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Quasiadiabatic dynamics of ultracold bosonic atoms in a one-dimensional optical superlattice
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We study the quasiadiabatic dynamics of a one-dimensional system of ultracold bosonic atoms loaded in an
optical superlattice. Focusing on a slow linear variation in time of the superlattice potential, the system is driven
from a conventional Mott insulator phase to a superlattice-induced Mott insulator, crossing in between a gapless
critical superfluid region. Due to the presence of a gapless region, a number of defects depending on the velocity
of the quench appear. Our findings suggest a power-law dependence similar to the Kibble-Zurek mechanism for
intermediate values of the quench rate. For the temporal ranges of the quench dynamics that we considered, the
scaling of defects depends nontrivially on the width of the superfluid region.
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I. INTRODUCTION

Ultracold atomic gases in optical lattices provide a unique
platform to probe a wide range of quantum phenomena with
a high degree of controllability. The success of the Bose-
Hubbard (BH) Hamiltonian [1,2] in elucidating the behavior of
ultracold bosons in optical lattices has stimulated a great deal
of interest from both theoretical and experimental points of
view. In particular, the seminal work on the Mott insulator (MI)
to superfluid (SF) quantum phase transition (QPT) [3] paved
the way for a number of studies that led to the observation of
various exotic quantum phases [4,5].

Nonequilibrium quantum effects in such systems can be
investigated by varying in time parameters such as the optical
lattice depth or the magnetic field close to a Feshbach
resonance. Such experimental possibilities have spurred re-
newed interest in the study of both sudden and quasiadiabatic
quenches [6,7]. The latter would provide important insights
into nonequilibrium quantum phase transitions. In the presence
of a ground-state energy gap that is always finite during a
very slow time evolution, the adiabatic theorem guarantees
that the system will remain in the instantaneous ground state
of the corresponding time-dependent Hamiltonian. However,
if a gapless region is crossed, the system will be unable
to stay in its equilibrium ground state, regardless of how
slowly it is quenched. The nonadiabatic evolution inevitably
excites the system, and a number of defects will appear in
the evolved state. The mechanism of such defect formation
was first addressed by Kibble and Zurek (KZ) in the context
of classical phase transitions in the early universe [8,9] and
was more recently extended to the quantum regime for the
case of adiabatic quenches across a single quantum critical
point [10,11].

The possibility to apply this kind of quench has led to
a number of theoretical studies addressing different types
of many-body systems, including spin chains and ultracold
quantum gases (see, e.g., Refs. [12–33]). Despite the large
body of work in this field, several aspects involving the
response of such systems to slow quenches have not been
completely understood and deserve further investigation. It is
believed that, in the presence of nonisolated critical points or
of extended critical regions, the validity of the KZ mechanism

is a priori not obvious, even if in some cases it is still possible
to predict the defect density by identifying a dominant critical
point or by using scaling arguments [20,22,23].

The dynamics of ultracold bosons in an optical lattice
subjected to a quasiadiabatic quench has been theoretically
analyzed for the MI-SF transition as well as the reverse
transition [12,14]. The SF-MI transition for a slow quench
has also been studied while taking the effects of the parabolic
trapping potential into account [30]. These results highlighted
the emergence of a scaling behavior for the characteristic
length scale as a function of the quench rate, which is well
approximated by a power law. However, it has been shown
that, for a phase transition of the Kosterlitz-Thouless type (as
is the case for the MI-SF transition in the one-dimensional
BH model), the exponents depend on that rate and are
generally different from the KZ prediction based on the critical
exponents that are relevant for asymptotically long quench
times [33]. Experimental evidence supporting the growth of
the condensate excitations with a power-law dependence on
the quench rate has been observed for the MI-SF transition
for ultracold bosons in an optical lattice [31]. Furthermore,
for the same transition in a similar system, the observation
of the emergence of coherence and a power-law dependence
of the correlation length on the quench rate for intermediate
quenches has recently been reported [34].

The feasibility of superposing different optical lattices with
distinct frequencies [35] also made the study of local relaxation
dynamics possible in such superlattice setups [36,37]. An
interesting property of these composite structures when they
are loaded with bosonic atoms is that they can facilitate the
generation of multiple lattice-modulated MI phases, which can
isolate SF regions in the parameter space of the system [38,39].
To the best of our knowledge, slow quenches for QPTs in
optical superlattices starting and ending in insulating phases
and crossing a superfluid region in between have not been
addressed so far, and this is the focus of our present work.

Here we consider a one-dimensional (1D) system of
ultracold bosonic atoms loaded in an optical superlattice,
formed by two superimposed optical standing waves with
different frequencies. At zero temperature, this system exhibits
different quantum phases: MI, SF, and a superlattice-induced
MI (SLMI) with periodically modulated on-site occupa-
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tion [38,39]. The superlattice potential is constructed to vary
linearly in time and is chosen in such a way that it crosses a
gapless region in between two insulating regions. We consider
the formation of defects in the final state after the quench
and demonstrate a nontrivial scaling of the excess energy as a
function of the quench rate. We tackle this problem by means
of the time-dependent density-matrix renormalization group
(DMRG) method in the formalism of a matrix-product-state
ansatz [40].

This paper is organized as follows. We start by introducing
our model and discussing the static properties of its ground-
state phase diagram that are relevant to the ongoing discussion
(Sec. II). In Sec. III we define our dynamical protocol and
discuss the formation of defects and the behavior of two-point
correlation functions at the end of the protocol. Finally, in
Sec. IV we draw our conclusions.

II. MODEL AND PHASE DIAGRAM

The model is described by the following Hamiltonian:

ĤSLBH =
∑

i

−J (â†
i âi+1 + H.c.) + U

2
n̂i(n̂i − 1) + λin̂i ,

(1)
where â

†
i ,âi denote the creation and annihilation operators

on site i satisfying the usual bosonic commutation rules,
with n̂i = â

†
i âi being the corresponding number operator. The

parameter J denotes the hopping amplitude, U is the on-
site repulsive interaction strength, and λi quantifies the super-
lattice potential depth. For the period-two optical superlattice
that we have considered, λi has a finite value of λ > 0 for odd
sites, and it is zero for even sites. Hereafter we work in units of
� = 1 and set J = 1 as the energy scale. The critical U value
for the MI-SF transition is located at Uc ≈ 3.3 for λ = 0 [41],
as shown in Fig. 1.

The ground-state phase diagram of model (1) has been
studied by means of mean-field theory [38], quantum Monte
Carlo techniques [42], and the DMRG method [39]. In one
dimension and at integer filling n̄ = 1, this is given in the
λ-U plane as in Fig. 1. Here we identify the various phases
by analyzing the behavior of the ground-state energy gap
� as a function of the system size in the following way.
First, we observe that, for a MI, the energy gap is finite
and coincides with the charge gap �+ − �−, which is the
difference between the energy cost to add (�+) and to
remove (�−) a particle from the system. On a chain of
finite length L, the numerical evaluation of the Mott gap has
been thus obtained by performing three DMRG iterations,
with projections on different number sectors L,L ± 1. The
corresponding ground states respectively give the desired
energies E0, E± = E0 + �±. In the SF region, this gap
vanishes as the inverse of the system size L. The critical points
have been extracted as those in which the product � × L for
the smallest (L = 140) and the largest (L = 200) considered
lengths differed more than 4% (see the insets of Fig. 1).

The nature of the insulating phase (MI or SLMI) depends
on the relative strength of U and λ. A SF region is present
in between these two insulators, and its width decreases with
increasing U . The intervening SF phase arises because of the
competition between the superlattice potential λ and the on-site
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FIG. 1. (Color online) Zero-temperature phase diagram in the
λ-U plane of the Hamiltonian ĤSLBH for a period-two optical
superlattice and with unitary filling. Data have been obtained from
DMRG calculations of the charge gap, which is the energy for adding
or removing a particle from the state with n̄ = 1. The insets show
the ground-state energy gaps as a function of λ and for different
system sizes and two values of U , (a) smaller than Uc (U = 2.5)
and (b) larger than Uc (U = 8.0). The gaps in the SF region close as
the inverse system size L−1. Here and in the subsequent figures the
Hamiltonian parameters λ and U as well as the energy gaps � are
expressed in units of J .

two-body interaction U . For U < Uc, there is only a transition
from a gapless SF to a gapped SLMI at a critical value of λ. But
for U > Uc, there are three possible scenarios. If λ is much
smaller than U , the system remains in the MI phase. When
it becomes comparable to U , the system makes a transition
to the SF phase, and for large values of λ it enters the SLMI
phase.

III. QUASIADIABATIC QUENCH DYNAMICS

In order to probe the slow quench dynamics of ultracold
atoms in an optical superlattice, Eq. (1), it is necessary to
analyze the excitations that are generated when the gapless SF
phase is crossed. In view of the specific features of the phase
diagram, it is convenient to fix a value of U and increase the
parameter λ to drive the system across the MI-to-SF and then
the SF-to-SLMI phase transitions. As can be seen in Fig. 1,
the width of the critical region changes with U . This reflects a
nontrivial dependence of the rate of defect generation with U ,
as discussed later.

We adopt a linear variation in time of the superlattice
potential λ, which is given by

λ(t) = λ0 + (λf − λ0) t/τ . (2)

Here τ denotes the time of the quench, while λ0 and λf =
λ(τ ) are, respectively, the initial and the final values of the
superlattice potential. After fixing the value of U , we choose λ0

and λf such that the system starts from a MI phase and ends in
a SLMI phase (except for the cases with U < Uc, where there
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FIG. 2. (Color online) Excess energy �E(τ ) at the end of the time evolution as a function of the quench time τ . (a) Quench from the MI to
SLMI phase, with a SF phase in between. Here we fix U = 8 and λ : 5.5 → 10.5. The various data sets stand for different system lengths. Our
fitting procedure in the intermediate region gives the values of κ as shown in the legend. The inset shows same data rescaled over the size L.
(b) Quench from the SF to SLMI phase (blue circles: U = 2.5, λ : 0 → 5, L = 100); the green diamonds show the same set as that reported in
(a). The solid straight line is a power-law fit of the DMRG data and gives a value of κ ≈ 1.5754. The inset shows the power-law decay rate κ

for the excess energy in the intermediate scaling region as a function of the on-site interaction U for quenches across the MI → SF → SLMI
phase transitions (U > Uc). Here and in the subsequent figures times are expressed in units of �/J , while excess energies �E are given in
units of J .

is no MI phase). In between the initial and the final insulating
phases, there is a SF region, whose width depends on U . Due
to the presence of a gapless region at the thermodynamic limit
L → ∞, a certain number of defects in the final state after the
evolution will appear, no matter how slowly the quenching is
performed [43]. Below we shed light on these defects.

The system wave function |ψ(t)〉 evolves according to the
time-dependent Schrödinger equation. We computed |ψ(τ )〉
at the final time τ after the quench (2), using a time-evolving
block-decimation strategy [40,44]. We simulated systems up
to L = 200 sites with no more than nmax = 3 bosons per site
and used open boundary conditions. The time interval [0,τ ]
has been discretized into many slices of time length �t � 1,
where Ĥ(t) is assumed to be constant. The corresponding time
evolution operator e−iĤ(t)�t has been expanded by means of a
sixth-order Suzuki-Trotter decomposition [45]. We have been
able to consider a time step �t = 0.05 and reach a threshold for
the discarded states ε = 10−9 by using a bond-link dimension
m � 200 for all our simulations [46].

A. Excess energy

To quantify the defect generation due to the nonadiabatic
crossing of the SF region during the time evolution, we focus
on the residual energy �E(t), defined as the excess energy
above the ground state:

�E(t) = 〈ψ(t)|Ĥ(t)|ψ(t)〉 − 〈ψGS(t)|Ĥ(t)|ψGS(t)〉 , (3)

where 〈ψ(t)|Ĥ(t)|ψ(t)〉 denotes the energy of the system
at time t , while 〈ψGS(t)|Ĥ(t)|ψGS(t)〉 is the instantaneous
ground-state energy for Hamiltonian ĤSLBH at time t . This
quantity serves as an analog of the defect density originally
considered by Kibble and Zurek (see, e.g., Refs. [18–20]).
Let us now discuss its behavior after a time modulation of

the superlattice depth λ(t) from t = 0 to t = τ , as dictated by
Eq. (2). In particular we focus on the scaling of �E(τ ) with τ

for different values of interaction U .
The typical scenario is depicted in Fig. 2(a), where we are

able to distinguish three distinct behaviors as a function of the
quench time. For τ � 1, the dynamics is ruled by the adiabatic
regime typical of slow quenches: the time-evolved wave
function remains very close to the instantaneous ground state
of Ĥ(t). The residual energy follows a power-law behavior

�E ∼ τ−κ , (4)

with κ = 2. This exponent can be obtained within the Landau-
Zener formalism [47], where the quantum evolution is studied
by means of an effective two-level approximation with an
avoided level crossing. We point out that the adiabatic regime
can occur only in the presence of an instantaneous ground-state
energy gap which remains finite along the sweeping (2)
(i.e., for quenches much slower than the inverse square of
the minimum crossed gap, τ � �2

min). Therefore this is a
behavior related to a finite-size effect, which disappears at the
thermodynamic limit where the gap in the superfluid region
is rigorously zero. In the opposite regime of fast quenches
(τ � 1), the dynamics is strongly nonadiabatic, and the initial
state is essentially frozen during the evolution. The excess
energy thus saturates with τ . The intermediate regime in
between is the most interesting one since it is crucially affected
by the critical properties of the region crossed by the system.

In the intermediate regime, our data display a power-law
scaling of the type in Eq. (4). This fairly agrees with the general
behavior predicted by KZ and verified in many cases when the
system is adiabatically driven across isolated quantum critical
points [6]. The KZ mechanism roughly identifies two types
of evolution, either adiabatic or impulsive, according to the
distance from the critical point. The time (distance from the
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critical point) at which the system switches to the impulsive
regime depends on the quench velocity. This simple argument
indeed predicts a power-law scaling form for �E as a function
of τ , with a rate κ expressed in terms of the critical exponents
dictating the phase transition. However, for the crossing of
continuous phase transitions with extended critical regions,
as is in our case, the KZ scaling may still give insightful
information but cannot be regarded as ultimately predictive. In
the specific case of a Kosterlitz-Thouless transition analogous
to that occurring in the BH model at λ = 0, it has been
shown that the exponentially slow gap closure induces a
power-law scaling which generally depends on the quench
rate. The exponent differs from that obtained with the usual KZ
mechanism using the critical exponents of the transition [33].
In our specific situation, the system is quenched from a gapped
to a gapless phase and then to another gapped phase, thus
crossing two QPTs and an extended critical (SF) region (Fig. 1,
for fixed U > Uc). This is an even more complex scenario, in
which it is impossible to grasp the quantitative power-law
scaling predicted by KZ, and hence we expect the emergence
of a more complex and inhomogeneous behavior in terms of
the size of the crossed critical region.

In the case of U = 8 we clearly identify an intermediate
scaling region with κ ≈ 0.95(1), as extracted from fits of the
numerical data [see the solid line in Fig. 2(a), denoting the best
fit of the data series at the size L = 100]. Our results do not
display a significant dependence of κ on L. Notice also that the
excess energy per unit length is universal in the scaling region,
whose width increases with L, due to the gap closure in the
SF phase [inset of Fig. 2(a)]. A qualitatively similar behavior
is observed for a quench from the SF to SLMI phase at fixed
U < Uc; Fig. 2(b) (blue circles) shows an example with U =
2.5. The value κ ≈ 1.58 in the intermediate region obtained
for that case is considerably larger than that for U = 8.

These observations support the evidence that any appropri-
ate scaling analysis should depend nontrivially on U , while
a simple KZ argument cannot predict this complex behavior.
We point out that it is also not guaranteed that κ does not
change with the quench rate, as theoretically predicted for the
MI-SF transition at λ = 0 [33]. In the range of τ we were able
to address, we did not observe such a dependence. However,
as shown in the inset of Fig. 2(b), for quenches across the
phases MI → SF → SLMI with U > Uc, we found a rather
complex dependence of κ on U and hence on the width of
the intermediate SF region. In particular the defect production
rate κ decreases monotonically as a function of the time during
which the system is crossing the gapless region.

We also checked the dependence of κ on the starting and
ending points inside the insulator (we varied λi and λf for
fixed U ). Results in Fig. 3 indicate a tendency toward a slight
decrease of κ if the gapped region crossed by the quench
increases.

B. Correlation functions

Finally, we examined the behavior of the two-point cor-
relation function C(r) = 〈ψ(τ )|â†

i âj |ψ(τ )〉 at the end of the
quasiadiabatic dynamics and observed an exponential decay
with the distance r = |i − j |, as shown in Fig. 4. The two
points i and j have been chosen in a symmetric way with
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FIG. 3. (Color online) Excess energy as a function of the quench-
ing time for fixed U = 5 and a system size L = 100 for different
initial and final points.

respect to the center of the chain in order to minimize boundary
effects, such that i = (L − r + 1)/2, j = (L + r + 1)/2 for
odd r and i = (L − r)/2, j = (L + r)/2 for even r (for
instance, for L = 100 sites, r = 1 corresponds to i = 50, j =
51; r = 2 corresponds to i = 49, j = 51; r = 3 corresponds
to i = 49, j = 52; and so on).

In the inset we plot the correlation function

ξ =
√√√√

∑
r r2〈â†

i âj 〉∑
r〈â†

i âj 〉
, r = |i − j | . (5)

This clearly exhibits a nonmonotonic behavior as a function
of the quench rate τ [48]. In particular we notice that ξ (τ )
is increasing initially in the intermediate scaling region. This
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FIG. 4. (Color online) Two-point correlation function C(r) =
〈ψ(τ )|â†

i âj |ψ(τ )〉 as a function of the distance r = |i − j | and for
different quench times τ . The inset shows the correlation length ξ as
extracted from numerical data as a function of τ . Data are for U = 8
and λ : 5.5 → 10.5. Here we set L = 100. Distances are in units of
the lattice spacing.
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can be attributed to the persistence of quasi-long-range order
which the system gained while quenching through the SF
phase. But after some critical value of τ , we observe that
ξ starts to decrease. Such a behavior is ascribed to the
onset of the adiabatic regime. Since the system ends up in
an insulating phase (SLMI), where the correlation function
decays exponentially, we expect the correlation length to be
small in the adiabatic regime. In particular, the value of τ

at which the transition from the intermediate regime to the
adiabatic regime takes place, obtained from the analysis of
the residual energy (Fig. 2), coincides with that seen for the
correlation length (Fig. 4).

IV. SUMMARY

We have theoretically analyzed the slow quench dynamics
of ultracold bosonic atoms in a one-dimensional optical
superlattice. By considering a linear time dependence of the
superlattice potential, we showed that, when crossing a gapless
superfluid region, the system has the tendency to generate
defects. This fact is due to the adiabaticity loss during the time
evolution, which occurs even when the system is quenched
very slowly. Our results show a complex dependence of the
rate of defect generation on the quench velocity, which cannot
be understood in terms of the Kibble-Zurek physics underlying
the crossing of a single critical point.

From an experimental point of view, the behavior of the
excess energy could be verified by means of time-of-flight
measurements of the correlation length. This, in turn, may
reveal itself to be a simple indicator of the presence or absence
of the power-law scaling regime for the defect production as
a function of the quench velocity. Trapping ultracold bosonic
atoms in optical standing waves is probably the most favorable
setup to probe this kind of physics. Recent experiments
have already verified the power-law behavior [31,34] in
the framework of the Bose-Hubbard model. Moreover, the
capability that has been demonstrated by a variety of out-
of-equilibrium experiments with great accuracy and for large
coherence times, ranging from sudden quenches to adiabatic
variation of the system’s parameters, puts our results arising
from the quenching of the superlattice potential in a favorable
position for verification in the laboratory.
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