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Abstract 

 

In the present work, we report the synthesis of new aryliodonium salts to obtain 18F-labelled 

compounds whose corresponding unlabelled fluorinated derivatives showed to be CB2 cannabinoid 

receptor  specific ligands with Ki values in the low nanomolar range and high CB2/CB1 selectivity. Two 

radiolabelled compounds, [18F]AF4 and [18F]CB91, were successfully formulated for in vivo 

administration and their preliminary biodistribution was assessed with microPET/CT. [18F]AF4 was 

readily eliminated while [18F]CB91 presented a reasonable stability in vivo and a preferential extraction 

of the tracer in the tissues that constitutionally express CB2 cannabinoid receptor. The results obtained 

indicate [18F]CB91 as a possible candidate marker of CB2 cannabinoid receptor distribution and is 

worth of further development for its perspective use in assessing pathologies or diseases, in which the 

expression of this receptor is increased. 

 

Keywords: cannabinoid, CB1 receptor, CB2 receptor, iodonium derivatives, radiofluorination, 

microfluidic system  
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1. Introduction 

 

CB2 cannabinoid receptor (CB2R) belongs to the rhodopsin-like family class A of G-protein-coupled 

receptors (GPCRs) and constitutes, with CB1 cannabinoid receptor (CB1R), the restricted family of 

cannabinoid receptors (CBRs) [1].  

Even if CB1R is expressed throughout the body, it is found in higher concentrations in the brain and 

its activation is mainly associated with psychotropic and behavioural actions of cannabinoid drugs [2]. 

The CB2R is expressed in peripheral cells and tissues derived from the immune system [1] even if some 

recent studies showed that CB2R has a limited central nervous system distribution. In pathological 

conditions, the CB2R can be up-regulated and recent studies have highlighted that neuroinflammation, 

e.g. related to neurodegenerative (e.g. Alzheimer’s) or autoimmune disorders (multiple sclerosis), stroke, 

trauma or brain tumors can lead to an over-expression of CB2R [3]. Therefore, interest in developing 

Positron Emission Tomography (PET) radioligands for non-invasive imaging of the CB2R in 

neurological diseases and cancer, and in monitoring the therapeutic efficacy of new anti-inflammatory 

drugs is growing. A number of radioligands with affinity for the human CB2R for in vitro use are 

available. Non-selective cannabinoid radioligands such as [3H]CP55,940 or [3H]WIN55,212 are 

extensively used in binding analyses of the CB2 receptor [4]. Even if 18F-labelled tracers are preferred 

for PET imaging due to the longer radionuclide half-life (109 min), the majority of papers dealing with 

CB2R utilizes 11C-radioligands. Carbon-11 is a very short-lived positron emitting radionuclide (20 min 

half-life), and was used in the preparation of the first CB2-selective ligand, the dimethoxy-triaryl bis-

sulfone [11C]methoxy-Sch225336 [5]. Subsequently, other [11C]-labelled compounds have been 

synthesized and tested in animals, such as [11C]A-836339 [3] and [11C]KD2 [6], and also in healthy 

volunteers, such as [11C]NE40 [7]. Most of these radioligands were obtained by using 11C-methylation 

reactions, usually on demethylated substrates. A similar alkylation-based approach has been extended to 

fluorine-18 in the synthesis of a dideuterofluoromethyl derivative of a new CB2 scaffold based on a 

triazine moiety [8]. The use of deuterium was conceived to achieve improved stability towards in vivo 
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defluorination. Indeed, this fact may represent a problem with 18F-radiolabelled tracers based on 

alkylfluorides, as the bone seeking fluoride anion may be removed in vivo from the scaffold and 

jeopardize tracer exploitability in terms of image reading and subject exposure to unnecessary radiations. 

Extensive research has been dedicated to a novel class of 2-oxoquinoline derivatives [4, 9-12], which 

have been radiolabelled with either carbon-11 or fluorine-18. In the quest for an optimal 18F-labelled 

CB2R tracer, other scaffolds, with different structures, have been synthesized and evaluated for the in 

vivo visualization of CB2R , such as the N-dichlorobenzoyl fluoroethoxyindole [18F]FE-GW405833 [13]. 

To circumvent the in vivo defluorination of scaffolds being labelled via the 18F-fluoroethylation reaction, 

the route to the synthesis of a more stable aromatic fluoride was attempted by using an aromatic 

nucleophilic substitution on a N-aryl-oxadiazolyl-proprionamide [14], designed to bear a deactivated 

aromatic ring and a trimethylammonium leaving group. 

Although in vitro biological data of these radioligands were promising, unsatisfactory results were 

obtained in vivo because of metabolic instability [4, 13], poor solubility [12], and limited potential 

usefulness from biodistribution studies [5]. 

In a research program aimed at obtaining CB2R selective ligands [15, 16] we described the synthesis 

and pharmacological characterization of several fluorinated derivatives possessing the 1,8-naphthyridin-, 

quinolin- and pyridin-2-one- central scaffold [15, 16]. Among these, CB91, VL22 and AF4 (Figure 1) 

demonstrated to be CB2R specific ligands with Ki values in the low nanomolar range and high 

CB2/CB1 selectivity, while bearing the fluorine atom on the aromatic ring, which in principle should 

ensure high in vivo stability of the label. 
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Figure 1. Structures of fluorinated 1,8-naphthyridin- (CB91), quinolin- (VL22) and pyridin-2-one 

(AF4) derivatives.  

 

As a general rule, the most convenient way of 18F-labelling is to introduce the radionuclide in the 

final step of the synthetic process by using a nucleophilic substitution reaction [17]. In our case, we 

could not exploit the effect of electron-withdrawing groups, therefore an alternative route was identified 

in the use of aryliodonium salts [18], which represent a possible way to introduce a fluorine atom into an 

electron-rich aromatic ring. Hypervalent iodine bonded to two aromatics rings leads to the formation of 

a fluoroaryl and an iodoaryl derivative when reacted with fluoride: the former is usually generated on 

the less electron-rich ring.  

In this work we report the synthesis of the aryliodonium salts of CB91, VL22 and AF4 and their 

radiofluorination in microfluidic conditions to obtain the corresponding 18F-labelled compounds. 

[18F]AF4 and [18F]CB91, whose corresponding unlabelled derivatives show promising clogP value and 

good Papp value for intestinal and blood-brain barrier (BBB) permeability, were also tested in 

microPET to assess their in vivo biodistribution in rodents.  

  

2. Results and discussion 

 

2.1. Synthesis and radiosynthesis.  

 

Incorporation of 18F into aryliodonium salts occurs preferentially on the less electron-rich ring. 

Therefore, aryliodonium salts bearing a thienyl portion were developed in order to direct the fluorination 
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towards the relatively deactivated benzylic group. Precursors were synthesised by reaction of a boronic 

acid and a diacetoxyiodo derivative in the presence of a suitable organic acid. 

In a first attempt, the boronic derivative 2 was prepared by reaction of carboxamide 1 [16] with 4-

(bromomethyl)phenyl boronic acid (Scheme 1). Then, the boronic acid 2 was reacted with 2-

(diacetoxyiodo)thiophene, synthesized according to a published method [19]. Unfortunately this 

approach was unsuccessful in obtaining the desired derivative 3. This phenomenon could be related to 

electron rich character of thiophene: an high level of impurities and side-products might originate from 

internal redox processes and other side-reactions of the highly reactive 2-(diacetoxyiodo)thiophene [20].  

The synthetic approach was then modified creating the diacyloxy function on the benzylic portion 

which was reacted with the commercially available thienyl boronic acid (Scheme 2). This synthetic 

route was then successfully applied for the synthesis of all the designed precursors. As reported in 

Scheme 2 the N1-alkylation of carboxamides 1, 4 and 5 [15, 16] was performed in anhydrous THF/DMF 

with p-iodobenzylbromide in presence of NaH at room temperature and afforded the desired iodobenzyl 

derivatives 6, 7 and 8. Oxidation of the iodine atom with NaBO3·4H2O led to the corresponding 

diacetoxyiodo derivatives. These compounds are characterized by high reactivity/instability and 

therefore they were not isolated and rapidly reacted with the 2-thienylboronic acid in presence of a 

Lewis acid (trifluoroacetic acid) to obtain the desired iodonium salts 3, 9 and 10 [21]. 
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Name Central scaffold  X R 

1, 6, 3 pyridin-2-one -- Cycloheptyl 

4, 7, 9 quinolin-2-one CH Cycloheptyl 

  5, 8, 10 naphthyridin-2-one N 4-methylcyclohexyl 

 

 

 

The aryliodonium salts 3, 9 and 10 were radiolabelled, following classical nucleophilic fluorination 

conditions, by using potassium 18F-fluoride/kryptofix (K222) complex in DMSO (Scheme 3). The 

radiofluorination was optimized employing an Advion Nanotek microfluidic system; this apparatus 

allows delivering discrete amounts of both aryliodonium DMSO solution and the radiofluorinatinon 

complex, prepared using the traditional azeotropic distillation [21, 22], into a tubular flow reactor of 

15.6 L internal volume. Radiofluorination conditions were optimized by modifying reaction 

temperature, reagent relative ratios and residence time in microreactor by employing the minimum 

amount of precursor [23] The system used was also modified in order to perform the whole production 

process, and comprised an automated HPLC purification and a SPE processing to achieve the final 

injectable formulation [22].  
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Scheme 3 
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Thus, the iodonium salt 3 was labelled to [18F]AF4 with a maximum 43±5% (n = 5) incorporation 

yield, by using a 40 μL/min overall flow at 190°C. These conditions were also optimal for the 

radiolabelling of the iodonium salt 10 to [18F]CB91, which was obtained in 42±7% (n = 5) incorporation 

yield. Conversely, the iodonium salt 9 gave the corresponding labelled compound [18F]VL22 with only 

3% yield (n = 10). The reason for the low yield reported with this last substrate is still unknown, and 

studies are on-going to clarify this result. 

All purified products had high radiochemical purity (> 95%) and have been formulated in 10% 

ethanol/saline. However, the HPLC analysis of the reaction mixtures highlighted the presence of a 

secondary, unexpected non-radioactive peak [21]. The reduction of an iodonium salt precursor, 

occurring as a side reaction during 18F-radiofluorination, was already reported in the literature [24]. This 

hypothesis was confirmed by direct comparison of the HPLC retention time and MS fragmentation of 

the unknown peaks with an authentic sample of the deiodinated analogues of 6 and 8 [21] thus 

confirming that this side reaction should be taken into account when using aryliodonium salts and 

considered during final product work up and in vivo utilization, the latter for possible unexpected 

interference with tracer imaging performances. 
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2.2 LogP and in vitro prediction of intestinal and BBB permeability.  

 

The logP values for CB91 and AF4 were calculated in silico as clog P using the OSIRIS Property 

Explorer software (Thomas Sander, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, 4123 Allschwil, 

Switzerland,). The results obtained (clog P = 2.95-3.03 for CB91 and clogP =2.18-2.61 for AF4) 

indicated favorable lipophilic characteristics for both intestinal absorption and BBB permeability.  

These hypotheses were tested by using drug-permeability assays in Caco-2 cell lines and in 

MDCKII-hMDR1 cell lines to estimate their intestinal absorption and BBB permeability respectively. 

The results for AF4 (Papp value = 66.0 ± 13.2 nm/s and 111.8 ± 2.2 nm/s for intestinal and BBB 

permeability respectively) and those previously reported for CB91 (Papp value = 29.6 ± 0.2 nm/s and 

65.0 ± 0.3 nm/s for intestinal and BBB permeability respectively) [25] indicate that these compounds are 

characterized by a medium–high absorption from the intestine after oral intake and good permeability 

across the BBB by passive diffusion. 

 

2.3. In vivo experiments  

 

The experimental protocol was conducted in accordance with the D.L. 116/92, implementation of 

the directive EEC 609/86, regarding the protection and use of animals in scientific research, enforced at 

the time of the experiments. 

Since [18F]AF4 and [18F]CB91 were obtained with good radiochemical yields and higher process 

stability, their in vivo biodistribution was assessed with dynamic PET imaging in rodents.  

Whole-body PET images were acquired in each animal and time-activity curves (TAC) were derived 

from average counts in region of interests (ROI) drawn on PET images in correspondence of the 

principal organs (brain, liver, kidney, lungs, heart). At the end of the experiment, animals were 

sacrificed and principal organs harvested for radioactivity counting. Counts were normalised to the 

weight of the sample and the injected dose. 



 

10 

 

Preliminary findings from in vivo PET imaging demonstrate that both [18F]AF4 and [18F]CB91 are 

quickly cleared from blood via the hepatobiliary elimination route, as demonstrated by high liver 

accumulation of the tracers since the earliest timeframes and early presence of radioactivity in the upper 

tract of the small intestine. Relative uptake of radioactivity in spleen and pancreas could not be resolved 

in vivo due to high liver uptake. Remarkably, fluorine remained bound to the organic moiety, as 

demonstrated by the very low uptake in bones and joints, substantially free from tracer accumulation 

even at later time of the experiment. 

Compound [18F]AF4 was much prone to hepatic catabolism and no significant accumulation could 

be detected by both PET and organ counting in peripheral organs with higher CB2R expression , except 

from the liver and brown adipose tissue (BAT) (Figure 2). Gut radioactivity was related to content and 

not to intestine wall uptake. Analysis of PET dynamic images was consistent with a quick hepatic 

metabolism (Figure 3). 

[18F]CB91 had a more complex pattern of distribution (Figure 4), showing also uptake in CB2R rich 

organs, such as the spleen and the gut wall, but also in other districts, like kidneys, pancreas and brown 

adipose tissue (BAT). PET findings have been confirmed by ex vivo organ counting (Figure 5); in 

particular, counts in urine were very low, thus demonstrating that the tracer binds to the kidney 

parenchyma but is not eliminated via this route.  
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Figure 2. PET image of [18F]AF4 in vivo distribution. Tracer uptake in the liver and brown adipose 

tissue (BAT) is followed by rapid enteric and urinary elimination. Lower-left hot-spot in the picture 

corresponds to injection site. 
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Figure 3. [18F]AF4 in vivo kinetics. The rapid extraction by the liver is followed by enteric and urinary 

elimination of metabolites.  

 

    

 

Figure 4. microPET/CT image of [18F]CB91 in vivo distribution (microPET image left panel, 

microPET and microCT fused images, right panel). A more widespread distribution can be observed 

with higher extraction in the liver, the gut, and kidneys. The absence of signal from the bladder indicates 

low urinary elimination. 
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Figure 5. [18F]CB91 ex vivo preliminary biodistribution data. 

 

 

3. Conclusion  

 

In the present work, starting from our high-affinity ligands CB91, VL22 and AF4, [15, 16] we 

designed and synthesized three novel aryliodonium salts possessing chemical features amenable to 18F-

labelling. 

An ad hoc microfluidic approach was developed for the radiolabelling, which led to good 18F-

incorporation yields for two of the three aryliodonium salts. Chemical and radiochemical purity were 

thoroughly assessed, highlighting that the concurrent reduction of iodonium salts during fluorination 

should be always considered for the possible generation of by-products. 

[18F]AF4 and [18F]CB91 were successfully formulated for in vivo administration and preliminary 

pharmacokinetics evaluation with microPET/CT. 

While [18F]AF4 turned out to be readily catabolised in vivo, [18F]CB91 showed a reasonable stability 

in vivo and a preferential extraction of the tracer in the tissues that constitutionally express CB2R but not 

in the brain. No in vivo defluorination was observed with [18F]CB91. 
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Studies are on-going to demonstrate the specific binding of the tracer to the receptor and to further 

explore the perspective use of [18F]CB91 as biomarker of CB2R in pathologies or disease, including 

cancer, in which CB2R expression is increased.  

 

4. Experimental  

 

4.1. Chemistry 

Reagents were purchased from commercial sources, and used without further purification. Melting 

points were determined on a Kofler hot stage apparatus and are uncorrected. 1H NMR and 13C NMR 

spectra were recorded with a Bruker AC–200 spectrometer. 1H and 13C chemical shifts are reported in δ 

units (ppm) downfield relative to the chemical shift for tetramethylsilane. Abbreviations s, d, t, and m 

denote singlet, doublet, triplet, and multiplet, respectively. Merck silica gel 60 was used for flash 

chromatography (230−400 mesh). The chemical purity of the target compounds was determined under 

the following conditions: the HPLC system was an LC Workstation Prostar (Varian, Inc., Walnut Creek, 

CA, USA) consisting of high pressure mixer pump (ProStar, model 230), DAD detector (ProStar, model 

330) and a loop of 20 μl. Data were processed by a Star LC Workstation (Varian, Inc.). 

Chromatographic separation was performed on a Luna C18 ODS2 analytical column (150 x 4.6 mm inner 

diameter, 3 μm particle size, Phenomenex, Torrance, CA, USA) maintained at 25° C. The mobile phase 

consisted of acetonitrile:water. Wavelengths were set at 220 and 320 nm. The purity of each compound 

was >96% in either analysis. 

 

4.1.1 4-{[3-(cycloheptylcarbamoyl)-2-oxopyridin-1(2h)-yl]methyl}phenylboronic acid (2). To a solution 

of N-cycloheptyl-2-hydroxypyridine-3-carboxamide (1) (0.36 g, 1.54 mmol) in 10.0 ml of anhydrous 

THF, NaH (1.8 mmol, 60% in mineral oil) was added. After 1h, 2.5 ml of anhydrous DMF were added 

and a solution of 4-(bromomethyl)phenylboronic acid (0.39 g, 1.8 mmol) in 3.0 ml of anhydrous THF 

was dropped. The mixture was stirred for 24 h at room temperature. After the solvent was evaporated in 
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vacuo and the semisolid obtained was treated with water and pH was adjusted to 4-5 with diluted 

hydrochloride acid. After filtration the solid obtained was triturated with petroleum ether (40-60°C) and 

collected by filtration (80%), mp: 113-115°C, 1H-NMR: CDCl3 δ 9.93 (d, 1H, NH); 8.49 (d, 1H, H4); 

7.83 (d, 1H,Ar); 7.48 (d, 2H, H6); 7.26 (d, 2H, Ar); 6.40 (m, 1H, H5); 5.97 (s, 2 H, OH); 5.23 (s, 2H, 

CH2); 4.12 (s, 1H, NCH); 1.85-1.30 (m, 12H, cycloheptyl). 

 

4.1.2 General procedure for the synthesis of p-iodobenzyl derivatives. 

The p-iodobenzyl derivatives 6-8 were obtained following the method previously reported [21]. 

Briefly to a solution of 1.0 mmol of the appropriate carboxamide 1, 4 and 5 in 10.0 mL of anhydrous 

THF, 1.2 mmol of NaH was added. After 1 hour at room temperature, 2.5 mL of anhydrous DMF and a 

solution of p-iodobenzylbromide (l.0 mmmol) in 3 mL of anhydrous THF were added. The mixture was 

stirred for 24 hours at room temperature and then  was concentrated under reduced pressure treated with 

water and extracted with CH2Cl2. The organic layer was washed with brine, dried over anhydrous 

sodium sulfate, and evaporated to give a residue which was purified by crystallization.  

 

4.1.2.1. 1-(p-Iodobenzyl)-N-cycloheptyl-1,2-dihydro-2-oxopyridin-3-carboxamide (6). Purified by 

crystallization from diisopropyl ether. Pale yellow powder (yield 86%); mp: 88-90°C; 1H-NMR 

(DMSO) δ 9.71 (d, 1H, NH); 8.36 (m, 1H, Ar); 8.18 (m, 1H, Ar); 7.72 (d, 2H, Ar); 7.46 (d, 2H, Ar); 

6.57 (m, 1H, Ar); 5.19 (s, 2H, CH2); 3.90 (m, 1H, NCH); 1.81-1.44 (m, 12H, cycloheptyl). 13C-NMR 

(DMSO) δ 162.44; 162.20; 143.81; 140.26; 138.36 (2C); 135.38; 130.00 (2C); 122.54; 107.25; 94.30; 

52.48; 50.73; 35.20 (2C); 28.41(2C); 24.51 (2C).  

 

4.1.2.2. 1-(p-Iodobenzyl)-N-cycloheptyl-1,2-dihydro-2-oxo-quinolin-3-carboxamide (7). Purified by 

crystallization from diisopropyl ether.Yellow powder (yield 50%); mp: 83-85°C ; 1H-NMR (CDCl3) δ 

9.79 (d, 1H, NH); 9.00 (s, 1H, Ar); 7.81 (d, 2H, Ar); 7.68-7.53 (m, 3H, Ar); 7.35-7.22 (m, 2H, Ar); 6.95 

(d, 2H, Ar); 5.56 (s, 2H, CH2); 4.21 (m, 1H, NCH); 2.20-1.40 ( m, 12H, cycloheptyl). 13C-NMR (CDCl3) 
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δ 162.39 ; 162.09 ; 144.41; 140.06, 138.24 (2C), 135.58, 132.95, 131.20, 128.54 (2C); 123.50; 

122.04,120.32, 115.07; 93.08; 50.80, 46.17; 35.07 (2C), 28.34 (2C), 24.38 (2C).  

 

4.1.2.3. 1-(p-Iodobenzyl)-N-(4-methylcyclohexyl)-1,2-dihydro-2-oxo-1,8-naphthyridin-3-carboxamide 

(8). Purified by crystallization from petroleum ether (100-140°C).Yellow powder (yield 73%); mp: 84-

86°C ; 1H-NMR (DMSO) δ 9.80 and 9.42 (2d, 1H, NH); 8.95 (s, 1H, Ar); 8.73 (m, 1H, Ar); 8.52 (m, 1H, 

Ar); 7.62 (d, 2H, Ar); 7.45 (m, 1H, Ar); 7.05 (d, 2H, Ar); 5.66 (s, 2H, CH2); 4.11 and 3.71 (m, 1H, 

NCH); 1.89-0.83 ( m, 12H, cyclohexyl + CH3). 
13C-NMR (DMSO) δ 161.49 ; 160.29 ; 151.77; 148.45 ; 

141.75; 138.90; 136.45 (2C); 128.90 (2C); 121.90; 119.08; 115.64; 114.08; 92.17; 47.53; 44.14; 43.28; 

32.87 (2C); 31.76 (2C); 30.77; 29.86; 29.17 (2C); 28.52 (2C); 21.52; 20.91. 

 

4.1.3. General synthesis of p-iodobenzyl-(2-thienyl)-iodonium trifluoacetate derivatives. 

The p-iodobenzyl-(2-thienyl)-iodonium trifluoacetate derivatives 3, 9 and 10 were obtained 

following the method previously reported [21]. Briefly to a solution of 1 mmol of p-iodobenzyl 

derivatives 6, 7 or 8 in 40 mL of glacial acetic acid, 12 mmol of NaBO34H2O were added portionwise 

and under nitrogen atmosphere. The reaction mixture was stirred at room temperature for 30 minutes 

and then  heated at 65 °C for 4 hours for compounds 6 and 7 and at 85 °C for 24 hours for compound 8. 

After cooling, toluene was added and the azeotropic mixture was evaporated under reduced pressure. 

The obtained residue was treated with water and extracted with CHCl3 for three times. The combined 

organic layers were dried over anhydrous sodium sulfate and evaporated to give a residue which was 

used for the next reaction step without further purification. 

2.0 mmol of trifluoroacetic acid was added dropwise to a stirred solution of the above obtained residue 

in 10.0 mL of  CH2Cl2 at -30°C. After 30 minutes the mixture was allowed to reach to room temperature 

and stirred for 1 hour. Then, the mixture was cooled at -30°C and 1.0 of  2-thienylboronic acid was 

added and stirred at room temperature for 16 hours. The reaction mixture was treated with diethyl ether 

to obtain the desired pure derivative 3, 9 and 10 as white powder. 
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4.1.3.1. {p-[1-(Benzyl)-N-cycloheptyl-1,2-dihydro-2-oxopyridin-3-carboxamide]}(2-thienyl) iodonium 

trifluoroacetate (3). White powder (yield 34%); mp: 80-83°C. 1H-NMR (DMSO) δ 9.63 (d, 1H, NH); 

8.35-7.95 (m, 6H, Ar+Th); 7.36 (d, 2H, Ar); 7.16 (m, 1H, Th); 6.58 (m, 1H, Ar); 5.27 (s, 2H, CH2); 3.93 

(m, 1H, NCH); 1.90-1.30 (m, 12H, cycloheptyl). 13C-NMR (DMSO) δ 160.87; 160.70; 142.83; 142.45; 

140.26; 139.71; 136.62; 134.20 (2C); 129.70 (2C); 128.97; 119.99; 117.45; 106.12; 100.42; 51.31; 48.85 

(2C); 33.69 (2C); 26.97 (2C); 23.00 (2C);  

 

4.1.3.2. {p-[1-(Benzyl)-N-(4-methylcyclohexyl)-1,2-dihydro-2-oxo-quinolin-3-carboxamide]}(2-

thienyl)iodonium trifluoroacetate (9). White powder: (yield 20%); 1H-NMR (DMSO) δ 9.70 (d, 1H, 

NH); 8.93 (s, 1H, Ar); 8.20-7.00 (m, 11H, Ar); 5.66 (s, 2H, CH2); 4.03 (2m, 1H, NCH); 2.00-1.3 (m, 

12H, cycloheptyl). 13C-NMR (DMSO) δ 161.56; 161.33; 160.33; 151.71; 148.40; 141.90; 140.93; 

139.68; 138.93; 136.98; 134.00(2C); 129.35; 128.95 (2C); 121.98; 119.17; 116.59; 114.22; 100.27; 

47.51; 44.16; 43.50; 32.88 (2C); 31.72 (2C); 30.79; 29.85;29.15 (2C); 28.48 (2C); 21.52; 20.90 

 

4.1.3.3. {p-[1-(Benzyl)-N-(4-methylcyclohexyl)-1,2-dihydro-2-oxo-1,8-naphthyridin-3-carboxamide]}(2-

thienyl)iodonium trifluoroacetate (10). White powder: (yield 62%); mp: 98-100 °C. 1H-NMR (DMSO) δ 

9.72 and 9.35 ( 2d, 1H, NH); 8.97 (s, 1H, Ar); 8.70 (m, 1H, Ar); 8.56 (m, 1H, Ar); 8.18 (d, 2H, Ar); 8.05 

(d, 1H, Th); 7.96 (d, 1H, Th); 7.45 (m, 1H, Ar); 7.35 (d, 2H, Ar); 7.17 (m, 1H, Th); 5.74 (s, 2H, CH2); 

4.09 and 3.73 (2m, 1H, NCH); 1.89-0.83 ( m, 12H, cyclohexyl + CH3). 
13C-NMR (DMSO) δ 161.56; 

161.33; 160.33; 151.71; 148.40; 141.90; 140.93; 139.68; 138.93; 136.98; 134.00(2C); 129.35; 128.95 

(2C); 121.98; 119.17; 116.59; 114.22; 100.27; 47.51; 44.16; 43.50; 32.88 (2C); 31.72 (2C); 30.79; 

29.85;29.15 (2C); 28.48 (2C); 21.52; 20.90. 
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4.2. Radiochemistry  

 

All chemicals and solvents were purchased from Sigma-Aldrich and used without further 

purification. The high-purity grade solvents were vented through a soda lime/molecular sieves trap upon 

use. Micro-SPE cartridges MP-1 were purchased from ORTG (USA).  18F was produced at a PET trace 

cyclotron (GE Healthcare, USA) by proton bombardment (Ep= 16.7 MeV, 5-15 min at 20-25 µA) of a 

1.3 mL 18O-water (enrichment > 98%) silver target. Radio-HPLCs were obtained using a Delta 600 

pump system (Waters, USA) equipped with a Gabi Star flow-through gamma detector (Raytest, 

Germany) connected in series to a 996 Photo Diode Array (PDA) UV detector (Waters, USA) on a 

Phenomenex Synergi Hydro-RP 80A (4m, 150x4,6mm) using varying CH3CN/H2O ratios. TLC 

analyses were performed using silica plates and 100% EtOAc as eluent. Radio-TLCs were acquired 

using a Cyclone PLUS (Perkin-Elmer, USA). 

A general purpose Advion microfluidic system was used for optimizing key parameters of 

radiofluorination reactions (temperature, flow rate, reagents ratio), by employing the traditional 1-step 

Automatic Discovery setup described in literature [26]. When needed, semipreparative HPLC was run 

on a Phenomenex Synergi Fusion-RP 80A (4m, 250x10mm) using varying CH3CN/H2O ratios. 

 

4.2.1. Labelling experiments. 

 

The aryliodonium precursor solution (10.0 mg of precursor in 0.5 mL of DMSO added with 3-5 mg 

of TEMPO and 50 L of H2O) was loaded into Pump 1 storage loop, while the fluorination complex, 

reconstituted in 0.7 mL of DMSO and prepared as previously reported [22], was loaded into Pump 3 

storage loop. For optimization experiments, the two solutions were delivered in small boluses (10-50 

L) into a heated (130-190°C) fused silica microreactor of 15.6 L internal volume at variable overall 

flow rate (20-100 L/min). The obtained reaction mixtures were analysed by Radio-HPLC and/or 

Radio-TLC for assessing incorporation yield. Preparative scale runs (employing >100 L fluoride 
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boluses) were performed utilizing optimized conditions; the reaction mixture was routed into the loop of 

a manual HPLC injection valve and injected into a semi-prep HPLC column. The product fraction (3-9 

mL) was detected using a customized radioactivity probe and automatically diluted with 20 mL of H2O. 

This solution was delivered to a Waters C-18 SepPack Plus for trapping the organic radiotracer, and the 

cartridge washed with additional 5 mL of H2O to remove polar impurities. The desired product was 

eluted with 1.7 mL of EtOH, which was evaporated under a stream of nitrogen at 80°C. The residue was 

reconstituted with 200 L of EtOH and 1.8 mL of saline, thus obtaining a preparation that could be used 

for animal injection or further analysis and characterization. 

 

4.3. Animal treatment and imaging protocol 

 

[18F]AF4 biodistribution was assessed in rats (Wistar, weighing approximately 250-280 g) using the 

ECAT EXACT HR+ scanner (CTI/Siemens, Knoxville TN, USA). Animals (n=3) were anaesthetised 

with i.p. administration of tiletamine/zolezepan and xylazine and deep anaesthesia was maintained 

throughout the study by inhalation of isoflurane (2% in oxygen). Once deep anaesthesia was achieved, 

the femoral vein was surgically isolated and a 24G catheter was inserted for radiotracer administration. 

After being positioned on the scanning couch, animals were administered with 25-30 MBq in 150-300 

µl. The imaging protocol consisted in a dynamic whole-body scan with total acquisition time of 1 h and 

with the following framing: 5” (n=18), 10” (n=3), 30” (n=4), 120” (n=3), 150” (n=2), 300” (n=9). 

Images were reconstructed using filtered back-projection (FBP) with a voxel size of 2.57x2.57x2.42 

mm3,  

[18F]CB91 biodistribution was assessed in mice (CD1). Animals (n=4) were anaesthetised with 

isoflurane (2% in oxygen) throughout the study. For a better assessment of tracer biodistribution and the 

anatomical identification of the organs, whole body PET scans were performed using the YAP-(S)PET 

micro-PET scanner (ISE srl, Vecchiano, Italy). In these cases, 6-8 MBq were injected in 100-150 l in 

the tail vein and a dynamic micro-PET acquisition started upon injection for a total acquisition time of 1 
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hour, with the following framing: 60” (n=10), 120” (n=5), 300” (n=8). At the end of the dynamic micro-

PET scan, a 15 minutes whole-body dynamic scan was performed. All micro-PET images were 

reconstructed using a model-based Ordered-Subset Expectation Maximization (OSEM) algorithm [27] 

with a voxel size of 0.753 mm3. Subsequently, a whole body micro-CT (Xalt micro-CT scanner) [28], 

scan was performed (50 kVp, 0.7 mA, 3 min total scan time) without contrast agents. CT images were 

reconstructed using Feldkamp-type cone-beam FBP [29] with a voxel size of 743 m3 and then co-

registered to the micro-PET images for anatomical reference. 

 

4.4. In vitro prediction of intestinal permeability and BBB permeability. 

 

The intestinal absorption and the of BBB permeability for compound AF4 were determined 

according to the procedures reported for CB91 [25]. For intestinal permeability the Caco-2 cell line was 

obtained from European Collection of Cell Culture (ECACC) and Madin Darby Canine Kidney cells 

stably transfected with the human MDR1 gene (MDCKII-hMDR1) were purchased by Netherlands 

Cancer Institute. For transport studies, 200,000 cells/well for Cawere seeded on Millicell 24-well cell 

culture plates. After 24 hours of incubation at 37 °C and 5% CO2, the medium was changed with 

Enterocyte Differentiation Medium with additives (Becton Dickinson). The transport across the Caco-2 

monolayer was determined from apical to basolateral side (AB) by adding a 10 M solution of test 

compound in DMEM (1% final concentration of DMSO) to the apical side. After 2 hours incubation 

period at 37 °C, 5% CO2, the basolateral side solution, the apical and the starting solutions were 

analyzed and quantified by LC-MS/MS using verapamil as internal standard..  

The BBB permeability was determined using MDCKII-hMDR1 assay as previously reported [25]. 

Madin Darby Canine Kidney cells stably transfected with the humanMDR1 gene (MDCKII-hMDR1) 

were purchased by Netherlands Cancer Institute. The transport across the monolayer MDCKII-hMDR1 

was determined from apical to basolateral side (AB) by adding a 10 µM solution of test compound in 

Dulbecco’s Phosphate Buffered Saline (DPBS) (0.2% DMSO final concentration) to the apical side. 
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After 1 hour incubation at 37°C, 5%CO2 the basolateral, the apical and the starting solutions were 

analyzed and quantified by LC-MS/MS using verapamil 0.1 µM as internal standard.  

The samples were analyzed on UPLC (Waters) interfaced with a Premiere XE Triple Quadrupole 

(Waters). Mobile phases comprised 5% (v/v) acetonitrile in deionized water with 0.1% (v/v) formic acid 

(Phase A) and 5% (v/v) deionized water in acetonitrile with 0.1% (v/v) formic acid (Phase B). The 

column was Acquity BEH C18, 50x1mm 1.7 µm at 50 °C with flow of 0.25 ml/min (for intestinal 

permeability) or of 0.6 ml/min (for BBB permeability) and volume injection of 5 µl. The 

chromatographic method is the same previously report for compound CB91 [25].Samples were analyzed 

in Multiple Reaction Monitoring conditions (MRM): electron spray ionization (ESI) positive, 

desolvation temperature 450 °C, desolvation gas 900 l/h, cone gas 50 l/h, collision gas 0.22 l/h. In 

particular for AF4 MRM: 343.18 → 109.05, 343.18 → 230.08; Cone Voltage: 32 V; Collision Energy: 

16–34 eV.  

The apparent permeability coefficient (Papp) (nm x s-1), was calculated as follows: 

 

Papp = dQr/dt/ A × C0 

 

dQr/dt is the cumulative amount in the receiver compartment versus time; A the area of the cell 

monolayer; C0 the initial concentration of the dosing solution.  
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