ∪ Σε), being Σε a thin layer of variable thickness

εh(σ) around the boundary ∂Ω

Σε =
{

σ + tν(σ) : σ ∈ ∂Ω, 0 ≤ t < εh(σ)
}

.

The temperature u of the conducting body Ω, with heat sources f ∈ L2(Ω) and insulating
distribution h, is then given by the minimization of the functional Fε on H1

0 (Ω ∪ Σε) or
equivalently by the solution of the PDE



























−∆u = f in Ω

−∆u = 0 in Σε

u = 0 on ∂(Ω ∪ Σε)

∂u−

∂ν
= ε

∂u+

∂ν
on ∂Ω.
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The last equality, represents a transmission condition across the boundary ∂Ω, where u− and
u+ respectively denote the traces of u in Ω and in Σε. Passing to the limit as ε → 0 (in
the sense of Γ-convergence) in the sequences of energy functionals provides the limit energy,
given by

E(u, h) =
1

2

∫

Ω
|∇u|2 dx+

1

2

∫

∂Ω

u2

h
dHN−1 −

∫

Ω
fu dx.

Therefore the temperature u solves the minimum problem

E(h) = min
{

E(u, h) : u ∈ H1(Ω)
}

(1.1)

or equivalently the PDE






−∆u = f in Ω

h
∂u

∂ν
+ u = 0 on ∂Ω.

(1.2)

Note that the boundary condition on ∂Ω is not any more the Dirichlet one, but is of a Robin
type.

We are interested in determining the density h(σ) which provides the best insulating
performances, once the total amount of insulator is fixed, that is we consider density functions
h in the class

Hm =

{

h : ∂Ω → R measurable, h ≥ 0,

∫

∂Ω
hdHd−1 = m

}

.

The following two different optimization problems then arise.

• In a first problem the heat sources f are given, and so the optimization problem we
consider is written as

min
{

E(h) : h ∈ Hm

}

. (1.3)

where E(h) is given by (1.1). Note that the energy E(h) can be written in terms of
the solution uh of the PDE (1.2); indeed, multiplying both sides of (1.2) by uh and
integrating by parts gives

E(h) = −
1

2

∫

Ω
fuh dx.

Thus, the minimization of E(h) in (1.3) corresponds to the choice of h which maximizes
the quantity

∫

Ω fuh dx. In particular, when f = 1, this first optimization problem con-
sists in placing h around Ω in the best way to obtain the maximal average temperature
in Ω.

• The second optimization problem we consider deals with the operator A written in a
weak form as

〈Au, φ〉 =

∫

Ω
∇u∇φdx+

∫

∂Ω

uφ

h
dHd−1 (1.4)

and the corresponding heat equation

∂tu+Au = 0, u(0, x) = u0(x).

In this case the long time behavior of the temperature u(t, x) is governed by the first
eigenvalue λ(h) of the operator A, given by the Rayleigh quotient

λ(h) = inf

{

∫

Ω |∇u|2 dx+
∫

∂Ω h−1u2 dHd−1

∫

Ω u2 dx
: u ∈ H1(Ω), u 6= 0

}

.

The best insulation is in this case determined by the minimum problem

min
{

λ(h) : h ∈ Hm

}

. (1.5)
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We will show that both problems (1.3) and (1.5) admit an optimal solution that can
be recovered by solving some suitable auxiliary variational problems. In the energy case of
problem (1.3) the optimal density hopt is unique and so, when Ω is a ball and f radial, hopt is
constant. On the contrary, for problem (1.5) we will see that a surprising symmetry breaking
occurs: when Ω is a ball and m is small enough the optimal density hopt is nonconstant.

In the last section of the paper we consider the shape optimization problems that arise
from (1.3) and (1.5) when we let Ω to vary too, among domains having a prescribed volume.

2 The energy problem

In this section we consider the optimization problem (1.3); this problem was already consid-
ered in [6] (see also [3]), for the sake of completeness we summarize the main results. The
optimization problem we deal with is

min
h∈Hm

min
u∈H1(Ω)

{

1

2

∫

Ω
|∇u|2 dx+

1

2

∫

∂Ω

u2

h
dHN−1 −

∫

Ω
fu dx

}

which, interchanging the two minimizations, gives

min
u∈H1(Ω)

min
h∈Hm

{

1

2

∫

Ω
|∇u|2 dx+

1

2

∫

∂Ω

u2

h
dHN−1 −

∫

Ω
fu dx

}

.

The minimum with respect to h is easy to compute explicitly and, for a fixed u ∈ H1(Ω),
which does not identically vanish on ∂Ω, is reached for

h = m
|u|

∫

∂Ω |u| dHd−1
;

the choice of h is irrelevant when u ∈ H1
0 (Ω). Therefore, the optimization problem (1.3) can

be rewritten as

min

{

1

2

∫

Ω
|∇u|2 dx+

1

2m

(

∫

∂Ω
|u| dHd−1

)2
−

∫

Ω
fu dx : u ∈ H1(Ω)

}

. (2.1)

The existence of a solution for problem (2.1) follows by the Poincaré-type inequality (see
Proposition 1.5.3 of [3])

∫

Ω
u2 dx ≤ C

[
∫

Ω
|∇u|2 dx+

(

∫

∂Ω
|u| dHd−1

)2
]

which implies the coercivity of the functional in (2.1). The solution is also unique, thanks to
the result below.

Proposition 2.1. Assume Ω is connected. Then, the functional

u 7→ F (u) =
1

2

∫

Ω
|∇u|2 dx+

1

2m

(

∫

∂Ω
|u| dHd−1

)2

is strictly convex on H1(Ω), hence for every f ∈ L2(Ω) the minimization problem (2.1) admits

a unique solution.

Proof. Let u1, u2 ∈ H1(Ω); since the term

1

2m

(

∫

∂Ω
|u| dHd−1

)2
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is convex and
∫

Ω

∣

∣

∣

∇u1 +∇u2
2

∣

∣

∣

2
dx =

∫

Ω

|∇u1|
2 + |∇u2|

2

2
dx−

∫

Ω

∣

∣

∣

∇u1 −∇u2
2

∣

∣

∣

2
dx ,

we have

F
(u1 + u2

2

)

<
F (u1) + F (u2)

2

whenever u1−u2 is nonconstant. It remains to consider the case u1−u2 = c with c constant.
If u1 and u2 have a different sign on a subset B of ∂Ω with Hd−1(B) > 0, we have

|u1 + u2| < |u1|+ |u2| Hd−1-a.e. on B ,

which again gives the strict convexity of the functional F . Finally, if u1 and u2 have the same
sign on ∂Ω, we have

(

∫

∂Ω
|u1 + u2| dH

d−1
)2

− 2
(

∫

∂Ω
|u1| dH

d−1
)2

− 2
(

∫

∂Ω
|u2| dH

d−1
)2

= −
(

∫

∂Ω
|u1 − u2| dH

d−1
)2

= −c2Hd−1(∂Ω)

which gives again the strict convexity of F and concludes the proof.

Example 2.2. Let Ω = BR be the ball of radius R in R
d and let f = 1; then, by the uniqueness

result of Proposition 2.1 the optimal solution u of the minimization problem (2.1) is radially
symmetric and is given by

u(r) =
R2 − r2

2d
+ c

for a suitable nonnegative constant c. The value of c can be easily computed; indeed the
energy of the function u above is

dωd

2

∫ R

0
rd−1

(r

d

)2
dr +

1

2m
(cdωdR

d−1)2 − dωd

∫ R

0
rd−1

(R2 − r2

2d
+ c

)

dr

= −
ωd

2d(d+ 2)
Rd+2 + c2

d2ω2
d

2m
R2d−2 − cωdR

d

where ωd denotes the Lebesgue measure of the unit ball in R
d. Optimizing with respect to c

we obtain
copt =

m

d2ωdRd−2
,

with minimal energy

−
R2

2d

(ωdR
d

d+ 2
+

m

d

)

.

Remark 2.3. If in Propostion 2.1 the domain Ω is not connected , then the strict convexity
of the functional F does not occur anymore, so that uniqueness in the minimization problem
(2.1) does not hold. Nevertheless, the non-uniqueness issue is a matter of constants. Indeed,
assume for simplicity that Ω has two connected components Ω1,Ω2 and u, v ≥ 0 are such that
for some t ∈ (0, 1), tF (u) + (1− t)F (v) = F (tu+ (1− t)v). Then, one gets

∫

Ω
|∇u|2 dx =

∫

Ω
|∇v|2 dx and

∫

∂Ω
u dHd−1 =

∫

∂Ω
v dHd−1.

This implies that u
∣

∣

Ω1

− v
∣

∣

Ω1

= c1 and u
∣

∣

Ω2

− v
∣

∣

Ω2

= c2 with

c1H
d−1(∂Ω1) + c2H

d−1(∂Ω2) = 0 .

4



Example 2.4. Let Ω = BR1
∪ BR2

be the domain of Rd made by the union of two disjoint
balls of radius R1 and R2 respectively, and let f = 1 as in Example 2.2. On each ball BRj

(j = 1, 2) the optimal solution u of the minimization problem (2.1) is radially symmetric and
is given by

u(r) =
R2

j − r2

2d
+ cj j = 1, 2

for suitable values of the constants c1, c2 ≥ 0. Repeating the calculations made in Example
2.2 we have that the energy of u is given by

−
ωd

2d(d+ 2)

(

Rd+2
1 +Rd+2

2

)

+
d2ω2

d

2m

(

c1R
d−1
1 + c2R

d−1
2

)2
− ωd

(

c1R
d
1 + c2R

d
2

)

.

Therefore, optimizing with respect to c1 and c2, we obtain easily that:

• if R1 = R2 = R any choice of c1 and c2 with

c1 + c2 =
m

d2ωdRd−2

is optimal, and provides the minimal energy

−
R2

2d

(ωdR
d

d+ 2
+

m

d

)

.

• if R1 6= R2 then necessarily one between c1 and c2 has to vanish and, if R1 < R2, the
optimal choice is

c1 = 0 , c2 =
m

d2ωdR
d−2
2

.

In other words, if R1 6= R2 it is more efficient to concentrate all the insulator around
the largest ball, leaving the smallest one unprotected.

Remark 2.5. We notice that the Euler-Lagrange equation of the variational problem (2.1) is






















−∆u = f in Ω,
∂u

∂ν
= −

1

m

∫

∂Ω
u dσ on ∂Ω ∩ {u > 0},

∂u

∂ν
≥ −

1

m

∫

∂Ω
u dσ on ∂Ω ∩ {u = 0}.

Then, if the solution u is positive on ∂Ω, the normal derivative ∂u/∂ν is constant along ∂Ω.
This constant can be easily computed integrating both sides of the PDE above, and we obtain

∂u

∂ν
= −

1

|∂Ω|

∫

Ω
f dx .

Coming back to the optimization problem (1.3), the optimal density h can be recovered
by determining the (unique in the case Ω connected) solution ū of the auxiliary problem (2.1)
and then taking

hopt = m
ū

∫

∂Ω |ū| dHd−1

if ū /∈ H1
0 (Ω). As a consequence of the uniqueness above, if Ω is a ball and f is radial, the

optimal density hopt is constant along ∂Ω.
It is interesting to notice that, taking tu instead of u in (2.1), and optimizing with respect

to t, gives the equivalent formulation of the auxiliary problem (2.1)

min











∫

Ω |∇u|2 dx+ 1
m

(

∫

∂Ω |u| dHd−1
)2

(

∫

Ω fu dx
)2 : u ∈ H1(Ω)











. (2.2)
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3 The eigenvalue problem

In this section we consider the optimization problem for the first eigenvalue of the operator
(1.4), that is the minimization problem (1.5). Similarly to what done in the previous section,
we can interchange the two minimizations, obtaining the auxiliary problem

min











∫

Ω |∇u|2 dx+ 1
m

(

∫

∂Ω |u| dHd−1
)2

∫

Ω u2 dx
: u ∈ H1(Ω)











. (3.1)

The existence of a solution ū easily follows from the direct methods of the calculus of varia-
tions; we may also assume that ū is nonnegative. Again, this gives the optimal density hopt
by

hopt = m
ū

∫

∂Ω ū dHd−1
.

We want to investigate about the radial symmetry of ū (hence on the fact that hopt is constant)
in the case when Ω is a ball. The surprising symmetry breaking is contained in the following
result.

Theorem 3.1. Let Ω be a ball. Then there exists m0 > 0 such that the solution of the

auxiliary variational problem (3.1) is radial if m > m0, while the solution is not radial for

0 < m < m0. As a consequence, the optimal density hopt is not constant if m < m0.

Proof. Set for every m > 0

Jm(u) =

∫

Ω |∇u|2 dx+ 1
m

(

∫

∂Ω |u| dσ
)2

∫

Ω u2 dx
, λm = min

{

Jm(u) : u ∈ H1(Ω)
}

.

Moreover, let us denote by λN the first nonzero eigenvalue of the Neumann problem:

λN = min
{

J∞(u) : u ∈ H1(Ω),

∫

Ω
u dx = 0

}

and by λD the first eigenvalue of the Dirichlet problem

λD = min
{

J∞(u) : u ∈ H1
0 (Ω)

}

.

Observe that λm is decreasing in m and

λm → 0 as m → ∞,

while
λm → λD as m → 0.

Therefore there exists a unique positive m such that λm = λN and we want to prove that
when Ω = BR such a value is indeed the threshold value m0 in the statement.

For Ω = BR and m < m0 assume by contradiction that the solution u to the auxiliary
problem (3.1) is radial; then it is positive and we may take u+ εv as a test function, where
v is the first eigenfunction of the Neumann problem. Without loss of generality we may
assume that

∫

Ω u2 dx =
∫

Ω v2 dx = 1. Using the fact that u and v are orthogonal, and that
∫

∂Ω v dσ = 0 we have

λm = Jm(u) ≤ Jm(u+ εv) =
λm + ε2λN

1 + ε2

6



which implies λm ≤ λN in contradiction to m < m0 and λm > λN .
Therefore radial solution do not exist when m < m0, and the proof is complete if we show

that non radial solutions only exist if m ≤ m0.
First we observe that, when m 6= m0, positive solutions to the auxiliary problem (3.1)

exists if and only if they are radial. In fact, on one hand we know that any radial solution is
necessarily positive. On the other hand a positive function u is a solution to problem (3.1) if
and only if







−∆u = λmu in Ω,
∂u

∂ν
= −

1

m

∫

∂Ω
u dσ on ∂Ω.

(3.2)

Let u(r, ω) be such a solutions in polar coordinate (r, ω) ∈ R
+ × S

d−1. By averaging u
along the angular coordinate ω and using the linearity of problem (3.2), we obtain a radial
function solution to (3.2) and therefore a radial solution to (3.1). Since any two positive
solutions to (3.2) can be linearly combined to obtain a solution to the Neumann eigenvalue
problem, the fact that λm 6= λN implies that positive solutions to (3.2) are unique up to a
multiplicative constant.

We assume now that for some m 6= m0 there exists a non radial positive solution u to
(3.1). From what we have just observed we know that such a solution cannot be positive
and has to vanish somewhere on the boundary of Ω. Let u(r, ω) be such a solution in polar
coordinates. By using the spherical symmetrization on (3.1) we can always assume that there
exists ω0 ∈ S

d−1 such that u(r, ω) is spherically symmetric in the direction ω0, that is:

u(r, ω1) ≥ u(r, ω2) for all 0 < r < R, whenever |ω1 − ω0| ≤ |ω2 − ω0|. (3.3)

We also know that u is a solution to






















−∆u = λmu in Ω,
∂u

∂ν
= −

1

m

∫

∂Ω
u dσ on ∂Ω ∩ {u > 0},

∂u

∂ν
≥ −

1

m

∫

∂Ω
u dσ on ∂Ω ∩ {u = 0}.

(3.4)

We multiply the eigenvalue equation in (3.4) by the first nontrivial eigenfunction v of the
Neumann eigenvalue problem on Ω and integration yields

(λm − λN )

∫

Ω
uv dx = −

∫

∂Ω

∂u

∂ν
v dσ (3.5)

We can choose v so that it is spherically symmetric in the direction ω0. In such a case we have
∫

Ω uv dx > 0; indeed v is also antisymmetric with respect to reflection about the equatorial
plane of Ω orthogonal to ω0 and therefore

∫

Ω uv dx > 0 as long as u is nonradially symmetric.
Moreover, the right-hand side of (3.5) is nonnegative; to see this fact, we notice that from
(3.4) we have that for a suitable δ > 0

{

u(R,ω) = 0 if |ω − ω0| ≥ δ

u(R,ω) > 0 otherwise.

From (3.3) and from the boundary conditions in (3.4) we deduce that ∂u/∂ν is spherically
symmetric in the direction ω0 (in the sense of (3.3)) and then we can repeat the argument
above.
Eventually we deduce λm ≥ λN and m ≤ m0.
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Remark 3.2. The symmetry breaking result of Theorem 3.1 has the following physical inter-
pretation: if we want to insulate a given circular domain in order to have the slowest decay of
the temperature, the best insulation around the boundary has a constant thickness if we have
enough insulating material at our disposal. On the contrary, if the total amount of insulator
is small, the best distribution of it around the boundary is nonconstant.

We show now that when the dimension d is one no symmetry breaking occurs. Indeed,
taking as Ω the interval ] − 1, 1[ and setting λm = ω2, the solution u of equation (3.4) is of
the form

u(x) = cos(ωx+ α)

with the boundary conditions given by (3.4)

{

|u′(a)| =
(

u(−1) + u(1)
)

/m if u(a) > 0

|u′(a)| ≤
(

u(−1) + u(1)
)

/m if u(a) = 0
for a = ±1.

This easily implies that α = 0 that is the solution u is symmetric. In this case ω turns out to
be the unique solution of the equation

tanω =
2

mω
.

We notice that in dimension d = 1 the first nontrivial Neumann eigenvalue λN (Ω) coincides
with the first Dirichlet eigenvalue λD(Ω), so one could also repeat the argument in the proof
of Theorem 3.1 to conclude again that u has to be symmetric.

4 Further remarks

We point out the two shape optimization problems that arise from (1.3) and (1.5) when we
let Ω to vary too. Denoting by EΩ(h), Hm,Ω, λm,Ω the same mathematical objects introduced
above, where the dependence on the domain Ω is stressed, we may consider the problem of
determining the optimal domain Ω, among the ones having a prescribed Lebesgue measure,
to obtain the best insulation. Considering the two criteria above, the first shape optimization
problem becomes

min
{

EΩ(h) : h ∈ Hm, |Ω| ≤ 1
}

. (4.1)

As done in Section 2 we can eliminate the variable h and the minimization problem becomes

min











∫

Ω |∇u|2 dx+ 1
m

(

∫

∂Ω |u| dHd−1
)2

(

∫

Ω fu dx
)2 : u ∈ H1(Ω), |Ω| ≤ 1











.

A constraint Ω ⊂ D can be added, where D is a given bounded domain.
Assume that f ∈ L∞(D), f ≥ 0, Ω is Lipschitz and u ≥ 0 is a minimizer in (2.2).

Following the ideas developed in [4, 5], we observe that the function u extended by zero on
D \Ω belongs to SBV (D). Consequently, one can relax the shape optimization problem, by
replacing the couple (Ω, u) with a new unknown v ∈ SBV (D,R+), the set Ω being identified
with {v > 0}. Then, the shape optimization problem becomes

min











∫

D |∇av|2 dx+ 1
m

(

∫

Jv
v+ + v− dHd−1

)2

(

∫

D fv dx
)2 : v ∈ SBV (D,R+), |{v 6= 0}| ≤ 1











. (4.2)
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Above, ∇av denotes the absolute continuous part of the distributional gradient of v, with
respect to the Lebesgue measure, Jv denotes the jump set of v and v+, v− the upper and
lower approximate limits of v at a jump point. Problem (4.2) is indeed a relaxation of the
original shape optimization problem, as a consequence of the density result [7, Theorem 3.1].

Problem (4.2) has a solution, the proof being done by the direct method of the calculus of
variations. The main ingredient is the SBV compactness theorem adapted as in [4, Theorem
2] to Robin boundary conditions, with the only difference that compactness occurs in L1(D).
Using the hypothesis f ∈ L∞(D), the existence of an optimal SBV solution follows. The fact
that the optimal SBV solution corresponds to a ”classical” solution needs a quite technical
investigation and faces the difficulty that the norm of the traces at the jump set is controlled
only in L1.

The case f ≡ 1 is particular and requires special attention. In some sense, the optimization
question is related to a torsion-like problem of Saint-Venant type. For Robin boundary
conditions it was proved in [5] that the ball is a minimizer. One could reasonably expect
that this result should hold as well for the shape optimization problem (4.1), in the case
f ≡ 1 and D = R

d. By direct computation, one can notice that among all balls satisfying
the measure constraint, the largest is the solution. Moreover, if Ω a union of disjoint balls
of different radii, the solution u is constant on the boundary of one ball and has to vanish
on the boundary of all the others, as already seen in Example 2.4. Then, using the classical
Saint-Venant inequality, a direct computation leads to the optimality of one single ball.

Similarly, the second shape optimization problem, arising from the minimization of the
first eigenvalue, considered in Section 3 is

min











∫

Ω |∇u|2 dx+ 1
m

(

∫

∂Ω |u| dHd−1
)2

∫

Ω u2 dx
: u ∈ H1(Ω), |Ω| ≤ 1











.

Let us notice that the shape optimization problem above, does not have a solution, as soon
as the dimension d of the space is larger than 2. Indeed, when d ≥ 3 we may consider the
domains Ωn = B1/n, the ball of radius 1/n, and take the test function un = 1. Then

λm(Ωn) ≤
1

m

(

Hd−1(∂B1/n)
)2

|B1/n|
=

d2ωd

mnd−2

and, as n → ∞, we get λm(Ωn) → 0. Similarly, if |Ω| = 1 and Ω is the union of n disjoint
balls of volume 1/n each, we obtain

λm(Ω) ≤ λm(B1/n) → 0.

It would be interesting to prove that for the two problems above (with d = 2 for the
second one) an optimal shape Ωopt exists, even if in a rather large class of domains with very
mild regularity. Also, in the case of the energy problem with f = 1 (often called torsion

problem) it would be interesting to prove (or disprove) that the optimal domain is a ball.
Nevertheless, in the proposition below we prove that for m < m0 the ball cannot be a

stationary domain for the functional λm(Ω).

Theorem 4.1. Let m < m0; then the ball cannot be a stationary domain for the functional

λm(Ω), where stationarity is intended with repect to smooth perturbations of the boundary,

that is for every smooth and compactly supported field V (x) with div V = 0, setting Ωε =
(Id+ εV )(Ω), we have

λm(Ωε)− λm(Ω) = o(ε).
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Proof. Let us take the ball of unitary radius, assume by contradiction that it is stationary
with respect to all smooth perturbation of the boundary that preserve the Lebesgue measure,
and set

Γ = {x ∈ ∂Ω : u(x) = 0}.

Up to a spherical symmetrization, the set Γ above is a nonvanishing spherical cap (an arc
of circle in dimension two); indeed if it reduces to a point (or to the empty set), the normal
derivative ∂u/∂ν is constant on ∂Ω except at most a point; averaging with respect to ω the
function u(r, ω) provides then a symmetric positive first eigenfunction. Thanks to Theorem
3.1 this implies m ≥ m0 which is not true. Set now Ωε = {x+εV (x) : x ∈ Ω} with div V = 0
and V orthogonal to ∂Ω, and let u ≥ 0 be a first eigenfunction of problem (3.1). Setting

uε(x) = u
(

(Id+ εV )−1(x)
)

,

by standard computations (see for instance [8]) and assuming u is smooth enough up to the
boundary (which is true in our case since Ω is the ball) we obtain

λm(Ωε) ≤ Jm(uε) = λm(Ω) + ε

∫

∂Ω
jm(u)V · ν dHd−1 + o(ε),

where

jm(u) = |∇τu|
2 − |∇νu|

2 − λmu2 +
2

m

(

∫

∂Ω
u
)

H(x)u ,

beingH the mean curvature in Ω (in our case constant, since Ω is the ball). By the stationarity
of Ω and since

∫

∂Ω
V · ν dHd−1 = 0

we get

|∇τu|
2 − |∇νu|

2 − λmu2 +
2

m

(

∫

∂Ω
u
)

H(x)u = const .

In particular, this gives, for a suitable constant c

∂u

∂ν
= c on the set Γ = {x ∈ ∂Ω : u(x) = 0}.

The conclusion that u has to be radial now follows by the Holmgren uniqueness theorem.
Indeed, the radial solution, given by the ODE

−w′′(r) +
d− 1

r
w′(r) = λmw(r), w(1) = 0, w′(1) = c,

also satisfies the PDE
{

−∆u = λmu

u = 0 on Γ, ∂u
∂ν = c on Γ

which gives that u(x) = w(|x|) in a neighborhood of ∂Ω, which is impossible by Theorem 3.1
since we assumed m < m0.

As said above, in the case of the energy we are not able to prove that the ball solves the
shape optimization problem (4.1); nevertheless, we can say it is a stationary domain, in the
same sense of Theorem 4.1, that is

E(Ωε)− E(Ω) = o(ε)
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for every Ωε = (Id+ εV )(Ω), where the quantity E(Ω) is defined as

E(Ω) = min

{

1

2

∫

Ω
|∇u|2 dx+

1

2m

(

∫

∂Ω
|u| dHd−1

)2
−

∫

Ω
u dx : u ∈ H1(Ω)

}

.

Indeed, the solution u on the ball is positive and radially symmetric by the uniqueness result
of Proposition 2.1. Therefore, the solutions uε relative to Ωε are still positive and solve a
Neumann problem of the form







−∆uε = 1 in Ωε

∂uε
∂ν

= −
1

m

∫

∂Ωε

uε dH
d−1.

The same argument used in the proof of Theorem 4.1 provides the stationarity condition

|∇τu|
2 − |∇νu|

2 − u+
2

m

(

∫

∂Ω
u
)

H(x)u = const

which is fulfilled in our case since we know that u is radial.
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Matematica, la Probabilità e le loro Applicazioni” (GNAMPA) of the “Istituto Nazionale di

Alta Matematica” (INDAM).

References

[1] E. Acerbi, G. Buttazzo: Reinforcement problems in the calculus of variations. Ann.
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