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We derive the dynamical structure factor for an inhomogeneous Tomonaga-Luttinger liquid (TLL) as can be
formed in a confined strongly interacting one-dimensional gas. In view of the current experimental progress in the
field, we provide a simple analytic expression for the light-scattering cross section, requiring only the knowledge
of the density dependence of the ground-state energy as it can be extracted, e.g., from exact or quantum Monte
Carlo (QMC) techniques and a Thomas-Fermi description. We apply the result to the case of one-dimensional
quantum bosonic gases with dipolar interaction in a harmonic trap, using an energy functional deduced from
QMC computations. We find a universal scaling behavior peculiar to the TLL, a signature that can be probed
eventually by Bragg spectroscopy in experimental realizations of such systems.
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I. INTRODUCTION

It is well known theoretically that systems of reduced di-
mensionality, especially in one dimension, present simultane-
ously enhanced quantum fluctuations and stronger interaction
effects that can lead to exotic ground states [1,2]. From the
experimental point of view, there are many prototypical one-
dimensional systems that range from organic [3,4] or inorganic
[5,6] conductors and antiferromagnetic spin chain [7,8] or
ladder [9,10] materials to nanoscale systems, such as quantum
wires [11,12], carbon nanotubes [13–16], or self-organized Au
atomic wires on Ge(001) semiconductor surfaces [17]. More
recently, advances in atom-trapping technology has permitted
the realization of both fermionic and bosonic one-dimensional
systems with unprecedented control [18–21]. The low-energy
physics of such one-dimensional systems is well described by
the Tomonaga-Luttinger liquid (TLL) theory [1,2,22,23]. In
a single component TLL, there is a single gapless branch of
excitations with linear dispersion, and the interplay between
interactions and quantum fluctuations in the ground state
leads to power-law decay of correlations with interaction-
dependent exponents. Remarkably, the low-energy theory is
fully characterized by two parameters: the velocity u of the
linear dispersion excitations and the dimensionless exponent
K controlling the decay of all correlations, the corresponding
exponents being rational functions of K . In physical systems,
several prominent features of TLL have been observed after
measuring the spectral function [3,6], the structure factor
[8], or the conductivity [13], and more recently, the first
quantitative check of TLL physics has appeared for the spin-
1/2 ladder material bis(piperidinium) tetrabromocuprate(II)
(C5H12N)2CuBr4, in an applied magnetic field [10]. However,
despite this recent achievement, in many of the physical

systems mentioned above, little control can be exerted on the
values of u and K and, thus, the Luttinger exponent K is taken
as an adjustable parameter [3,13]. This fact prompts the search
of more than one signature of TLL physics for a single system.

In the case of systems with strong confinement (e.g.,
confined quantum gases), excitation properties can be accessed
most easily by light spectroscopy techniques, as proposed in
the early days of atomic Bose-Einstein condensation [24,25].
For example, the spectral function has been measured recently
in trapped Fermi gases by radio-frequency spectroscopy
[26], and the dynamical structure factor has been studied
successfully by optical Bragg spectroscopy in free and trapped
Bose-Einstein condensates [27–31] as well as trapped Fermi
gases [32]. Bragg spectroscopy can be based on energy transfer
to the system at fixed momenta [33–35] or can permit the
study of the full momentum composition of excitations by a
coherent momentum transfer mapping [36]. For these reasons,
Bragg spectroscopy can be especially useful to investigate the
properties of the many phases realizable in these systems,
such as Mott insulator, Tonks-Girardeau (TG) gas, or super-
solid phases as recently proposed [37–45]. The most recent
experimental progress in producing long-lived ground-state
polar molecules in a three-dimensional (3D) optical lattice
and possibly in one-dimensional (1D) arrays of pancakes and
two-dimensional arrays of tubes [46] as well as condensates
of dipolar atoms [47,48] opens up wide perspectives in the
comprehension of controlled quantum systems with tunable
short- and long-range interactions under progressively reduced
dimensionality.

As we have more extensively reviewed in Ref. [49], among
many possible realizations, quantum dipolar gases in 1D
confinement are quite peculiar TLL systems. Here, in fact,
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one single parameter drives the crossover from weak to strong
interaction regimes where, however, the weakest regime is a
TG state, the strongest being a dipolar-density-wave (DDW)
state characterized by quasiordering.Based on the above mo-
tivations, we derive an analytic expression for light-scattering
intensity in the case of a weakly inhomogeneous TLL. This
expression is valid within a Thomas-Fermi description where
the system can be considered locally homogeneous. The
expression requires the knowledge of the density dependence
of the ground-state energy of the homogeneous system as
can be obtained by, e.g., approximate calculations, exact
Bethe-Ansatz technique or quantum Monte Carlo (QMC)
simulations. The paper is organized as follows. In Sec. II,
after reviewing the calculation of the dynamic structure factor
and the inelastic light-scattering cross section of homogeneous
TLLs, in Sec. III, we derive the general expression for the
inhomogeneous system within the Thomas-Fermi approach in
terms of the eigenvalues and eigenfunctions of the hydrody-
namic TLL. In Sec. IV, we then specialize the case of 1D
quantum bosonic gases with dipolar interaction in a harmonic
trap, using our previous QMC findings [49]. Here, the results
are discussed explicitly in the various regime while the single
parameter built up from density and interaction strength is
tuned.

II. LIGHT-SCATTERING CROSS SECTION IN
HOMOGENEOUS TLLS

The dynamic structure factor S(q,ω) is central in the
description of interacting many-body systems. S(q,ω) is
related to the Fourier transform of the imaginary density-
density correlation function with the fluctuation-dissipation
theorem. Therefore, it is accessible by means of inelastic
scattering where density fluctuations are induced in the system
and their subsequent relaxation is measured revealing the
system characteristics. While inelastic neutron scattering has
been the tool for probing the condensate nature of superfluid
helium and the roton spectrum [50], inelastic light scattering
has been proposed and has been used widely in dilute quantum
degenerate gases. Within linear response theory, the scattering
cross section σ of light at frequency ω and angle � incident
on a Bose atomic sample is as follows:

d2σ

d�dω
∝ 1

πn
[nB(ω) + 1]Im χ (q,ω) = S(q,ω), (1)

where nB(ω) is the Bose distribution function, n = N/V ,
and χ (q,ω) is the Fourier transform of the density-density
correlation function,

χ (r,t) = −iθ (t)〈[n(r,t),n(0,0)]〉. (2)

Earlier experimental studies [28] have shown that con-
densate properties of atomic cold gases could be studied by
means of Bragg scattering yielding high-energy resolution and
sensitivity. The system is illuminated by two laser beams of
momenta k1 and k2 and frequencies ω1,ω2 of difference ω

that creates a periodic field whose intensity is proportional
to cos [(k1 − k2)r − ωt]. The external potential couples to
the density n(q) of the system where q = k1 − k2. After
using the golden rule, the response of the system to this

perturbation is the dynamical structure factor [51]. Light-
scattering experiments then directly measure S(q,ω).

This quantity is then a benchmark against the theoretical
descriptions of the systems. For a homogeneous TLL occurring
in an interacting 1D system, the dynamic structure factor can
be obtained readily [23]. In the following, we briefly sketch
the derivation. For a system of interacting spinless particles,
either bosons or fermions, the low-energy physics is that of a
TLL whose Hamiltonian is

H =
∫

dx

2π

[
uK(π�)2 + u

K
(∂xφ)2

]
, (3)

with u as the velocity of the excitations and K as the TL
exponent. The density operator n(x) is expressed in terms of
bosonic operators φ,

n(x) = n0 − 1

π
∂xφ +

∑
m

Am cos{2m[φ(x) − πn0x]}, (4)

with m as an integer and n0 as the equilibrium density.
If the wavelength of the incoming light is much larger than

the average interparticle distance, we can neglect the contribu-
tion of the oscillatory terms in Eq. (4). Using translational
invariance, the expression for the density-density response
function becomes

χ (x − x ′,t) = i
θ (t)

π2
〈[∂xφ(x,t),∂xφ(x ′,0)]〉. (5)

Knowing that the time-ordered correlation function
〈Tτ [φ(x,τ ) − φ(0,0)]2〉 = KF1(x,τ ) with F1(x,τ ) =
ln{[x2 + (u|τ | + a)2]/a2}/2, the imaginary part of the
response function (5) can be obtained [23] as

Im χ (q,ω) = q2

2ω
uK[δ(ω + u|q|) − δ(ω − u|q|)], (6)

leading to the scattered intensity at zero temperature,

d2σ

d�dω
∝ S(q,ω) = sgn(ω)Im χ (q,ω)

= K|q|
2

[δ(ω + u|q|) + δ(ω − u|q|)]. (7)

Expression (7) embodies the symmetry with respect to in-
version of velocity u as required by Galilean invariance and
evidences the dependence of the light-scattering signal from
the ratio q/ω.

III. LIGHT-SCATTERING CROSS SECTION IN
INHOMOGENEOUS TLLS

A. Hydrodynamic approach

The presence of an external potential V (x) confining
the cold atomic cloud induces density inhomogeneity, and
the external light perturbation probing the density-density
correlation function introduces time-dependent processes. The
treatment of the problem is easier under conditions of weak
inhomogeneity and slow processes as they can be met in
experiments where external potentials vary in length and time
scales longer than the characteristic system quantities, and
local equilibrium hydrodynamic behavior sets in. Under these
conditions, the gas still can be described by a hydrodynamic
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TLL Hamiltonian [49,52–56],

HTLL =
∫ R

−R

dx

2π

[
u(x)K(x)π2�(x)2 + u(x)

K(x)
[∂xφ(x)]2

]
.

(8)
Here, the boundary conditions imposed are φ(−R) = 0 and
φ(R) = −πN , with N as the number of particles in the system.
The parameters u(x) and K(x) now depend on position. In
analogy with the homogeneous case where u and K are related
by the expressions u/K = (h̄π )−1∂μ/∂n and by Galilean
invariance uK = πh̄n/m, one sets

u(x)K(x) = π
h̄

m
n0(x), (9)

u(x)

K(x)
= 1

h̄π

(
∂μ(n)

∂n

)
n=n0(x)

. (10)

Once an estimate of the equilibrium density n0(x) and of
the chemical potential μ(n) is known, this phenomenological
approach allows the determination of u(x) and K(x).

The response function (5) in the case of the Hamiltonian (8)
can be calculated using the decomposition,

φ(x) = −π

∫ x

−R
dx ′ K(x ′)

u(x ′)∫ R

−R
dx ′ K(x ′)

u(x ′)

N +
∑

n

√
π

2ωn

(a†
n + an)ϕn(x).

(11)

Here, [an,a
†
n] = δn,m, and the first term comes from the

addition of N particles in the system. The functions ϕn satisfy
the eigenvalue equation,

−ω2
nϕn = u(x)K(x)∂x

(
u(x)

K(x)
∂xϕn

)
, (12)

with boundary conditions ϕn(±R) = 0, and the normalization,∫
dx

ϕn(x)ϕm(x)

u(x)K(x)
= δn,m. (13)

The influence of the trapping potential enters Eq. (12) via the
equations for u(x) and K(x) (9). The density-density response
function, thus, can be expressed as

χ (x,x ′,t) = θ (t)
∑

n

1

πωn

dϕn

dx

dϕn

dx ′ sin(ωnt). (14)

Taking the Fourier transforms with respect to x and x ′ and
the Laplace transform with respect to t , we find

χ (q,z) =
∑

n

q2|ϕ̂n(q)|2
2πωn

(
1

z + ωn

− 1

z − ωn

)
, (15)

where Im(z) > 0. Finally, taking the limit z → ω + i0+, we
obtain

Im χ (q,ω + i0+) = q2

2ω

∑
n

|ϕ̂n(q)|2[δ(ω −ωn) + δ(ω + ωn)].

(16)

Equation (16) maintains the structure of its homogeneous
counterpart (6).

The density-density response function can be determined
whenever the density dependence of the ground-state energy
per unit length e(n) or of the chemical potential μ(n) =

( ∂e
∂n

)|n=n(x) is known. An especially simple situation is realized
when e(n) ∝ nγ+2. That type of dependence of energy on den-
sity corresponds to several limiting cases of 1D TLL systems.
For example, in the Lieb-Liniger gas [57,58], there are two
well-understood limits. At low density or strong repulsion, the
gas behaves as a hard-core boson gas [59] with γ = 1, while at
high density or weak repulsion, the Bogoliubov approximation
applies and gives an energy density proportional to n2 so that
γ = 0. The study of the crossover between these two limits
requires the Bethe-Ansatz computation of the ground-state
energy density [57]. A similar situation occurs in the case of
dipolar gases. For low densities, the energy per unit length
e(n) has the γ = 1 behavior typical of hard-core bosons,
whereas, for high density, it has the γ = 2 behavior of a
crystal of classical dipoles, and a DDW manifests [49]. As
density increases, the system crosses over from the low-density
hard-core boson gas to the high-density DDW.

In the model with e(n) = gnγ+2 and in the case of harmonic
trapping potential V (x) = m�2

0x
2/2, the eigenvalues ωn of

Eq. (11) can be found exactly, and the functions ϕn are
expressible in terms of Gegenbauer polynomials [56,60] as

ϕn(x) = An

(
1 − x2

R2

)α+1/2

C(α+1)
n

(
x

R

)
, (17)

ω2
n = u2

0

R2
(n + 1)(n + 2α + 1). (18)

Here, u0 and K0 are the TL parameters corresponding to the
density at the trap center,

An =
√

u0K0

R

n!(n + α + 1)

π�(n + 2α + 2)
2α+1/2�(1 + α), (19)

and α = (γ + 1)−1 − 1/2. In particular, in the case of a
hard-core Bose gas when γ = 1, α = 0 and the Gegenbauer
polynomials reduce to Chebyshev polynomials [61]. In order
to calculate the scattered light intensity, we need the Fourier
transform of the ϕn’s. Using Eq. (7.321) of Ref. [62], we obtain

|ϕ̂n(q)|2 = 2u0K0R(n + α + 1)
�(n + 2α + 2)

�(n + 1)

×J 2
n+α+1(qR)

(qR)2α+2
, (20)

where the Jm are the Bessel function of the first kind of
parameter m [61]. Thus,

Im χ (q,ω + i0+)

= u0K0

Rω

∑
n

(n + α + 1)
�(n + 2α + 2)

�(n + 1)

×J 2
n+α+1(qR)

(qR)2α
[δ(ω − ωn) + δ(ω + ωn)]. (21)

Equation (21) shows the main features of the scattered light
intensity. This is a set of discrete peaks, whose weight is a
function of qR, and whose spacing reduces with increasing
the trap size R → ∞.
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B. Approach via density-functional theory with
local-density approximation

In the present section, we derive an approximate expression
for the dynamical structure factor of an inhomogeneous
1D TLL, reverting to the density functional theory (DFT)
accompanied by a local-density approximation (LDA). In
the following, we sketch the main concepts and derivation.
Through the Hohenberg and Kohn theorem, DFT establishes
that the ground-state energy of a system, subjected to an
external potential V (x), is a functional Eg[n(x)] = E[n(x)] +∫ +∞
−∞ n(x)V (x)dx of the density n(x) where E[n(x)] embodies

the kinetic and exchange-correlation parts. The equilibrium
density profile is determined by the variational condition,

δEg[n(x)]

δn(x)
= μ, (22)

stating that equilibrium corresponds to a minimum of the
energy against changes in the particle density, whereas,
the total number of particles is fixed through the (density-
dependent) chemical potential μ. Equation (22) reminds us
of the Thomas-Fermi equilibrium condition in noninteracting
systems, and, in fact, the DF sets a one-to-one correspondence
between the ground-state energies of an interacting system and
its noninteracting analog. Whenever an analytic expression of
μ(n) is available, inversion of the equation of state (22) allows
the determination of the equilibrium density n0(x).

Whereas, Eq. (22) is exact, the actual determination of
the functional E[n(x)] needs approximations. Under the
conditions of shallow confinement, we safely can use the LDA.
Here, the functional E[n(x)] is replaced by

ELDA[n(x)] =
∫

ehom[n(x)]n(x)dx, (23)

where ehom(n) is the energy per particle of the homogeneous
system with density n.

Differentiating ELDA[n(x)] = Eg[n(x)] + ∫
dx[V (x) −

λ]n(x) with respect to n(x), λ being a Lagrange multiplier
fixing the total number of particles, one obtains the condition
for the local chemical potential,

μ[n(x)] = V (R) − V (x), (24)

where the local chemical potential is defined by the functional
derivative,

μ(n) = δE

δn(x)
=

(
n ∂ehom(n)

∂n

)
n=n0(x)

. (25)

If an analytic expression of μ(n) is given, Eq. (25) would allow
finding n(x) by inverting the relation Eq. (24). The energy
ehom(n) can be obtained after perturbation theory or by exact
calculations, such as Bethe-Ansatz or else by computational
QMC methods.

We now turn to the problem of determining the dynamical
structure factor of the inhomogeneous system. In this respect,
we follow the reasoning in Refs. [45,63] and imagine slicing
it into small segments of length �x where the density n0(x)
can be considered uniform and, thus, sum together all the
contributions (7) of the different segments. The dynamical

structure factor of the inhomogeneous system then would be
approximated by

S(q,ω) =
∫

dx

2R
Shom(q,ω,n0(x)). (26)

Shom(q,ω,n) is given by Eq. (7) where, now, the TL parameters
u = u(n) and K = K(n) depend on density.

With the help of Eq. (7), we obtain

S(q,ω) = |q|
4R

∫ R

−R

dx K(n0(x)){δ[ω − u(n0(x))|q|)
+ δ(ω + u(n0(x))|q|]}. (27)

Introducing x∗(ω/|q|) such that ω = u(n(x∗))|q|, we can
rewrite

S(q,ω) = K(n0(x∗))

2R
∣∣ du
dn

∣∣
n=n0(x∗)

∣∣ dn0
dx

∣∣
x=x∗

. (28)

Since the compressibility is a positive quantity, the chemical
potential is an increasing function of the density. Moreover, for
a trapping potential that is an increasing function of position,
from Eq. (24), the density is seen to decrease with position.
Thus, when the velocity is an increasing function of density,
the solution x∗ turns out to be unique.

The quantity dn0
dx

can be obtained by differentiating the
relation (24) with respect to x, i.e.,(

d2e

dn2

)
n=n0(x)

dn0

dx
+ dV

dx
= 0. (29)

Therefore, we can write

S(q,ω) =
K(n0(x∗))

∣∣ d2e
dn2

∣∣
n=n0(x∗)

2R
∣∣ du
dn

∣∣
n=n0(x∗)

∣∣ dV
dx

∣∣
x=x∗

. (30)

We now use the relation u2(n) = n
m

d2e
dn2 obtained from

Eq. (9) and rewrite Eq. (30) as

S(q,ω) = πh̄

R
∣∣ dV

dx

∣∣
x=x∗

n0(x∗)∣∣1 + n0(x∗) e′′′(n0(x∗))
e′′(n0(x∗))

∣∣ , (31)

with the notations e′(x) = de/dn, e′′(n) = d2e/dn2, and
e′′′(n) = d3e/dn3.

Formula (31) represents the main result of this paper. It
gives an analytical expression for the light-scattering cross
section of an inhomogeneous TLL once the ground-state
energy as a function of the density is known, e.g., by an
exact analytical (Bethe-Ansatz) or via numerical simulations
(QMC). Remarkably, Eq. (31) predicts that S(q,ω) is only
a function of ω/|q|. In fact, this is the specific signature of
TLL behavior in shallow-trapped 1D Bose systems as can be
measured by Bragg spectroscopy.

In order to illustrate the relevant features and to make
the connection with Eq. (21) obtained via the hydrodynamic
approach of Sec. III A, we now treat the case of harmonic
trapping. In this case, dV/dx = m�2

0x, and using Eq. (24),

we have m�2
0|x∗| =

√
2m�2

0[e′(n0(0)) − e′(ρ∗)] where we

013634-4



LIGHT SCATTERING IN INHOMOGENEOUS TOMONAGA- . . . PHYSICAL REVIEW A 85, 013634 (2012)

FIG. 1. (Color online) TLL model with e(nr0) ∝ nγ and γ = 2
in a harmonic trap. S(q,ω) in arbitrary units in the (ω,q) plane and
different densities at the trap center.

have set ρ∗ = n0(x∗) and u(ρ∗) = ω/|q|. Equation (31), thus,
simplifies into

S(q,ω) = πh̄ρ∗

R

√
2m�2

0[e′(n0(0)) − e′(ρ∗)]
∣∣1 + ρ∗ e′′′(ρ∗)

e′′(ρ∗)

∣∣ . (32)

We now check the consistency of the result (31) with
Eq. (21) by explicitly calculating Eq. (32) for the model
e(n) ∝ nγ+2. Equation (32) then reads

S(q,ω) = πh̄

(γ + 1)m�2
0R

2

(
m�2

0R
2

2g(γ + 2)

)1/(γ+1)

×
(

ω
u0q

)2/(γ+1)√
1 − (

ω
u0q

)2
, (33)

where we have defined u0 = u(n0(0)) as the velocity of
excitations in a uniform system having a density equal to that
at the trap center. We first notice that the dynamical structure
factor in Eq. (33) makes the characteristic already embodied in
the structure of Eq. (32) explicit, namely, that S(q,ω) depends
on wave vectors and frequencies solely through their ratio
ω/q. Second, the formula (33) with γ = 1 agrees with the
result of Ref. [63] in the limiting ω 
 q2/2 case. Finally,
in the Appendix, we show, by inspection, that the LDA
approximation (33) is fully recovered from expression (21).

Figure 1 displays the 3D plot of S(q,ω) resulting from the
use of Eq. (33) in the (ω,q) plane while varying the densities
at the trap center. S(q,ω) is a set of discrete peaks whose
position varies linearly with ω/q, and such linear behavior is
independent of the interaction strength.

Before proceeding to apply Eq. (32) to a dipolar 1D Bose
gas, we start by commenting on the found correspondence
between hydrodynamic and DFT-LDA approaches on a more
general footing. For normal Fermi systems [64] with an
extension to Bose superfluids [65], it is known well that
the treatment of dynamical processes in interacting inho-
mogeneous systems do require the development the current
DFT where invariance conditions render the energy to be a
functional of the current besides density. In this case, it was
demonstrated that the analog of the LDA leads to Navier-

Stokes equations (Landau-Khalatnikov two-fluid equations for
superfluids) where viscosities, densities, and currents (normal
and superfluid) have a microscopic expression in terms of
Kubo relations and low-frequency response functions as they
can be calculated in the homogeneous system at the local
densities and currents. Such a general view is reflected by
the present result. In the TLL free-harmonic Hamiltonian
where the interactions are embodied effectively in u and
K , the Navier-Stokes equations indeed become the simple
hydrodynamic relations of Sec. III A. On the other hand, in
the DFT and LDA approaches of Sec. III B, the treatment
explicitly uses the two mappings: from an interacting to a
noninteracting system (DFT) and from inhomogeneous to
homogeneous (LDA).

IV. ONE-DIMENSIONAL BOSE GASES COUPLED VIA
DIPOLAR INTERACTIONS

In this section, we specialize the case of a 1D dipolar
gas in a harmonic trapping potential. We first recall the
main results known for the homogeneous system and then
apply Eq. (32) to determine the scattered light intensity. The
system is characterized by the strength of the interactions
Cdd , resulting from either magnetic Cdd = μ0μ

2
d or electric

Cdd = d2/ε0 dipoles, where μd and d are the magnetic and
electric dipole moments and μ0 and ε0 are the vacuum
permittivities. An effective Bohr radius can be defined from
Cdd as r0 ≡ MCdd/(2πh̄2) and the Hamiltonian in effective
Rydberg units Ry∗ = h̄2/(2Mr2

0 ) is

H = (nr0)2

⎡
⎣−

∑
i

∂2

∂x2
i

+ (nr0)
∑
i<j

1

|xi − xj |3

⎤
⎦ , (34)

where lengths are expressed in 1/n units. The physics of
the model is specified entirely by the dimensionless coupling
parameter nr0 so that, in the high-density limit, the system
becomes strongly correlated and a quasiordered state occurs
where the potential energy dominates.

The ground-state energy e(n) of this model was determined
by means of the reptation QMC method in Ref. [49]. In
the low nr0 → 0 limit, it reproduces the TG state energy
per particle of a free-spinless Fermi gas, whose energy per
particle is eTG(n) = π2(nr0)2/3 Ry∗. In the large nr0 → ∞
limit of high-density dipoles, it reproduces the DDW state
where eDDW(n) = ζ (3)(nr0)3 Ry∗ and ζ (3) = 1.202 05. The
QMC thermodynamic energy per particle in Rydberg units
can be represented as an analytical function of nr0,

ep(nr0) = ζ (3)(nr0)4 + a(nr0)e + b(nr0)f + c(nr0)(2+g)

1 + nr0

+π2

3

(nr0)2

1 + d(nr0)g
. (35)

The fitting coefficients, yielding a reduced χ2 � 5, are as
follows: a = 3.1(1), b = 3.2(2), c = 4.3(4), d = 1.7(1), e =
3.503(4), f = 3.05(5), and g = 0.34(4).

Thus, the Bragg intensity is obtained easily by Eq. (32)
once the value of ρ∗ is determined.

In Fig. 2, we report the scaling behavior of S(q,ω) vs
ω/(u0q) for different densities at the trap center n0. Larger n0r0
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FIG. 2. (Color online) One-dimensional dipolar Bose gas con-
fined in a harmonic trap with e(n) as determined by QMC simulations.
S(q,ω) (arb. units) vs ω/(u0q) for different densities n0 at the trap
center. The values of n0r0 running from 0.01 to 1000 are indicated in
the legend.

indicate stronger coupling interactions, crossing over from TG
to DDW states. The linear behavior in the low ω/q regime is
striking, the slope continuously increasing with decreasing
u(0) and, thus, n0. In the TG limit, the tail of S(q,ω) is
insensitive to changes in the density at the center of the trap,
and, in fact, the curves with n0r0 = 0.01 and 0.1 do coincide.
The comparison with the TG gas (γ = 1 and n0r0 = 0.01)
and the DDW case (γ = 2 and n0r0 = 103) is seen better in
Fig. 3 where S(q,ω)

√
e′(n0)/n0 is plotted as a function of

ω/(u0q). One can notice that a crossover takes place in the
intermediate densities regime. Viewed on the log-log scale,
the plot evidences how a measure of the S(q,ω) tail toward
small ω/q would provide a way to determine the interaction
regime. A peculiarity of the TLL behavior is the power-law
trend when ω/(u0q = 1) is approached. A detailed study of
the power-law nonanalyticity for a trapped Bose gas can be
found in Ref. [45].
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FIG. 3. (Color online) The same as Fig. 2, but on a log-log scale.
The comparison with the TG limit gas (γ = 1) and the dense dipole
limit corresponding to a DDW (γ = 2) is shown in evident manner.

V. CONCLUSIONS

We have derived the dynamical structure factor for an
inhomogeneous TLL as it can occur in a confined strongly
interacting 1D gas. In view of the current experimental
progress in the field, we have provided an easy-to-use and
simple analytical expression for the light-scattering cross
section, Eq. (31), valid within a LDA.

The analytical expression (31) predicts that S(q,ω) only is
a function of ω/|q| and is the central result of this paper. In
fact, this is the specific signature of TLL behavior in shallow-
trapped 1D Bose systems along with a power-law behavior
when ω/(u0q) is approached as can be measured by Bragg
spectroscopy.

Expression (31) is validated by the independent deriva-
tion (21) by means of a hydrodynamic approach, which is
reported in detail in the Appendix. The connection between
the two approaches is the second result of this paper and is a
consequence of the more general current DFT [64,65] applied
to the conditions of the present paper.

We, thus, remark that expression (31), in principle, can
be applied to the many 1D systems cited in the introductory
material, once the trapping potential is known together with the
ground-state energy as a function of the density, e.g., by means
of perturbative, exact, or computational methods applied to
the homogeneous system. Extension of the present method to
include additional local perturbations coupling to the density
could be used to investigate the propagation of local-density
fluctuations.

Finally, we have applied our findings to the case of
1D quantum bosonic gases with dipolar interactions, using
the harmonic profile typical of experiments in this field,
accompanied by our previous QMC data for the energy per
particle. We find a universal scaling behavior peculiar to the
TLL [49], a signature that eventually can be probed by Bragg
spectroscopy in ongoing experimental realizations of such
systems [46].
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APPENDIX: JUSTIFICATION OF THE LDA FORMULA

In order to justify the approximate formulas, it is more
convenient to work with the integrated intensity,

I (q,�) =
∫ �

0
S(q,ω)dω, (A1)

since the δ functions in the sum (21) contribute as step
functions in I (q,�) giving more regular expressions.

Using the approximation (33), we expect

I (q,�) = πh̄u0n0|q|
2m�2

0R
2

2α + 1

α + 1

(
�

u0q

)2(α+1)

×2F1

[
α + 1,

1

2
; α + 2;

(
�

u0q

)2
]

, (A2)
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where 2F1 is the Gauss hypergeometric function. Using the
expression (21), instead, we obtain the exact expression,

I (q,ωN ) ∝
∑
n<N

2(n + α + 1)�(n + 2α + 2)

n!

× J 2
n+α+1(qR)√

(n + 1)(n + 2α + 1)
, (A3)

where N is such that ωN = �. In order to check the consistency
between Eqs. (A2) and (A3), we can work on the sums in
Eq. (A3). We expect that the sum is dominated by the terms
having n 
 1. Using Eq. (9.3.2) in Ref. [61], we expect that,
for qR < n, J 2

n+α+1(qR) is an exponentially small quantity
with n. For qR > n, however, Eq. (9.3.3) in Ref. [61] suggests
that

J 2
n+α+1(qR) � 2

π (n + α + 1) tan β
cos2[(n + α + 1)

× (tan β − β) − π/4], (A4)

where cos β = qR/(n + α + 1). Elementary trigonometry
gives the approximation,

J 2
n+α+1(qR)

� (n + α + 1)

π
√

(qR)2 − (n + α + 1)2

×
{

1 + sin

[
2
√

(qR)2 − (n + α + 1)2

− (n + α + 1) arccos

(
n + α + 1

qR

)]}
. (A5)

Dropping the term oscillating with n in Eq. (A5), we use as an
approximation,

J 2
n+α+1(qR) � θ (qR − n − α − 1)

π
√

(qR)2 − (n + α + 1)2
. (A6)

We also can approximate

�(n + 2α + 2)

�(n + 1)
� n2α+1, (A7)

n + α + 1√
(n + 1)n + 2α + 1

� 1, (A8)

so that the sum in Eq. (A3) can be approximated by

2

π

∑
n<min(N,qR)

n2α+1√
(qR)2 − (n + α + 1)2

. (A9)

Finally, by approximating the sum (A9) by an integral, we find∑
n<min(N,qR)

n2α+1√
(qR)2 − (n + α + 1)2

�
∫ min(N,qR)

0

du u2α+1√
(qR)2 − u2

. (A10)

Using Eq. (6.6.1) in Ref. [61], we have (for qR < N )∫ min(N,qR)

0

du u2α+1√
(qR)2 − u2

= 1

2
(qR)2α+1B(�/qR�0)2 (α + 1,1/2), (A11)

where Bx(a,b) is the incomplete Beta function [61]. With
Eq. (6.6.8) of Ref. [61], we can check that Eq. (A2) agrees
with the obtained approximate expression (A11).
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