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In this Letter we present, in a number conserving framework, a model of interacting fermions in a two-
wire geometry supporting nonlocal zero-energy Majorana-like edge excitations. The model has an exactly
solvable line, on varying the density of fermions, described by a topologically nontrivial ground state wave
function. Away from the exactly solvable line we study the system by means of the numerical density
matrix renormalization group. We characterize its topological properties through the explicit calculation of
a degenerate entanglement spectrum and of the braiding operators which are exponentially localized at the
edges. Furthermore, we establish the presence of a gap in its single particle spectrum while the Hamiltonian
is gapless, and compute the correlations between the edge modes as well as the superfluid correlations. The
topological phase covers a sizable portion of the phase diagram, the solvable line being one of its
boundaries.
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Introduction.—A large part of the enormous attention
devoted in the last years to topological superconductors is
due to the exotic quasiparticles such as Majorana modes,
which localize at their boundaries (edges, vortices,…) [1,2]
and play a key role in several robust quantum information
protocols [3]. Kitaev’s p-wave superconducting quantum
wire [4] provides a minimal setting showcasing all the key
aspects of topological states of matter in fermionic systems.
The existence of a so-called “sweet point” supporting an
exact and easy-to-handle analytical solution puts this model
at the heart of our understanding of systems supporting
Majorana modes. Various implementations in solid state
[5,6] and ultracold atoms [7,8] via proximity to super-
conducting or superfluid reservoirs have been proposed, and
experimental signatures of edge modes were reported [9].
Kitaev’s model is an effective mean-field model and its

Hamiltonian does not commute with the particle number
operator. Considerable activity has been devoted to under-
standing models supporting Majorana edge modes in a
number-conserving setting [10–14], as in various exper-
imental platforms (e.g., solid state [10,11] or ultracold
atoms [12,13]) this property is naturally present. It was
realized that a simple way to promote particle number
conservation to a symmetry of the model, while keeping the
edge state physics intact, was to consider at least two
coupled wires rather than a single one [10–12]. However,
since attractive interactions are pivotal to generate super-
conducting order in the canonical ensemble, one usually
faces a complex interacting many-body problem.
Therefore, approximations such as bosonization [10–12],
or numerical approaches [13] were invoked. An exactly

solvable model of a topological superconductor in a
number conserving setting, which would directly comple-
ment Kitaev’s scenario, is missing (see however Ref. [14]).
In this Letter we present an exactly solvable model of a

topological superconductor which supports exotic
Majorana-like quasiparticles at its ends and retains the
fermionic number as a well-defined quantum number. The
construction of the Hamiltonian with local two-body
interactions and of its ground state draws inspiration from
ideas on dissipative state preparation for ultracold atomic
fermions [15–17], here applied to spinless fermions in a
two-wire geometry. The solution entails explicit ground
state wave functions, which feature all the main qualitative
properties highlighted so far in approximate analytical
[12,18,19] and numerical [13,19] studies for this class of
models, with the advantage of being easy to handle.
In particular, we establish the following key features:

(i) the existence of one (two) degenerate ground states
depending on the periodic (open) boundaries with a twofold
degenerate entanglement spectrum; (ii) the presence of
exponentially localized, symmetry-protected edge states
andbraidingmatrices associated to this degeneracy; (iii) expo-
nential decay of the fermionic single particle correlations,
even if the Hamiltonian is gapless with collective, quadrati-
cally dispersing bosonicmodes; (iv)p-wave superconducting
correlations which saturate at large distance.
By tuning the ratio of interaction vs kinetic energy of our

model, we can explore its properties outside the exactly
solvable line. The full phase diagram (Fig. 1) is obtained by
means of density matrix renormalization group (DMRG)
calculations. The exactly solvable line is found to stand
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between a stable topological phase and a phase-
separated state.
The model.—We begin by recapitulating some properties

of the Kitaev chain, whose Hamiltonian reads [4]

ĤK ¼
X

j

½−Jâ†j âjþ1 − Δâjâjþ1 þ H:c: − μðn̂j − 1=2Þ�:

Here, J > 0 denotes the hopping amplitude, μ and Δ the
chemical potential and the superconducting gap, respec-

tively; âð†Þj are fermionic annihilation (creation) operators

on site j, and n̂j ≡ â†j âj. This model has (i) two density-
driven phase transitions from finite densities to the empty
and full states at jμj ¼ 2J (for Δ ≠ 0), and (ii) a transition
driven by the competition of kinetic and interaction energy
(responsible for pairing) at Δ=J ¼ 0 (for jμj < 2J). For
jμj < 2J and Δ ≠ 0, the ground state is unique for periodic
boundary conditions, but twofold degenerate for open
geometry, hosting localized zero-energy Majorana modes.
This topological phase is symmetry protected by total
fermionic parity P̂ ¼ ð−1ÞN̂, where N̂ ≡P

jn̂j.
Let us focus on the so-called “sweet point,” namely,

μ ¼ 0, and Δ ¼ J > 0 and real, which enjoys the property
ĤK ¼ ðJ=2ÞPjl̂

†
j l̂j with l̂j ¼ Ĉ†

j þ Âj, Ĉ
†
j ¼ â†j þ â†jþ1

and Âj ¼ âj − âjþ1 (l̂L is defined identifying Lþ 1≡ 1).
For open geometry, the two ground states with L sites
satisfy l̂jjψi ¼ 0, for 1 ≤ j ≤ L − 1, and can be written
[20] as the equal weighted superposition of all even (e) or
odd (o) particle number states:

jψieðoÞ ¼ N −1=2
eðoÞ;L

X

n

ð−1Þn
X

f~j2nð2nþ1Þg
j~j2nð2nþ1Þi: ð1Þ

Here j~jmi ¼ â†j1 â
†
j2
…â†jm jvaci with ji < jiþ1 (ji¼1;…;L)

and N e;L ¼ P
nðL2nÞ; N o;L ¼ P

nð L
2nþ1

Þ.
We now turn to a number conserving version of this

model on a single wire [16]. Indeed, the following model
reduces precisely to the above scenario upon performing a
naive BCS mean field treatment. Consider the Hamiltonian
Ĥ0

K ≡P
jL̂

†
j L̂j, with L̂j ¼ Ĉ†

j Âj, whose exact ground state
wave functions can be obtained as follows. Since
ÂjjψieðoÞ ¼ −Ĉ†

j jψieðoÞ, jψieðoÞ are also ground states of

Ĥ0
K: L̂ijψieðoÞ ¼ 0 because ðĈ†

jÞ2 ¼ 0. As L̂i conserves the

particle number, ½L̂i; N̂� ¼ 0, we can classify ground states
for each fixed particle number sector N by number
projection, jΨ; Ni ¼ P̂N jψieðoÞ. This is implemented by
choosing the state with 2n ¼ N (or 2nþ 1 ¼ N) in the sum
over n in Eq. (1), and adjusting the normalization to
N L;N ¼ ðLNÞ. The positive semidefiniteness of Ĥ0

K implies
that these states, having zero energy eigenvalue, are ground
states. However, once N is fixed, the ground state jΨ; Ni is
unique, as follows from the Jordan-Wigner mapping to the
Heisenberg model [21]. The topological twofold degen-
eracy is lost.
Guided by the previous analysis, we construct an exactly

solvable topological two-wire model with fermionic oper-
ators âð†Þj , b̂ð†Þj . In addition to those involving each wire
L̂aðbÞ;j ¼ Ĉ†

aðbÞ;jÂaðbÞ;j, we introduce new operators L̂I;j ¼
Ĉ†
a;jÂb;j þ Ĉ†

b;jÂa;j. The Hamiltonian

Ĥ ¼
X

α¼a;b;I

XL−1

j¼1

L̂†
α;jL̂α;j ð2Þ

coincides with the λ ¼ 1 point of the following more
general model:

Ĥλ ¼−4
XL−1

j¼1;α¼a;b

½ðα̂†j α̂jþ1þH:c:Þ− ðn̂αj þ n̂αjþ1Þþλn̂αj n̂
α
jþ1�

−2λ
XL−1

j¼1

½ðn̂aj þ n̂ajþ1Þðn̂bj þ n̂bjþ1Þ− ðâ†j âjþ1b̂
†
j b̂jþ1

þ â†j âjþ1b
†
jþ1b̂j−2b̂†j b̂

†
jþ1âjþ1âjþH:c:Þ�: ð3Þ

Ĥλ conserves the total particle number N̂ ¼ N̂a þ N̂b and
the local wire parities P̂a;b ¼ ð−1ÞN̂a;b , which act as
protecting symmetries for the topological phase. The
coupling λ tunes the relative strength of the kinetic and
interaction terms similarly to Δ=J in ĤK. Although only
λ ¼ 1 is exactly solvable, we will later consider λ ≠ 1 to
explore the robustness of the analytical results. The phase
diagram is anticipated in Fig. 1.
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FIG. 1 (color online). Phase diagram for the number and local
parity conserving two-wire model [Eq. (3)] as a function of λ and
filling ν ¼ N=2L obtained through DRMG simulations. The
exactly solvable topological line is at λ ¼ 1 (another, trivially
solvable nontopological line is at λ ¼ 0). For λ > 1, the system
undergoes phase separation (see the density profile hn̂aj i in the
inset). For 0 < λ < 1 and ν ≠ 0, 1, the system is in a homo-
geneous topological phase (see inset). The phase diagram is
symmetric with respect to half filling ν ¼ 1=2 due to particle-hole
symmetry of Ĥλ.
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Exact results for λ ¼ 1.—For a fixed particle number N
and open boundaries, the ground state of Ĥ is twofold
degenerate, due to the freedom in choosing the local parity.
For even N, the ground states read

jψLðNÞiee ¼ N −1=2
ee;L;N

XN=2

n¼0

X

f~j2ng;f~qN−2ng

j~j2nia ⊗ j~qN−2nib;

jψLðNÞioo ¼ N −1=2
oo;L;N

XN=2−1

n¼0

X

f~j2nþ1g;
f~qN−2n−1g

j~j2nþ1ia ⊗ j~qN−2n−1ib;

ð4Þ

where N ee;L;N ¼ PN=2
n¼0ð L2nÞð L

N−2nÞ; N oo;L;N ¼
PN=2−1

n¼0 ð L
2nþ1

Þð L
N−2n−1Þ. The states j~jia and j~qib are simple

generalizations of the states j~ji defined in Eq. (1) to the
wire a and b, respectively. These describe the cases of even
(ee) or odd (oo) particle numbers in each of the wires. For
odd N, the ground states jψLðNÞieoðoeÞ with an even (odd)
number of particles in either wire take the identical sum
structure as above with the normalization N ee;L;N in both
cases. The wave functions [Eq. (4)] are the unique ground
states of the model [22]. An interesting interpretation of
jψLðNÞiσσ0 is in terms of number projection of the ground
state of two decoupled even-parity Kitaev chains
jGi ¼ jψiae ⊗ jψibe :

jψLðNÞiee ∝ P̂N jGi; jψLðNÞioo ∝ P̂N l̂
a†
L l̂b†

L jGi;
jψLðNÞioe ∝ P̂Nl̂

a†
L jGi; jψLðNÞieo ∝ P̂Nl̂

b†
L jGi; ð5Þ

where l̂a
L and l̂b

L are the zero-energy modes of the
decoupled Kitaev wires at half filling. This interpretation
provides intuition that the twofold ground-state degeneracy
is absent for periodic boundary conditions: since on a circle
ĤK has a unique ground state, the ground state of Ĥ with N
particles is also unique [22].
Important evidence of a topologically nontrivial bulk

state is obtained from the double degeneracy of the
entanglement spectrum, which we now compute for one
of the wave functions [Eq. (4)]. To this end, we consider
the reduced state of l sites on each wire ρl ¼
TrðL−lÞ½jψLðNÞieehψLðNÞjee�. Taking the symmetries into
account, it can be written in diagonal form as [22]

ρl ¼
Xminð2l;NÞ

Nl¼0

X

σ;σ0
χðL;NÞ
ðσσ0;l;NlÞjψ lðNlÞiσσ0 hψ lðNlÞjσσ0 ð6Þ

with the following nonzero eigenvalues: for Nl even

χðL;NÞ
½eeðooÞ;l;Nl� ¼ N eeðooÞ;l;Nl

N eeðooÞ;L−l;N−Nl
=N ee;L;N whereas

for Nl odd χðL;NÞ
ðeo;l;NlÞ ¼ χðL;NÞ

ðoe;l;NlÞ ¼ χðL;NÞ
ðee;l;NlÞ. In the odd-

particle number sector the entanglement spectrum is

manifestly twofold degenerate. In the even one, such
degeneracy appears in the thermodynamic limit:

χðL;NÞ
ðee;l;NlÞ=χ

ðL;NÞ
ðoo;l;NlÞ → 1 [see Ref. [22] and Fig. 2(a)].

An interesting insight is provided by Oj≡
hψLðNÞjooâ†j b̂jjψLðNÞiee, where â†j b̂j is the only single-
site operator which commutes with N̂ and changes the local
parities P̂a;b, so that the two ground states can be locally
distinguished. The calculation of such matrix elements
leads to a lengthy combinatorial expression [22] and is
shown in Fig. 2(c). We interpret the exponential decay of
Oj into the bulk as a clear signature of localized edge
modes with support in this region only. At half filling the
edge states are maximally localized, but away from half
filling the number projection increases the localization
length. In the thermodynamic limit, this length diverges
for ν≡ N=2L → 0; 1, indicating a topological phase tran-
sition. We emphasize that this exponential behavior is
different from Refs. [10,11], reporting algebraic localiza-
tion of the edge states, but similar to Refs. [13,19].
Nonlocal correlations of edge states are another clear
indication of topological order and can be proven via
hâ†1âji, which is sizable both at j ∼ 1 and j ∼ L [see the
analytical expression in Ref. [22] and Fig. 2(d)].
Furthermore, the Hamiltonian is gapless and hosts long

wavelength collective bosonic excitations, while the single
fermion excitations experience a finite gap. This is a crucial
property of the ground state; the absence of gapless fermion
modes in the bulk ensures the robustness of the zero energy
edge modes, in analogy to noninteracting topologically
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FIG. 2 (color online). Analysis of model Ĥ. (a) Entanglement
spectrum for a reduced state ρl with l ¼ 60 for L ¼ 240.
(b) DMRG results for the scaling of the gap computed at fixed
parity, which is compatible with L−2 (dashed line); here the
number of kept states is m ¼ 400. (c) Localization of the
edge mode computed via jhψLðNÞjooâ†j b̂jjψLðNÞieej.
(d) Single-fermion edge correlations jhâ†1âjij computed for
a system of size L ¼ 240. The wave function is shift invariant,
such that jhâ†i âiþjij≡ jhâ†1âjij (iþ j ≤ L).
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nontrivial systems. The gapped nature of single fermion
excitations is established via the exponential decay of the
fermionic two-point function, e.g., hâ†i âji. Again, the
resulting formula is a lengthy combinatorial expression
[22], evaluated numerically for very large sizes and plotted
in Fig. 2(d). For ν → 0; 1, the correlation length diverges,
indicating the vanishing of the fermion gap and a thermo-
dynamic, density-driven phase transition in full analogy to
the Kitaev chain.
On the other hand, the analysis of the superfluid

correlations demonstrates the existence of gapless modes.
The p-wave nature of these correlations follows from the
correlation of the pairing operator âjþ1âj. A direct calcu-
lation [22] shows a saturation at large distance

hâ†i â†iþ1âjþ1âji⟶L→∞
ν2ð1 − νÞ2: ð7Þ

Similar expressions hold for cross-correlations between the
wires. The finite asymptotic value in Eq. (7) hints at the
absence of bosonic modes with linear dispersion, which
would lead to algebraic decay. A DMRG analysis of the
excitation spectrum of Ĥ for system sizes up to L ¼ 144
demonstrates a vanishing of its gap ∼L−2 [Fig. 2(b)]. This
indicates the presence of collective excitations with quad-
ratic dispersion. Further support to this statement is
provided from the fact that Eq. (3) without the wire
coupling term reduces to the XXZ model at the border
of its ferromagnetic phase, which hosts quadratically
dispersing spin waves, ω ∼ q2. This dispersion, with
dynamic exponent z ¼ 2, gives rise to an effective phase
space dimension deff ¼ zþ 1 ¼ 3 at zero temperature,
explaining the constancy of superfluid correlations due
to the absence of a divergence in the soft mode correlators.
This finding is special for λ ¼ 1.
Non-Abelian statistics.—We now proceed to demon-

strate that the edge modes obey a non-Abelian statistics
completely equivalent to that of Majorana fermions—i.e.,
Ising anyons. Consider the operator B̂aR;bRðjÞ ¼
ðÎ þ ẐaR;bR;jÞ=

ffiffiffi
2

p
with j < L=2, where ẐaR;bR;j ¼

ðPj
p¼1½

Qp−1
q¼0 ŶaR;bR;q�X̂aR;bR;pÞ=F ðjÞ, with X̂aR;bR;j ¼

ða†Lþ1−jbLþ1−j − b†Lþ1−jaLþ1−jÞ, ŶaR;bR;j¼naLþ1−jn
b
Lþ1−jþ

ð1−naLþ1−jÞð1−nbLþ1−jÞ for j > 0, ŶaR;bR;0 ¼ Î and

F j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½ν2j þ ð1 − νÞ2j�

p
. B̂aR;bRðjÞ is thus exponen-

tially localized at the right edge of the ladder and an
analogous operator B̂aL;bLðjÞ can be defined at the left edge
through the transformation mapping an operator at site l to
site Lþ 1 − l (and viceversa). Similarly, the operators
B̂aR;aLðjÞ and B̂bL;bRðjÞ can be defined through the trans-
formations bLþ1−l → −ial and aLþ1−l → −ibl, respec-
tively. In general, one can define operators B̂mΛ;m0Λ0 ðjÞ
with m;m0 ¼ a; b and Λ;Λ0 ¼ L;R. These operators have
the following key properties: They (i) are exponentially
localized at the edges, (ii) act unitarily in the ground state

subspace, (iii) are particle number conserving, and (iv) most
importantly, provide a representation of Majorana braiding
operators. From this we conclude that the localized edge
modes behave as non-Abelian Majorana fermions [23], in
full analogy to the case of two neighboring Kitaev wires.
Properties (i)–(iii) are demonstrated in Ref. [22], whereas
here we focus on (iv). Strictly speaking, properties (ii) and
(iv) are only true apart from an error which is exponentially
small in j and L, which can always be made negligible. In
this case we can define the braiding operator R̂mΛ;m0Λ0≡
B̂mΛ;m0Λ0 ðjÞ. We initialize the system in the state jψLðNÞiee
and then perform two braiding operations on the edges in
different sequences. If we consider for example R̂aR;aL and
R̂aR;bR we obtain ½R̂aR;aL; R̂aR;bR�jψLðNÞiee ¼ ijψLðNÞioo
[22] which demonstrates the non-Abelian character of these
operations. Moreover, this is the pattern that the conven-
tional braiding operators produce on two neighboring
Kitaev wires R̂0

mΛ;m0Λ0 ¼ eπ=4γmΛγm0Λ0 ¼ ðI þ γmΛγm0Λ0 Þ=ffiffiffi
2

p
, where γmΛ are Majorana operators fulfilling the

Clifford algebra appearing at the left and right
(Λ ¼ L;R) edges of two Kitaev wires m ¼ a; b. This
pattern coincides for the application of ½R̂mΛ;m0Λ0 ;
R̂nϒ;n0ϒ0 � on all jψLðNÞiσσ0 states (see, e.g., Ref. [24]).
In other words, the operators R̂mΛ;m0Λ0 form a number-
conserving representation of Majorana braiding operators
on the ground state subspace.
Numerical results.—To further explore the status of these

results, we now move to the full model Ĥλ away from the
solvable line λ ¼ 1. The study is performed with the
DMRG on systems with sizes up to L ¼ 240 and open
boundary conditions.
We first establish the absence of a topological phase for

λ > 1. The density profile, shown in the inset of Fig. 1 for
ν ¼ 0.5 and λ ¼ 1.01, displays a clear phase-separation
tendency. Analogous data are obtained for other values of ν
(see dark crosses in Fig. 1). These results can be intuitively
understood considering that Ĥλ>1 without interwire cou-
pling can be mapped to a gapped ferromagnetic XXZ
model with domain walls dual to fermionic phase
separation.
For λ < 1, simulations support the existence of a

homogeneous phase (Fig. 1). Note that λ ¼ 0 is a free-
fermion point trivially nontopological. For λ ≠ 0 we
observe (i) two quasidegenerate ground states with different
relative parity and same particle numbers, (ii) a degenerate
entanglement spectrum, (iii) a gap closing as L−1 for fixed
parity, (iv) exponentially decaying single-fermion correla-
tions, and (v) power-law decaying superfluid correlators.
Plots in Fig. 3 display our numerical results. Simulations at
lower filling ν → 0 and small λ are more demanding, owing
to the increasing correlation length of the system. The
numerics is consistent with the phase diagram in Fig. 1
exhibiting a topological phase delimited by three trivial
lines at λ ¼ 0, ν ¼ 0 and ν ¼ 1 and an inhomogeneous
nontopological phase for λ > 1. The exactly solvable

PRL 115, 156402 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

9 OCTOBER 2015

156402-4



topological line at λ ¼ 1 serves as a boundary; the fixed-ν
phase diagram is reminiscent of the ferromagnetic tran-
sition in the XXZ model.
Conclusions.—We presented an exactly solvable two-

wire fermionic model which conserves the number of
particles and features Majorana-like exotic quasiparticles
at the edges. Our results can be a valuable guideline to
understand topological edge states in number conserving
systems. For example, the replacement âi → ĉi;↑; b̂i → ĉi;↓
results in a one-dimensional spinful Hubbard Hamiltonian
without continuous spin rotation, but time reversal sym-
metry. The resulting model with an exactly solvable line
belongs to the class of time reversal invariant topological
superconductors [25], analyzed in a number conserving
setting recently [19], with edge modes protected by the
latter symmetry. Moreover, exactly solvable number con-
serving models can be constructed in arbitrary dimension.
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Note added.—Recently, we became aware of similar results
obtained by Lang and Büchler [26].
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FIG. 3 (color online). DMRG results for model Ĥλ. (a) Entan-
glement spectrum for a reduced state ρl with l ¼ 100 for L ¼ 240
(m ¼ 300). (b) Algebraic scaling of the gap computed at fixed
parity, which is compatible with L−1 (dashed line). Here
m ¼ 420. (c),(d) Single-particle jhâ†i âjij and p-wave superfluid
hâ†i â†iþ1âjâjþ1i correlations at distance r ¼ ji − jj computed in
the bulk of system with L ¼ 240 (m ¼ 300). Analogous data
were obtained for other values of ν, λ (red circles in Fig. 1).
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