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We discuss analytic continuation as a tool to extract the cumulants of the quark number fluctuations in
the strongly interacting medium from lattice QCD simulations at imaginary chemical potentials. The
method is applied to Nf ¼ 2þ 1QCD, discretized with stout improved staggered fermions, physical quark
masses and the tree level Symanzik gauge action, exploring temperatures ranging from 135 up to 350 MeV
and adopting mostly lattices with Nt ¼ 8 sites in the temporal direction. The method is based on a global fit
of various cumulants as a function of the imaginary chemical potentials. We show that it is particularly
convenient to consider cumulants up to order two, and that below Tc the method can be advantageous, with
respect to a direct Montecarlo sampling at μ ¼ 0, for the determination of generalized susceptibilities of
order four or higher, and especially for mixed susceptibilities, for which the gain is well above one order
of magnitude. We provide cumulants up to order eight, which are then used to discuss the radius of
convergence of the Taylor expansion and the possible location of the second-order critical point at real μ: no
evidence for such a point is found in the explored range of T and for chemical potentials within present
determinations of the pseudocritical line.
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I. INTRODUCTION

The study of the QCD phase diagram at finite temper-
ature and density is presently a challenging problem.
Its comprehension is particularly relevant, from a phenom-
enological point of view, to the physics of compact stars
and to understanding the properties of the strongly inter-
acting medium formed in heavy ion collisions. One
outstanding open issue is related to the nature of the
deconfinement transition, which is known to be an analytic
crossover at zero baryon density [1]; it has been suggested
that it could become a true transition at some critical value
of the baryon chemical potential μB, which would represent
the second-order critical end point (CEP) of a line of first-
order transitions existing for larger values of μB.
Even if indications for the existence of a CEP are given

by many effective models, clear evidence from the first
principles, in favor or against its existence, are still lacking.
Indeed, at present, a direct lattice evaluation of the QCD
equation of state at finite μB is hindered by the well-known
sign problem: the Euclidean path integral measure becomes

complex in the presence of quark chemical potentials,
making it impossible to apply ordinary Monte Carlo
algorithms based on the interpretation of the measure as
a probability density.
One way to partially overcome the problem is the Taylor

expansion technique. Assuming analyticity around μ ¼ 0,
the free energy F can be expanded in powers of the quark
chemical potentials. Let us consider, for instance, the case
of QCD with three flavors of quarks ðu; d; sÞ; the expansion
is given by

FðT; V; μu; μd; μsÞ

¼ FðT; V; 0Þ þ VT4
X

iþjþk¼even

χijkðTÞ
i!j!k!

μ̂ðiÞu μ̂ðjÞd μ̂ðkÞs ; ð1Þ

where V is the spatial volume, μ̂q ≡ μq=T and odd
monomials are zero due to the symmetry under charge
conjugation of the theory at zero chemical potentials. The
coefficients

χijkðTÞ ¼
1

VT4

∂ðiþjþkÞFðT; μÞ
∂μ̂uðiÞ∂μ̂dðjÞ∂μ̂sðkÞ

����
μu¼μd¼μs¼0

ð2Þ

are usually known as the “generalized quark number
susceptibilities” and can be computed by means of standard
Monte Carlo algorithms at zero chemical potentials.
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The interest in generalized susceptibilities χijkðT; μÞ has
increased over the last few years: cumulants of conserved
charges, i.e. baryon number B, electric charge Q and
strangeness S are directly accessible in heavy-ion collision
experiments by evaluating their event-by-event fluctuations
[2–5]. They can be related to the derivatives of the free
energy with respect to μB, μQ and μS, which in turn can be
obtained as a linear combination of the coefficients χijk. It
has been shown [6–8] that comparing the experimental
measure of these cumulants with lattice QCD computa-
tions, it is possible to extract the freeze-out parameters
without relying on phenomenological models such as the
hadron resonances gas model (HRG), thus directly from the
first principles of the theory. Moreover, the cumulants
represent a sensitive probe of the possible critical behavior
associated with the CEP: the knowledge of a large enough
number of terms in the Taylor expansion in Eq. (1) would
allow to obtain an estimate of the radius of convergence of
the series, hence of the location of the CEP [9–14].
However, a direct lattice computation of the generalized

susceptibilities suffers from at least two problems, which
combine to make the numerical effort increase exponen-
tially with the order of the susceptibility:

(i) The calculation of each χijkðT; 0Þ requires the
evaluation of a number of different terms which
rapidly increases with the order. In particular, an
increasing number of inversions of the Euclidean
Dirac operator ðDþmÞ is required, which represent
the most time consuming part of the computation;

(ii) The direct sampling of nonlinear susceptibilities
suffers from the so-called problem of lacking of
self-averaging [15]: the signal-to-noise ratio of these
quantities decreases as a power law of the spatial
volume V, with an exponent that grows with the
order of the susceptibility. This is essentially a
consequence of the central limit theorem: the deter-
mination of nonlinear susceptibilities involves the
measurement of deviations from a Gaussian distri-
bution, but in the large volume limit, and away from
criticality, the distribution of the quark number, Nq,
can be well approximated by a Gaussian of variance
Vχ2, with deviations which are suppressed as
powers of the volume.

For instance, from Eq. (1), it follows that ðVχ2nÞ are
extensive quantities, i.e. scaling linearly with the spatial
volume; however, a direct computation shows that they are
formed of a combination of terms such as, hN2n

q i;
hN2ðn−1Þ

q ihN2
qi;…hN2

qin, which in the large volume limit
grow like ðχ2VÞn, up to subleading powers of V. However,
it is precisely after a fine cancellation of such terms that the
subleading corrections produce the final signal, which
scales like V, inducing a signal-to-noise-ratio scaling as
Vð1−nÞ. This implies that to achieve a given statistical
accuracy for the 2nth-order susceptibility on a certain

range of volumes, the number of sampled gauge configu-
rations should be increased proportionally to V2ðn−1Þ.
As a consequence, the computation of the Taylor series

in Eq. (1) becomes a hard numerical challenge, when one
tries to increase the order of the expansion. It is possible to
reduce this problem by inserting explicit external sources
directly coupled to the quark number operators, then
exploiting the fact that the dependence of lower-order
cumulants on the external sources contains useful infor-
mation about the higher-order cumulants: this is analogous
to determining the magnetic susceptibility of a material
from an analysis of the magnetization as a function of the
external magnetic field, rather than from measuring fluc-
tuations at zero external field. In our case, the external
sources to be used are the chemical potentials. Given that
real-valued chemical potentials lead to a sign problem, one
can perform numerical simulations at purely imaginary
values of them, for which the fermion determinant and the
path integral measure remain real and positive Then, under
the same assumptions of analyticity leading to Eq. (1), and
ensuring that the chosen set of imaginary chemical poten-
tials stays within the analyticity domain, one can exploit
analytic continuation to determine the nonlinear suscep-
tibilities. In practice, one determines the generalized
susceptibilities

χijk ¼
X∞
l¼i
m¼j
n¼k

χlmnð0; 0; 0Þμ̂l−iu μ̂m−j
d μ̂n−ks

ðl − iÞ!ðm − jÞ!ðn − kÞ! ð3Þ

up to a given order iþ jþ k. From a global fit of their
dependence on the imaginary chemical potentials μ̂q ¼
iμq;I=T one can extract the higher-order susceptibilities.
This idea has been pursued in the past, both for the case

of QCD with quark chemical potentials [16–24] and to
determine the dependence of the free energy of pure gauge
theories on the topological parameter θ [25–27]. Different
strategies have been chosen in the various studies. For
instance, in Refs. [22] and [24] only cumulants of order one
have been measured [i.e. with iþ jþ k ¼ 1 in Eq. (3)],
while up to fourth-order cumulants have been exploited in
Ref. [23] (and also in Refs. [26,27] to study θ dependence);
moreover, a two dimensional grid of imaginary chemical
potentials has been used in Ref. [22] for Nf ¼ 2 QCD,
while a one dimensional grid, corresponding to a variation
of the baryon chemical potential μB, has been exploited in
the other cases.
The purpose of this study is to perform a systematic

investigation of this technique for the case of Nf ¼ 2þ 1
QCDwith physical quark masses, aimed both at identifying
the optimal strategy in the choice of the simulation points
and of the measured cumulants, and at testing its effective-
ness. At the same time, we also aim at analyzing the
possible systematic effects involved in the procedure,
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which are mostly related to the truncation of the series in
Eq. (3) adopted in the fit.
To that purpose, we have performed a series of numerical

simulations, mostly for Nt ¼ 8 lattices with an aspect ratio
L=T ¼ 4, exploring temperatures in the range 135 MeV <
T < 350 MeV while staying on a line of constant physics;
simulations with different aspect ratios have been per-
formed to estimate finite volume effects.
Numerical simulations have been performed for Oð102Þ

different combinations of imaginary chemical potentials for
each temperature and measuring cumulants up to order
three.
In this way, we are able to determine the zero density

quark number susceptibilities, with control over truncation
effects, up to the sixth order for T > Tc and up to the eighth
order for T < Tc. A comparison with the standard method
and with results obtained in previous studies is performed,
in particular regarding the numerical efficiency of the
strategy. In the low temperature region we also try to
estimate the radius of convergence of the free energy
expansion, in order to obtain information about the possible
location of the second-order critical point at real μB.
The paper is organized as follows. In Section II we

present the lattice discretization, the strategy adopted for
the choice of the simulation points (i.e. the different
combinations of imaginary chemical potentials), and the
expression of some of the computed observables. In
Section III we present our results, and finally in
Section IV we draw our conclusions.

II. NUMERICAL METHODS AND SETUP

We performed simulations of Nf ¼ 2þ 1 QCD in the
presence of purely imaginary quark chemical potentials,
μf ¼ iμf;I; μf;I ∈ R, with f ¼ u, d, s, considering the
following Euclidean partition function of the discretized
theory:

Z ¼
Z

DUe−SðSymÞ
Y

f¼u;d;s

det ðMf
st½U; μf;I�Þ

1
4 ð4Þ

SðSymÞ ¼ −
β

3

X
i;μ≠ν

�
5

6
W1×1

i;μν −
1

12
W1×2

i;μν

�
; ð5Þ

ðMf
stÞi;j ¼ amfδi;j þ

X4
ν¼1

ηi;ν
2

½eiaμf;Iδν;4Uð2Þ
i;ν δi;j−ν̂

− e−iaμf;Iδν;4Uð2Þ†
i−ν̂;νδi;jþν̂�: ð6Þ

SðSymÞ is the tree-level Symanzik action introduced in
Refs. [28,29], with Wn×m

i;μν being the trace of the n ×m
loop in the ðμ; νÞ plane starting from site i. In order to
reduce UV cutoff effects and taste symmetry violations, the
staggered fermion matrix Mf

st is built up in terms of the

twice stout-smeared links Uð2Þ
i;ν , which are constructed

following the procedure described in Ref. [30] and using
an isotropic smearing parameters ρ ¼ 0.15. As usual for
finite T simulations, periodic (antiperiodic) boundary con-
ditions (b.c.) are taken for bosonic (fermionic) fields in the
temporal direction, and periodic b.c. for all fields in the
spatial directions.
For each flavor, we introduce the chemical potentials

following the prescription of Ref. [31], i.e. by multiplying,
in the fermion matrix, all the temporal links in the forward
(backward) direction by eþiaμf;I (e−iaμf;I ) (see Refs. [32,33]
for alternative discretizations). The chemical potentials
coupled to quark number operators can be conveniently
rewritten in terms of those coupled to the conserved
charges, B, Q and S, the relation being

μu ¼ μB=3þ 2μQ=3

μd ¼ μB=3 − μQ=3

μs ¼ μB=3 − μQ=3 − μS: ð7Þ
As usual for staggered fermions simulations, the residual
fourth degeneracy of the lattice Dirac operator is removed
by the rooting procedure. The Rational Hybrid Monte-
Carlo algorithm [34–36] has been used to sample gauge
configurations according to Eq. (4).

A. Physical observables

The observables measured during each simulation run
correspond to the generalized susceptibilities χijkðT; μÞ
appearing in Eq. (3). In particular, we have considered
all possible combinations with iþ jþ k ≤ 2 for each
simulation, and also the combinations with iþ jþ k ¼ 3
in some cases. Their explicit lattice version reads (we limit
ourselves to the second order):

χf1 ≡ Nt

4N3
s

�
Tr

�
ðMf

stÞ−1
∂Mf

st

∂μf
��

ð8Þ

χf2 ≡ Nt

N3
s

�
1

4

�
2
��

Tr

�
ðMf

stÞ−1
∂Mf

st

∂μ̂f
��2�

−
Nt

N3
s

�
1

4

�
2
�
Tr

�
ðMf

stÞ−1
∂Mf

st

∂μ̂f
��2

þ Nt

4N3
s

�
Tr

�
ðMf

stÞ−1
∂2Mf

st

∂μ̂2f
��

−
Nt

4N3
s

�
Tr

�
ðMf

stÞ−1
∂Mf

st

∂μ̂f ðMf
stÞ−1

∂Mf
st

∂μ̂f
��

ð9Þ

χi;j2 ≡ Nt

N3
s

�
1

4

�
2
�Y

f¼i;j

�
Tr

�
ðMf

stÞ−1
∂Mf

st

∂μ̂f
���

−
Nt

N3
s

�
1

4

�
2 Y
f¼i;j

�
Tr

�
ðMf

stÞ−1
∂Mf

st

∂μ̂f
��

ð10Þ
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where the presence of the factor 1=4 is due to our staggered
discretization. Their determination requires the evaluation
of the following traces:

Tr

�
ðMf

stÞ−1
∂Mf

st

∂μf
�

Tr

�
ðMf

stÞ−1
∂Mf

st

∂μf
�2

Tr

�
ðMf

stÞ−1
∂ð2ÞMf

st

∂μ2f
�
: ð11Þ

This is has been done, as usual, by means of noisy
estimators, using 256 Gaussian random sources for each
flavour. Confidence intervals and bias-subtraction for non-
linear estimators of susceptibilities have been performed by
means of a Jackknife analysis [37].

B. Choice of the simulation runs

At fixed Nt, the temperature T ¼ 1=ðNtaÞ has been
varied by tuning the bare coupling β and the bare quark
masses ms and mu ¼ md ¼ ml, so as to change the lattice
spacing a while staying on a line of constant physics, with
mπ ≃ 135 MeV and ms=ml ¼ 28.15. This line has been
determined by a spline interpolation of the determinations
reported in Refs. [38–40].
For each temperature, the different combinations of

imaginary quark chemical potentials have been chosen
according to the following considerations. Our strategy is to
obtain information about generalized susceptibilities at zero
chemical potentials from the dependence on μu, μd and μs
of the measured lower-order susceptibilities described in
the previous subsection. To that aim, in general we employ
a truncated polynomial version of Eq. (3), i.e.

χijk ¼
Xlþmþn≤p

l¼i
m¼j
n¼k

χlmnð0; 0; 0Þμ̂l−iu μ̂m−j
d μ̂n−ks

ðl − iÞ!ðm − jÞ!ðn − kÞ! ð12Þ

where the parameter p fixes the maximum order we would
like to determine.
The set of simulations points must contain values of μu,

μd and μs large enough, in order to be sensible to higher-
order contributions. However, small values of the chemical
potentials are important as well, in order to be able to check
systematics related to truncation effects. Therefore a
reasonable choice seems to take their values equally spaced
between zero and some maximum reference value μmax.
This choice will be further discussed in Section III B.
In Ref. [22], a two-dimensional grid of equally spaced

chemical potentials was considered for the case of Nf ¼ 2
QCD. In this case, considering a three-dimensional grid of
equally spaced chemical potentials is surely not feasibile,
since that would imply a number of different simulation

runs scaling as μ3max and reaching easily Oð103Þ for each
temperature. Instead, we decided to fix the simulations
points along well defined trajectories in the three-dimen-
sional parameter space, in particular we did the following
choices

ðμu; μd; μsÞ ¼ ðiμI; 0; 0Þ
ðμu; μd; μsÞ ¼ ð0; 0; iμIÞ
ðμu; μd; μsÞ ¼ ðiμI; iμI; 0Þ
ðμu; μd; μsÞ ¼ ðiμI;−iμI; 0Þ
ðμu; μd; μsÞ ¼ ðiμI; iμI; iμIÞ
ðμu; μd; μsÞ ¼ ðiμI;−iμI; iμIÞ ð13Þ

where μI parametrizes each of the six different lines, with
simulation points taken with a step size ΔμI ¼ 0.025πT
between zero and a maximum value μI;max, which is the
same for all the lines at a given temperature T. In this way,
keeping the number of lines fixed, the computational effort
scales linearly with μI;max.
Another aspect to be considered is whether the number

of simulation points and measured observables is large
enough to fix all generalized susceptibilities at a given
order. Indeed, the number of independent generalized
susceptibilities grows rapidly with the order: for Nf ¼
2þ 1 it is easy to prove, exploiting the symmetry χlmn ¼
χmln due to the up and down quark mass degeneracy, that at
order N such number is given by ðN=2þ 1Þ2. In general,
the set of equations (12), which are used in the global fit,
will involve only some linear combinations of such
generalized susceptibilities, which depend on the number
of lines in Eq. (13) and on the number of measured
observables. Those linear combinations, for each order
N of generalized susceptibilities, define a matrix AN , whose
rank must be at least equal to ðN=2þ 1Þ2 in order for the
global fit to provide information about all independent
susceptibilities.
In Fig. 1 we show the rank of AN in our setup [i.e.

performing simulations along the six lines described in
Eq. (13)], and assuming one measures all susceptibilities up
to the second order, which has been our minimal choice for
all temperatures. It is clear that our choice suffices to
determine all the susceptibilities up to order eight, while
only 33=36 generalized susceptibilities can be determined
at order ten.
The situation can be improved (or worsened) by chang-

ing either the order of the measured susceptibilities or the
number of lines where simulations are performed. For
instance, in Figs. 2 and 3 we report the same information as
in Fig. 1, respectively for the case in which only quark
number densities are measured, and for the case in which
the observables are extended up to susceptibilities of order
three (keeping the number of lines fixed). Instead, in Fig. 4,
we consider the case in which one still measures up to
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second-order susceptibilities, but considers less or more
lines of simulation points.
The naïve message would seem to measure more and

more susceptibilities keeping the number of lines fixed, in
order to avoid too many simulations. However, as we have
already discussed, the precision on the observables
degrades rapidly with the order, so what is the optimal
strategy is nontrivial and will be discussed in the following,
based on numerical results.
There is no special limitation on the choice of μI;max in

the low temperature regime, T < Tc, where the partition
function is an analytic function in all chemical potentials. In
the high-T region, instead, the range of available chemical
potentials is limited by the presence of Roberge-Weiss
(RW) or RW-like phase transitions, associated to a sudden
change of the expectation value of the Polyakov loop,
related to different realization of the center symmetry
breaking. The genuine RW transition [41] is met when

moving along the line μu ¼ μd ¼ μs ¼ iμI, which corre-
sponds to a pure baryon chemical potential μB ¼ 3iμI [i.e.
μQ ¼ μS ¼ 0, see Eq. (7)]: a purely imaginary μB corre-
sponds to a global rotation of the temporal boundary
conditions for fermion fields, leading to a rotation of the
fermion contribution to the effective potential of the
Polyakov loop and to a sudden change of the global
minimum for

μI=T ¼ ð2nþ 1Þπ=3 ð14Þ

where n is a relative integer. The phase diagram in the
T − μI looks as in Fig. 5: the vertical lines are first-order
RW transition lines, they start from a critical temperature
TRW > Tc, whose value is about 200 MeV for Nt ¼ 8 and
about 208 MeV in the continuum limit [42]. The first RW

FIG. 1. Ranks of the AN matrices for some values of the order
N, for simulation points chosen along the lines described in
Eq. (13) and measuring as an input both quark number densities
and second-order susceptibilities. Red circles correspond to the
number of independent χijkðT; μ ¼ 0Þ at a given order.

FIG. 2. Same as in Fig. 1, but with just quark number densities
taken as an input.

FIG. 3. Same as in Fig. 1, apart from the fact that also quark
number susceptibilities of order three are measured and added as
an input.

FIG. 4. Same as in Fig. 1, but considering less or more lines of
simulation points. Triangles correspond to the case in which two
additional lines, ðiμI ; 0; iμIÞ and ðiμI; iμI ;−iμIÞ, have been
added, while diamonds to the case in which two lines,
ðiμI ;−iμI ; 0Þ and ðiμI; iμI ; iμIÞ, are not considered.
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line limits the region which is analytically connected to the
points at zero chemical potentials, hence one has to take
μI;max=T < π=3 for T > TRW.
For intermediate temperatures, Tc < T < TRW , no criti-

cal points are expected, since the analytic continuation of
the chiral transition line (dashed curve in Fig. 5) is only
pseudocritical. However, one expects that, when crossing
this pseudocritical line, the dependence of the free energy F
on the chemical potentials may become less smooth, so that
systematic effects due to truncation may become more
severe, resulting in an effective limitation of the explorable
range of μ.
Similar dynamics take place along the other lines, i.e. in

the more general case μQ; μS ≠ 0: in those cases the exact
position of the first RW-like line depends on the quark
masses and on T; however, one can safely state that it will
occur for μI=T > π=3, since in this case the different
flavors tend to orient the Polyakov loop along different
directions in the complex plane (see Refs. [43,44] for a
more detailed discussion about this point). For instance,
along the line μu ¼ μd ¼ iμI and μs ¼ 0, it occurs for
μI=T ∼ 0.45π [44].
Following the discussion above, we have taken

μI;max=T < π=3 for all temperatures above Tc. Around
Tc, the range of chemical potentials actually used in the
global fit will be decided on the basis of the quality and of
the stability of the fit itself.

III. NUMERICAL RESULTS

Most simulations have been performed on a 323 × 8
lattice for various temperatures: the complete list, including
the values of the bare parameters, is reported in Table I. For
each run, 1500 trajectories of unitary length have been

performed. We measured susceptibilities on configurations
separated by 10 trajectories to reduce autocorrelation
effects.1 A few additional simulations have been performed
on lattices with different aspect ratios, both below and
above Tc, to check for finite size effects.
As outlined above, our strategy, for each temperature,

has been to perform a global fit, according to Eq. (12), of
the dependence on the chemical potentials of all quark
number densities and susceptibilities up to order two, along
the trajectories in the three-dimensional chemical potential
space described in Eq. (13). A subsample of such global fit
is reported in Fig. 6 for T ¼ 149 MeV, where we show
some of the best fit polynomials obtained according to
Eq. (12) with a truncation p ¼ 8.

A. Analysis of systematic errors

The main source of systematic error, in the analytic
continuation method, comes from the ambiguity in the
choice of the fitting function. In our case this means that
coefficients resulting from the global fit procedure, i.e. the
generalized susceptibilities χijkðTÞ, may depend on the
order of the polynomial (i.e. on the truncation order) as well
as on the fitting range.
As a general procedure to keep this systematic error

under control, we started with ranges of μI, going from zero
up to a maximum value μ̄I , small enough so that a lowest-
order polynomial could provide a good description of the
data. Next, we increased the upper value of the range, μ̄I ,
keeping the polynomial degree fixed, as long as reasonable

0 1 2 3 4
(μ

I
/T)  / (π/3)

 T
 T

RW

Tc

FIG. 5. Sketch of the phase diagram in the T − μI plane. In this
case (μu;d;s ¼ iμI) RW lines are exactly vertical and located at
μI=T ¼ ð2nþ 1Þπ=3. Solid lines represent first-order phase
transitions separating sectors with different orientation of the
Polyakov loop while dashed lines correspond to the analytic
continuation of the pseudocritical line.

TABLE I. List of simulated temperatures and associated values
of β; ml; ms; μI;max represents the maximum value of the
imaginary chemical potential used in the simulations. The value
of T is affected by an uncertainty related to the determination of
the physical scale, which for the discretization adopted in our
study is of the order of 2%–3% [38–40].

T [MeV] β ml ms μI;max=T

135 3.61 0.002831 0.07971 0.8π
143 3.63 0.002621 0.07378 0.8π
149 3.645 0.002479 0.06978 0.4π
155 3.66 0.002350 0.06614 0.4π
160 3.67 0.002270 0.0639 0.3π
170 3.69 0.002126 0.5984 0.3π
200 3.755 0.001763 0.04963 0.3π
230 3.815 0.001516 0.04267 0.3π
260 3.87 0.001341 0.03775 0.3π
300 3.94 0.001168 0.3287 0.3π
350 4.0225 0.0009920 0.2792 0.3π

1To check that our choice was reasonable, we measured the
autocorrelation times of some typical observables. Throughout
the explored range of temperatures, the autocorrelation times of
the plaquette and of the quark number densities is 4–6 trajecto-
ries, whereas it is of O(10) trajectories for the chiral condensate.
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values of reduced chi-squared test, ~χ2, were obtained.
Otherwise, the polynomial order was increased in order
to go back to ~χ2 ≃ 1: at this stage, the stability of the
previously determined coefficients was checked, and any
variation going beyond the statistical errors (obtained in the

global best-fit procedure) was added as a systematic error to
the final determination.
An example of this procedure is reported in Fig. 7, where

we show the evolution of some susceptibilities as the fit
range or the polynomial order is changed, for T ¼ 135.
To investigate finite size effects, we carried out simu-

lations on Nt ¼ 6 lattices for T ¼ 170 MeV and on Nt ¼ 8
lattices at T ¼ 350 MeV, considering three different values
for the spatial volume, Ns ¼ 16, 20, 24 for the Nt ¼ 6
lattice and Ns ¼ 24, 32, 40 for the Nt ¼ 8 one. In Figs. 8
and 9 our results for the up-quark and up-strange suscep-
tibilities are shown. The analysis indicates that no finite
volume effects are visible, within our present statistical
accuracy, when passing from aspect ratio 4 to aspect ratio
3.3 for T ¼ 170 MeV, and from aspect ratio 5 to aspect
ratio 4 at 350 MeV. It is interesting to notice a reduction of

FIG. 6. Example of the global fit forT ¼ 149 MeV.We showonly a subsample of a total of 54 polynomial fitswhich are performed at the
same time (three densities plus six second-order susceptibilities fitted along six different trajectories). The best-fit functions are taken
according to Eq. (12) with a truncation to order eight. The reduced ~χ2 is 1.3. Notice that in the global fit we did not take into account cross-
correlations between susceptibilities measured at the same chemical potential, hence the covariance matrix has a simple diagonal form.

FIG. 7. An example of the procedure followed to determine
systematic errors. The errorbars represent the statistical error
obtained in the global best fit. The polynomial degree is increased
every time that the global best fit yields nonacceptable values of
the reduced chi-squared ~χ2. Circles, triangles and diamonds refer
to a global fit performed with a polynomial of order 6, 8, 10,
respectively, while the grey bands represent the final estimate.
Data refer to simulations on the 323 × 8 lattice at T ¼ 135 MeV.

FIG. 8. Variation of some quark susceptibilities with the
volume size at T ¼ 170 MeV on the Nt ¼ 6 lattice.
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the statistical error on the larger lattices: since the same
statistics have been adopted for the different spatial sizes,
this can be related to the fact that some of the fitted
observables (quark number densities) are self-averaging,
i.e. their statistical fluctuations decreases as 1=

ffiffiffiffi
V

p
, while

the other are characterized by statistical fluctuations which
are independent of V (the second-order susceptibilities), so
that, on the whole, one expects some gain in accuracy when
moving to larger volumes.
This is visible even for the case of the sixth-order

susceptibilities, whereas in the direct computation at
μ ¼ 0 their determination would be affected by a relative
error growing like ∝ V2.

B. Efficiency of the method and comparison
with a direct determination at μ= 0

At this stage we are in a position to discuss the efficiency
of the method, i.e. to compare the total computational effort
in the direct calculation and in the analytic continuation
method. In Table II, we compare results obtained for

second and fourth-order susceptibilities, for two values
of the temperature (T ¼ 143, 260 MeV), from the standard
method and from the global fit, in order to test the
efficiency of our method both in the confined and in the
plasma phase.
In order to make a proper comparison, one must take the

relative computational effort into account. In both cases,
each measurement involved 256 random sources; however,
five matrix inversions for each flavor were used in the
standard determination, in order to obtain all susceptibil-
ities up to order four, and just two inversions in the analytic
continuation case, in order to obtain all the second-order
susceptibilities involved in the global fit. For the standard
determination, we performed measurements on 1000 con-
figurations for T ¼ 143 MeV and 2000 configurations for
T ¼ 260 MeV, each separated by 10 RHMC trajectories;
the relative cost2 of each measurement compared to each
MD trajectory was about 40 for T ¼ 143 MeV and about 7
for T ¼ 260 MeV. The determination from analytic con-
tinuation, considering all simulation points, involved mea-
surements on 20K configurations for T ¼ 143 MeV and
7K configurations for T ¼ 260 MeV, each separated by
10 RHMC trajectories; the relative cost of each measure-
ment compared to each MD trajectory was about 16 for
T ¼ 143 MeV and about 3 for T ¼ 260 MeV. Summing
up, we can estimate a total computational effort spent in
the global fit which is larger than that spent in the
standard case, by a factor 10 for T ¼ 143 MeV, and 3
for T ¼ 260 MeV. In standard importance sampling, error
bars scale according to the inverse square root of the sample
size; therefore, rescaling appropriately the error, we can
compare the two determination at fixed machine time.
A clear result, emerging from Table II, is that the

standard method is comparable, or even more efficient
than analytic continuation in the deconfined phase, for all
susceptibilities up to order four. For T ¼ 143 MeV, i.e.
below the pseudocritical temperature, the situation is quite
different. Analytic continuation has still an efficiency
comparable to the standard method for second-order
susceptibilities; however, for fourth-order susceptibilities,
the improvement is dramatic: analytic continuation leads to
an improvement which is of order 10, in terms of time
machine, for the diagonal light quark susceptibility, χ4;0;0,
and grows up to order 100 for the nondiagonal suscep-
tibilities (no significant improvement is observed, instead,
for χ0;0;4).
For sake of completeness, in Table III, we report the

values of some second- and fourth-order susceptibilities
as a function of the number of random sources. Our
determinations suggest that the error over fourth-order
cumulants decreases more sharply with respect to the

FIG. 9. Same as in Fig. 8 for T ¼ 350 MeV on the Nt ¼ 8
lattice.

TABLE II. Comparison of results obtained for second- and
fourth-order susceptibilities from the global fit procedure, with
the ones obtained from the standard computation and a statistics
similar to that accumulated for Oð10Þ simulation points at
imaginary μ. The total computational effort spent in the global
fit is larger than that spent in the standard case by a factor 10 for
T ¼ 143 MeV, and 3 for T ¼ 260 MeV.

μ ¼ 0 From global fit

T[MeV] 143 260 143 260

χ2;0;0 0.410(12) 1.0880(12) 0.4160(40) 1.0883(8)
χ0;0;2 0.1862(24) 1.0250(13) 0.1865(15) 1.0255(10)
χ1;0;1 −0.031ð3Þ −0.00774ð57Þ −0.031ð1Þ −0.00740ð40Þ
χ1;1;0 −0.075ð8Þ −0.0091ð6Þ −0.0680ð20Þ −0.0080ð5Þ
χ4;0;0 1.1(8) 0.65(1) 1.250(70) 0.635(20)
χ0;0;4 0.336(40) 0.721(15) 0.300(15) 0.710(30)
χ2;0;2 0.17(7) 0.0452(35) 0.1195(33) 0.0440(60)
χ2;2;0 0.2(3) 0.043(4) 0.2924(82) 0.038(5)

2This estimate is specific to our code implementation on the
BlueGene/Q machine and could be different for other imple-
mentations or machines.
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second-order ones when increasing the number of random
vectors. This different behaviour is expected, since fourth-
order cumulants are composed by terms which involve
products of three and four traces and their uncertainty
decreases more sharply as the number of random vectors is
increased. For sure, by increasing sufficiently the number
of random sources error saturation will occur due to the fact
that gauge fluctuations dominate over random noise.
However, it is possible that going from 256 to 512 or
1024 random sources, this trend continues to be valid.
Therefore, uncertainties over quark number susceptibilities
determined from direct sampling and from the global fit
could scale differently as the number of sources is
increased, leading to a slight change in the efficiency
comparison. This, however, should not change the main
conclusion, i.e. that analytic continuation gains a large
factor, below Tc, starting from fourth-order susceptibilities,
and especially for mixed ones.
Let us try to give a few possible explanations for the fact

that analytic continuation seems to be not so convenient
above Tc. A significant role is surely played by the fact that
small eigenvalues of the Dirac operator are strongly sup-
pressed above Tc (due to chiral symmetry restoration), so
that, at the same time, the multiple inversions needed in the
standard method are less costly, and fluctuations in the
noisy estimators are suppressed; this effect is visible even
below Tc, for susceptibilities involving strange quarks,
which have a larger mass, for which the gain of analytic
continuation is less marked. Another possible factor is
related to the fact that we are working with a fixed aspect
ratio, so that simulations at higher temperatures are based
on smaller physical volumes, where problems related to
the lack of self-averaging are expected to be less severe.

Finally, in the high temperature phase analytic continuation
is surely disfavored by the reduced range of explorable
chemical potentials, due to RWor RW-like transitions: that
affects both the statistical accuracy of the global fit and,
even more important, the systematic uncertainty related to
truncation effects.
Another question that we would like to answer, which

regards the optimal strategy to be followed, is whether there
is any significant gain in trying measuring also suscep-
tibilities of order larger than 2. In other case, like in the
use of analytic continuation for the study of θ dependence
[25–27], the issue is not very important, since one can
compute cumulants of the topological charge at any chosen
order with no significant computational overhead; in this
case instead, going one order further in the measure of
cumulants means adding new inversions of the Dirac
operator, with a considerable overhead. To this purpose,
we performed trial simulations at T ¼ 143 MeV, measur-
ing all quark number susceptibilities up to order three, and
observing how errors change as a function of the order of
the susceptibilities included in the global fit. Some results
are reported in Fig. 11. A remarkable improvement is
achieved when adding second-order susceptibilities to the
information coming from just quark number densities: the
improvement reaches up to a factor 3, in terms of error
reduction. On the other hand, including the third order as
well has a low impact since, in general, only a little gain is
achieved.
Finally, we would like to discuss whether the choice of

equally distributed simulation points, along the imaginary
chemical potential axes, is optimal or not. In principle, one
would expect that having more simulations where cumu-
lants get larger contributions from higher-order terms of the
expansion, i.e. at larger values of μI , would be better, in
order to obtain more information on higher-order suscep-
tibilities. However, one must consider that, in order to
properly perform the analysis on the systematic error
related to the series truncation, which has been illustrated
in the previous subsection, one needs enough determina-
tions at small μI as well. In fact, we have tried to perform
the analysis on various subsets of our simulation points,
keeping more data either in the high or in the low μI region
and comparing the final error in the various cases, after
normalizing it to the total computational effort needed. The
result is that there is indeed a benefit in having more points
in the high μI region when one considers just the statistical
error; however, that disappears when the total error

TABLE III. A subset of second- and fourth-order susceptibil-
ities as a function of the number of random sources is shown.
Data refer to simulations at μ ¼ 0 and T ¼ 143 MeV.

ncopies 64 128 256 512

χ2;0;0 0.401(37) 0.400(19) 0.410(12) 0.4158(81)
χ0;0;2 0.186(5) 0.191(3) 0.1862(24) //
χ1;0;1 −0.031ð9Þ −0.026ð5Þ −0.031ð3Þ //
χ1;1;0 −0.084ð24Þ −0.084ð12Þ −0.075ð8Þ //
χ4;0;0 9(7) 3(2) 1.1(8) 1.05(35)
χ0;0;4 0.16(19) 0.33(6) 0.336(40) //
χ2;0;2 0.12(45) 0.10(15) 0.17(7) //
χ2;2;0 3(3) 0.7(9) 0.2(3) //

TABLE IV. Table of second-order susceptibilities obtained from polynomial fits. Errors are calculated taking into account both
statistical uncertainties and systematic effects.

T [MeV] 135 143 149 155 160 170 200 230 260 300 350

χ0;0;2 0.12770(90) 0.1865(15) 0.2485(10) 0.3230(20) 0.3800(20) 0.4980(30) 0.7960(20) 0.9485(15) 1.0255(10) 1.0815(10) 1.12250(70)
χ1;0;1 −0.02820ð50Þ −0.031ð1Þ −0.03050ð70Þ −0.02780ð80Þ −0.0285ð10Þ −0.0251ð11Þ −0.01520ð70Þ −0.00960ð40Þ −0.00740ð40Þ −0.00500ð40Þ −0.00320ð30Þ
χ1;1;0 −0.0698ð15Þ −0.0680ð20Þ −0.0687ð18Þ −0.0566ð16Þ −0.0540ð25Þ −0.0462ð20Þ −0.0187ð10Þ −0.01130ð60Þ −0.00800ð50Þ −0.00510ð30Þ −0.00343ð35Þ
χ2;0;0 0.3020(30) 0.4160(40) 0.5275(25) 0.6480(40) 0.7080(40) 0.8170(60) 0.9888(15) 1.0515(12) 1.08830(80) 1.12200(60) 1.14700(60)
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(statisticalþ systematic) is taken into account, so that the
choice of equally distributed points still seems a reason-
able one.
The complete list of susceptibilities determined on the

323 × 8 lattice are reported in Tables IV–VII, while in
Figs. 10,12–15 some of those susceptibilities are shown, as
a function of T, and compared with results obtained by
other groups using the direct computation approach. We
note that conserved charge susceptibilities are linked to the

TABLE V. Same as in Table IV for the fourth-order susceptibilities.

T [MeV] 135 143 149 155 160 170 200 230 260 300 350

χ0;0;4 0.195(10) 0.300(15) 0.411(13) 0.470(30) 0.67(10) 0.72(12) 0.810(80) 0.75(5) 0.710(30) 0.640(35) 0.690(30)
χ1;0;3 −0.0266ð32Þ −0.0188ð60Þ −0.0200ð70Þ 0.0060(80) 0.000(40) 0.038(24) −0.023ð25Þ 0.010(10) 0.007(10) 0.0020(60) 0.0080(70)
χ1;1;2 0.0080(20) 0.010(4) 0.02(1) 0.0210(60) 0.013(15) 0.010(15) 0.025(25) 0.0022(64) 0.0000(50) −0.0065ð45Þ −0.0020ð40Þ
χ2;0;2 0.0790(25) 0.1195(33) 0.160(10) 0.180(20) 0.177(20) 0.150(20) 0.084(20) 0.025(10) 0.0440(60) 0.0330(50) 0.0250(50)
χ2;1;1 0.0084(20) 0.0090(20) 0.0075(75) 0.021(8) 0.010(8) 0.0028(83) 0.000(10) 0.0140(40) −0.0020ð30Þ 0.0012(16) 0.0030(30)
χ2;2;0 0.2115(80) 0.2924(82) 0.364(12) 0.430(20) 0.310(35) 0.140(40) 0.081(14) 0.0434(66) 0.0380(50) 0.0280(45) 0.026(8)
χ3;0;1 −0.0060ð40Þ 0.010(10) 0.0208(73) 0.050(15) −0.01ð3Þ 0.000(25) 0.020(20) 0.0080(70) 0.0040(60) 0.0037(51) 0.0050(50)
χ3;1;0 −0.0160ð45Þ 0.010(9) 0.0230(90) 0.081(15) 0.004(45) −0.035ð25Þ 0.005(15) 0.010(10) 0.0064(54) 0.0018(28) −0.0009ð38Þ
χ4;0;0 0.850(20) 1.250(70) 1.410(40) 1.55(15) 1.30(20) 0.840(70) 0.620(60) 0.590(30) 0.635(20) 0.700(20) 0.710(25)

TABLE VI. Same as in Table IV for the sixth-order susceptibilities.

T [MeV] 135 143 149 155 160 170 200 230 260 300 350

χ0;0;6 0.60(15) 0.75(10) 1.00(50) 0.69(18) 1.98(87) 1.56(98) −1.1ð21Þ 0.43(56) 0.29(36) −1.25ð75Þ −0.10ð33Þ
χ1;0;5 −0.017ð17Þ 0.080(30) −0.060ð90Þ 0.30(35) −0.19ð43Þ 0.63(50) −1.00ð70Þ 0.09(17) 0.06(11) 0.01(11) 0.043(87)
χ1;1;4 −0.005ð15Þ −0.003ð12Þ 0.049(42) 0.045(60) 0.00(23) 0.06(32) 0.5(10) −0.067ð92Þ −0.018ð60Þ −0.133ð67Þ −0.035ð44Þ
χ2;0;4 0.080(20) 0.142(21) 0.25(12) 0.16(10) 0.11(24) −0.14ð38Þ 0.43(60) −0.25ð35Þ −0.076ð64Þ −0.190ð82Þ −0.020ð48Þ
χ2;1;3 0.010(10) 0.0112(90) −0.10ð10Þ 0.019(26) 0.09(13) −0.20ð36Þ −0.50ð23Þ 0.05(15) −0.007ð31Þ 0.052(33) 0.030(22)
χ2;2;2 0.0050(50) 0.0200(80) 0.000(70) −0.05ð10Þ 0.10(20) −0.110ð70Þ 0.02(14) −0.032ð34Þ −0.010ð19Þ −0.044ð25Þ −0.015ð13Þ
χ3;0;3 −0.0160ð60Þ 0.023(13) −0.002ð15Þ 0.005(20) 0.082(42) −0.29ð23Þ 1.7(1.0) 0.70(70) 0.001(97) 0.012(43) 0.085(68)
χ3;1;2 0.0100(50) 0.0070(80) 0.050(50) −0.005ð13Þ −0.037ð53Þ −0.062ð69Þ 0.03(10) −0.015ð26Þ 0.019(16) −0.030ð19Þ −0.011ð12Þ
χ3;2;1 0.010(10) −0.002ð20Þ 0.000(13) 0.035(25) −0.180ð50Þ −0.130ð50Þ 0.027(58) 0.018(18) −0.017ð12Þ 0.009(10) 0.0006(81)
χ3;3;0 0.097(50) 0.035(40) 0.11(10) −0.46ð17Þ −0.53ð18Þ −0.10ð14Þ 0.050(70) −0.001ð23Þ 0.020(23) 0.015(16) 0.0006(81)
χ4;0;2 0.127(21) 0.190(40) 0.30(15) 0.230(50) −0.21ð27Þ −0.46ð31Þ −0.32ð51Þ −0.23ð12Þ −0.058ð52Þ 0.120(83) −0.041ð36Þ
χ4;1;1 0.010(10) 0.000(15) −0.008ð16Þ −0.003ð21Þ 0.040(87) −0.083ð93Þ 0.08(10) −0.00ð10Þ −0.013ð17Þ −0.005ð16Þ 0.014(13)
χ4;2;0 0.325(50) 0.460(80) 0.45(10) 0.460(40) −0.36ð14Þ −1.00ð30Þ −0.14ð11Þ −0.080ð29Þ 0.011(18) −0.048ð20Þ −0.007ð15Þ
χ5;0;1 0.075(75) 0.19(15) 0.00(20) 0.20(15) −0.15ð43Þ 0.00(50) −0.06ð46Þ −0.32ð11Þ 0.090(99) 0.047(85) 0.076(64)
χ5;1;0 0.140(20) 0.260(50) 0.250(70) 0.320(90) 0.18(33) −0.80ð35Þ −0.27ð27Þ −0.077ð66Þ 0.067(42) 0.002(41) −0.078ð34Þ
χ6;0;0 4.0(5) 6(1) 4.67(43) 3.7(2.0) −1.8ð1.5Þ −4.1ð1.5Þ −2.3ð1.4Þ −0.94ð42Þ 0.14(28) 0.96(25) 0.42(21)

TABLE VII. Same as in Table IV for the eighth-order suscep-
tibilities.

T [MeV] 135 143

χ0;0;8 3.0(1.5) 2.5(1.5)
χ1;0;7 0.50(50) 0.90(35)
χ1;1;6 −0.15ð15Þ 0.00(20)
χ2;0;6 −0.05ð15Þ 0.25(13)
χ2;1;5 0.030(30) 0.00(10)
χ2;2;4 0.000(40) 0.031(21)
χ3;0;5 0.000(20) −0.07ð11Þ
χ3;1;4 0.000(20) 0.002(15)
χ3;2;3 −0.025ð35Þ 0.025(17)
χ3;3;2 0.000(25) −0.007ð21Þ
χ4;0;4 0.10(10) 0.100(70)
χ4;1;3 0.000(50) 0.050(50)
χ4;2;2 −0.0050ð50Þ 0.070(45)
χ4;3;1 0.00(5) −0.020ð40Þ
χ4;4;0 0.35(10) 0.60(15)
χ5;0;3 0.00(10) 0.15(20)
χ5;1;2 0.025(75) −0.050ð50Þ
χ5;2;1 −0.020ð40Þ 0.050(60)
χ5;3;0 0.150(60) 0.26(14)
χ6;0;2 0.30(12) 0.35(10)
χ6;1;1 0.00(30) 0.00(10)
χ6;2;0 0.70(20) 0.95(30)
χ7;0;1 0.75(75) 0.60(80)
χ7;1;0 0.35(25) 0.70(26)
χ8;0;0 20(4) 35(10)

FIG. 10. Temperature dependence of the ratio χB4 =χ
B
2 of

baryonic cumulants. Blue points correspond to our determina-
tions while red points, corresponding to data obtained on a
Nt ¼ 8 lattice using our own discretization, are taken from [7].
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quark number ones via linear relations [see Eq. (7)].
Correlations among quark number susceptibilities, as
determined from the global fit procedure, turned out to
be, in most cases, smaller than 10–15%. Therefore the
errorbars shown in Figs. 10,12–14 were computed by using
Gaussian error propagation formulae. A very good agree-
ment is found for almost all quantities and a higher
precision is reached in our case, at least in the confined
phase T < Tc. Only a small discrepancy is observed for the
χus2 in the high temperature regime (see Fig. 15). The source
of this mismatch can be attributed to the different aspect

ratios used in the two cases. Indeed, Ref. [45] adopted
Ns=Nt ¼ 3, while in our case we have Ns=Nt ¼ 4; looking
at Fig. 9 it is clear that finite volume effects are still non-
negligible for aspect ratio 3 and for this values of the
temperature, and point exactly in the direction of the
observed discrepancy.

C. An application to the search for a critical end point

The obtained susceptibilities could be used for several
phenomenological analyses, like a determination of the
freeze-out line [6–8]. However, since our results still lack of
a reliable continuum extrapolation and have been obtained
essentially for one single value of Nt, we prefer to postpone
this to a future investigation.
There is, however, one kind of analysis which is worth

doing even for a single value ofNt, and regards the possible
emergence of a critical behavior for some value of the (real)
baryon chemical potential, i.e. the existence and location of
the critical end point. Indeed, high-order cumulants of the
net baryon number distribution can be used to find signals
of critical behavior in the T − μB plane, following the

FIG. 11. We show how the precision attained for some suscep-
tibilities changes when adding more and more cumulants to the
global fit. The first three graphs correspond to a global fit
performed using μmax=T ¼ 0.4π and a polynomial of degree 8,
whereas for the last three μmax=T ¼ 0.2π and a polynomial of
degree 4 has been used.Data refer to simulations atT ¼ 143 MeV.

FIG. 12. Comparison of results on sixth-order cumulant of the
electric charge fluctuations between this work and Ref. [46].
Diamonds refer to the determinations of Ref. [46] obtained on a
Nt ¼ 8 lattice with the highly improved staggered quark (HISQ)
action and almost physical quark masses.

FIG. 13. Same as in Fig. 12 for the fourth-order cumulant of the
net baryon number fluctuation.

FIG. 14. Our determination of the sixth-order cumulant of the
net baryon number fluctuation.
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strategy of Refs. [12–14]. Setting μu ¼ μd ¼ μs ¼ μB=3 in
the free energy expansion (1) we are left with a power series
in the baryon chemical potential [see Eq. (7)]:

F ðT; μBÞ ¼ F ðT; 0Þ þ VT4
X
n

χB2n
ð2nÞ! ðμB=TÞ

2n: ð15Þ

An example of the expansion is reported in Fig. 16, where
we show, for a single value of the temperature, our lattice
determination of the baryon number density (as a function
of μIB), along with the various polynomial truncations of
different orders coming from its Taylor expansion
around μIB ¼ 0.
At a second-order μB-driven phase transition, the free

energy develops a nonanalyticity while the baryon number
susceptibility χB2 shows a divergence. Therefore, signals of
critical behavior can be inferred by looking for the radius of

convergence of their Taylor series. To be physical, the
singularity must be placed on the real μB axis, thus for the
method to be effective the series must have only positive
non-null terms. In this case, estimates for the radius of
convergence of the free energy (ρf) or of the baryon
susceptibility (ρχ) are provided by:

ρfn;m ¼
�
χBn=n!
χBm=m!

� 1
ðm−nÞ

ρχn;m ¼
�
χBn=ðn − 2Þ!
χBm=ðm − 2Þ!

� 1
ðm−nÞ ð16Þ

and they all coincide when the infinite m and/or n limit is
taken. In our case, by using the few number of coefficients
at our disposal a consistent determination of the critical end
point requires that all the estimators in Eq. (16) agree with
each other or at least show some signal of convergence. Of
course, the number of terms needed to have such con-
vergence is not known a priori and depends on the nature
of the critical point, if it exists. However, we tested the
possibility of finding the critical point using this method by
bulding up a simple statistical toy model, the interested
reader will find more details in the Appendix.
Since the pseudocritical line bends down for real baryon

chemical potentials, the critical end point, if any, is
expected for temperatures T ≤ Tc ∼ 155 MeV. Hence,
we evaluated the estimators in Eq. (16) using the suscep-
tibilities up to χB8 for T ¼ 135, 143 MeV, and up to χB6 for
T ¼ 149, 155 MeV. For this values of temperature all the
determined χB2n appear to be greater than zero hence
allowing for such a kind of analysis. The panels in
Fig. 17 display our determinations, where they are also
compared to the same quantities as extracted from a simple
HRG model, where

FðT; μBÞHRG ¼ AðTÞ þ BðTÞ cosh
�
μB
T

�
ð17Þ

and of course the asymptotic radius of convergence is
infinite. As it can be noticed, the estimated radii do not
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FIG. 15. Comparison between results on second-order suscep-
tibilities obtained in this work and in [45] on the Nt ¼ 8 lattice
and with our own discretization.

FIG. 16. Our lattice determination of the baryon number
density as a function of the imaginary (baryon-)chemical poten-
tial is shown. Bands correspond to polynomial truncations at
various orders of the series expansion around μB ¼ 0. Data refer
to T ¼ 135 MeV.

FIG. 17. Radius of convergence estimates for various temper-
atures below Tc. Circles/diamonds correspond to our estimate for
ρf=χn;m while black lines are values predicted from the HRG model.
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seem to converge to constant values as the order increases,
but rather they are in good agreement with HRG estimates
for T < 0.95Tc. For T ≳ 0.95Tc, deviations are visible;
however, they correspond to estimated radii which are
larger than the HRG expectation.
The critical end point should be located somewhere

along the pseudocritical starting from μB ¼ 0. Therefore, it
is interesting to report our estimated radii in the phase
diagram together with the pseudocritical line as estimated
from its curvature at μB ¼ 0, i.e.

TcðμBÞ
Tc

¼ 1 − κ

�
μB
Tc

�
2

þOðμ4BÞ: ð18Þ

This is shown in Fig. 18, where a range of values of κ is
reported, going from 0.010 to 0.020, which roughly
corresponds to the indications from most recent lattice
determinations [44,47–51]. The estimated radii rapidly
exceed, as the order in the expansion grows, the position
of the estimated crossover line.
Therefore, we conclude that the present indication is that

either no criticality appears at these temperatures, or that
higher-order coefficients would be required in order to be
sensible to the singular part of the free energy. We stress
that to put this result on more solid grounds, either in favor
or in disfavor of a CEP at these temperatures, several
successive coefficients χBn could be required.3 Moreover,
the same analysis should be repeated for different values of
Nt to control UV cutoff effects.

IV. DISCUSSION AND CONCLUSIONS

In this work we studied Nf ¼ 2þ 1 QCD by means of
analytic continuation from three different imaginary chemi-
cal potentials coupled to the up, down and strange quarks.
We performed simulations for 11 values of the temperature,
using a 323 × 8 lattice with a stout staggered fermion
discretization, the tree level Symanzik improvement for
the pure gauge part and physical quark masses. First- and
second-order free energy derivatives were measured as a
function of the purely imaginary chemical potentials, and
then interpolated bymeans of polynomial functions in order
to reconstruct theTaylor expansion of the free energy around
fμigi¼u;d;s ¼ 0. The chosen trajectories in the imaginary
fμigi¼u;d;s space [see Eq. (13)] ensure the possibility to
estimate all kind of fluctuations and cross-correlations
among conserved charges up to order eight. Different ranges
of chemical potentials and different polynomials have been
used, in order to monitor systematic effects related to
analytic continuation. Different spatial sizes have been also
investigated, both below and above Tc, obtaining as a result
that finite size effects arewell under control if an aspect ratio
at least 4 is used. No systematic analysis has been performed
regarding UV cutoff effects: our results are mostly limited to
Nt ¼ 8 lattices and a continuum extrapolation is postponed
to a future investigation.
One of the main purposes of this study was that of

checking the efficiency of the method, as compared with
the standard determination of nonlinear susceptibilities
from simulations at zero chemical potentials, and give
indications about the optimal strategy to be followed. We
provided susceptibilities up to order six for nine values of
temperature and up to order eight for T ¼ 135, 143 MeV,
where the extended range of measurements at imaginary
μðμI;max ¼ 0.8π=TÞ allowed us to fit polynomials up to
order ten. Our results are in good agreement with previous
standard determinations. Regarding efficiency, we obtained
that analytic continuation can lead to a significant improve-
ment below the pseudocritical temperature Tc: in terms of
computational cost, this improvement is of order ten for
fourth-order diagonal light quark susceptibilities, and goes
up to a factor 100 for nondiagonal ones; we could not make
a direct test for higher-order susceptibilities, for which the
improvement is expected to be even larger.
On the contrary, analytic continuation does not reveal to

be a competitive strategy above Tc. One possible reason is
related to the restoration of chiral symmetry, which causes a
significant reduction in the statistical fluctuations present in
the noisy estimators and in the numerical cost of matrix
inversions: both these factors go in the direction of a strong
improvement in the standard determination. Another pos-
sible reason is related to the reduced range of explorable
imaginary chemical potentials, due to RW or RW-like
transitions, which affects both the statistical accuracy of
the global fit and the systematic uncertainty related to
truncation effects.

FIG. 18. The values of ρχn;m are shown along with the Oðμ2BÞ
determination for the pseudocritical chiral line.

3As example, in Ref. [52] the authors tried to determine the
Critical Point of the 3D Ising Model ðTc; Hc ¼ 0Þ putting an
external magnetic fieldHo and then evaluating several cumulants
of the free energy Taylor expansion in ðH−HoÞ

T at fixed temperature.
They found that an accurate determination of the Critical Point
ðHc ≈ 0Þ by means of radius of convergence estimates, requires
the evaluation of at least 8 coefficients in the cumulant expansion.
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The precision reached below Tc allowed us to perform an
analysis regarding the possible location of the CEP. We
evaluated cumulants of the net baryon number fluctuations
for four values of T ≤ Tc: up to χB8 for T ¼ 135, 143 MeV
and up to χB6 for T ¼ 149, 155 MeV. Various estimators of
the radius of convergence of the Taylor expansion, both for
the free energy and for the baryon susceptibility, have been
considered. We did not observe any signal of convergence
of the estimated radii, and for T ≲ 0.95Tc the estimates are
consistent with a HRG-like behavior. Moreover, the esti-
mated radii go well beyond the estimated location of the
pseudocritical line as the order of the estimator increases.
We retain that this result could be interpreted in two
possible ways:

(i) No critical end point exists, at least for the discre-
tization of QCD adopted in the present study, and
within the explored range of temperatures;

(ii) sixth/eighth-order baryon number susceptibilities
are still not sufficient to be sensitive to the singular
part of the free energy; moreover, the critical end
point could be located for large chemical potentials,
for which present lattice methods, which work well
for small values of μB=T, are not well suited.

Finally, let us discuss how our results and the method
could be improved in future studies, especially in view of
an extension to finer lattices, in order to perform a
continuum extrapolation. An outcome of our investigation
is that the information on quadratic susceptibilities allows
to achieve a much better overall accuracy on the global fit,
and a significant improvement with respect to the meas-
urement of quark number densities only, whereas the
inclusion of third-order cumulants does not have a signifi-
cant impact. This is important in order to define a strategy
aimed at computing higher order susceptibilities. Indeed,
looking at Figs. 1–4, we see that the number and the order
of nonlinear susceptibilities which one is able to determine
can be increased by either increasing the number of
measured susceptibilities, or by increasing the number of
trajectories in the chemical potentials space along which
the simulation points are taken. However, in view of the
difficulty in adding statistically significant information by
measuring third-order susceptibilities, the suggested strat-
egy for the future is to measure directly free energy
derivatives up to order two and to add more trajectories
of simulated points. For instance, adding two more lines to
Eq. (13) (see Fig. 4), corresponding to an increase in
computational effort of about 1=3, would allow to com-
pletely determine susceptibilities up to order 12.
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APPENDIX: A SIMPLE STATISTICAL
TOY MODEL

We tested the possibility of finding, by the radius of
convergence estimate method, the location of a critical
point, by using a simple test function (which plays the role
of the baryon number density) with a nonanalyticity located
at real chemical potential. We sampled this function and its
first derivative on the imaginary μ axis, by adding a
statistical Gaussian noise to the function values, in order
to obtain data points with statistical errors, then trying to
reconstruct the Taylor expansion around μ ¼ 0 by means of
a polynomial interpolation to the sampled data, adopting
the same procedure for the estimate of statistical and
systematic uncertainties adopted for the real QCD data.
We used as a test function

nðμÞ ¼ μ

μ2c − μ2

with μc ¼ 2.5. This function and its first derivative, which
plays the role of the second-order baryon susceptibility,
were sampled in the range 0 ≤ μI ¼ ImðμÞ ≤ 1.5. To
determine systematic errors we exactly followed the guide-
lines used for quark number susceptibilities and fitted the
sampled data with polynomials up to order 12. As for
the quark number susceptibilities the very last term of the
highest-order polynomial we used in the best fit procedure
was not considered, because it might have a large uncon-
trolled bias due to truncation effects. Susceptibilities up to
order ten were then used to compute the estimators in
Eq. (16). Results are shown in Fig. 19.
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FIG. 19. Radius of convergence estimates for our statistical toy
model. Filled points represent the radius of convergence estimates
for the Taylor expansion of the susceptibility while the unfilled
ones the estimates for the Taylor expansion of the free energy
[see Eq. (16)].
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As it is clear from the figure, the estimators seem to
convergence to the correct value of μc ¼ 2.5 with the
estimators ρχn;m showing a faster convergence with respect
to the ρfn;m’s. In spite of the simplicity of the statistical
model, the important outcome is that it seems at least

reasonable to perform, in the case of QCD, such a kind of
analysis, even though just a few number of susceptibilities
are known. Of course, as we have already emphasized,
the actual number of needed terms will depend on the
particular critical behavior.
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