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We describe a scheme for probing a gas of ultracold atoms trapped in an optical lattice and moving in the
presence of an external potential. The probe is nondestructive and uses the existing lattice fields as the
measurement device. Two counterpropagating cavity fields simultaneously set up a conservative lattice poten-
tial and a weak quantum probe of the atomic motion. Balanced heterodyne detection of the probe field at the
cavity output along with integration in time and across the atomic cloud yield information about the atomic
dynamics in a single run. The scheme is applied to a measurement of the Bloch oscillation frequency for atoms
moving in the presence of the local gravitational potential. Signal-to-noise ratios are estimated to be as high as
104.
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I. INTRODUCTION

The simulation of many-body models using gases of ul-
tracold atoms trapped in optical lattices �1� has been success-
ful in investigating many systems in condensed-matter phys-
ics. Band physics in gases of noninteracting Fermi gases in
periodic potentials has been studied �2�, quantum phase tran-
sitions such as the Mott insulator to superfluid transition
have been observed �3�, and strongly correlated physics such
as in one-dimensional systems �4,5� has been investigated. In
these experiments, techniques such as time-of-flight mea-
surements and Bragg spectroscopy are typically employed to
probe atomic states and dynamics in optical lattices.

In this paper, we present an alternative method for opti-
cally probing atomic gases in optical lattices subjected to an
external potential. The method is in situ and nondestructively
measures properties of the atomic motion via weak coupling
to the existing lattice fields. The technique satisfies three
main goals. The probe is weak so that the atoms can be
continuously monitored without affecting their dynamics; the
existing lattice fields are employed as the probe, so that no
external interrogation fields are necessary; and the signal-to-
noise ratio �SNR� is large enough for experimental detection.
In a ring cavity, two counterpropagating running-wave
modes interact with a gas of ultracold atoms and simulta-
neously set up both a conservative external lattice potential
for the atoms and a weak quantum optical probe of the
atomic center-of-mass dynamics. The probe field leaks out of
the cavity and is detected with a balanced heterodyne scheme
at the cavity output.

This method is in a sense dual to strong measurement
schemes such as time-of-flight absorption imaging and Bragg
spectroscopy. In these schemes, light from a strong source is
either absorbed by or scattered off of the atomic cloud. This
allows for high-resolution images and a strong signal using
only a single measurement, but the atomic sample is de-
stroyed in the process. Here, the probe field is very weak so
that a continuous measurement is made without affecting the
atomic dynamics. Integration of the signal in time and across
the atomic cloud yields measurements of dynamical proper-
ties of the atoms with a measurable SNR in a single experi-

mental run at the price of losing information about individual
atoms and real-time dynamics.

The procedure is similar in nature to recent proposals for
optical detection of many-body atomic states. In one scheme,
a weak probe beam is scattered off of atoms trapped in an
optical lattice into a cavity mode, and signatures of many-
body states such as Mott insulators and superfluids appear in
the outcoupled fields �6�. In another, atoms in a lattice inter-
act with two counterpropagating ring-cavity modes, and
atomic number statistics can be inferred from the behavior of
the cavity fields �7�. Bloch oscillations of atoms in a lattice
can also be monitored via the transmission of light through a
cavity �8�.

Related techniques have been applied to nondestructive
optical measurements of Rabi oscillations in gases of Cs at-
oms �9�, of the Cs clock transition pseudospin �10�, and of
nonlinear dynamics in cold gases �11�. In addition, state
preparation such as atomic spin squeezing via measurements
on outcoupled cavity fields has been proposed �12–14�. It has
also been demonstrated that the motion of individual atoms
in an optical cavity can be tracked by the transmission of a
probe field �15�.

Here, we provide a test of the technique for the concep-
tually simple motion of noninteracting atoms in an optical
lattice driven by a constant force, which leads to Bloch os-
cillations �16�. This choice is motivated by the fact that
Bloch oscillations can be viewed as a probe for investigating
quantum gases in optical lattices. These oscillations may be
used in the measurement of fundamental constants �17�, to
provide levels of precision up to �g /g�10−7 in the measure-
ment of the acceleration of gravity �18–21�, and to measure
Casimir forces on small length scales �22�. When interac-
tions are significant, damping of Bloch oscillations provide
information on correlation-induced relaxation processes
�23–27�. Finally, this investigation is a starting point for
other measurement schemes, such as periodically driven lat-
tices acting as a spectroscopic probe of atomic motion �21�.

The paper is organized as follows. In Sec. II, we present
the details of the system and detection scheme. In Sec. III,
we apply this scheme to the detection of Bloch oscillations in
an optical lattice. In Sec. IV, we summarize the main results
of the paper and conclude with prospects for measurements
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of many-body properties of gases of ultracold atoms trapped
in optical lattices.

II. MODEL AND DETECTION SCHEME

We briefly outline the physical basis of the model and
approximations used. This includes a discussion of obstacles
in the way of satisfying the goals outlined above, avoiding
these problems, and the conditions required for the method
to work.

To set up a conservative lattice potential, many photons
must be present in the cavity field, so that fluctuations can be
neglected, and this necessitates a strong pumping from the
incoupled lasers. On the other hand, the probe field ampli-
tude must be small enough, so that it does not affect the
atomic dynamics, requiring a weak pumping. In addition, the
probe and lattice fields couple to each other through the scat-
tering of photons off of the atoms. This acts as an extra
source for probe dynamics. The probe field is then not a
direct measure of atomic dynamics and can act back on the
atoms, altering the properties we are attempting to measure.

We can circumvent these problems by first choosing the
relative phase on the incoupled lasers, so that only one of
two standing-wave modes in the cavity is pumped. Strong
pumping and the properties of a bad cavity—where the fields
are at all times in steady state—ensure that the pumped mode
acts as a lattice potential. The other standing-wave mode is
not pumped. Any field leaking out of the cavity from this
mode arises solely because of events occurring in the cavity,
and it can therefore act as a probe for system dynamics.

Two conditions must be met in order to ensure that the
nonpumped mode acts as a probe of atomic dynamics. The
probe must have as its source only the motion of the atoms.
This means that any probe dynamics due to the effective
coupling to the lattice field must be small compared to that
induced by the motion of the atoms. The back-action of this
mode on the atoms must also be negligible. Any atomic mo-
tion induced by coupling to the probe field must be small
compared to the motion induced by both lattice and external
potentials.

Two conditions are also required for the pumped field to
act as a conservative lattice potential. The back-action of the
atoms on the lattice field must be negligible, meaning that
deviations from the mean-field amplitude caused by coupling
to the atoms are small compared to the mean-field amplitude
itself. In addition, any atomic motion induced by fluctuations
away from the mean lattice field must be small compared to
that induced by the external potential, since this is the inter-
esting dynamics.

The scheme is realized in the setup illustrated in Fig. 1.
We consider Na ground-state atoms interacting with two
counterpropagating running-wave cavity modes in a ring
resonator setup. The two modes of the cavity have frequency
�ca and wave vectors �kcaẑ. The two cavity modes are co-
herently pumped at a detuning �p=�L−�ca, where �L is the
frequency of the pumping lasers. Photon decay through the
cavity mirrors is treated within the Born-Markov approxima-
tion. We treat the atom-cavity-field interaction in rotating-
wave and dipole approximations. The cavity modes are far-

detuned from atomic transitions. This same setup has been
used in a cooling scheme for atoms �28�.

A. Model

The effective Hamiltonian for the coupled atom-cavity
system is given by

Ĥ =� dz �̂†�z��−
�2

2m

d2

dz2 + Vext�z���̂�z�

+ 	
k=�kca

���âk + ��âk
† − ��pâk

†âk�

+� dz �̂†�z��g0�âkca

† e−ikcaz + â−kca

† eikcaz�

	�âkca
eikcaz + â−kca

e−ikcaz��̂�z� . �1�

Here, �̂ is the atomic field operator and âk is the annihilation
operator for the cavity mode k. The parameter m is the mass
of the atom, g0 is the two-photon atom-cavity coupling, and
� is the strength of the cavity field pumping, taken to be real.
Due to the far detuning of the cavity fields from the atomic
transition, excited states of the atom have been adiabatically
eliminated, and the atoms couple to the field intensity. The
three terms in Eq. �1� are, respectively, the atomic kinetic
energy and external potential, the bare cavity mode Hamil-
tonian, and the atom-cavity interaction. Cavity losses
through the cavity mirrors are treated via a master equation
with Liouvillian,

L̂
̂ = −
��

2 	
k=�kca

�âk
†âk
̂ + 
̂âk

†âk − 2âk
̂âk
†� , �2�

where 
̂ is the reduced density matrix for the atom-cavity
system and � is the cavity linewidth.

We perform a canonical transformation of the cavity
mode operators to symmetric and antisymmetric modes,

b̂� =
âkca

� â−kca


2
. �3�

The bare cavity Hamiltonian in terms of these operators is
given by

ei kca z

e�i kca z

Η

Κ
Κ
Η

FIG. 1. �Color online� Schematic of the coupled atom-cavity
system. Incoupled lasers set up two counterpropagating fields
within the cavity. The atoms interact with the cavity fields via the
optical dipole potential. Photons from the cavity beams exit the
cavity through the mirrors at a rate �.
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Ĥca = 
2���b̂+ + b̂+
†� − ��p�b̂+

†b̂+ + b̂−
†b̂−� . �4�

The symmetric mode b̂+ is pumped by the incoupled lasers,

whereas the antisymmetric mode b̂− is not. The b̂+ mode has
a mode function proportional to cos�kcaz� and sets up the
lattice potential as follows.

The equation of motion for the symmetric field amplitude
is

i
d�b̂+�

dt
= �− i

�

2
− �p��b̂+� + 
2� + 2g0�b̂+Ĉ� + ig0�b̂−Ŝ2� ,

�5�

where

Ĉ =� dz cos2�kcaz��̂†�z��̂�z� , �6�

Ŝ2 =� dz sin�2kcaz��̂†�z��̂�z� . �7�

We perform another transformation to a fluctuation operator,

d̂+= b̂+−�, leaving the antisymmetric mode unchanged, d̂−

= b̂−. The mean steady-state amplitude � is given by

� = �b̂+� =

2�

�p − 2g0�Ĉ�t=0 + i�/2
, �8�

where the expectation value is evaluated at time t=0.

The equations of motion for both d̂+ and d̂− are given by

i
d�d̂−�

dt
= �− �p − i

�

2
��d̂−� + 2g0�d̂−Ŝ� − ig0�d̂+Ŝ2� − ig0��Ŝ2�

�9�

and

i
d�d̂+�

dt
= �− �p − i

�

2
��d̂+� + 2g0�d̂+Ĉ� + ig0�d̂−Ŝ2�

+ 2g0���Ĉ� − �Ĉ�t=0� , �10�

where

Ŝ =� dz sin2�kcaz��̂†�z��̂�z� . �11�

Finally, the equation of motion for the atomic field operator
is given by

i�
d�̂�z�

dt
= �−

�2

2m

d2

dz2 + Vlat�z� + Vext�z���̂�z�

+ i�g0���d̂− − �d̂−
† + d̂+

†d̂− − d̂−
†d̂+�sin�2kcaz��̂�z�

+ 2�g0d̂−
†d̂− sin2�kcaz��̂�z� + 2�g0�d̂+

†d̂+ + �d̂+
†

+ ��d̂+�cos2�kcaz��̂�z� , �12�

where Vlat�z�=V0 cos2�kcaz� is a conservative lattice potential
of depth V0=2�g0�2.

Upon examining Eqs. �9� and �10�, it is apparent that, in

order for d̂− to act as a probe field, we must be able to
neglect the higher-order atom-field correlations such as

�d̂+Ŝ2�. In addition, we must be able to neglect all but the first
term in Eq. �12� in order that the lattice field act as an exter-
nal conservative potential. In the correlation hierarchy, each
consecutive order scales as g0Na /� times the previous or-

der. For instance, �d̂+�̂†�̂� scales as g0Na /� times ��̂†�̂�.
Therefore, requiring g0Na /�1 allows us to neglect all
terms involving correlations between three or more opera-
tors. Solving Eqs. �9� and �10� by adiabatically slaving the
fields to the atomic motion then yields

�d̂−� =
− ig0��Ŝ2�
�p + i�/2

, �13�

�d̂+� =
2g0���Ĉ� − �Ĉ�t=0�

�p + i�/2
. �14�

This implies that the effective couplings in Eq. �12� such as

g0d̂+
†d̂+ scale as V0�g0Na /��2. In turn, this implies that the

dominant terms on the right-hand side of Eq. �12� are the
atomic kinetic energy and the lattice potential. All terms in-
volving cavity field operators can be neglected to first order.
Ensuring that we can neglect these terms compared to the
external potential requires explicit knowledge of the form of
Vext and will therefore be left for the next section. Finally, we
point out that, while these are necessary conditions, finding
the exact criteria for neglecting the back-action of the probe
on the atoms and the atoms on the lattice requires a more
careful analysis of the problem, including numerical simula-
tions. This is left for future work.

With these approximations in hand, the equation of mo-
tion for the atomic field operator is

i�
d�̂�z�

dt
= �−

�2

2m

d2

dz2 + Vlat�z� + Vext�z���̂�z� , �15�

and the probe field amplitude is given by

�d̂−�t�� =
− ig0�

�p + i�/2
�Ŝ2� , �16�

where we have approximately solved Eq. �9� by adiabatically

slaving �d̂−� to the atomic motion. Since the atoms are inde-
pendent and couple symmetrically to the light field, we can
in Eq. �16� make the replacement

�Ŝ2� → Na���t�sin�2kcaẑ���t�� , �17�

where ��t�� is a single-particle state satisfying Eq. �15�.

B. Detection scheme

Through Eq. �16�, �d̂−� provides a measure of the atomic
dynamics within the cavity. In �13�, two schemes for detec-
tion of atomic motion using the outcoupled cavity fields were
presented. Here, we briefly review the superior case, where

heterodyne detection of d̂− is performed by beating the field
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against a strong local oscillator �LO�, as illustrated in Fig. 2.
The field at the output of the cavity is a combination of

the outcoupled lattice and probe fields, the pump field, and
the reflected light from the pump field. Since we have chosen
to pump only the lattice mode, the probe mode is orthogonal
to the other three contributions to this field. The outcoupled
light from the probe can then be separated out by means of a
beam splitter. According to input-output theory �29�, this
field is proportional to

d̂out = 
�d̂− + d̂in. �18�

By beating this field against a strong local oscillator, these
photons can be detected with unit efficiency. The input field

state is the vacuum, in which case �d̂out�=
��d̂−�. The result-
ing signal is the difference signal at the output of the photo-
detectors, given by

V�t� � Im�
��LO
� �d̂−��t�� , �19�

which is a product of �LO with

q̂− = e−i�LOd̂− − ei�LOd̂−
† , �20�

which is a quadrature of the antisymmetric mode field. The
local oscillator amplitude is �LO= �LOei�LO. The SNR is the
ratio of the signal power to signal variance, given by

SNR =� d�
��q̂−����2. �21�

The integrand is proportional to the power spectrum S��� of
the signal current in Eq. �19�.

III. RESULTS

In this paper, we consider the motion of atoms confined in
the optical lattice in the presence of gravity,

Vext�z� = mgz , �22�

and use the scheme outlined in the previous section to probe
the motion of the atoms. Gravity measurements are impor-
tant, for instance, for optical lattice clocks �30�. For this rea-
son, we treat the specific system of a gas of 87Sr atoms,

although the method certainly applies to many species of
atoms. The parameters for the coupled atom-cavity system
are chosen to reflect current experimental conditions. They
are �ca=2� /kca=813 nm, ��=100ER, �p=0, �g0=10−4ER,
and Na=104, implying derived parameters of ER��2�
	4 kHz�� and mgd�0.25ER; ER=�2kca

2 /2m is the recoil
energy of the lattice; and d=� /kca is the lattice spacing.

We have to ensure that the back-action of both d̂− and d̂+
on the atoms is still negligible. Specifically, the coupling
strengths in Eq. �12� must be small compared to the charac-
teristic coupling strength of Vext, ��B=mgd. These condi-
tions are met if V0�g0Na /��2��B. This inequality is sat-
isfied for the parameters above. Again, while these
conditions are necessary, the exact criteria for being able to
neglect the back-action of the fields on the atoms requires
more careful numerical study, which will be left for future
work.

Within this setup, we envision an experiment in which the
atoms are initially loaded into a harmonic trap. A vertical
one-dimensional optical lattice is slowly ramped on, so that
the atoms are in the ground state of the combined potential of
trap and lattice for a noninteracting gas. The trap is switched
off over a time that is long compared to the time scale of
vibrational dynamics in order to prevent interband transitions
during the switch-off. The gas is then allowed to evolve un-
der gravity. In the presence of such a constant force, the
atoms undergo Bloch oscillations. This dynamics is briefly
reviewed in the following discussion.

A. System dynamics

The central result of the theory describing Bloch oscilla-
tions is based on a semiclassical equation of motion �16�,
which states that the average quasimomentum of a wave
packet restricted to the first band increases linearly in time
until it reaches the Brillouin-zone �BZ� boundary, at which
point it is Bragg reflected. Explicitly, this is

��q��t� = ��q��0� + mgt , �23�

where the quasimomentum q is restricted to the range −kca
�q�kca. Since the group velocity of the atomic wave
packet is given by the derivative of the dispersion relation
�16�, the periodic nature of the quasimomentum implies that
the atomic momentum oscillates at a frequency �B=mgd /�.
These Bloch oscillations will persist as long as there is neg-
ligible Landau-Zener tunneling to higher bands. Each time
the wave packet reaches the BZ boundary, a fraction of
population is transferred to the second band, given by �31�

PLZ = exp�−
�2

8

�2

mgdER
� , �24�

where � is the band gap at the boundary. When �2

�4mgdER, the population transfer is appreciable, and vibra-
tional dynamics significantly alter the behavior of the atoms.
For this reason, we restrict our attention to lattice depths
greater than 3ER, where PLZ is at most 10−5 for our choice of
parameters.

In order to understand how Bloch oscillations are re-
flected in the time dependence of the probe field, we care-

S

50�50 50�50

a�kca

a��kca

b
�
�

b
�
�

a�LO

FIG. 2. �Color online� Schematic of the balanced heterodyne
detection scheme. The outcoupled cavity beams â�kca

are combined

to form symmetric �b̂+� and antisymmetric �b̂−� modes. The anti-
symmetric mode beats against a strong LO, âLO, and photodetectors

count the number of photons in the quadratures of b̂−. The differ-
ence of these counts is the signal.
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fully consider Eq. �16�. The operator sin�2kcaẑ� is periodic in
space with period d and has odd parity, implying that it con-

nects two Bloch states, �q
�n�� and �q�

�n���, only if the quasi-
momenta are equal, q=q�, and the bands satisfy n−n�=odd.
Taking

�� = 	
n,q

cq
�n��q

�n�� , �25�

we can write the matrix element in Eq. �16� approximately as

��sin�2kcaẑ��� � 	
q


q,q
�1,2� + H.c., �26�

where 
q,q
�1,2�=cq

�1��cq
�2� is the coherence between bands 1 and

2. This assumes an initial state confined to the first band in
the case of negligible coupling to bands 3 and higher. Using
Eq. �15�, we can derive an approximate equation of motion
for the coherence; it is

i
d
q,q

�1,2�

dt
= �q

�1,2�
q,q
�1,2� + �B
q

�1�, �27�

where 
q
�1� is the population of the q-quasimomentum state in

the first band and ��q
�1,2�=Eq

�2�−Eq
�1� is the energy difference

between the q-quasimomentum Bloch states in the first two
bands. Since �q

�1,2���B, the coherence follows the first-band
population adiabatically. In this approximation, 
q,q

�1,2�

=−
q
�1��B /�q

�1,2�.
Combining this expression for a wave packet that is nar-

row in quasimomentum with Eq. �23�, Eq. �16� approxi-
mately becomes

�d̂−�t�� �
ig0�Na

�p + i�/2
�B

�mgt
�1,2� . �28�

This expression implies that the probe field amplitude is larg-
est when the atomic wave packet is centered at the BZ
boundary since �mgt

�1,2� is smallest at this point.
Equations �15� and �16� are numerically integrated for an

initial state that is a Gaussian of spatial width � projected
into the first band. This approximates the ground state of the
combined potential of lattice and harmonic trap for a nonin-
teracting gas. An example of the system dynamics is illus-
trated in Fig. 3, where V0=−3ER and �=2d. A vertical slice
through Fig. 3�a� is the wave-function density in the first
band plotted versus quasimomentum at an instant in time.
The center of this wave packet moves linearly in time and is
reflected at the BZ boundary �q=kca�, as in Eq. �23�. Bloch
oscillations are illustrated in Fig. 3�b�, where the atomic mo-
mentum oscillates in time. Finally, the response of the probe
field to this dynamics is illustrated in Fig. 3�c�. As predicted
above, the probe field intensity peaks when the atomic wave
packet reaches the BZ boundary.

B. Signal and SNR

As described in Sec. II, the probe field is combined at the
cavity output with a strong local oscillator, and the resulting
signal is proportional to a quadrature of the probe field �Eq.
�20��. An example of such a signal is plotted in Fig. 4. There

is a clear peak at the Bloch oscillation frequency in the signal
power spectrum, but there are also several harmonics
present. In calculating the SNR �Eq. �21��, we place a notch
filter about �B and count only the total number of photons
outcoupled from the quadrature at this frequency.

1.
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FIG. 3. Example of system dynamics for V0=−3ER and initial
state a Gaussian of width �=2d projected into the first band. �a�
Atomic density in the first band plotted versus quasimomentum.
White corresponds to zero population, black to maximal population.
Population in the second band is at most 0.001Na. �b� Expectation
value of atomic momentum illustrating Bloch oscillations. �c� Num-
ber of photons in the probe field.

0 100 200 300 400
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Κ�
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�
�
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Κ�
�q�
�
�

2

�a�

�b�

FIG. 4. Examples of the �a� signal power and �b� signal power
spectrum, computed with parameters V0=−3ER, �g0=10−4ER, Na

=104, and ��=100ER. The signal displays a clear oscillation at the
Bloch frequency �B=0.25ER /�.
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There are a few properties of the system that can affect
the SNR. First, the width of the initial wave packet has an
effect. It is easiest to see why this is so by taking as the
initial state a Wannier function, which is a coherent superpo-
sition of Bloch states in a single band, populated equally.
According to Eq. �23�, the wave packet is continuously
reaching the BZ boundary, and the oscillation in the signal is
washed out. Second, when the lattice is too deep, the first
two bands are essentially flat, in which case �q

�1,2� does not
change with quasimomentum, eliminating the oscillations in
the signal according to Eq. �28�.

The temperature of the atomic gas can also significantly
influence the SNR. For a finite temperature, the pure state in
Eq. �17� is replaced with a density matrix. The incoherent
sum over different states of the atom will alter the expecta-
tion value, possibly reducing it. In addition, the temperature
and the chemical potential of the gas determine the relative
populations of the various Bloch states, and appreciable
population in higher bands can destroy Bloch oscillations. As
long as the temperature is smaller than the band gap, kBT
��kca

�1,2�, this effect will be small.
Finally, the replacement, Eq. �17�, cannot be made when

the atoms are not independent, e.g., if they interact with each
other. In this case it is possible that the scaling of the SNR
with the number of atoms will be reduced from Na

2. A proper
treatment of thermal and interaction effects is necessary for
exact results. Here, we neglect both interactions and finite
temperature for the case of 87Sr atoms, in which case Eq.
�17� is valid.

Equation �12� is numerically integrated for a time t
=400� /ER. The resulting wave function is used to compute
the probe field amplitude �Eq. �16��, which is Fourier trans-
formed and squared, yielding the power spectrum. The SNR
is computed and scaled up linearly to an interrogation time
of 1 s, which assumes that coherence time of the Bloch os-
cillations is longer than 1 s.

The results are plotted in Figs. 5 and 6. The SNR climbs
from zero for small wave-packet widths and saturates near
�=2d. The decrease in SNR for ��2d is a result of the fact
that the wave packet is wide in quasimomentum, which
means that a significant portion of the wave packet is at the

BZ boundary for all times. We get a maximum when the
lattice depth is relatively small, V0�3ER, and the SNR de-
creases with increasing lattice depth.

IV. CONCLUSION

We have described a general cavity QED system in which
properties of atomic dynamics can be probed in situ and
nondestructively. One cavity field is strong enough to act as
a conservative lattice potential for the atoms, and the other
cavity field is weak so that it acts as a nondestructive probe
of atomic motion. This technique is applied to the detection
of Bloch oscillations. Balanced heterodyne detection of the
probe field at the cavity output combined with integration in
time and across the atomic cloud allows for SNRs as high as
104.

Examining Eqs. �16� and �21�, we can see that the SNR
can be increased by either decreasing the cavity linewidth �
at fixed lattice depth and atom-cavity coupling or increasing
the coupling constant g0 at fixed V0 and �. The linewidth can
be increased as long as the system remains in the bad cavity
limit. However, a linewidth of ��=100ER is already very
small from an experimental standpoint, so increasing it be-
yond this level is a technological challenge. On the other
hand, g0 can be varied merely by varying the detuning be-
tween the cavity fields and atomic transitions. In addition,
the SNR scales with the square of the number of atoms, so
increasing Na beyond the 104 level assumed in this paper is
also desirable. This can all be done to the extent that the
conditions outlined in Secs. II and III are still met.

This scheme can be extended for use in detection of vari-
ous atomic properties, and the measurement of Bloch oscil-
lations itself can be viewed as a general dc probe for atomic
dynamics and states. For instance, Bloch oscillations may be
used for measurement of fundamental constants �17� and for
Casimir forces �22�. Varying the detuning between two lat-
tice beams gives rise to an effective acceleration of the lattice
�31�, and band physics may be probed by varying the Bloch
oscillation frequency in such a setup. Breakdown of Bloch
oscillations are a signature of many-body effects in an
atomic gas �23�, and this is signaled by a reduction in SNR
compared to the noninteracting case.
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FIG. 5. Signal-to-noise ratio as a function of the initial wave-
packet width for an interrogation time of 1 s and for lattice depths
of V0=−3ER ,−4ER ,−5ER ,−10ER ,−15ER. For ��2d, the SNR is
reduced due to parts of the wave packet constantly moving past the
Brillouin-zone boundary, where the signal peaks. The SNR satu-
rates near �=2d.
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FIG. 6. Signal-to-noise ratio as a function of lattice depth for
�=2d and an interrogation time of 1 s. For V0�3ER, significant
Landau-Zener tunneling to the second band destroys Bloch oscilla-
tions. For V0�3ER, the SNR decreases due to the increasing flat-
ness of the lowest band, which in turn decreases the amplitude in
momentum space of the Bloch oscillations.
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Two generalizations of this measurement technique are
readily realizable. We may implement a periodic forcing
whose varying driving frequency can be a spectroscopic
probe of atomic dynamics. The simplest examples of this
include shaking the lattice �21� and modulating the ampli-
tude of the lattice �32�. Another important extension of the
method involves measuring higher-order correlation func-
tions of the outcoupled probe field. Since one cavity field
operator couples to two atomic field operators �see, for in-
stance, Eq. �9��, higher-order properties of the atoms such as
density-density correlations can easily be measured with

standard quantum optical techniques. The use of higher-order
correlation functions of the probe field is a starting point for
generalizing this technique to probe many-body physics in
optical lattices.

ACKNOWLEDGMENTS

We acknowledge useful conversations with Jun Ye, Ana
Maria Rey, and Victor Gurarie. This work was supported by
DOE, NSF, DFG �D.M.�, and ASI Grant No. WP4200
�M.L.C.�.

�1� D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller,
Phys. Rev. Lett. 81, 3108 �1998�.

�2� M. Köhl, H. Moritz, T. Stöferle, K. Günter, and T. Esslinger,
Phys. Rev. Lett. 94, 080403 �2005�.

�3� M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I.
Bloch, Nature �London� 415, 39 �2002�.

�4� B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I.
Cirac, G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch, Nature
�London� 429, 277 �2004�.

�5� T. Stöferle, H. Moritz, C. Schori, M. Köhl, and T. Esslinger,
Phys. Rev. Lett. 92, 130403 �2004�.

�6� I. B. Mekhov, C. Maschler, and H. Ritsch, Phys. Rev. Lett. 98,
100402 �2007�.

�7� W. Chen, D. Meiser, and P. Meystre, Phys. Rev. A 75, 023812
�2007�.

�8� B. Prasanna Venkatesh, M. Trupke, E. A. Hinds, and D. H. J.
O’Dell, e-print arXiv:0811.3993.

�9� P. J. Windpassinger, D. Oblak, P. G. Petrov, M. Kubasik, M.
Saffman, C. L. Garrido Alzar, J. Appel, J. H. Muller, N. Kjaer-
gaard, and E. S. Polzik, Phys. Rev. Lett. 100, 103601 �2008�.

�10� S. Chaudhury, G. A. Smith, K. Schulz, and P. S. Jessen, Phys.
Rev. Lett. 96, 043001 �2006�.

�11� G. A. Smith, S. Chaudhury, A. Silberfarb, I. H. Deutsch, and P.
S. Jessen, Phys. Rev. Lett. 93, 163602 �2004�.

�12� A. E. B. Nielsen and K. Mølmer, Phys. Rev. A 77, 063811
�2008�.

�13� D. Meiser, J. Ye, and M. Holland, New J. Phys. 10, 073014
�2008�.

�14� I. B. Mekhov and H. Ritsch, Phys. Rev. Lett. 102, 020403
�2009�.

�15� C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H.
J. Kimble, Science 287, 1447 �2000�.

�16� M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon,
Phys. Rev. Lett. 76, 4508 �1996�.

�17� P. Cladé, E. de Mirandes, M. Cadoret, S. Guellati-Khélifa, C.
Schwob, F. Nez, L. Julien, and F. Biraben, Phys. Rev. Lett. 96,
033001 �2006�.

�18� B. P. Anderson and M. A. Kasevich, Science 282, 1686
�1998�.

�19� G. Roati, E. de Mirandes, F. Ferlaino, H. Ott, G. Modugno, and
M. Inguscio, Phys. Rev. Lett. 92, 230402 �2004�.

�20� I. Carusotto, L. Pitaevskii, S. Stringari, G. Modugno, and M.
Inguscio, Phys. Rev. Lett. 95, 093202 �2005�.

�21� V. V. Ivanov, A. Alberti, M. Schioppo, G. Ferrari, M. Artoni,
M. L. Chiofalo, and G. M. Tino, Phys. Rev. Lett. 100, 043602
�2008�.

�22� P. Wolf, P. Lemonde, A. Lambrecht, S. Bize, A. Landragin, and
A. Clairon, Phys. Rev. A 75, 063608 �2007�.

�23� J. K. Freericks, Phys. Rev. B 77, 075109 �2008�.
�24� P. Mehta and N. Andrei, Phys. Rev. Lett. 96, 216802 �2006�.
�25� T. Oka and H. Aoki, Phys. Rev. Lett. 95, 137601 �2005�.
�26� A. Buchleitner and A. R. Kolovsky, Phys. Rev. Lett. 91,

253002 �2003�.
�27� W. S. Dias, E. M. Nascimento, M. L. Lyra, and F. A. B. F. de

Moura, Phys. Rev. B 76, 155124 �2007�.
�28� A. Griessner, D. Jaksch, and P. Zoller, J. Phys. B 37, 1419

�2004�.
�29� C. W. Gardiner and P. Zoller, Quantum Noise �Springer-Verlag,

Berlin, 2004�.
�30� A. D. Ludlow et al., Science 319, 1805 �2008�.
�31� O. Morsch, J. H. Müller, M. Cristiani, D. Ciampini, and E.

Arimondo, Phys. Rev. Lett. 87, 140402 �2001�.
�32� A. Alberti, G. Ferrari, V. V. Ivanov, M. L. Chiofalo, and G. M.

Tino, e-print arXiv:0903.0724.

NONDESTRUCTIVE CAVITY QED PROBE OF BLOCH… PHYSICAL REVIEW A 80, 043803 �2009�

043803-7


