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and discuss the potential to generalize across environments, species and 
ecological processes. If used wisely, the analysis of hybrid datasets may 
become the standard approach for research goals that seek causal 
explanation for large-scale ecological phenomena. 
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ABSTRACT 

Understanding how increasing human domination of the biosphere affects life on earth is a 

critical research challenge. This task is facilitated by the increasing availability of open-source 

data repositories, which allow ecologists to address scientific questions at unprecedented spatial 

and temporal scales. Large datasets are mostly observational, so they may have limited ability to 5 

uncover causal relations among variables. Experiments are better suited at attributing causation, 

but they are often limited in scope. We propose hybrid datasets, resulting from the integration of 

observational with experimental data, as an approach to leverage the scope and ability to attribute 

causality in ecological studies. We show how the analysis of hybrid datasets with emerging 

techniques in time series analysis (Convergent Cross Mapping) and macroecology (Joint Species 10 

Distribution Models) can generate novel insights into causal effects of abiotic and biotic 

processes that would be difficult to achieve otherwise. We illustrate these principles with two 

case-studies in marine ecosystems and discuss the potential to generalize across environments, 

species and ecological processes. If used wisely, the analysis of hybrid datasets may become the 

standard approach for research goals that seek causal explanations for large-scale ecological 15 

phenomena. 

 

Keywords: causality, convergent cross-mapping, distributed experiments, empirical dynamic 

modelling, hybrid dataset approach, macroecology, species distribution models, time series 

 20 

INTRODUCTION 

Ecology for the Anthropocene aspires to become a global-scale science, addressing changes in 

biodiversity and ecosystems in an increasingly human-dominated world (Sutherland et al. 2014, 

Corlett 2015). This aspiration builds on recent theoretical and empirical advances, but faces 
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important challenges. Large repositories of ecological and environmental data are becoming 25 

increasingly accessible as the result of technological developments in remote sensing and rapid 

advances in genomic techniques and computational capabilities (Hampton et al. 2013). This boost 

of ‘big-data’ allows ecologists to test hypotheses at unprecedented scales and promotes the 

integration of disciplines that typically focus on different levels of biological organization, such 

as population genomics, community ecology and macroecology (McGaughran 2015). 30 

Two common approaches to address global change problems are time series analysis and 

species distribution models (SDM) (Elith and Leathwick 2009, Magurran et al. 2015). Time 

series allow modeling population fluctuations in relation to environmental change, but they rarely 

extrapolate beyond current or past conditions. SDM build on contemporary species distributions 

to make projections under various future climate scenarios. Both time series and SDM have 35 

contributed considerably to our understanding of species responses to global change. However, 

these approaches, and the analysis of ‘big data’ in general, are largely correlative and cannot 

identify cause-effect relations with the same level of confidence offered by manipulative 

experiments. Observational studies, in contrast, can identify relationships among variables at 

spatial and temporal scales that are difficult or impossible to address experimentally. 40 

Identifying procedures that capitalize on the strengths of both observations and experiments 

is a great research challenge that can contribute major breakthroughs in the way we investigate, 

understand and forecast ecological responses to global change. The logical connections between 

observations and experiments have been widely recognized (Underwood 1997), but how to 

integrate observational and experimental data remains an open question (Fig. 1a). The 45 

‘comparative experimental approach’, where identically designed manipulations are distributed 

along environmental or latitudinal gradients, addresses this question by embedding manipulative 

experiments in a correlative framework that allows evaluating interactions between local and 
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regional processes (Menge et al. 2002, Hewitt et al. 2007) (Fig. 1b). This distributed experiment 

approach can be traced back to pioneering studies on kelp forests in California, where 50 

experimental perturbations designed to probe the resilience and resistance of kelps and associated 

organisms were repeated at multiple sites in contrasting environments (Dayton et al. 1984). 

Although challenging, distributed experiments can have great power to reveal geographic trends 

in ecological processes (Coleman et al. 2006) and incorporating environmental covariates in the 

analysis can improve the ability to determine causal relations by controlling for potentially 55 

confounding effects (Hewitt et al. 2007). However, the attribution of causality in distributed 

experiments is limited to manipulated factors and does not extend to covariates because these 

involve only observational data. 

Here, we propose novel strategies to leverage the scope and attribution of causality in 

ecological studies based on the hybridization of observational and experimental data and using 60 

emerging analytical techniques that go beyond the use of observations as covariates: convergent 

cross mapping (CCM) and joint SDM (jSDM) (Sugihara et al. 2012, Iknayan et al. 2014, Warton 

2015). Central to our idea is the synthesis of hybrid datasets that combine the ability to establish 

causality typical of experiments (causal inferential strength) with the large scope allowed by 

observational studies (Fig. 1c). Hybridization is possible whenever observational data (spatial 65 

and temporal series) are available for variables whose causal relation has also been examined 

experimentally in the same environmental setting (e.g., same locations). Indeed, distributed 

experiments are a great resource to generate the kind of data needed to implement the hybrid 

datasets approach. Many climate change experiments are now embedded in long-term monitoring 

programs, offering an extraordinary opportunity to generate hybrid datasets from many different 70 

ecosystems and levels of biological organization. Below, we describe the key procedures that we 

believe can make the best use of hybrid datasets, provide real-world examples of their application 
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and discuss potential advantages and limitations of the approach. The code and datasets needed to 

reproduce all the results presented in this paper have been made available through figshare (see 

Appendix S1 for details). 75 

HYBRIDIZATION OF TIME SERIES 

Empirical dynamic modeling 

Recent developments in time series analysis have focused on non-parametric (equation-free) 

methods to model nonlinear systems (Sugihara 1994, Sugihara et al. 2012). This empirical 

dynamic modeling framework (EDM, BOX 1) accommodates both the nonequilibrium dynamics 80 

and nonlinearities typical of complex ecological systems. EDM builds on the concept that time 

series originate from what in dynamical system theory is called an attractor manifold, a high-

dimensional space where axes define the possible states of the system (e.g., the environmental 

and biological variables in an interacting ecosystem) and trajectories along axis coordinates 

describe deterministic temporal changes (Fig. 2a). Time series that share the same attractor are 85 

causally linked, implying that each variable can identify the state of the other. For example, time 

series of two species that compete for a limited resource are dynamically linked and past values 

of abundance of one species can be recovered from time series of the other species. If one 

variable is a stochastic driver external to the system – e.g., a climate variable such as temperature 

regulating the abundance of a population – information about the state of the driver can be 90 

recovered from time series of population abundance, but the opposite is not possible. This 

counterintuitive asymmetry originates because only population abundance contains information 

about temperature, whereas the forcing variable does not depend on population abundance and so 

it contains no information about it (Sugihara et al. 2012). 

Convergent Cross Mapping (CCM) is a technique that allows examining whether the time 95 

series of a variable contains the signatures of another variable (Deyle and Sugihara 2011, 
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Sugihara et al. 2012). This is achieved by using the points on the reconstructed manifold of, say, 

variable X (MX) to predict concurrent points (at the same time) on the manifold reconstructed 

from variable Y (MY) (Fig. 2b). Cross-validation methods can be used to assess the forecasting 

skill of CCM (Fig. 2c,d). If causation is asymmetrical (e.g., temperature forcing population 100 

abundance, but not the reverse) forecasting skill will improve with time series length when cross-

mapping from the response to the predictor, but not in the opposite direction. This allows 

distinguishing between causal and response variables (Fig. 2c,d). 

 

Box 1. Empirical Dynamic Modeling and Convergent Cross-mapping 105 

Empirical dynamic modeling (EDM) is a non-parametric framework that allows reconstructing 

the underlying attractor of a time series (Sugihara 1994, Sugihara et al. 2012). Attractor 

manifolds are complex geometric structures describing the possible states and trajectories of a 

system. Sequential projections of the motion on the manifold to an axis coordinate generates a 

time series of the corresponding variable (Fig. 2a). A fundamental mathematical theorem proves 110 

that a time series of an individual variable contains all the information about the entire system 

and therefore can be used to reconstruct a ‘shadow’ version of the original attractor (Takens 

1981). This is achieved by using lags of the observed time series as surrogates for the unknown 

or unobserved variables (Sugihara et al. 2012). That is, a time series of a variable X is sufficient 

to reproduce the fundamental geometry of the system using lagged-coordinate embedding. For 115 

each data point X(t), one generates a lagged vector of data points �(�)��������� = �(�), �(� − 
), �(� −

2
), … , �(� − ( − 1)
), where E is the embedding dimension – i.e. the number of time steps 

used for prediction – and τ is the time lag (usually set to one). Thus, each E-dimensional point 

�(�)��������� consists of the present value X(t) and the E-1 previous values each separated by lag time τ. 

Time series originating from the same attractor are causally linked and this relation can be 120 

deciphered from the reconstructed manifolds through Convergent Cross-Mapping (CCM) (Fig. 

2). This is done by using the points on the reconstructed manifold of variable X (MX) to predict 

concurrent points on the manifold reconstructed from variable Y (MY) (Fig. 2b). Cross-mapping  
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means that the relationship between points is evaluated at the same time, so the procedure does 

not involve prediction of the future in the classical sense. In practice, for causally related time 125 

series, 

the time indices of nearby points on the manifold of one variable will correspond to nearby points 

on the manifold of the other. Thus, when predicting from a given point X(t) at time t, a set of 

nearby points on MX will be projected onto MY using the corresponding time indices, and the 

centroid of these points on MY gives the target prediction ��(t)|MX (Fig. 2b). The set of points 130 

projected for each X(t) is formed by the closest E+1 neighbors, the smallest number of points for 

a bounding simplex in E-dimensional space (Sugihara and May 1990). The distance among 

projected values provides a measure of the uncertainty of prediction. If there is symmetrical 

causality between variables (X causes Y and vice versa: X⇔Y), prediction will be possible in both 

directions with low uncertainty. If causation is asymmetrical (e.g., X is an external forcing 135 

variable: X⇒Y), only the time indices of 

nearby points on the manifold of Y will correspond to nearby points on the manifold of X and will 

allow predictions with low uncertainty, but the reverse will not be true. 

The forecasting skill of CCM is assessed through cross-validation. The typical approach 

uses Pearson-product moment correlation to compare the target predictions ��(t)|MX to the actual 140 

values Y(t). This is repeated with increasing time series length, i.e., the number of points used to 

reconstruct the manifolds MY and MX. Estimation skill is expected to increase with time series 

length because more trajectories will fill the reconstructed attractor with longer series, so that 

points on both MY and MX will be closer, resulting in more precise and accurate estimates. Cross-

validation is also used to select the optimal embedding dimension E. This requires assessing the 145 

forecasting skill for a set of E values (e.g., from 1 to 10) and selecting the embedding dimension 

on the basis of optimal prediction (Sugihara and May 1990). 

In principle, forecasting skill should converge to one when cross-mapping causally related 

variables. In practice, convergence will be limited with short time series and with large 

background noise. Nevertheless, convergence is a key property of CCM to distinguish between 150 

causation and correlation (Sugihara et al. 2012). In asymmetrical causation, forecasting skill will 

improve with time series length when cross-mapping from the response to the predictor, but not 

in the opposite   
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direction. This is a key diagnostic to identifying causal environmental forcing variables. The 

simulated data in Fig. 2c illustrate the case of two competing species where species A causally 155 

affects species B more than B affects species A (see Appendix S1 for details of the simulation). 

Cross map skill converges faster with increasing time series length when predicting from the 

manifold of species B to that of species A than in the opposite direction. This is the expected 

outcome that correctly identifies the stronger causal effect of species A on species B (Fig. 2d). 

Data  160 

in Fig. 2c were generated using the system of coupled difference equations described in Sugihara 

et al. (2012) and implemented with the make_ccm_data function in the R library 

multispatialCCM (Clark et al. 2015). We used functions simplex and ccm in the rEDM package 

(Sugihara et al. 2012, Ye and Sugihara 2016) to perform CCM on scaled data, with best 

embedding dimension E set to 4 and 2 for species A and B, respectively, and the other arguments 165 

left to default values (further details including links to R code are provided in Appendix S1). 

 

Recent applications of CCM in biology and ecology include studies uncovering predator-

prey interactions, the influence of environmental variables such as sea surface temperature (SST) 

on the recruitment and dynamics of fish stocks and the spread of influenza (Sugihara et al. 2012, 170 

Deyle et al. 2016a, Deyle et al. 2016b). The possibility of extending CCM to short, spatially 

replicated time series has opened the opportunity for validation using data from field experiments 

(Clark et al. 2015). Although these examples show that CCM can identify causation in some 

circumstances, CCM has greatest power to distinguish causation from correlation when dealing 

with weakly coupled processes and when observational and process error are limited (Sugihara et 175 

al. 2012). How many empirical time series will meet these criteria is unclear, but limited noise 

may be more an exception than the rule in real-world datasets, due to the non-additivity of 

multiple processes, feedbacks and nonlinearities. 

Empirical dynamic modeling with hybrid time series 
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A key requirement for data hybridization is that both the observational and experimental data 180 

originate from the same attractor manifold – i.e. they belong to the same dynamical system. The 

ideal setting is a field experiment where estimates of both manipulated (e.g., temperature) and 

response (e.g., population abundance) variables are available at the same location as part of 

observational time series and over periods encompassing the duration of the experiment. The 

hybridization of observational and experimental data collected at distant locations or in different 185 

periods (e.g., years) would not be appropriate, since these data may not originate from the same 

dynamical system. Similarly, assimilating data from laboratory experiments into time series 

obtained in natural conditions is questionable, since the laboratory data do not contain 

information about other relevant, but unobserved processes that operate in real-world conditions. 

Caution is also needed in using perturbation experiments that may drive the system to an 190 

alternative state, so that experimental and observational data are no longer on the same attractor.  

Under reasonable assumptions, hybrid time series can be obtained by replacing 

observational with experimental values for both the driver and the response variable, for the 

period encompassing the duration of the experiment. Averages can be taken across experimental 

units to have a unique time series for the predictor and response variables (Fig. 3a). Alternatively, 195 

hybridization is needed (or is possible) only for the driver. This will be the case with pulse 

experiments, where experimental plots are treated in some periods and left untouched in others 

(Fig. 3b). The hybrid dataset is generated by substituting natural with experimental values of the 

driver at the time of the manipulation, whereas the time series of the response variable are already 

hybridized, since they incorporate the effects of experimental and naturally fluctuating 200 

environmental conditions (Fig. 3b). 

Hybrid time series should improve the ability of CCM to correctly identify causation for at 

least two reasons. First, in experiments where the causal process is held constant (or 
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approximately so), such as with press perturbations, hybrid time series of the driver should be 

less variable than purely observational data and this should increase the forecasting skill of CCM 205 

(Fig. 3a). Also the response variable may display dampened fluctuations in press experiments, so 

hybridization of the response variable may further contribute to reduce noise in hybrid datasets. 

Second, experimental data may improve the ability of CCM to correctly cross-map the state of 

the driver from the response variable by reinforcing the causal signal in the appropriate direction. 

Comparing the outcome of CCM between observational and hybrid time series may 210 

improve the causal inferential strength of the analysis. A significant causal relation resulting from 

hybrid time series will increase confidence in the attribution of causality compared to the same 

outcome based only on observational data (Fig. 1c). In contrast, lack of evidence of a causal 

relation from hybrid time series may cast doubt on a positive effect that may result when 

analyzing only observational data. Nonetheless, care is needed to avoid confirmatory bias when 215 

deciding to analyze hybrid datasets. The analysis should be motivated by well-defined scientific 

questions and should not be driven by previous knowledge of the outcome of an experiment. 

Thus, negative or counterintuitive experimental results should also be included in hybrid datasets, 

if the analysis is motivated by a clear hypothesis. 

Case study 1: Effect of experimental warming on biofilms 220 

Rocky intertidal biofilms (or epilithic microphytobenthos, EMPB) consist primarily of 

photosynthetic organisms such as cyanobateria, diatoms and algal sporelings that occur on many 

rocky shores globally (Murphy et al. 2006, Maggi et al. 2017). These primary producers undergo 

large fluctuations in biomass in response to environmental change and to variation in grazing 

pressure (Sanz-Lazaro et al. 2015). The rocky intertidal is a highly variable environment where 225 

extreme events such as prolonged hot and dry periods, storms and sediment accretion can cause 

severe impacts to EMPB biomass (Dal Bello et al. 2017). Grazers can also eradicate biofilms 
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from rocky shores, but EMPB biomass usually recovers from even the most extreme disturbances 

(Underwood 1984, Sanz-Lazaro et al. 2015, Dal Bello et al. 2017). 

The rapid response of biofilms to changing environmental conditions makes EMPB 230 

biomass an ideal variable to examine the consequences of data hybridization on causation. Time 

series of this variable were available to us as part of a research program on the ecology of EMPB 

that included both observations and experiments on rocky shores in the north-west Mediterranean 

(Dal Bello et al. 2015, Dal Bello et al. 2017, Maggi et al. 2017). We took advantage of the spatial 

extension of CCM that uses short, but spatially replicated time series. The experiment was 235 

conducted between April and August 2013 and examined the effect of extreme warming on 

chlorophyll a concentration (chl), an indirect measure of EMPB biomass. Extreme temperature 

conditions were imposed to plots of 35 x 55 cm marked on the rock and were repeated twice, 

either 15 or 60 days apart, to reflect separate and clustered events in time. Each warming event 

consisted of heating experimental plots between 11 a.m. and 3 p.m. in one day, by means of 240 

aluminium chambers equipped with stoves. Warming simulated an extreme temperature value 

with a return periods of 100yrs for the corresponding month (with a mean temperature of 31°C 

over the study period). There were nine plots for each of the clustered and non-clustered 

treatments sampled at approximately 15 day intervals four and seven times, respectively, for a 

total of 99 experimental data points. 245 

Observational data were obtained from three plots located on the same shore used in the 

experiment and consisted of monthly measurements of chl concentration collected over a period 

of 24 months, between 2012 and 2014. We augmented these observations with data from the 

three control plots available from the experiment, which provided nine data points each. The 

vector of observational data had 99 points as the vector of experimental data. Data on aerial 250 

temperature for the study location were obtained from a local meteorological station, whereas 
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temperature in heated plots was measured with digital thermometers (Dal Bello et al. 2017). All 

plots were sampled with an IR-sensitive camera (Agricultural Digital Camera ©) that allowed us 

to quantify the Ratio Vegetational Index (RVI, the ratio of reflectance between near-infrared and 

red bands), which was subsequently converted into chl concentration using a previously 255 

calibrated relation (Dal Bello et al. 2015). This spatial version of CCM and associated 

probabilistic tests were performed using the library multispatialCCM in the R computational 

environment (Clark et al. 2015). 

CCM did not identify any causal forcing of temperature on chl when using only 

observational data (Fig. 3c). Indeed, cross map skill increased significantly in the wrong causal 260 

direction, suggesting that chl causes variation in temperature (bootstrap test: P>0.05 for chl 

cross-mapping temperature and P<0.01 for temperature cross-mapping chl) (Fig. 3d; see 

Appendix S1 for details on bootstrap and probability tests in CCM). Hybrid time series were 

assembled only for temperature, by replacing natural with experimentally imposed values in the 

periods in which warming was applied. Chl values from experimental plots did not need any 265 

further hybridization, since they already incorporated natural fluctuations in aerial temperature 

and the effects of pulse warming perturbations (Fig. 3e). With this approach, observational and 

hybrid time series had equal sample size (99 data points each), allowing a fair comparison 

between the two groups. Cross map skill increased with time series length when cross-mapping 

from chl to temperature, but not in the opposite direction, indicating that temperature information 270 

was encoded in EMPB biomass (Fig. 3f). This asymmetrical causal relation with temperature 

forcing chl was supported statistically (bootstrap test: P<0.001 for chl cross-mapping temperature 

and P>0.05 for temperature cross-mapping chl). In addition to clarifying the signal of causality, 

reconstructing the attractor from hybrid time series also improved the ability to forecast chl data 

compared to the analysis based on observations, as indicated by cross-validation (Pearson 275 
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correlation coefficient: 0.789 for experimental data and 0.675 for observational data; see 

Appendix S1 for details).  

These results show how hybrid time series can increase the ability of CCM to identify a 

causal relation between a driver and a biological response variable, compared to purely 

observational data. Our example focuses on pulse warming treatments, but it is not difficult to 280 

envision similar applications in other contexts. Many studies manipulate temperature and other 

ocean drivers, such as nutrients and acidification, in regions where observational data are also 

available. The analysis of hybrid datasets would increase the scope and causal inferential strength 

of these local, often short-term experiments. Many terrestrial studies also manipulate 

environmental drivers such as temperature, nutrients and rainfall in areas where these variables 285 

are also measured regularly as part of ongoing monitoring programs, offering great opportunities 

for integration. 

HYBRIDIZATION IN SPACE 

Joint species distribution models (jSDM) 

jSDM use a hierarchical Bayesian framework to model species ensembles rather than one species 290 

at a time (Warton et al. 2015, Ovaskainen et al. 2017). This emerging analytical technique 

expands the traditional approach of modeling individual species in relation to one or more 

environmental drivers, recognizing the multivariate nature of species assemblages. Using 

appropriate frequency distributions to model species occurrences (e.g. binomial, probit) or 

abundances (normal, Poisson) and regression parameters (e.g., multivariate normal), jSDM allow 295 

a community-wide analysis of species distributions in relation to environmental covariates. 

Residual correlation matrices quantify networks of species co-occurrence after accounting for 

environmental filters and these matrices can be further modeled as a function of species traits. 

jSDM allow the estimation of random effects to account for variability at multiple hierarchical 
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scales in space and time and variance partition methods can be used to determine the percentage 300 

of variation explained by fixed and random effects (Ovaskainen et al. 2017). 

How to incorporate species interactions in jSDM has been an intense area of research in 

recent years (Araujo et al. 2011, Pellissier et al. 2013, Pollock et al. 2014, Mod et al. 2015, 

Morueta-Holme et al. 2016). One approach uses the abundance of competitors or consumers as 

covariates in the analysis. Alternatively, positive or negative species interactions can be inferred 305 

from the residual species correlation matrix, after accounting for environmental filters. If a 

representative set of environmental covariates has been considered, residual species associations 

are most parsimoniously explained in terms of species interactions. However, it is difficult to 

ascertain whether all relevant covariates have been included in any particular study, and both 

approaches are based on observations and remain largely correlative. 310 

Hybrid spatial datasets and jSDM 

There are two possibilities of generating hybrid spatial datasets. One approach (Path 1 in Fig. 4) 

simply consists of concatenating experimental (treatments and controls) and observational data in 

a single dataset. This requires matching the observational and experimental data at the level of 

both the predictor and the response variables. That is, the covariates measured in the 315 

observational study should also be recorded in the experimental plots and manipulated factors 

should have corresponding observational values. The advantage of a spatial hybrid dataset is 

greater power due to increased degrees of freedom and, possibly, a stronger signal of the causal 

relation between predictor and response variables compared to individual datasets. However, 

spatial sampling programs often include a massive number of observations, whereas experiments 320 

typically involve few spatial replicates. Thus, concatenating observational and experimental data 

will probably be most valuable when the number of observations is limited and the experiment 

identifies a strong causal signal. 
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A second and perhaps more powerful approach to generate spatial hybrid datasets consists 

of translating experimentally determined effect sizes into covariates to be incorporated into jSDM 325 

(Path 2 in Fig. 4). This framework allows examining biotic interactions with jSDM in an 

unprecedented way. As an example, consider the case of a monitoring program that includes 

observations on the abundance and distribution of habitat-forming species (e.g. forest trees, 

corals, macroalgal forests) and associated biodiversity. Loss of habitat-forming species usually 

has strong effects on associated assemblages and these effects can be mediated by environmental 330 

filters and other spatially variable drivers, such as disturbance and species dispersal (Bulleri et al. 

2012, Krumhansl et al. 2016). jSDM can assess these relations and would typically include the 

abundance of the habitat-forming species as a covariate to model biotic interactions. However, if 

the interspecific effect of the habitat-former is quantified directly (e.g., from a removal 

experiment), hybrid datasets that incorporate causal relations can be developed and analyzed with 335 

jSDM as follows. First, the effect of the habitat-former on species i in the assemblage can be 

expressed using one of the several interaction strength indices available to quantify biotic 

interactions (Berlow et al. 1999). The relative interaction intensity index (RII) is appropriate to 

measure interactions that range from competition to facilitation, as in the case of habitat-forming 

species (Armas et al. 2004): 340 

iTiC

iTiC

i
xx

xx
RII

+

−
=  (1) 

where iTx and iCx  are the mean abundance of species i in treatments and controls, respectively. 

This index varies between -1 and 1, depending on the direction of the interaction of the habitat 

former on species i, with negative (positive) values reflecting competition (facilitation). A mean 

relative interaction index can then be obtained for each observed plot by averaging RIIi values 345 

across the species present in each plot. The vector of average values describes the relative 
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intensity of positive and negative interactions across observational plots, so we can expect 

positive values in plots where the habitat-former is abundant and negative values where it is 

absent. This will be the case only if the habitat-former is a strong interactor and causally affects 

other species in the assemblage. This is a crucial point that makes hybrid datasets a superior 350 

approach than using species abundances or co-occurrences as surrogates for biotic interactions in 

a purely observational context. This last approach will be misleading if shared causal processes, 

such as environmental drivers, induce positive or negative covariance between the hypothesized 

strong interactor and other species. In this case ‘mirage’ correlations (Sugihara et al. 2012) may 

be erroneously interpreted as evidence of biotic interactions. This will not happen with hybrid 355 

datasets, because if the experiment reveals no causal signal, the resulting average RII values will 

be close to zero and will explain no variation in a jSDM, regardless of the patterns of ‘mirage’ 

correlations that may be induced by external drivers. Below, we provide a real-world example on 

the effect of loss of habitat-forming species in the marine benthos. 

Case study 2: Effect of loss of macroalgal forests on subtidal rocky reefs. 360 

Macroalgal forests (kelps and fucoids) are amongst the most diverse and productive coastal 

marine ecosystems, yet they are declining dramatically worldwide in response to global warming 

and increasing environmental degradation (Benedetti-Cecchi et al. 2001, Strain et al. 2014, 

Krumhansl et al. 2016, Vergés et al. 2016). A direct consequence of loss of canopy-forming 

species is a shift from a macroalgal forest into less diverse and productive assemblages 365 

dominated by encrusting coralline algae (barren habitat) or intricate mats of low-lying algae 

(algal turfs) (Benedetti-Cecchi et al. 2015, Rindi et al. 2017).  

Although these relations are well established, understanding the relative contribution of 

species interactions, environmental filters and spatiotemporal context in driving habitat shifts 

remains a critical gap. We use data from a long-term sampling program and repeated canopy-370 
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removal experiments in the north-west Mediterranean, to show how hybrid datasets can 

incorporate empirically determined species interactions and how these effects can be partitioned 

along with other drivers of species distribution using jSDM. Observational data were collected at 

six locations, four islands in the Tuscan Archipelago (Capraia, Pianosa, Giannutri and 

Montecristo, 42°46’N, 10°11’E) and two locations along the main coast of Tuscany (Livorno and 375 

Rosignano, 43°28’N, 10°19’E) between 2005 and 2013 (Bulleri et al. 2018). We used a 

hierarchical sampling design, including two to four sampling years within each location, 6-10 

sites in each year and ten replicate plots at each site (years were reasonably well interspersed 

among locations). Assemblages were sampled non-destructively using photo-quadrats and images 

were processed in the laboratory to extract for each plot the percentage cover of all identifiable 380 

species. When species could not be identified unambiguously, they were lumped into higher 

taxonomic or morphological categories (e.g., filamentous, coarsely branched and sheet-like 

algae). The observational datasets consisted of 1327 plots and 55 species (higher taxa). 

Canopy-removal experiments involving full canopy-removal and control plots were 

performed during the observational study at Capraia and Pianosa islands and lasted two and three 385 

years, respectively. Overall, the experimental dataset consisted of 168 canopy-removal and 80 

control plots. Several controls were discarded due to the disappearance of the canopy during the 

course of the experiment at Pianosa. We used Eq. 1 to quantify the average intensity and 

direction of canopy-removal effects across species in each observational plot. Environmental 

covariates included sea surface temperature (SST), nutrients (nitrates and phosphates) and a wave 390 

exposure index. SST and nutrients were derived from the Bio-Oracle database (Tyberghein et al. 

2012), which provides data layers at the 5 arcmin resolution (c. 9.2 Km). These covariates 

reflected average environmental conditions at the location level. In contrast, the wave exposure 

index was obtained from a high resolution hydrodynamic model and varied at the site level 
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(Bulleri et al. 2018). We used the HMSC package in the R computational environment to fit a 395 

hierarchical Bayesian jSDM with spatiotemporal random effects (Ovaskainen et al. 2017). To 

increase the performance of the model we focused on the presence/absence of species that 

occurred in at least 10% of the quadrats. This resulted in 30 species (higher taxa) for the analysis. 

Each of these species had a RIIi value obtained as the mean between the two experiments. 

An assumption implicit to SDMs is that species are near equilibrium with their environment 400 

(Guisan and Thuiller 2005). Short-term snapshots of presence-absence or abundance data may 

violate this assumption, reflecting transient effects rather than long-term average conditions. 

When using hybrid datasets, it is also important that experiments are maintained long enough to 

reflect steady-state effects. In our analysis, both observational and experimental data were 

obtained at comparable, multi-year time scales and involved a large number of spatial replicates. 405 

We are confident that these well-replicated, relatively long-term observations minimized the 

influence of transient effects. Furthermore, we know from previous studies that canopy removals 

may trigger a shift to a turf-dominated assemblage in less than one year (Benedetti-Cecchi et al. 

2001, Rindi et al. 2017, Bulleri et al. 2018). Thus, experiments at Capraia and Pianosa run for 

long enough (two and three years, respectively) to ensure that biotic interactions estimated 410 

through the RII index reflected steady conditions. 

When averaged over species, biotic interactions explained 19% of variation (measured by 

Tjur’s R
2
, specific for binary data) (Ovaskainen et al. 2017), with most of the variability 

occurring among years (24%) and localities (13%) (Fig. 5a). Environmental variables collectively 

explained 38% and 56% of variation in models with and without biotic interactions, respectively 415 

(Fig. 5a,b). Thus, biotic interactions accounted for 19% of variability that would have otherwise 

been ascribed to environmental filtering. We used 10-fold cross-validation to quantify the 

predictive power of the model. Biotic interactions improved predictive power for several species 
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as evidenced by three common validation statistics: R
2
, area under the curve (AUC) and the true 

skill statistic (TTS) (Fig. 5c-e). 420 

Biotic interactions also affected the network of species associations in space and time. As 

an example we illustrate species associations at the location scale (Fig. 5f,g). Three groups of 

species were distinguishable at this scale when species interactions were included in the model. 

The largest group (delimited by species 15 and 26) included positively associated species that 

were prevalent in the understory of macroalgal forests on islands; a second group (delimited by 425 

species 1 and 17) included species that typically co-occurred on the mainland or in gaps of 

macroalgal forests and that were negatively associated with the first group; finally, the third 

group included the remaining species that occurred mostly independently of the other species. 

The network of species associations became much less structured when biotic interactions were 

not included in jSDM, now erroneously indicating a positive association of species that typically 430 

occur in the understory of macroalgal forests with those dominating in the absence of a canopy 

(Fig. 5g).  

These results show how biotic interactions can increase the predictive ability of jSDM, 

explaining up to 58% of variation in species occurrences. Environmental filters appeared less 

important after accounting for biotic interactions, suggesting that the effect of biological forcing 435 

can be mistakenly ascribed to abiotic variables if not addressed explicitly. Overestimating 

environmental filters may exacerbate the problem of ‘mirage’ correlations, where spurious 

species associations may emerge due to shared species response to environmental change. 

Indeed, we have shown that positive species associations were more frequent when the influence 

of biotic interactions was erroneously ascribed to environmental covariates. Hybrid datasets can 440 

mitigate this problem, because experimentally derived measures of biotic interactions are not 

subjected to ‘mirage’ correlations. 
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The data hybridization approach shown here can be extended to other species, types of 

interactions and environments. For example, consumer-resource interactions can be implemented 

in jSDM in a similar way as with habitat-forming species and causal effects can be quantified 445 

using any appropriate measure of interaction strength other than the RII index (Berlow et al. 

1999). Furthermore, in addition to biotic interactions, experiments may probe abiotic drivers 

(warming, rainfall, pH, among others) and appropriate effect sizes can be derived for integration 

in hybrid datasets. Finally, experiments do not need to examine one factor at the time. 

Multifactorial experiments addressing several factors and their interactions can also be 450 

implemented in jSDM by translating each effect size in a covariate, as we have done for the 

average RII index. 

CONCLUSIONS 

Increasing causal inferential strength of ecological studies is becoming overwhelmingly 

important in an era where observational data and ecological models play a prominent role to 455 

address large-scale, long-term environmental problems (Connolly et al. 2017, McGill and 

Potochnik 2018). Here, we argue that in addition to articulating better ecological models to make 

sense of observations, ecological experiments still have a key role to play to reduce uncertainty in 

attributing causality in large-scale ecological problems. We propose hybrid datasets and their 

implementation through emerging techniques in time series analysis and macroecology, as a 460 

strategy to leverage the scope and causal inferential strength of ecological studies. This approach 

builds on the increasing availability of observational and experimental datasets, owing to more 

effective sharing practices among scientists and technological innovation for the acquisition, 

storage and dissemination of digital information. Large datasets are mostly observational, but 

distributed experiments are becoming more common and the data they generate are made 465 

increasingly accessible. Thus, the time is ripe to develop formal approaches to data hybridization 
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that go beyond the use of observations as covariates in the analysis of distributed experiments 

(Fig. 1). 

CCM has been designed to identify causality from observational time series, but the power 

of this technique may be compromised with noisy data and when the driving and response 470 

variables are strongly coupled. We have shown how observational time series may fail to identify 

the causal effect of temperature on EMPB. Hybrid datasets that included data from a warming 

experiment, with realistic treatments, correctly identified this asymmetrical causal relation. 

jSDM allow macroecologists to unravel the response of assemblages to global change and 

to project species distributions under future climate scenarios. We have discussed two ways to 475 

generate hybrid datasets in a spatial context and provided an example focusing on biotic 

interactions. Empirically derived measures of species interactions can be readily incorporated in 

jSDM as a covariate, providing a simple and intuitive way to model biotic effects. Our approach 

differs from that of other studies where biotic interactions have been inferred by including the 

abundance of potential competitors or consumers as covariates in jSDM, which is essentially a 480 

correlative approach (Pellissier et al. 2013, Pollock et al. 2014, Mod et al. 2015, Bueno de 

Mesquita et al. 2016). Our method is also more direct than a recently proposed two-stage analysis 

that incorporates species interactions after fitting a species distribution model (Staniczenko et al. 

2017). 

Hybrid datasets can also be developed and analyzed in the context of ‘big-data’. 485 

Opportunities arise with studies examining the molecular mechanisms regulating the response of 

organism to stress. For example, recent studies on microbes and corals have integrated 

observational and experimental approaches to evaluate the effects of global warming on gene 

expression (Barshis et al. 2013, Mock et al. 2016). Hence, the hybridization strategy proposed 

here can also be implemented to increase the scope and causal inferential strength of studies that 490 
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make extensive use of DNA-sequencing techniques, which are amongst the most important 

contemporary sources of ‘big-data’ in ecology. 

There are potential caveats in the analysis of hybrid datasets that require attention. Most 

importantly, scientific questions should have priority over other considerations in deciding 

whether to embark in such analysis. For example, one may be tempted to proceed with the 495 

analysis of hybrid datasets only when experimental outcomes go in the expected direction or 

corroborate a trend already present in the observational data. To avoid confirmatory bias, 

previous knowledge of the outcome of separate analyses on observational and experimental data 

should have no bearing on the final decision to analyze hybrid datasets. Another important aspect 

to keep in mind is that a significant relation between variables in a hybrid dataset does not 500 

necessarily underscore causality over the entire temporal or spatial domain of the analysis. This 

will depend on how many experiments are available for integration and their degree of 

interspersion with the observational data. Well-distributed experiments in space and time will 

increase our confidence in the analysis of hybrid datasets and will have utmost ability to 

distinguish causal relations from mirage correlations. 505 

The potential for developing and analyzing hybrid datasets in ecology and biology is 

enormous. We have discussed several applications and provided real-world examples of the use 

of hybrid datasets, with the hope of motivating further research in this direction. The analysis of 

hybrid datasets should become the standard for research goals that seek causal explanation for 

large-scale phenomena, beyond the limits to causal inference inherent in observations and beyond 510 

the scales encompassed by individual manipulative experiments. 
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Legend to figures 680 

Figure 1. Conceptual approaches integrating observations with experiments. In each panel (a-

c), arrows illustrate the cyclical process where observations (red) motivate experiments (cyan) 

and experiments generate new observations. The interspersion of arrows provides a qualitative 

indication of the level of integration between observational and experimental data. Bars on the 

right side of each panel indicate the relative importance (thickness) and degree of integration 685 

(distance between bars) between scope (SC) and causal inferential strength (CI). (a) The 

logical dependence of observations on experiments is at the core of the scientific method and 

it is the typical level of integration between observational and experimental areas of scientific 

inquiry (Underwood 1997). Observational and experimental data are logically linked when 

experiments seek to explain the processes underlying observed patterns and trends in 690 

ecological variables. In this framework, observations do not contribute to increase the causal 

inferential strength of experiments. (b) A further level of integration is possible by treating 

observations as covariates in the comparative experimental approach (Menge et al. 2002, 

Hewitt et al. 2007). A statistical relationship between observational and experimental data can 

be established when identically designed experiments are distributed along relevant axes of 695 

environmental variation (e.g., latitudinal or elevational gradients) and ancillary data are 

collected to characterize the environment. Factoring out potential confounding effects through 

covariates strengthens causal inferential strength in the analysis of distributed experiments. (c) 

Hybrid datasets: short experimental time series of predictor and response variables can be 

joined with longer observational time series of the same variables and probed for causality 700 

using emerging techniques such as convergent cross-mapping (CCM; see Case study 1). 

Similarly, hybrid species abundance matrices combining experimental data with large-scale 

observations can be used to increase the causal inferential strength and statistical power of 

Page 28 of 39Ecology



For Review Only

 

 

 28 
 

joint species distribution models (jSDM). Experimentally-derived effect sizes (e.g., species 

interaction strengths) can also be hybridized with species occurrence data to obtain a plot-level 705 

covariate to use in jSDM (see Case study 2). 

Figure 2. Detecting causality from time series. (a) The canonical Lorenz attractor (a classical 

example of an attractor manifold originating from a system of ordinary differential equations 

originally developed to model atmospheric circulation). Time series of individual variables 

originate as projections of the system state onto one of the coordinate axes as time unfolds 710 

(shown here by the red line for variable Z); (b) a generic example of CCM: the nearest 

neighbors to a focal point on predictor manifold MX (white and black dots, respectively) are 

mapped to MY and used to predict the target value ��(t)|MX; (c) simulated time series of two 

competing species and (d) CCM for the simulated time series of the two competing species. 

Figure 3. Application of CCM to hybrid time series. (a) hypothetical hybrid time series 715 

integrating observations of a driver (orange) and a response (blue) variable with data from a 

press experiment (red; see text and Appendix S1 for further details); (b) example of a pulse 

experiment where a hybrid dataset is generated for the driver (experimental data shown as a 

continuous red line, observations in orange). The response variable is shown as a dotted blue 

line; (c) real-world observational time series of temperature (orange) and chlorophyll a (chl) 720 

concentration on a rocky intertidal shore (blue lines, with line type showing different 

replicates). The plot shows daily temperature values, although only monthly maxima were 

used in the analysis to match chl data; (d) CCM fails to identify the correct causal relation 

between temperature and chl in the observational dataset (bootstrap test: P>0.05 for chl cross-

mapping temperature and P<0.01 for temperature cross-mapping chl; analysis on scaled data; 725 

embedding dimension E=2 for temperature and 3 for chl; shaded regions are 95% 

bootstrapped confidence intervals); (e) hybrid time series integrating observational (orange) 
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and experimental (red) values of temperature and chl concentration (blue) from replicated 

experimental plots (dotted lines indicate plots exposed to warming events 1 and 2, occurring 

60 days apart; dashed lines indicate plots exposed to warming events 3 and 4, 15 days apart); 730 

(f) CCM correctly identifies the asymmetrical causal relation between temperature and chl. 

Cross map skill increased significantly for chl cross-mapping temperature (red line, P<0.001, 

bootstrap test), but not when using temperature to cross map chl (blue line, P>0.05) (analysis 

on scaled data; embedding dimension E=4 for temperature and 2 for chl; shaded regions are  

bootstrapped standard errors). 735 

Figure 4. Two paths to generate hybrid spatial datasets. These include direct concatenation of 

experimental and observational data to increase sample size (Path 1) or the derivation of an 

effect size for each species from the experiment that is then translated into a covariate to be 

included in jSDM (Path 2). Depending on the nature of the experiment (a hypothetical canopy-

removal experiment in this example), effect sizes can reflect the importance of species 740 

interactions such as the RII index discussed in the main text or other measures of interaction 

strength. Experimentally estimated species-specific effects are indicated here for the generic 

species i as �� (with i varying from 1 to s). The average effect size over the species present in 

the generic observational plot p are indicated as ��� (plots from 1 to n). 

Figure 5. Application of jSDM to hybrid datasets. (a) variance partitioning for jSDM with biotic 745 

interactions and (b) without biotic interactions. (c) comparison of R
2
 (d) area under the curve 

(AUC) and (e) true skill statistic (TSS) values between models with and without biotic 

interactions (identity lines in red); (f) species association networks (Pearson correlation) at the 

location scale for jSDM with biotic interactions and (g) without biotic interactions. 
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Hybrid datasets: integrating observations with experiments in the era of macroecology and big-

data 
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Description of datasets 

Description of code 

 

Convergent Cross Mapping (CCM), bootstrap and probability test 

 

CCM uses data points on the reconstructed manifold of one variable (e.g., variable X on manifold MX) 

to predict concurrent points (i.e. at the same time) on the manifold reconstructed from another variable 

(e.g., variable Y on manifold MY). If variables X and Y are causally related, the time indices of nearby 

points on the manifold of one variable will correspond to nearby points on the manifold of the other 

variable allowing for accurate predictions using cross-mapped points form one manifold to the other 

(Fig. 2b in main text). If causation is asymmetrical – e.g., variable X causes variable Y – only the time 

indices of nearby points on the manifold of Y will correspond to nearby points on the manifold of X, but 

the reverse is not true because the forcing variable X contains no information about the response 

variable Y. Due to this asymmetry, forecasting skill (ρ) will increase with increasing time series length 

(L) only when predicting from the response to the forcing variable (Figs. 2d, 3d and 3f in main text). 

 

Two statistical approaches are used to differentiate between causal and non-causal relations in CCM: 

bootstrapping and probability testing. Bootstrapping, as implemented by function CCM_boot in 

package multispatialCCM, involves resampling with replacement n spatial replicates n times and 

repeating CCM on these resampled replicates for the best embedding dimension E (Clark et al. 2015). 

This procedure is repeated 1000 times to build bootstrapped standard errors (the sample standard 

deviation of the bootstrapped distribution) around mean ρ (Figs. 3d and 3f in main text). The 

probability test assesses whether ρ is significantly larger than zero and increases significantly with L. 

Probability is computed as 1 minus the percentage of times ρ at maximum L is simultaneously greater 

than zero and larger than ρ at the shortest L in the bootstrapping iterations (Clark et al. 2015). 

 

Diagnostics and forecasting ability of CCM 

 

Embedding dimension 

The reconstruction of an attractor manifold requires the identification of the best embedding dimension 

E – i.e., the number of time steps used for prediction (see Box 1 in main text) (Sugihara et al. 2012). 

We used function SSR_pred_boot in package multispatialCCM (Clark et al. 2015), which employs 

cross-validation to assess the predictive ability of reconstructed attractors for a range of E values. We 

run the analysis for chlorophyll and temperature time series separately. The best E is the one providing 

the highest predictive power from one time-step to the next, based on Pearson correlation. Results are 

illustrated in Fig. S1a,c, with best values of E identified by dashed lines. 

 

Nonlinearity and forecasting 

An underlying assumption of CCM is that the system under investigation undergoes nonlinear 

dynamics (Sugihara et al. 2012, Clark et al. 2015). A diagnostic of this behavior is the decay of 

predictive ability with increasing prediction step. Our expectation is that the analysis has reasonable 

predictive ability for short time steps and that predictive ability decreases with increasing time horizon. 
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We used function SSR_check_signal for this analysis, with the best E selected before. Results are 

illustrated in Fig. S1b,d, separately for chlorophyll and temperature time series. We note that 

forecasting ability at step one is larger for hybrid (Fig. S1d) than purely observational (Fig. S1b) time 

series (0.789 vs. 0.675). One caveat of this analysis is that a linear system dominated by autocorrelated 

(‘red’) noise could still show the same decay of prediction skill with time, but in this event the CCM 

analysis should highlight no causal link in either direction, since increasing information about the 

system will not increase predictive power. Our CCM identified a significant increase of cross map skill 

with time series length for chl cross-mapping temperature, but not in opposite direction (Fig. 3c-e), 

indicating that spurious effects due to autocorrelation were unlikely and suggesting a true causal effect 

of temperature on chl. 

 
Figure S1. Best embedding dimension E and test of nonlinearity for purely observational (a,b) and 

experimental (c,d) time series of chlorophyll and temperature data. Hybrid time series were assembled 

only for temperature, by replacing observed daily maxima with the values imparted experimentally. 

Chl data from pulse experimental plots were already hybrid time series, incorporating natural and 

experimental effects of temperature variation (See main text for details). Dashed lines highlight the best 

E used in CCM. 
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Simulation of a two species competition system 
 

This simulation follows the procedure described in Sugihara et al. (2012) and it is based on a two-

species, discrete-time competition model as implemented in function make_ccm_data of package 

multispatial CCM (Clark et al. 2015). Time series of abundances of species X and Y were generated as: 

 

( 1) ( )( ( ) ( ))x xX t X t r r X t Y tβ+ = − −  

 

( 1) ( )( ( ) ( ))y yY t Y t r r Y t X tα+ = − −  

 

where t is time, rx and ry are species’ intrinsic growth rates and α and β are interspecific interaction 

coefficients. Fig. 2c illustrates the results of one realization of the simulation with parameters chosen to 

reflect asymmetrical competition. The full set of parameters and code for this simulation are specified 

in R function CompetingSpecies.R (see Description of code below to access the function). 

 

Simulation of hybrid time series (Fig. 3a in main text)  

 

We started this toy example by simulating a time series of a hypothetical predictor variable using an 

autoregressive integrated moving average (ARIMA) model (orange line in Fig. 3a of main text). The 

value of the response variable at each time step was generated as a 30% reduction of the value of the 

predictor at the previous time step, plus random noise (blue line in Fig. 3a of main text). These series 

were then scaled to vary between zero and one. In this way we simulated observations that were 

causally related and where the predictor caused a lagged response one step ahead. Time series from a 

hypothetical press experiment were generated by maintaining the value of the predictor 20% above the 

mean of the observational time series and imposing an effect size on the response variable consisting of 

a 50% reduction of the value of the predictor at the previous time step. A small amount of random 

variation was added to both the predictor and the response variables. The hybrid dataset was obtained 

by replacing observational with experimental values of the hypothetical predictor and response time 

series between time steps 21 and 30 (red lines in Fig. 3a of main text). For the pulse experiment 

example (Fig. 3b in main text) we simply introduced two spikes in the response variable at times 15 

and 30. Parameters and code are specified in R function Fig3.R (see Description of code below to 

access the function). 

 

Description of datasets 
 

Datasets are provided in R (extension: .RData) and are available on figshare at 
https://figshare.com/s/5dcf6dae011c15d71c39 

 

Chlorophyll data 

biofilm_cont – dataset containing observational chlorophyll and temperature data for CCM analysis 

biofilm_treat – dataset containing experimental chlorophyll and hybrid temperature data for CCM 

analysis 

biof_control_plot – includes sampling date, the original chlorophyll values as in biofilm_cont, 

normalized chlorophyll values and paired temperature maxima. Used for plotting 

temp_C – daily observed temperature data for plotting 

biof_treat_plot – includes sampling date, the original chlorophyll values as in biofilm_treat, 

normalized chlorophyll values and paired temperature maxima. Used for plotting 
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temp_T – daily hybrid temperature data for plotting 

plot_ccm_cont – results of CCM on observational data. Used for plotting 

plot_ccm_treat – results of CCM on observational data. Used for plotting 

 

Spatial community data 

hmsc_dat – species presence-absence data 

pred_vars – environmental covariates and mean interaction strength index (mean.rii) 

cross_test_rii_30 – results of cross-validation analysis using function hmsc.crossval.parallel, designed 

for parallel computing. Used for plotting the results. 

 

Description of code 

 

R scripts are available on figshare at https://figshare.com/s/ff3d1f4f01095e36977e 

 

Chlorophyll data 

CCM_biofilm.R – function to perform CCM analysis on chlorophyll data 

CompetingSpecies.R – code for competing species simulation; used to generate Fig. 2c,d 

Fig.3.R – code to generate Fig. 3 in the main text 

 

Spatial community data 

hmsc.crossval.parallel.R – function to perform cross-validation on hmsc models 

hmsc.R – function to reproduce the results of the jSDM analysis in the main text 
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