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Abstract

Uncertainty plays a significant role in the Benchmark on the Aerodynamics

of a Rectangular Cylinder (BARC) with a chord-to-depth ratio of 5. In par-

ticular, besides modeling and numerical errors, in numerical simulations it is

difficult to exactly reproduce the experimental conditions due to uncertain-

ties in the set-up parameters, which sometimes cannot be exactly controlled

or characterized. In this study, the impact of the uncertainties in the inflow

conditions of the BARC configuration is investigated by using probabilistic

methods and two-dimensional URANS simulations. The following uncertain

set-up parameters are investigated: the angle of incidence, the freestream

longitudinal turbulence intensity and the freestream turbulence length scale.
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The stochastic collocation method is employed to perform the probabilistic

propagation of the uncertainty in the three set-up parameters. This results

in 25 URANS simulations based on the Smolyak sparse grid extension of the

level-2 Clenshaw-Curtis quadrature points. The discretization error is esti-

mated by repeating the same analysis on different grid sizes. Similarly, the

effect of turbulence modeling is appraised by carrying out the uncertainty

quantification for the Reynolds stress and the SST k-ω models. Finally, the

results obtained for different assumed probability density functions of the

set-up parameters are compared.

The propagation of the considered uncertainties does not explain alone the

dispersion of the BARC experimental data. For certain quantities of interest,

the effect of turbulence modeling is more important than the impact of the

uncertainties in inflow conditions. The sensitivity to the considered uncer-

tainties also varies with the turbulence model, with a larger variability of

the results obtained with the Reynolds stress model. The inflow turbulence

length scale is in all cases the least important parameter.

Keywords: Uncertainty Quantification, Stochastic collocation method,

BARC benchmark, Bluff-body aerodynamics

1. Introduction

The international Benchmark on the Aerodynamics of a Rectangular 5:1

Cylinder, BARC, (see Bartoli et al., 2008) was launched in 2008 and it was

focused on the flow around a fixed rectangular cylinder with chord-to-depth

ratio equal to 5 and infinite spanwise size. The considered flow configura-

tion is of practical interest because many civil and industrial structures are

2



characterized by rectangular cross sections (e.g. tall buildings, towers and

bridges) and, despite the simple geometry, it contains most of the difficulties

also found in realistic wind engineering problems. The 5:1 aspect ratio is

characterized by shear-layers detaching at the upstream cylinder corners and

reattaching on the cylinder side rather close the downstream corners. This

leads to a complex flow dynamics on the cylinder side, which adds to the

vortex shedding from the rear corners and to the complex unsteady dynam-

ics of the wake (see e.g. Bruno et al., 2010, 2014). BARC is a blind test,

without any reference observation (experimental measurements) or predic-

tion (numerical simulations). Indeed, one of the aims of the benchmark is to

assess the consistency of experimental data obtained in different wind tunnels

and of numerical simulations carried out with different numerical methods

and turbulence models. Clearly, the comparison between experimental and

numerical predictions of the flow and of the aerodynamics loads is also an

important objective of the benchmark.

About 70 realizations of the BARC flow configuration, obtained in both

wind tunnel experiments and numerical simulations, were reviewed by Bruno

et al. (2014). A significant dispersion was observed both in experimental and

numerical predictions of some quantities of practical interest, as the standard

deviation of the lift coefficient or the distribution of mean and fluctuating

pressure on the cylinder sides. Therefore, these quantities seem to be ex-

tremely sensitive to various uncertainties, which may be present in experi-

ments and numerical simulations. The sources of uncertainty are in general

different in computations and experiments. We focus here on the uncertain-

ties in the incoming flow conditions, which may be considered as ’common’
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to computations and experiments. Indeed, in the experiments it is difficult

to perfectly control and/or characterize some features of the incoming flow,

such e.g. the angle of incidence or the turbulence characteristics. The choice

of these uncertain parameters follows the analysis in Bruno et al. (2014) and

its rationale will be explained in more detail in the following. Hence, the

present paper wish to give a contribution to understand whether the uncer-

tainties in the incoming flow features have a significant impact on the flow

characteristics and on the aerodynamic loads, which may explain the disper-

sion among the experimental data and the discrepancies between simulation

and experimental results.

To this aim, sensitivity analysis and Uncertainty Quantification (UQ)

are carried out using probabilistic methods. In this framework, the uncer-

tain set-up parameters are considered as random variables having an a-priori

given Probability Density Function (PDF). In the present work, the follow-

ing uncertain set-up parameters are considered: the angle of incidence, the

longitudinal turbulence intensity, and the turbulence length scale of the in-

coming flow. The remaining characteristics of the incoming flow are fixed;

in particular the freestream velocity, u∞, and the fluid kinematic viscosity,

ν, are such that the Reynolds number, based on the cylinder depth, D, is

equal to ReD = (u∞D)/ν = 40000. Variations in the Reynolds number are

not considered, because it has been found that Reynolds number effects on

the flow are not among the predominant ones in the range recommended for

the BARC benchmark, 20000 ≤ ReD ≤ 60000 (see Bruno et al., 2014).

The computational model which was used to propagate the uncertainties

in the considered set-up parameters is based on the 2D Unsteady Reynolds-
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Averaged Navier-Stokes (URANS) equations. The choice of the URANS

approach to turbulence was mainly motivated by the need of keeping the

computational effort feasible. Note that URANS computations represented

about the 30% of the numerical contributions reviewed in Bruno et al. (2014)

and it was concluded that none of the approaches to turbulence, namely

URANS, Large-Eddy Simulation (LES) and hybrid URANS/LES, seem to

reduce the dispersion of the results. The choice of carrying out 2D simulations

is consistent with that made by the other contributors to BARC running

URANS simulations (Bruno et al., 2014). Moreover, no large differences

were found in a previous study (Mannini et al., 2010) between 2D and 3D

URANS solutions, and it was observed that the flow field resolved by the

URANS solutions contained only limited three-dimensional flow features.

In order to obtain a continuous response surface of the flow quanti-

ties of interest in the parametric space at a reasonable computational cost,

a Stochastic Collocation (SC) method (see Xiu and Hesthaven, 2005) is

employed, in which the variables are interpolated in the parameter space

at quadrature points through Lagrange polynomials. The Clenshaw-Curtis

quadrature points are used. Different levels of these quadrature points can be

defined; higher levels may be considered to correspond to a finer resolution in

the parameter space. This method is extended to multiple dimensions using

Smolyak sparse grids (see Smolyak, 1963). For three uncertain parameters,

as in our case, this results, for instance, in 25 URANS simulations based on

the Smolyak sparse grid extension of the level-2 Clenshaw-Curtis quadrature

points. The convergence of the stochastic UQ procedure is estimated by com-

paring the outputs with those on the nested lower levels. The result of this
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procedure is a probabilistic quantification of the impact of the considered

uncertainties in terms of the stochastic mean value, variance and PDF of the

output quantities of interest. The output quantities of interest considered in

the following are the time statistics (time-average and standard deviation) of

the aerodynamic loads acting on the cylinder, of the pressure and of the ve-

locity fields. The UQ results are also compared with the ensemble statistics

of the available numerical and experimental data sets (Bruno et al., 2014).

The impact of spatial discretization and of turbulence modeling is also

estimated by repeating the UQ and sensitivity analyses for two different grid

resolutions and two different turbulence models, namely the Reynolds stress

(Launder et al., 1975) and the SST k-ω (Menter, 1994) models.

Finally, the effect on the UQ results of the assumed PDF shape for the

input uncertain parameters is investigated, by repeating the analysis for dif-

ferent input PDFs.

The paper is organized as follows. The simulation set-up and the nu-

merical methodology are described in Section 2. The grid and statistic con-

vergence is assessed in Section 3, in which the main flow features are also

described. The uncertainty quantification methodology is presented in Sec-

tion 4, while the definition of the text matrix and the convergence of the UQ

procedure are shown in Section 5. The impact of uncertainties in the selected

input parameters on the results obtained for the Reynolds stress model at

grid independence is discussed in Section 6. The effect of the chosen PDF of

the input parameters on the UQ results is analyzed in Section 7, while those

of the turbulence model and of the grid resolution are described in Sections 8

and 9, respectively. Concluding remarks are given in Section 10.
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2. Simulation set-up and numerical methodology

Two-dimensional incompressible URANS simulations have been carried

out at Reynolds number ReD = (u∞D)/ν = 40000, based on the cylinder

depth, D, the freestream velocity, u∞, and the fluid kinematic viscosity, ν.

This Reynolds number is in the range recommended for the BARC bench-

mark (20000 ≤ ReD ≤ 60000). Moreover, it was observed in Bruno et al.

(2014) that changes in Reynolds number within that range do not signifi-

cantly affect the flow features.

The commercial code Fluent (see e.g. ANSYS Fluent (2006)) was used.

Two different turbulence models are used and compared, namely the Shear-

Stress Transport k-ω (SST k-ω) (Menter, 1994) and the Reynolds Stress

Model (RSM)(Launder et al., 1975). For both turbulence models, no wall

functions are used and a suitable grid refinement is adopted in order to have

y+ ≤ 1 at the wall.

The space discretization of the URANS equations is based on finite vol-

umes together with a second-order upwind scheme. Unsteady time advancing

is chosen together with a second-order implicit time-advancing scheme. The

adopted dimensionless time step is ∆T = ∆t/(D/u∞) = 1.6 × 10−2. This

corresponds to more than 500 time steps in each shedding cycle. It has been

checked that reducing the time step by a factor three did not bring any no-

ticeable difference in the results. The segregated PISO algorithm (Pressure-

Implicit with Splitting of Operators) is chosen to couple the pressure and

momentum equations (see e.g. Issa, 1986).

The origin of the chosen reference frame is located at the center of the

rectangular cylinder, whose coordinates are x/D ∈ [−2.5, 2.5] and y/D ∈
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[−0.5, 0.5]. The computational domain is rectangular and has the following

dimensions: x/D ∈ [−75, 125] and y/D ∈ [−75, 75]. These dimensions are

the same as those used in the x and y directions in the LES of the BARC

benchmark in Grozescu et al. (2011) (also reported in Bruno et al., 2014).

As regards the boundary conditions, at the boundaries at x/D = −75

and at y/D = ±75, the modulus and the direction of the velocity as well as

the turbulence intensity I are specified. A pressure boundary condition is

imposed at the outlet section (x/D = 125) and, as mentioned before, no-slip

conditions are applied at the cylinder surfaces.

The computational grids are unstructured and are composed of triangular

elements. They are described in more detail in Sec. 3, together with the

results of a grid sensitivity analysis carried out for the RSM.

3. Main flow features and convergence assessment

In this Section the convergence of time-statistics is analyzed and a grid

independence study is presented for the RSM turbulence model and for the

values of the input parameter equal to α = 0◦, I = 1.55%, and L = 2.55D.

The results of these analyses can be extended to the whole range of variation

of the parameters, under the assumption that the relatively small parameter

variations have a small effect on the convergence of statistics.

Five different grid resolutions are considered, having 1.2× 104, 2.5× 104,

3.8 × 104, 5.0 × 104 and 7.5 × 104 nodes, respectively. The grids are all un-

structured and made of triangular elements. The average grid spacing on the

cylinder surface, δs, is given in Table 1; the node distribution is not uniform,

being slightly clustered near the cylinder corners. Table 1 also shows the av-
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erage grid spacing normal to the cylinder surface, nw and the corresponding

average resolution in wall units, n+. All the grids are symmetric with respect

to the x axis.

3.1. Aerodynamic loads

Oscillating aerodynamic loads act on the rectangular cylinder. Force

coefficients in the x and y directions can be defined as follows:

cx =
Fx

1/2ρu2
∞D

; cy =
Fy

1/2ρu2
∞D

in which Fx and Fy are the resultant aerodynamic forces in the x and y

directions respectively. The time behavior of the force coefficients is shown

in Fig. 1 for all the considered grids. Note that the force coefficients in the

x and y directions coincide with drag and lift coefficients only in the cases

at α = 0.

Another quantity of interest is the frequency, f , of the time oscillations of

the vertical-force coefficient, which is connected with the frequency of vortex

shedding from the rear corners. The related Strouhal number, based on

the body diameter and the freestream velocity, is defined as St = fD/u∞.

The Strouhal number is found to be equal to 0.112± 0.004 for all the grids.

Previous simulations and BARC experiments give values of St in the range

0.105− 0.12 (Bruno et al., 2014).

3.2. Convergence analysis of the time-statistics

In all cases a numerical transient equal approximately to T = t∗u∞/D =

300 is present, which is not considered in the computation of the time-

statistics. Different time intervals between T = 300 and T = 550 have
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been considered for the analysis of the convergence of the time-statistics

on all the grids. The values of t-avg(cx) and t-std(cy) computed over 150

non-dimensional time units and those evaluated over 250T show very small

differences, the maximum variation being lower than 0.5% (see Table 2). The

value of t-avg(cy) should be zero for these simulations carried out at zero in-

cidence, while we obtain a value that is not exactly zero. To check whether

this behavior can be due to a lack of statistical convergence, statistics have

been computed for the simulation on the grid having 5.0 × 104 nodes also

over 350T and 450T .With increasing statistical sample the value of t-avg(cy)

slightly decreases but it does not seem to converge to zero. Note that values

of t-avg(cy) significantly larger than those reported in Table 2 were obtained

in some of the numerical contributions to BARC (see Tab. 9 in Bruno et al.,

2014). In particular, the large values of t-avg(cy) of the LES by Bruno and

Fransos (2011) were probably not due a lack of convergence, since a careful

check of the statistical convergence had been carried out, nor to an asymme-

try of the grid. In this framework, we think that the values obtained in our

simulations may be acceptable as a starting point for the following stochas-

tic sensitivity analysis. As it will be shown in the following, the values of

t-avg(cy) in Table 2 are at least one order of magnitude smaller than the

variations due to the uncertainties in the angle of incidence.

Based on the previous analysis, all the time-statistics used in the following

of the work are computed over 150T , i.e. in the time interval T ∈ [300, 450].

It should be noted that this time interval is much lower than the time interval

required to obtain convergence for LES. This, however, is not surprising since

2D URANS simulations give a more periodic flow dynamics than LES (see
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e.g. Bruno et al., 2014).

3.3. Main flow features

The mean velocity streamlines are reported in Fig. 2 for the grid having

5.0× 104 nodes. As can be seen, the mean flow detaches from the corners of

the cylinder and leads to the formation of two mean recirculation areas aside

of the cylinder. Then, it separates again from the corners at the rear side.

Figure 3(a) shows for all the grids the distributions of the pressure coef-

ficient, defined as Cp = (p(x, y, t) − p∞)/(1/2ρu2
∞), averaged in time (t-avg

in the following) and between the upper and lower half perimeters of the

cylinder (side-avg in the following), while the related distributions of the

side-averaged standard deviation in time (t-std in the following) of the pres-

sure coefficient is reported in Fig. 3(b). As in Bruno et al. (2014), the local

abscissa s/D denotes the distance from the cylinder stagnation point mea-

sured along the cylinder side. Note that side-averaging of t-avg(Cp) and of

t-std(Cp) has been performed to provide a more direct comparison with the

results in Bruno et al. (2014); it has been previously checked that the distri-

butions obtained on the upper and lower half perimeters are very similar, the

maximum difference being 0.024 for t-avg(Cp) and 0.057 for t-std(Cp). By

comparing Figs. 3(a) and 3(b) to Fig. 2 it is evident that the mean pressure

distribution on the cylinder side is directly related to the curvature of the

mean streamlines, with a first zone of almost constant low pressure, whose

length roughly corresponds to the distance from the upstream corner to the

center of the main recirculation. Further downstream on the cylinder sides,

the pressure increases because of the change in the curvature of the mean

streamlines as the mean flow tends to reattach. Also, the maximum stan-
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dard deviation of the pressure coefficient is located at the flow reattachment

points aside of the model.

3.4. Grid sensitivity

The statistics of the aerodynamic loads are presented in Table 2 for the

interval T ∈ [300, 450] obtained on the five different grids having increasing

resolution. Starting from the grid having 5.0 × 104 nodes, the variations of

t-avg(cx) and t-std(cy) with finer grid resolution are lower than 0.5%, while

those of the other parameters are even lower. Moreover, the value of the

time-averaged horizontal-force coefficient, t-avg(cx), is close to the ensemble

average of all the numerical contributions to BARC, which was of 1.074

(Bruno et al., 2014), and to the experimental data of Schewe (2006, 2009)

(t− avg(cx) = 1.029). The value of t-std(cy) is also in good agreement with

those obtained in URANS simulations of BARC (see Table 9 in Bruno et al.,

2014). As for t-avg(cy), similar considerations to those in Sec. 3.2 concerning

statistical convergence can be made. The values of t-avg(cy) do not show a

monotonic behavior with grid refinement.

Figures 3(a) and 3(b) confirm that grid independency has been reached

also for the pressure distribution on the cylinder surface also for the grid

having 5.0×104 nodes. The maximum difference between the values obtained

with the grid having 5.0 × 104 and those computed on the 7.5 × 104 grid is

0.01 for side-avg(t-avg(Cp)) and 0.034 for side-avg(t-std(Cp)).

Based on the previous analysis, the grid having 5.0× 104 nodes will thus

be used in the uncertainty quantification procedure. The results on the

other grids can be used to estimate the impact of discretization errors. In

particular, we will also focus on the coarsest grid, i.e. the one having 1.2×104
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nodes.

3.5. Sensitivity to blockage

In the previous simulations, the blockage, i.e. the percentage ratio be-

tween D and the computational domain lateral dimension, was 0.7%, which

is lower than those of the BARC experimental contributions (Bruno et al.,

2014). To check whether this could have an impact on the results, we carried

out an additional simulation with a computational domain having a lateral

dimension of 26.66D, corresponding to a blockage of 3.75%, which is the

largest value of the BARC experiments. The RSM model and the grid hav-

ing 5.0 × 104 nodes are used. The time-statistic of the aerodynamic loads

are compared in Table 3 for the two considered blockage values. Differences

lower than 1% are found for the t-avg(cx) and the t-std(cy), while the value

of t-avg(cy) is small in both cases, lower than 0.04. The side-averaged dis-

tributions of the of the time-averaged Cp and of the standard deviation in

time of Cp are shown in Figure 3. The blockage has again a negligible ef-

fect; the maximum difference is 0.014 for side-avg(t-avg(Cp)) and 0.064 for

side-avg(t-std(Cp)).

4. Uncertainty quantification methodology

4.1. Uncertain parameter selection

The propagation of the aleatoric uncertainty in three parameters charac-

terizing the incoming flow conditions of the BARC configuration, namely the

angle of incidence, the turbulence intensity and length scale, is investigated

in the present study.
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As previously stated in the Introduction, the choice of these uncertain

parameters follows the analysis in Bruno et al. (2014). Indeed, difficulties

in obtaining a perfect alignment between the model and the incoming flow

were reported in two different experimental BARC contributions and they

were indicated as a possible source of discrepancies. Furthermore, although

the BARC recommends a very low turbulence level in the incoming flow,

perfectly smooth flow is impossible to be obtained in experiments at the

considered Reynolds number, and a question at issue in the review by Bruno

et al. (2014) was if this could impact the comparison with numerical simu-

lations. To reproduce a turbulent incoming flow in numerical simulations,

information on the turbulence intensity, whose value is usually available for

wind tunnel experiments, although with some uncertainty, is not sufficient.

Additional features of the incoming flow turbulence, such as the turbulence

scale, are in most cases not available. Therefore, we consider the inflow tur-

bulence intensity and scale as potentially important sources of uncertainty

when trying to compare experiments and simulations. Other uncertainties

are present in experiments, which are not considered in the present analy-

sis, e.g. cylinder surface roughness or corner sharpness. Moreover, there are

known differences in the set-up of the different experiments, which might

also have an impact on some measured quantities, as the model spanwise

length. The impact of this parameter is not investigated herein because it

would require highly resolved three-dimensional simulations implying huge

computational costs. This could be the object of future work.

The following range of variation of the uncertain set-up parameters are

investigated: for the angle of incidence α ∈ [−1◦,+1◦], for the longitudinal
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turbulence intensity I ∈ [0.001, 0.03], and for the turbulence length scale

L ∈ [0.1D, 5D]. The range of variation of α has been chosen in order to

reproduce a small flow misalignment possible in an experiment, while the

turbulence intensity variation is slightly larger than the range recommended

in the BARC benchmark, but it is well representative of values typically

encountered in wind tunnels. Since, as previously said, it is fairly difficult

to characterize the turbulence length scale in wind tunnels, especially at

low values of I, almost no information was available on this quantity from

the literature or from the experimental contributions to BARC. Hence, we

adopted the quite large range of variation previously specified.

4.2. Stochastic collocation method

There are several methodologies to evaluate uncertainties, as shown in

Oberkampf and Roy (2010) and Shoeibi Omrani et al. (2015). Most of these

methodologies are based on identification, characterization and propagation

of input parameter uncertainties. In this study, the Stochastic Collocation

(SC) method (Xiu and Hesthaven, 2005) is employed.

If we consider, first, a single uncertain parameter ξ, the SC method

is based on interpolating deterministic samples of the quantity of inter-

est, u(x, t, ξ), at quadrature points ξk using Lagrange polynomials with

Lj(ξk) = δjk, where δjk is the Kronecker delta.

The quadrature points in this study, which correspond to the samples of

the uncertain input parameter for which deterministic simulations are carried

out, are the Clenshaw-Curtis points. They are nested with n(l) points in

level l: n(l) = 2l + 1, n(1) = 1 and they are defined as the extrema of the

Chebyshev polynomials; ξk,l = −cos(π(k − 1)/(n(l) − 1)), ξk,l being the kth
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quadrature point at level l (Fig. 5).

Thus, the interpolation of u(x, t) on quadrature points ξ at level l can be

defined as follows:

Plu(x, t, ξ) =

n(l)∑
j=1

u(x, t, ξj,l)Lj,l(ξ), Lj,l(ξ) =

n(l)∏
i=1
i 6=j

ξ − ξi
ξj,l − ξi

(1)

By using the interpolation scheme above, different statistical moments can be

approximated. For instance, the statistical mean, (µlu)(x, t) can be defined

as:

(µlu)(x, t) =

∫
Ξ

u(x, t, ξ)f(ξ)dξ ≈
n(l)∑
k=1

u(x, t, ξk,l)wk,l (2)

in which Ξ is the parameter space and f is the probability density function

of the parameter ξ; finally, the quadrature weights wk,l can be expressed as

follows:

wk,l =

∫
Ξ

Lk,l(ξ)f(ξ)dξ (3)

Similarly the variance at level l can be computed as:

V ar(u(x, t)) ≈
n(l)∑
k=1

(u(x, t, ξk,l))
2wk,l − (

n(l)∑
k=1

u(x, t, ξk,l)wk,l)
2 (4)

The quadrature points are extended to multiple dimensions using Smolyak

sparse grids (Smolyak, 1963). These reduced grids are based on a weighted

linear combination of tensor grids with a relatively small number of quadra-

ture points. In this way, a specific subset of tensor product combinations

of 1-D quadrature points is used to construct the sampling points in multi-

dimensions. For instance, for nξ uncertain parameters, the interpolation at
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level l can be defined as:

Plu(x, t, ξ) =
∑

k∈L(l,nξ)

(
∆Pk1 ⊗ ...⊗∆Pknξ

)
u(x, t, ξ) (5)

where ξ is the vector of the uncertain parameters and the delta formulation

in 1d is defined as:

∆Pku = (Pk − Pk−1)u ; P0u = 0 (6)

Pk being defined by Eq. (1). The sparse grid subset is defined by:

L(l, nξ) =

{
k ∈ Nnξ

+ ,k > 1 : l − nξ + 1 ≤
nξ∑
δ=1

(kδ − 1) ≤ l)

}
(7)

where k = (k1, k2, ..., knξ). For three uncertain parameters, as in the present

study, this results in 7 and 25 URANS simulations based on the Smolyak

sparse grid extension of the level-1 and level-2 Clenshaw-Curtis quadrature

points, respectively (Fig. 6).

The statistical mean based on sparse grid in multi-dimensions can be

computed as follows:

(µlu)(x, t) =
∑

k∈L(l,nξ)

(
∆Ik1 ⊗ ...⊗∆Iknξ

)
u(x, t, ξ) (8)

where ∆Ik is following the delta formulation as in Eq. (6) and is defined as

the approximate integral of the interpolated function:

Ilu(x, t, ξ) =

n(l)∑
k=1

wk,lu(x, t, ξk,l) (9)

The sensitivity of the quantities of interest to the single input parameters

or to their combinations are quantified using variance decomposition method
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proposed by Sobol (2001); u(x, t, ξ) is decomposed in the following form:

u(x, t, ξ) =
∑
v⊆V

uv(x, t, ξ) (10)

where v is a subset of V = {1, ..., nξ} and uv(x, t, ξ) is a component function

only dependent on random variables ξv = {ξi|∀i ∈ v}.

The partial variances Dv are defined as following;

Dv = V ar(uv) =

∫
u2
vdf(ξv) (11)

where f(ξv) is the probability density function of ξv.

Considering the orthogonal property of this variance decomposition tech-

nique (see Tang et al., 2010 and Desmedt, 2015), the partial variance calcu-

lation can be rewritten as follows:

Dv =

∫ (∫
udf(ξv′)

)2

df(ξv)−
∑
r⊂v

Dr (12)

in which v′ is the complement of v, defined such that {v ∪ v′} = V and

{v ∩ v′} = ∅ and r is a subset of v. Consequently, the sensitivity index

can be defined as the ratio of partial variances to the total variance, Dtot =

V ar(u) =
∑
v⊆V

Dv:

Sv =
Dv

Dtot

(13)

Tang et al. (2010) described the calculation of Sobol indices on tensor

grids. The integrals in Eq. (12) need to be approximated for calculation of

Sobol indices. The first term in Eq. (12) is approximated by splitting the

contribution of v and v′ subset as follows (more information and derivations

18



can be found in Desmedt, 2015):∫
udf(ξv′) ≈

∫
Pludf(ξv′) ≈∑

kv

∑
k′v

(
∆Pkv1 ⊗ ...⊗∆Pkvp

)
u⊗

(
∆Ikv′1

⊗ ...⊗∆Ikv′m

)
u = Pluv ⊗ Iluv′

(14)

Finally, using Eqs. (12) and (14), the partial variances can be computed

as follows (see Tang et al., 2010):

Dv ≈ (Iluv′)
2 ⊗ Ilu2

v −
∑
r⊂v

Dr (15)

The effect of the above-mentioned uncertainties on the quantities of in-

terest is quantified by estimating stochastic means, standard deviations and

partial variances of the time statistics of the aerodynamics loads, of the sur-

face pressure coefficient distribution, and of the velocity and pressure fields.

5. Definition of the text matrix and convergence of the UQ proce-

dure

Initially, uniform input probability distributions are used. The choice of

this input probability distribution is justified by the least informative distri-

bution with the highest variance in the intervals obtained from available data

and expert judgements. The previously described UQ procedure, based on

the Smolyak sparse grid extension of the level-2 Clenshaw-Curtis quadrature

points, results in 25 URANS simulations. The UQ procedure convergence

is estimated by comparing the results with those on the nested lower levels

(Fig. 6). The values of the set-up parameters for these 25 deterministic sim-

ulations are reported in Table 4, together with the obtained time-statistics

of the aerodynamic loads, namely t-avg(cy), t-avg(cx) and t-std(cy).
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The stochastic mean and standard deviation of the aerodynamic load

time-statistics are given in Table 5 for different levels of the stochastic col-

location procedure. The RSM is considered on the grid having 5.0 × 104

nodes, for which grid independence is reached (see Sec. 3.4).The Cumulative

Distribution Functions (CDF) of the previous quantities are given in Fig. 7

for the same levels. The differences between stochastic collocation results

obtained at level 1 and these at level 2 are in general acceptable. In par-

ticular, the stochastic mean values of t-avg(cx) and t-std(cy) are very well

converged, the differences being lower than 1%. As for the stochastic mean

of t-avg(cy), there is no clear converge with increasing the level. We accept

this behavior, since the values the stochastic mean of this quantity, which

should be zero, remain low (see also the discussion in Secs. 3.2 and 3.4).

The differences in the stochastic standard deviations between levels 1 and 2

are larger for t-avg(cx) and t-std(cy), up to 11% for t-std(cy). The maximum

percent deviation in the CDF of this quantity is indeed 12.7%; note that it is

localized in the largest values of the CDF, corresponding to the tails of the

PDF. Conversely the stochastic standard deviation of t-avg(cy) seems to be

well converged (the difference is 2%).

Finally, Fig. 8 shows the side-averaged distribution of the time average

and of the standard deviation in time of the pressure coefficient; in partic-

ular, the thick lines are the stochastic mean of these quantities, while the

shaded areas, delimited by thin lines, represent the stochastic mean ± the

stochastic standard deviation. The differences between level 1 and 2 of the

stochastic collocation procedure are small for all the quantities shown in Fig.

8. More quantitatively, the maximum deviations are 0.0036 and 0.0025 for
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the stochastic means of the time-average and time standard deviation of Cp

respectively and 0.0062 and 0.0043 for the stochastic standard deviation of

the same quantities. Based on the previous analysis, also considering the

significant costs of a third level, all the UQ results shown in the following

sections are at level 2 of the stochastic collocation procedure.

6. UQ results for the Reynolds stress model at grid independence

6.1. Time statistics of aerodynamic loads and pressure field

Figure 9 shows the stochastic mean ± the stochastic standard devia-

tion of the following quantities: time-averaged horizontal-force coefficient,

time-averaged vertical-force coefficient and standard deviation in time of the

vertical-force coefficient. The stochastic mean value of the time-averaged

horizontal-force coefficient (1.105) is in good agreement with the ensemble

average of the contributions to BARC (1.074) and with the available exper-

imental data (1.103), while the stochastic variation is very small, narrower

than the already limited dispersion observed among the numerical contri-

butions to BARC. Indeed, the stochastic standard deviation of t-avg(cx) is

0.024, while the BARC ensemble standard deviation is 0.129 (Bruno et al.,

2014). The stochastic mean of the time-averaged vertical-force coefficient is

close to zero, as expected; its stochastic variation is quite large, much larger

than the variation of this quantity previously observed with varying statistic

sample, grid resolution, stochastic level or blockage. The stochastic variation

of t-avg(cy) is mainly due to the fact that the angle of attack is allowed to

assume values up to ±1◦ (see also Sec. 6.3). Conversely, the stochastic vari-

ation of t-std(cy) (0.118) is significantly lower than the standard deviation
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computed in Bruno et al. (2014) over the different numerical contributions

to BARC (0.374). These results are a first indication that the impact of

the uncertainties in the considered set-up parameters is smaller than that of

other sources of errors/uncertainties, namely turbulence modeling, numerics,

computational set-up.

The distribution along the cylinder side of the side-averaged and time-

averaged pressure coefficient is given in Fig. 10. As previously, the stochastic

mean value ± the stochastic standard deviation are shown; they are com-

pared with the ensemble statistics of the different experimental and CFD

contributions to BARC (data from Bruno et al., 2014). The stochastic vari-

ation of side-avg(t-avg(Cp)) is significantly lower than the dispersion of the

BARC simulations and, even more, of the experimental studies. To provide

a more quantitative comparison, we computed the ensemble standard de-

viations of the experimental and numerical BARC data along the cylinder

surface; they are shown and compared with the stochastic standard devia-

tion in Fig. 10(c). It can be seen that the stochastic standard deviation is

always lower than the ensemble standard deviations of BARC contributions.

In particular, the maximum value of the stochastic standard deviation is

0.041, while those of the ensemble standard deviation of BARC experiments

and simulations are 0.214 and 0.165 respectively. This confirms the previous

observations made for the time statistics of the aerodynamic loads, indicat-

ing that the considered uncertainties in the set-up parameters, which may be

present in experiments, can not solely explain the dispersion of the BARC

experimental data.

Figure 11 shows the same comparisons as in Fig. 10 for the side-averaged

22



standard deviation in time of Cp, side-avg(t-std(Cp)). The stochastic vari-

ation is more significant for this quantity, especially in the peak zone near

the flow reattachment point. This agrees with the previous BARC findings

which indicate that this is one of the most dispersed quantities of interest.

However, the size of the stochastic uncertainty range is again smaller than

the dispersion observed among the different BARC data. Note that, the

stochastic mean distribution has a different shape than that of the ensem-

ble average of the experimental and CFD contributions to BARC; the main

difference is that the ensemble average of the contributions to BARC has a

single peak along the cylinder side, while in the stochastic mean a minimum is

also found at a distance of approximately 2D from the upstream corner. This

is however a behavior typical of URANS simulations, as observed in Bruno

et al. (2014) and shown in Fig. 11(c). A more quantitative comparison is

provided in Fig. 11(d), showing the stochastic standard deviation of side-

avg(t-std(Cp)) vs. the ensemble standard deviations of the same quantity

for the experimental, numerical and URANS contributions to BARC. Once

again the stochastic standard deviation is lower than those of the BARC

contributions on the whole cylinder lateral surface; the maximum values are

0.046 for the stochastic standard deviation, 0.068, 0.108 and 0.124 for the

experimental, numerical and URANS contributions to BARC respectively.

The stochastic mean and standard deviation of the time-average and of

the time standard deviation of Cp in the whole flow field are shown in Fig. 12.

The uncertainty in the time-averaged pressure coefficient has its maximum

on the cylinder side in the zone where it has a significant gradient, which

corresponds to the change of curvature of the mean streamlines in the rear
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part of the main flow separation zone on the cylinder side (see Fig. 2). These

results agree with those relative to side-avg(t-avg(Cp)) on the cylinder side

of Fig. 10 previously commented. The stochastic standard deviation of side-

avg(t-std(Cp)) is again significant on the cylinder side, in the zone in which

side-avg(t-std(Cp)) has a peak, which is also the one in which the largest

dispersion has been observed in the BARC contributions (Bruno et al., 2014).

However, the largest stochastic uncertainty in the time standard deviation

of pressure coefficient is in the near wake where there is vortex shedding and

this is probably due to changes in the wake topology occurring when the

angle of attack is changed.

6.2. Time statistics of the velocity field

Fig. 13 shows the stochastic mean and standard deviation of the time

average and time standard deviation of the velocity magnitude. It can be seen

that the largest uncertainty in the mean velocity magnitude is in the shear-

layers detaching from the upstream corners and in the zone in which the mean

flow reattaches on the cylinder side. This means that the size of the detached

zone on the cylinder side is significantly sensitive to the considered uncertain

parameters. The BARC predictions of the location of flow reattachment

and of the size and shape of the mean recirculation zone on the cylinder

side were also found to be largely dispersed (Bruno et al., 2014). In order to

better quantify this variability, the reattachment point location was identified

in each simulation and uncertainty quantification was carried out also for

this quantity. To provide a consistent comparison with the results shown in

Bruno et al. (2014), we carried out the UQ analysis for the average of the

coordinate x/D of the reattachment point on the top (y/D = 0.5) and bottom
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(y/D = −0.5) cylinder surfaces, although this smooths the asymmetries

in the cases in which the incidence is not equal to zero. The results are

shown in Fig. 14, showing the stochastic mean ± standard deviation of the

reattachment point x/D coordinate, compared with the ensemble average

and standard deviations of the numerical contributions reviewed in Bruno

et al. (2014). The available experimental data in Bruno et al. (2014) is also

reported. The stochastic mean values obtained in the present simulations are

noticeably lower than the experimental value and of the ensemble average of

the BARC contributions, being even outside of the variability range of the

BARC results. This is probably due to the RSM turbulence model, as it will

be shown in Sec. 8. The stochastic variance is once again lower than the

global dispersion of the BARC results, confirming that, also for the location

of the reattachment point, the considered uncertainties do not explain the

observed dispersion of the BARC results.

6.3. Variance decomposition

The partial variances of quantities of interest to the different uncertain

parameters are analyzed in this section. As previously, the simulations with

RSM on the grid having 5× 104 nodes and level 2 for the UQ procedure are

considered. The partial variances for the time statistics of the aerodynamic

loads are reported in Table 6 as a fraction of the total stochastic variance. The

partial variances are the stochastic variances due to the uncertainties in the

single set-up parameters, α, I, L, and to their interaction, α-I, α-L, I-L, α-

I-L. As expected, the angle of incidence α is the only parameter significantly

influencing the t-avg(cy). Conversely, the freestream turbulence intensity I is

the most important parameter for the t-avg(cx) and the t-std(cy). Therefore,
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this parameter should be carefully reproduced in numerical simulations to

have consistent comparison with the experiments. The freestream turbulence

length scale L, which is difficult to be characterized in experiments, is the

least important parameter. Indeed, it has a significant impact only on the

variance of t-avg(cx), which, however, is characterized by a very low total

stochastic variance. As for the combined impact of the uncertainties in the

different parameters, only I and L have a significant interaction, as could

have been expected, since they both characterize the freestream turbulence.

The partial stochastic variances of the time average and standard devia-

tion of the surface pressure coefficient, due to the single set-up parameters,

are shown in Fig. 15. The angle of attack α is the most important pa-

rameter for the side-avg(t-avg(Cp)). On the cylinder base the sensitivity to

α decreases, indicating that the vortex shedding behind the cylinder is not

considerably affected by the angle of attack. Conversely, it is known that

the turbulence intensity influences the characteristics of the vortex shedding

and of the near wake and this is consistent with the augmented stochastic

sensitivity to I. On the other hand, the inlet turbulence intensity I is the

most dominant parameter on the variation of side-avg(t-std(Cp)). Only near

the local minimum of side-avg(t-std(Cp)), around s/D = 2.5 (see Fig. 11),

the sensitivity to the turbulence intensity significantly drops, α becoming the

most important parameter. However, it can be seen in Fig. 11 that in this

zone the global stochastic variance of side-avg(t-std(Cp)) is very low, con-

firming that the sensitivity of this quantity to α is actually low everywhere.
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7. Analysis of the input PDF effect on the UQ results

The choice of uniform distribution for set-up parameters was justified by

lack of information on distribution functions. However, in this Section UQ

results are shown for two additional different input probability distributions,

to investigate the impact of the choice of the set-up parameter PDF on the

aleatoric uncertainty propagation. Note that the PDF of the input parame-

ters must be chosen a-priori and, in this case, no information is available on

their shape. A beta distribution with shape parameters α = β = 4 is chosen

because it resembles a normal distribution, bounded in the same interval as

the original uniform distribution. A uniform distribution with the reduced

variance equal to variance of the chosen beta distribution is also considered,

in order to isolate the distribution shape effect. The standard deviation of

the considered beta distribution is 1/3 ≈ 0.333, while the standard devia-

tion of the original uniform distribution on the normalized interval [−1, 1]

is 1/
√

3 ≈ 0.577. Fig. 16(a) shows the different types of input probabil-

ity distributions rescaled on the interval [−1, 1]; those actually used for the

input parameters can be easily obtained by proper rescaling to the consid-

ered ranges of variation and relevant normalization. The related cumulative

distributions are also shown in Fig. 16(b).

The effect of different distribution functions on the time statistics of the

aerodynamic loads is shown in Fig. 17. As can be seen, there is practically

no difference between the results for the beta and uniform distributions with

the same input variance, thus the most important parameter seems to be

the variance and not the shape of the input PDFs. The stochastic mean

values of the time statistics of the aerodynamic loads obtained for the original
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uniform input PDF are very similar to those obtained for the other two

input distributions, while the stochastic standard deviation is larger. As it

was previously pointed out, the standard deviation of the initial uniform

distribution is larger than the variance of the beta distribution on the same

parametric interval.

The same holds for the statistics of the surface pressure coefficient (see

Fig. 18). The major effect of changing the input probability distribution is

observed in the stochastic standard deviation of the side-avg(t-std(Cp)); as

for the time statistics of the aerodynamic loads, the original uniform distri-

bution leads to a larger output stochastic variance than the beta distribution,

while the results obtained with the beta distribution are practically not dis-

tinguishable from those given by the uniform distribution having the same

σ. Analogous considerations can also be made from the analysis of the UQ

results for the pressure and velocity fields (not shown herein for the sake of

brevity).

8. Effect of the turbulence model on the UQ results

In this Section the UQ results obtained by using the SST k-ω turbulence

model are compared with the ones given by the RSM, in order to highlight the

effect of the selection of the turbulence model on the propagation of aleatoric

uncertainties. The same grid having 5×104 nodes is chosen, to single out the

effect of turbulence modeling from that of discretization errors. The original

uniform probability distribution of the input parameters is considered in both

cases.

Differences in the stochastic mean values of the time statistics of the aero-
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dynamic loads are found, especially for t-avg(cx) and t-std(cy) (see Fig. 19).

Moreover, for all the considered quantities, the stochastic standard deviation

is larger for the RSM compared to the SST k-ω turbulence model, meaning

that this latter is less sensitive to uncertainties in the considered set-up pa-

rameters. For both models, however, the UQ dispersion for t-avg(cx) and

t-std(cy) is significantly smaller than the one found in the BARC numeri-

cal contributions (see the previous discussion of the UQ results for RSM in

Sec. 6.1). As previously observed, a large variability of t-avg(cy) is observed,

because of the considered variation in the angle of attack.

Regarding the pressure coefficient distribution, for both turbulence mod-

els the propagation of the uncertainty in the inlet conditions is considerably

narrower than the overall dispersion of BARC numerical results (see Fig. 20).

As observed for the aerodynamic loads, the stochastic standard deviations of

the time-averaged and of the standard deviation in time of the pressure coef-

ficient are definitely smaller for the SST k-ω than for the RSM. In particular,

the maximum values of the stochastic standard deviation of t-avg(Cp) and

t-std(Cp) for the SST k-ω model are 0.012 and 0.004, to be compared with

0.041 and 0.046 obtained for the RSM (see Sec. 6.1). Significant differences

between the results of the two turbulence models are found also in terms of

stochastic mean of t-std(Cp) (see Fig. 20), much larger than the variability

due to the considered uncertainties.

As previously highlighted, the mean and fluctuating pressure distribution

on the cylinder side is strongly linked to the mean flow topology and, in par-

ticular, with the location of the mean flow reattachment. Figure 21 shows

the stochastic mean ± standard deviation of the side-averaged reattachment
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point x/D coordinate obtained with the SST k-ω model and RSM (already

shown in Fig. 14) compared with the ensemble average and standard devi-

ations of the numerical contributions reviewed in Bruno et al. (2014). The

stochastic mean values obtained with the SST k-ω model are comparable to

the ensemble average of the BARC simulation results. Finally, also for this

quantity, the stochastic variance of the predictions of the SST k-ω model is

reduced compared to that of in RSM.

The uncertainty propagation results on the complete velocity and pres-

sure field (not shown herein for the sake of brevity) showed that the distribu-

tions of stochastic mean and standard deviation are qualitatively similar for

the two turbulence models. However, more quantitatively, the values of the

stochastic standard deviation are lower for the SST k-ω, as it was remarked

previously.

Table 7 shows the partial variance decomposition of the time statistics of

the aerodynamic loads for the SST k-ω model (to be compared with Table

6). As expected, the variance of t-avg(cy) is dominated by the uncertainty

in the angle of attack. For t-avg(cx) and t-std(cy), it is interesting to note

that the impact of uncertainties in the inlet turbulence intensity is noticeably

reduced for the SST k-ω model compared with that observed for the RSM

model. This reduced sensitivity to I may also explain the reduced dispersion

of the results obtained with the SST k-ω model: since with this model the

sensitivity to I is reduced and, as observed previously, α and L are less

impacting parameters, this leads to a smaller variances in the quantities of

interest.

The partial stochastic variances of the time-averaged and standard devi-
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ation of the surface pressure coefficient, due to the single set-up parameters,

are shown in Fig. 22. Compared to the analogous partial variances for the

RSM, shown in Fig. 15 and commented in Sec. 6, the sensitivity to the

freestream turbulence intensity is once again noticeably lower for the SST k-

ω model. As observed previously for the aerodynamic loads, this may explain

the reduced global stochastic variance of the time-averaged and fluctuating

pressure distribution over the cylinder side observed for the SST k-ω model

9. Effect of grid resolution on the UQ results

In this Section the effects of the spatial discretization error on the UQ

results are analyzed, by comparing the UQ results obtained by using both

turbulence models on the grid having 5× 104 nodes with the ones obtained

on the grid having 1.2× 104 nodes.

The main effect of grid resolution is on the stochastic mean value of the

time statistics of the aerodynamic loads (see Fig. 23), while the stochastic

variances remain relatively unchanged. The same observation can be made

for the time average and standard deviation of the pressure coefficient on the

cylinder side (see Fig. 24) and for the reattachment point location on the

cylinder side (Fig. 25).

Thus, it seems that the discretization error does not significantly affect

the propagation of aleatoric uncertainties for both the turbulence models

selected in this study.
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10. Concluding remarks

The propagation of aleatoric uncertainties in three freestream flow param-

eters of the BARC configuration, namely the angle of attack, the freestream

turbulence intensity and length scale, was investigated through two-dimensional

URANS simulations and a stochastic collocation method. The effect of the

chosen turbulence model was appraised by repeating the stochastic analy-

sis for two different models, namely SST k-ω and RSM, on the same grid.

Furthermore, the impact on the UQ results of the assumed PDF shape for

the input uncertain parameters was quantified for the RSM. Finally, the im-

pact of spatial discretization was also estimated by carrying out the UQ and

sensitivity analyses for two different grid resolutions.

The quantities of interest that have been found to be the most sensitive

to the considered uncertainties are those that are also characterized by the

largest dispersion among the BARC contributions, as e.g. the standard devi-

ations in time of the vertical-force coefficient and of the pressure distribution

over the cylinder surface. Nonetheless, the propagation of the considered set-

up uncertainties leads to a variability of the present results which is smaller

than that of the BARC experimental contributions. Thus, it seems that the

dispersion of the experimental data collected in BARC can not be solely

explained by the considered uncertainties in the freestream flow conditions.

A practical issue in stochastic sensitivity analysis is the lack of information

on the PDFs of the uncertain input parameters, which are usually guessed.

Hence, it is interesting to evaluate how much this guess impacts on the UQ

results. In our case, it has been found that the most important parameter is

the variance and not the shape of the input PDFs and that this affects the
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stochastic standard deviation of the quantities of interest, while the stochastic

mean values remain practically unchanged.

Another issue is how much the sensitivity to the uncertainties in the

freestream parameters obtained in the present work depends on the turbu-

lence modeling. Indeed, it has been found that the turbulence model has

a significant effect on the statistic mean but also on the the variability of

the output quantities with the set-up parameter uncertainties. In particular,

the stochastic standard deviations for all the time statistics of the aerody-

namic loads and for the pressure coefficient distributions are larger for the

RSM than for the SST k-ω turbulence model. Considering the partial vari-

ances to each input parameter, the results obtained with the RSM model are

significantly more sensitive to the uncertainty in the freestream turbulence

intensity than those of the SST k-ω model. This may also explain the larger

variability of the results given by RSM. For both turbulence models, the

freestream turbulence length scale L is the less influential parameter. One

may wonder whether in a simulation in which part of the turbulence scales

are resolved, as in LES, the sensitivity to the freestream turbulence features

would be larger. This issue would require further investigation, but this

implies remarkable additional difficulties. Indeed, in addition to the large

computational costs of each simulation, the problem of generating suitable

freestream conditions for LES when only bulk information on the turbulence

features is available, as e.g. turbulence intensity and scale, is still an open is-

sue in the literature. Therefore, another source of uncertainty/error related

to the used methodology for generation of freestream conditions would be

introduced.
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Furthermore, the discretization error has been estimated herein by con-

sidering UQ results on two different grids. The main effect of grid resolution

is a small variation of the stochastic mean value of the quantities of inter-

est, while the stochastic standard deviations are almost unchanged. Thus, it

seems that the discretization errors do not significantly affect the propaga-

tion of the considered aleatoric uncertainties in the freestream parameters,

at least for the turbulence models selected in this study.

Additional aleatoric uncertainties are present in the experiments; the

main ones are related to the model geometry, and, in particular, to the sharp-

ness of the corners and to the surface roughness. The stochastic methodology

used in the present analysis can in principle be adopted also to quantify the

impact of these geometrical uncertainties, although additional technical is-

sues are present in this case, such as defining stochastic input distributions

of spatially varying geometrical uncertainties and the need for re-meshing.

Other known differences exist in the set-up of the BARC experiments,

namely different blockage ratios and different spanwise lengths of the model.

The differences in blockage ratio, in the range of the BARC experiments, are

not expected to have a significant impact, as confirmed by a deterministic

numerical sensitivity analysis carried out herein. Conversely, the differences

in the spanwise length of the model might be important. As previously dis-

cussed, however, a numerical stochastic analysis of the impact of the span-

wise length would imply huge computational costs. Indeed, it is questionable

whether a URANS approach can accurately capture 3D effects. Large-eddy

simulation would be more suitable, but that type of approach requires very

fine grid resolution, which increases dramatically the computational cost of
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each deterministic simulation. This is beyond the scope of the present paper

and could be the object of future research.

Finally, from a practical point of view, the results of the present work

give useful clues for URANS simulations of the BARC configuration and

of similar problems. For instance, it appears that it is not important to

reproduce the freestream turbulence length, which is usually not available

from experiments.
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Grid nodes nw/B n+ δs/B

1.2× 104 1.7× 10−3 ∼= 2.5 2× 10−3

2.5× 104 8.7× 10−4 ∼= 2 1× 10−3

3.8× 104 5.5× 10−4 ∼= 1.5 6.4× 10−4

5.0× 104 4.2× 10−4 ∼= 1 4.8× 10−4

7.5× 104 3.3× 10−4 ∼= 0.5 3.8× 10−4

Table 1: Main grid parameters
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Figure 1: Time behavior of the force coefficients (RSM).
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Grid nodes Time range t-avg(cy) t-avg(cx) t-std(cy)

[300,350] -0.0450 1.0813 0.5133

1.2× 104 [300,450] -0.0432 1.0814 0.5116

[300,550] -0.0409 1.0816 0.5111

[300,350] -0.0054 1.1020 0.6130

2.5× 104 [300,450] -0.0051 1.1019 0.6128

[300,550] -0.0048 1.1019 0.6124

[300,350] 0.0451 1.0875 0.5870

3.8× 104 [300,450] 0.0463 1.0874 0.5859

[300,550] 0.0477 1.0874 0.5847

[300,350] 0.0355 1.0926 0.6082

[300,450] 0.0347 1.0921 0.6074

5.0× 104 [300,550] 0.0299 1.0923 0.6041

[300,650] 0.0275 1.0922 0.6057

[300,750] 0.0271 1.0923 0.6051

[300,350] 0.0438 1.0875 0.6015

7.5× 104 [300,450] 0.0466 1.0868 0.6041

[300,550] 0.0404 1.0869 0.6020

Table 2: Convergence of time statistics of the aerodynamics loads for the different grid

resolutions (RSM).
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Figure 2: Mean flow streamlines (RSM and grid having 5.0× 104 nodes)
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Figure 3: Side-averaged distribution of the time-averaged pressure coefficient (a) and of the

standard deviation in time of the pressure coefficient (b). Comparison between different

grid resolutions (RSM).

Blockage ratios t-avg(cy) t-avg(cx) t-std(cy)

0.7% 0.0347 1.0921 0.6074

3.75% 0.0364 1.1026 0.6123

Table 3: Time statistics of the aerodynamic loads: comparison between different blockage

ratios (RSM and grid having 5.0× 104 nodes).
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Figure 4: Side-averaged distribution of the time-averaged pressure coefficient (a) and of the

standard deviation in time of the pressure coefficient (b). Comparison between different

blockage ratios (RSM and grid having 5.0× 104 nodes).

Figure 5: Nested Clenshaw-Curtis quadrature points at different levels
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(a) (b)

Figure 6: Smolyak sparse grid level=1 with 7 (a) and level=2 with 25 (b) deterministic

CFD simulations
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Case α [◦] I [%] L [D] t-avg(cy) t-avg(cx) t-std(cy)

1 0 0.0155 2.5500 0.0347 1.0921 0.6074

2 -1.0000 0.0155 2.5500 -0.7940 1.1118 0.6758

3 1.0000 0.0155 2.5500 0.8818 1.1192 0.6971

4 -0.7071 0.0155 2.5500 -0.5502 1.1037 0.6395

5 0.7071 0.0155 2.5500 0.5989 1.1115 0.6574

6 0 0.0010 2.5500 0.0680 1.1272 0.7789

7 0 0.0300 2.5500 0.0173 1.0482 0.3756

8 -1.0000 0.0010 2.5500 -0.7989 1.1504 0.8192

9 1.0000 0.0010 2.5500 0.9640 1.1505 0.8406

10 -1.0000 0.0300 2.5500 -0.7358 1.0622 0.4469

11 1.0000 0.0300 2.5500 0.7881 1.0634 0.4520

12 0 0.0052 2.5500 0.0550 1.1239 0.7628

13 0 0.0258 2.5500 0.0203 1.0650 0.4521

14 0 0.0155 0.1000 0.0421 1.1197 0.7419

15 0 0.0155 5.0000 0.0281 1.0947 0.6089

16 -1.0000 0.0155 0.1000 -0.8127 1.1419 0.7906

17 1.0000 0.0155 0.1000 0.9234 1.1449 0.8025

18 -1.0000 0.0155 5.0000 -0.8059 1.1141 0.6827

19 1.0000 0.0155 5.0000 0.8769 1.1179 0.6941

20 0 0.0010 0.1000 -0.0601 1.1270 0.7790

21 0 0.0300 0.1000 -0.0413 1.1140 0.7051

22 0 0.0010 5.0000 -0.0683 1.1272 0.7789

23 0 0.0300 5.0000 -0.0245 1.0463 0.3667

24 0 0.0155 0.8176 -0.0392 1.1000 0.6398

25 0 0.0155 4.2824 -0.0325 1.0913 0.6025

Table 4: Level-2 Clenshaw-Curtis quadrature points in the parameter space and time

statistics of the aerodynamic loads obtained in the corresponding deterministic URANS

simulations; RSM and grid having 5.0× 104 nodes.
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t-avg(cy) t-avg(cx) t-std(cy)

Stochastic mean (level 0) 0.0347 1.0921 0.6074

Stochastic mean (level 1) 0.0405 1.1035 0.6464

Stochastic mean (level 2) -0.0155 1.1053 0.6426

Stochastic standard deviation (level 0) 0 0 0

Stochastic standard deviation (level 1) 0.4840 0.0267 0.1322

Stochastic standard deviation (level 2) 0.4740 0.0246 0.1183

Table 5: Stochastic mean and standard deviation of the time statistics of the aerodynamic

loads for different levels of the stochastic collocation procedure; RSM and grid having

5.0× 104 nodes.

Sα SI SL Sα−I Sα−L SI−L Sα−I−L

t-avg(cx) 0.090 0.762 0.079 0.002 0 0.067 0

t-avg(cy) 0.994 0 0.004 0.002 0 0.001 0

t-std(cy) 0.034 0.829 0.065 0.001 0.001 0.070 0

Table 6: Stochastic variance decomposition of the time statistics of the aerodynamic loads;

RSM and grid having 5.0× 104 nodes

Sα SI SL Sα−I Sα−L SI−L Sα−I−L

t-avg(cx) 0.880 0.101 0.005 0 0 0.014 0

t-avg(cy) 1.000 0 0 0 0 0 0

t-std(cy) 0.379 0.520 0.032 0.001 0 0.068 0

Table 7: Stochastic variance decomposition of the time statistics of the aerodynamic loads;

SST k-ω and grid having 5.0× 104 nodes
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Figure 7: Cumulative distribution functions of the time statistics of the aerodynamic loads:

time-averaged vertical-force coefficient (a), time-averaged horizontal-force coefficient (b),

standard deviation in time of the vertical-force coefficient (c). Comparison between differ-

ent levels of the stochastic collocation procedure; RSM and grid having 5.0× 104 nodes.
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Figure 8: Stochastic mean (thick line) ± stochastic standard deviation (thin lines) of the

side-averaged distribution of the time-average pressure coefficient (a) and of the standard

deviation in time of the pressure coefficient (b). Comparison between different levels of

the stochastic collocation procedure; RSM and grid having 5.0× 104 nodes.
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Figure 9: Stochastic mean (thick line) ± stochastic standard deviation (thin lines) of

the time statistics of the aerodynamic loads (RSM and grid having 5.0 × 104 nodes):

time-averaged horizontal-force coefficient (a), time-averaged vertical-force coefficient (b),

standard deviation in time of the vertical-force coefficient (c). Comparison with the en-

semble average and standard deviation of the numerical contributions to BARC Bruno

et al. (2014) and with the experiments by Schewe (2006, 2009).
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Figure 10: Stochastic mean (thick line) ± stochastic standard deviation (thin lines) of

the side- and time-averaged pressure coefficient (RSM and grid having 5.0 × 104 nodes);

comparison with the ensemble statistics of the BARC experiments (a) and numerical

simulations (b) (data from Bruno et al., 2014). Stochastic standard deviation vs. ensemble

standard deviation of BARC contributions (c).
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Figure 11: Stochastic mean (thick line) ± stochastic standard deviation (thin lines) of the

side-averaged standard deviation in time of the pressure coefficient (RSM and grid having

5.0 × 104 nodes); comparison with the ensemble statistics of the BARC experiments (a),

of the numerical simulations (b) and of the URANS simulations (c) (data from Bruno

et al., 2014). Stochastic standard deviation vs. ensemble standard deviation of BARC

contributions (d).
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(a) Stochastic mean of the time-averaged

pressure coefficient

(b) Stochastic standard deviation of the

time-averaged pressure coefficient

(c) Stochastic mean of the time-standard-

deviation pressure coefficient

(d) Stochastic standard deviation of the

time-standard-deviation pressure coefficient

Figure 12: Stochastic mean and standard deviation of the time-average and of the time-

standard-deviation of pressure coefficient. RSM and grid having 5.0× 104 nodes.
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(a) Stochastic mean of the time-averaged ve-

locity magnitude

(b) Stochastic standard deviation of the

time-averaged velocity magnitude

(c) Stochastic mean of the time-standard-

deviation velocity magnitude

(d) Stochastic standard deviation of the

time-standard-deviation velocity magnitude

Figure 13: Stochastic mean and standard deviation of the time-average and time-standard-

deviation of velocity magnitude. RSM and grid having 5.0× 104 nodes.
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side-averaged streamwise coordinate of the mean flow reattachment point (RSM and grid

having 5.0×104 nodes); comparison with the ensemble statistics of the BARC results and

with the experimental data (data from Bruno et al., 2014)
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Figure 15: Stochastic variance decomposition of the side- and time-averaged surface pres-

sure coefficient (a) and of the side-averaged standard deviation in time of the surface

pressure coefficient (b) (RSM and grid having 5.0× 104 nodes).
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Figure 16: Comparison among the original uniform input distribution, U , the beta distri-

bution, β, and an uniform input distribution with the same variance as the beta distribu-

tion, U2
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Figure 17: Stochastic mean (thick line) ± stochastic standard deviation (thin lines) of the

time statistics of the aerodynamic loads for different input PDFs (RSM and grid having

5.0×104 nodes): time-averaged horizontal-force coefficient (a), time-averaged vertical-force

coefficient (b), standard deviation in time of the vertical-force coefficient (c). Comparison

with the ensemble average and variation of the numerical contributions to BARC Bruno

et al. (2014) and with the experiments by Schewe (2006, 2009). The symbols U , β and

U2 are the same as in Fig. 16.
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Figure 18: Stochastic mean (thick line) ± stochastic standard deviation (thin lines) of

the side- and time averaged pressure coefficient (a) and of the side-averaged standard

deviation in time of the pressure coefficient (b,c) for different input PDFs. Comparison

with the ensemble statistics of the BARC numerical simulations (a,b) and of the URANS

contribution to BARC (c) (data from Bruno et al., 2014). RSM and grid having 5.0× 104

nodes. The symbols for the data from Bruno et al. (2014) are the same as in Figs. 10 and

11; the symbols U , β and U2 are the same as in Fig. 16.
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Figure 19: Stochastic mean (thick line) ± stochastic standard deviation (thin lines) of the

time statistics of the aerodynamic loads for the SST k-ω turbulence model (grid having

5.0×104 nodes): time-averaged horizontal-force coefficient (a), time-averaged vertical-force

coefficient (b), standard deviation in time of the vertical-force coefficient (c). Comparison

with the results for the RSM on the same grid and with the ensemble average and variation

of the numerical contributions to BARC (data from Bruno et al., 2014).
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Figure 20: Stochastic mean (thick line) ± stochastic standard deviation (thin lines) of

the side- and time averaged pressure coefficient (a) and of the side-averaged standard

deviation in time of the pressure coefficient (b,c) for the SST k-ω turbulence model (grid

having 5.0× 104 nodes). Comparison with the results for the RSM on the same grid and

with the ensemble statistics of the BARC numerical simulations (a,b) and of the URANS

contribution to BARC (c) (data from Bruno et al., 2014). The symbols for the data from

Bruno et al. (2014) are the same as in Figs. 10 and 11.
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Figure 21: Stochastic mean (thick line) ± stochastic standard deviation (thin lines) of the

side-averaged streamwise coordinate of the mean flow reattachment point for the SST k-ω

turbulence model (grid having 5.0×104 nodes). Comparison with the results for the RSM

on the same grid and with the ensemble statistics of the BARC numerical simulations and

with the experimental data (data from Bruno et al., 2014).
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Figure 22: Stochastic variance decomposition of the side- and time-averaged surface pres-

sure coefficient (a) and of the side-averaged standard deviation in time of the surface

pressure coefficient (b) (for the SST k-ω model and grid having 5.0× 104 nodes).
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Figure 23: Stochastic mean (thick line) ± stochastic standard deviation (thin lines) of the

time statistics of the aerodynamic loads on the grid having 1.2×104 nodes and comparison

with the ones on the grid having 5×104 nodes and with the ensemble statistics of the BARC

simulations (data from Bruno et al., 2014). Time-averaged horizontal-force coefficient (a),

time-averaged vertical-force coefficient (b) and standard deviation in time of the vertical-

force coefficient (c).
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Figure 24: Stochastic mean (thick line) ± stochastic standard deviation (thin lines) of the

side- and time averaged pressure coefficient (a) and of the side-averaged standard deviation

in time of the pressure coefficient (b,c) for different grid resolutions and turbulence models

(grid having 5.0 × 104 nodes). Comparison with the ensemble statistics of the BARC

numerical simulations (a,b) and of the URANS contribution to BARC (c) (data from

Bruno et al., 2014). The symbols for the data from Bruno et al. (2014) are the same as in

Figs. 10 and 11.
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Figure 25: Stochastic mean (thick line) ± stochastic standard deviation (thin lines) of

the side-averaged streamwise coordinate of the mean flow reattachment point for different

grid resolutions and turbulence models. The results are also compared with the ensemble

statistics of the BARC numerical simulations and with the experimental data (data from

Bruno et al., 2014).
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