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Preliminary Stability Analysis Methods For PrandtlPlane 

Aircraft in Subsonic Conditions 

 

Structured Abstract  

Purpose: The present paper aims to assess the reliability and the limitations of analysing the flight stability of a box-

wing aircraft configuration known as PrandtlPlane by means of methods conceived for conventional aircraft and well 

known in literature. 

Design/methodology/approach: Results obtained by applying vortex lattice methods to PrandtlPlane configuration, 

validated previously with wind tunnel tests, are compared to the output of a “Roskam-like” method, here defined in 

order to model the PrandtlPlane features. 

Findings: The comparisons have shown that the “Roskam-like” model gives accurate predictions for both the 

Longitudinal Stability Margin and Dihedral Effect, whereas the Directional Stability is always overestimated. 

Research limitations/implications: The method here proposed and related achievements are valid only for subsonic 

conditions. The poor reliability related to lateral-directional derivatives estimations may be improved implementing 

different models known from literature.  

Practical implications: The possibility to apply a faster method as the “Roskam-like” here presented has two main 

implications: 1) it allows to implement faster analyses in the conceptual and preliminary design of PrandtlPlane, 

providing also a tool for the definition of the design space in case of optimization approaches 2) it allows to implement 

scaling procedure, in order to study families of PrandtlPlanes or different aircraft categories. 

Social implications: This paper is part of the activities carried out during the PARSIFAL project, which aims to 

demonstrate that the introduction of PrandtlPlane as air transport mean can fuel consumption and noise impact, 

providing a sustainable answer to the growing air passenger demand envisaged for the next decades. 

Originality/value: The originality of this paper lies in the attempt of adopting analysis method conceived for 

conventional airplanes for the analysis of a novel configuration. The value of the work is represented by the 

knowledge concerning experimental results and design methods on the PrandtlPlane configuration, here made 

available in order to define a new analysis tool. 

Keywords: PrandtlPlane; PARSIFAL; Flight Mechanics; Aircraft Design; VLM; Novel Configurations. 

Paper type: Research paper 
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Abstract  

The paper presents a method for the preliminary stability analysis of box-wing aircraft, called PrandtlPlane, proposed 

as a more efficient alternative to present commercial aircraft within the project “PARSIFAL” (Prandtlplane ARchitecture 

for the Sustainable Improvement of Future AirpLanes), funded by European Union under the Horizon2020 Program. 

The presented method is derived from the well-known models proposed by Jan Roskam for conventional aircraft and 

focuses on the evaluation of  and  derivatives responsible for aircraft stability, with the aim of defining a preliminary 

design tool, useful to support the Vortex-Lattice Methods, commonly used for preliminary simulations and 

optimizations of PrandtlPlane aircraft.  

Results obtained from both the vortex-lattice and the “Roskam-like” methods are compared for a reference 

PrandtlPlane configuration and a sensitivity analysis is performed on different configurations generated by varying a 

subset of design parameters Result of such comparison are discussed, analysing the accuracy of “Roskam-like” 

method and identifying the limitations, as well as the possible improvements.  

Introduction 

According to many studies carried out in the last years by European institutions and research bodies (ACARE, 2007; 

European Commission, 2011; EREA, 2012), the key requirements for the future worldwide development of the Air 

Transport System can be summarized as follows:  

 to satisfy the increase of air traffic demand improving flight safety;  

 to cut CO2 and NOx emissions and noise per unit of transport;  

 to make travellers within Europe able to complete their journey within 4 hours (door-to-door).  

Further requirements concern the recyclability of materials, the reduction of emissions during take-off operations and 

the capability of adopting alternative fuels and propulsion concepts.  

In order to fulfil such requirements, the priority research areas indicated in Figure 1 have been defined.  

Figure 1. Priority research areas (EREA, 2012) 

 

Among them, the Aircraft Configuration area plays a significant role in the challenge of improving aerodynamic 

efficiency and, therefore, reducing fuel consumption and pollution. Today, conventional tube-and-wing aircraft have 
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reached a high level of maturity and further significant improvements will be difficult to achieve. In addition, changing 

the shape of aircraft to go far beyond current conventional configurations performance is becoming possible because 

of advances in materials, computational power and design techniques.  

The novel aircraft configurations object of main studies in the last decades are the Blended Wing Body (BWB, Figure 

2-left), the Truss Braced Wings (TBW, Figure 2-center) and the box-wing or PrandtlPlane (PrP, Figure 2-right). 

Figure 2: Blended Wing Body (BWB), Truss Braced Wings (TBW) and PrandtlPlane (PrP) concepts 

   

The PrP solution (Figure 2, right), presents the minimum induced drag among all the solutions available, since it 

represents the engineering application of the “best wing system” concept proposed by Prandtl (1924). According to 

Prandtl and as confirmed by further studies carried out at University of Pisa (Frediani and Montanari, 2009), the 

multiplane that provides the minimum induced drag for given lift and wingspan is a box-wing system, in which the 

induced velocities on the horizontal wings are constant along the wingspan and null on vertical wings (Figure 3). 

Figure 3: Aerodynamic forces distribution of the “best wing system” (Frediani and Montanari, 2009)

 

Such important benefit makes the PrandtlPlane concept attractive for many applications in the commercial aircraft field 

(Frediani et al. 2012, Cavallaro and Demasi 2016). In addition,,previous studies on the PrandtlPlane concept applied 

to Light Sport Aircraft/Ultralight aircraft have shown further advantages concerning flight mechanics which confer to 

PrandtlPlane the capability of fulfilling the flight safety improvement requirements.  
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As described in details in (Frediani et al., 2015), both numerical and experimental activities, including flight tests on 

scaled models, performed within the project IDINTOS, have shown the following advantages of the PrandtlPlane 

configuration: 

 the wing loading is lower on rear wing and higher on front wing, which implies that stall occurs on the front wing 

first. When this happens, the rear wing introduces a significant negative pitching moment which increases 

longitudinal stability and makes the stall occurrence very smooth. In addition, when front wing is stalled the control 

surfaces on rear wing remain effective, allowing the pilot to control the aircraft even in post-stall conditions. Such 

“anti-stall” behaviour reduces the stall speed of the PrandtlPlane with reference to conventional airplanes, allowing 

safer take-off and landing operations and reducing the runway length necessary for such flight phases; 

 pitch control can be performed by means of counter-rotating elevators, placed on front and rear wings, which 

introduce a pitching moment as a pure couple instead as the result of vertical force applied on the tail; this 

increases manoeuvring precision, improving safety in all the flight conditions in which the aircraft is close to the 

ground; 

 since the two wings are placed at a significant distance from the centre of gravity, the pitch damping moment is 

higher than in a conventional case; as a consequence, the longitudinal stability is improved, with benefits on the 

safety side, as well as for the flight comfort. 

The PARSIFAL Project 

The present paper concerns part of the on-going research activities related to the project PARSIFAL (“Prandtlplane 

ARchitecture for the Sustainable Improvement of Future AirpLanes”), which has been funded by the European Union 

and is coordinated by the University of Pisa (Italy). The other partners are Delft University of Technology (Delft, 

Netherlands), ONERA (Meudon, France), ENSAM (Bordeaux, France), DLR (Hamburg, Germany) and SkyBox 

Engineering (Pisa, Italy). The research team is supported by an External Expert Advisory Board, made of 

representatives of aircraft manufacturers, airport management companies and airlines, which supports the consortium 

in order to maximize the impact of PARSIFAL outcomes. 

PARSIFAL main objective is to design aircraft with the same wingspan of Airbus 320/Boeing 737 but with increased 

payload capabilities, similar to Airbus 330/Boeing 767 ones. Such improvement is possible thanks to the higher 

aerodynamic efficiency of the PrandtlPlane lifting system, which allows to reduce the wingspan without increasing fuel 

consumption (Jemitola and Fielding, 2012), and to new cabin layout options which can both increase the number of 

transported passengers and reduce the turn-around time (Frediani et al., 2017; Abu Salem et al. 2018).  

According to the aforementioned requirements of future aircraft, these features can provide a significant contribution 

for the improvement of the air transport system.  
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Scope of the work 

The activities described in the present paper are part of the preliminary design phase of the project PARSIFAL, in 

which most of the efforts are focused on the definition of the design parameters of the PrP configuration as well as the 

boundary values to be adopted during the following optimization. More in details, the main drivers for the definitions of 

the optimization domain are related to flight mechanics requirements concerning first equilibrium and stability and then 

controllability (Schitanz and Scholz, 2011).  

In past projects, such part of the design activity has been carried out performing a high number of simulations with 

Vortex-Lattice Methods (VLM), in order to evaluate correctly the box-wing aerodynamic behaviour.  

Thanks to the experience achieved from previous research on PrP configurations, the evaluation of box-wing 

characteristics through VLM have been successfully validated by means of wind tunnel tests and, therefore, it is 

possible to consider VLM enough accurate for the preliminary design phases.  

Such assessment provides the reason for the work here presented, in which VLM results are used as a mean of 

comparison to evaluate of the accuracy of a lower fidelity flight mechanics analysis tool, derived from the well-known 

methods used for conventional subsonic airplanes due to Roskam (1983). Such tool would speed-up and facilitate the 

definition of the design domain and, if properly validated, could be considered as an alternative to the VLM for 

optimisation purposes. 

The present paper describes the first steps towards the definition of a method derived from the one proposed by 

Roskam and suitable for PrP configuration. The aim of this work is, in fact, focused on the analysis of part of the flight 

mechanic requirements, indicated here after: 

 positive static stability margin:  

 0 hhn   (1) 

where h and hn are: 

 
a

NP
n

c

X
h 

 
 (2) 

 
a

CG

c

X
h 

 
 (3) 

in which XCG and XNP are, respectively, the longitudinal positions of aircraft Centre of Gravity (CG) and Neutral Point 

(NP) referred to the leading edge of the mean aerodynamic chord (ca̅); 

 directional stability, which depends on the sign of yaw moment (Cn) vs sideslip angle () derivative: 
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 0nC
  (4) 

 dihedral effect, which depends on the sign of roll moment(Cl) vs  derivative: 

 0lC
  (5) 

Next paragraphs provide some information on VLM implementation and validation for the PrP case and illustrate in 

details the model derived from Roskam. Finally a PrP reference configuration is defined and results of both methods 

are presented, including sensitivity analysis for a subset of design parameters. 

Flight mechanic analysis through Vortex-Lattice Methods in subsonic range 

According to previous research carried out at the University of Pisa (Frediani et al., 2007; Frediani et al., 2015), 

focused on the application of the PrandtlPlane configuration to light subsonic aircraft, the preliminary assessment of 

the aforementioned flight mechanic requirements can be performed by using Vortex-Lattice Methods. In particular, the 

use of the code AVL (Drela and Youngren, 2017) has been successfully implemented, both as evaluation or 

optimization tool (Rizzo, 2009), by means of a specific modelling strategy based on the replacement of the fuselage 

with a lifting surface with a similar planform (Figure 4). The choice of the “falt” model for the fuselage is the result of 

previous works, such as Zanetti (2015) for the “IDINTOS” case, in which the AVL accuracy has been investigated for 

several PrP configuration models (flat fuselage, fuselage as a distribution of doublets, fuselage removal, etc.). 

Whereas all the models provide a poor estimation of -derivatives, the flat fuselage model is much more accurate in 

predicting-derivatives, hence its choice represents the best compromise for the conceptual design phase. 

Figure 4. AVL model of a light amphibious PrandtlPlane (Project “IDINTOS”, Frediani et al., 2015) 

 

As detailed in Oliviero et al. (2016), the research activities carried out during the project “IDINTOS” have provided both 

numerical and experimental results concerning the aerodynamics and flight mechanics of the PrP configuration in 

subsonic flight (Cipolla et al., 2016). Given the data shown in Figure 5 (Oliviero et al., 2016), at trim condition (=1°, 

=0°), the following accuracy factors can be calculated: 
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 kL = CL
AVL 

/ CL
WT

 = 0.99 

 km = Cm
AVL

/ Cm
 WT

 = 0.91 

 ky = Cy
 AVL

 / Cy 
WT

 = 0.60 

 kl = Cl
 AVL

 / Cl
 WT

 = 0.87 

 kn = Cn 
AVL

 / Cn
 WT

 = 1.57 

In addition, the accuracy factor for the Static Stability Margin (SSM) can be calculated from previous data as follows: 

 kSSM = (Cm
AVL

/ CL
WT

) / (Cm
AVL 

/ CL
AVL

) = 0.92 

Figure 5. Comparison of results from wind tunnel tests and AVL analyses for the ultralight PrP “IDINTOS” 

(Oliviero et al., 2016) 

 

The accuracy factors presented above can be commented as follows: 

 the sign of each derivative is predicted correctly; 

 the AVL model of the PrP (Figure 4) allows a good evaluation of -derivatives with error margins below 10% of 

wind tunnel values; 

 the Static Stability Margin is predicted with a 10% error margin and in a conservative way; 

 the flat fuselage model, chosen as compromise in terms of AVL accuracy, provides a poor representation of 

fuselage contribution to -derivatives, hence the accuracy factors related to -derivatives are much more distant 

from the value 1, with the only exception of Cl for which the error margin is below 15%. 
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Since the aim of this paper is to assess the accuracy of a “Roskam-like” approach for the evaluation of  and  

derivatives for a generic PrP configuration in subsonic conditions, such accuracy factors can be helpful for the 

interpretation of the comparison between AVL and “Roskam-like” method results.  

Application of conventional methods for aerodynamics derivatives evaluation to PrP 

configurations 

As said, the method here presented is derived from Jan Roskam’s “Methods for estimating stability and control 

derivatives of conventional subsonic airplanes” (Roskam, 1983), which is based on semi-empirical models for the 

evaluation of aerodynamic derivatives of conventional aircraft. 

The method proposed by Roskam has been adapted to the PrP configuration in order to evaluate the aerodynamic 

derivatives in subsonic conditions. Therefore, as for the Roskam method, the hypothesis of absence of transonic 

effects, i.e. that Mach number (M) is much smaller than the critical value, is introduced: 

 M << Mcr (6) 

Since the aim of PARSIFAL project is the study of box-wing aircraft shown, the Roskam method has been applied 

considering the main lifting surfaces of this configurations, illustrated in Figure 2: a front lower wing connected to the 

fuselage, a rear upper wing connected on top of the twin vertical tails, two vertical tip-wings, connecting the front wing 

to the rear one, and the twin vertical tails linked also to the fuselage.  

This complex lifting system is geometrically described through the following main parameters: 

 S:  wing area of each lifting surface; 

 b:  wingspan of each lifting surface, assumed to be equal for front and rear wings; 

 ca̅ or mac:  mean aerodynamic chord of each lifting surface; 

 cg̅:  mean geometric chord of each lifting surface; 

 AR: aspect ratio of each lifting surface, defined as AR = b
2
/S; 

 λ:  taper ratio of each lifting surface, defined as λ = ct /cr, where ct is the tip chord and cr is the root chord; 

 Λ:  sweep angle of each lifting surface, which is typically defined at the leading edge (ΛLE), at the quarter-chord 

point(Λc/4,), or at the half-chord point (Λc/2). For constant λ wing portions, Equation (7) can be used to convert such 

quantities: 

       

























1

14
tantan mn

AR
mcnc

 
(7) 

The following subscripts are introduced to identify the components of the box-wing architecture: 
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 F:  front wing; 

 R:  rear wing; 

 B:  fuselage (or “body”), sometimes used in combination with F or R subscript to indicate wing-body systems; 

 T:  vertical tip-wings; 

 V:  twin vertical tails. 

Since the PrP configurations here considered are characterized by the front wing intersecting the fuselage and the 

rear wing placed on top of the vertical tail, an equivalent area (SF) has been defined only for the front wing by 

projecting the root section towards the longitudinal symmetry plane of the aircraft, as shown in Figure 6. 

Figure 6. Equivalent wing area defined for the front wing 

 

Longitudinal plane derivatives 

CL derivative 

In analogy with Roskam approach, the lift curve slope (CL) of the PrP configuration is calculated trough Equation (8), 

in which the contributions of front wing-fuselage system and rear wing are divided: 

 R

F

R
LFBLL

d

d

S

S
CKCC

RF





 








 1

 
 (8) 

CLF and CLR can be calculated with the following expression, suitable for any lifting surface: 

  
4

)1(

tan
1

)1(
2

2

2

2/

2

2

2

22
3

























MC

MAR

AR
C

c

DL

DL







 

 (9) 

in which Cl is the airfoil lift curve slope. 

Then, the other terms of Equation (8) are calculated as follows: 
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 The interference factor due to the fuselage KFB is given by: 

 


















b

d

b

d
K BB

FB 025.025.01

2

 

 (10) 

where dB is the fuselage diameter; 

 the downwash ratio d/d is given by: 

    19.1

4/cos44.4 cRRA KKK
d

d
 





 
 (11) 

where, KAR, K and KR are referred to the front wing and are calculate as follows: 

 
7.11

11

ARAR
K RA




 
 (12) 

 
7

310 



K

 
 (13) 

 3/1)/2(

/1

bl

bh
K

R

R
R


  (14) 

The terms hR and lR in Equation (14) are defined as follows: 

1. hR is the vertical distance between front wing root chord and rear wing mean geometric chord; 

2. lR is the longitudinal distance between the points located at ¼ of the mean aerodynamic chords of the two 

wings . 

 the dynamic pressure ratio at rear wing ηR is calibrated for the PrP configuration by using AVL, in order to 

introduce a correction with takes the particular downwash conditions on the rear wing into account. Given a PrP 

reference configuration, ηR is evaluated through the following steps: 

1. KFB and dε/dα and are obtained from Equation (10) and Equation (11);  

2. CLF, CLR and CL are calculated using AVL for both the complete configuration and the isolated wings; 

3. ηR is obtained by reversing Equation (8). 

Cm derivative and Stability Margin 

Once the model for CL has been calibrated for the PrP configuration, it can be used to evaluate the static Stability 

Margin (hn) and, hence, Cm: 
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aF

RR

L

LR

nn
cS

lS

d

d

C

C
hh R

BF

















1

 
 (15) 

where hn FB is the aerodynamic centre of the system composed of front wing and fuselage and lR̅ is the distance 

between this latter and rear wing aerodynamic centre.  

In line with the scope of the model here presented, the hn evaluation procedure is simplified by neglecting the 

interference effects due to the fuselage, hence approximating the term hn FB with the neutral point position of the 

isolated front wing (hn F). Hence, Equation (15) has been modified as follows: 

 
aF

RR

L

LR

nn
cS

lS

d

d

C

C
hh R

F

















1

 
 (16) 

where lR is defined as for Equation (14). 

According to Roskam, the longitudinal position of the aerodynamic centre of a generic lifting surface (Xac) can be 

calculated through Equation (17): 

 g

R

ac
ac cK

c

X
KX 








 21

'

 
 (17) 

where Xac and X’ac are referred to the leading edges of mean geometric chord and wing root chord, respectively. The 

terms in Equation (17) can be evaluated from charts (Roskam, 1983) and depend on wing geometry as follows: 

 X’ac/cR depends on AR, M and ΛLE; 

 K1 depends on λ; 

 K2 depends on λ, AR and ΛLE.  

Once the positions of front and rear wing aerodynamic centres are known, it is possible to calculate lR and hence hn 

through Equation (16), in which all the other terms can be calculated as described previously. 

Finally, given the CG position of the aircraft, it is possible to calculate pitch moment -derivative referred to the CG as 

follows: 

 )( nLm hhCC
CG

    (18) 

Sideslip angle derivatives 

Cyβ derivative 

According to approach proposed in Roskam (1983), the sideslip angle derivative of lateral force (Cy V) can be 

calculated using Equation (19) for a single vertical surface on the plane of symmetry or Equation (20) for twin vertical 

surfaces.  
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 (20) 

Although the PrP configuration here considered has twin tails, in general the PrP architecture is compatible with both 

the solutions, therefore some details are hereafter provided for both the cases. 

 In the single vertical surface model (Equation (19)): 

1. SV is the area of the vertical surface (see Figure 7); 

2. k is an empirical factor depending on vertical surface span and fuselage geometry, which value can be found 

from charts (Roskam, 1983); 

3. CLαV is the vertical surface lift coefficient, to be calculated according to Equation (8) ; 

4. the product (1+dσ/dβ)∙ηV , i.e. the sidewash parameter by dynamic pressure ratio at the vertical surface, is 

calculated as indicated in Roskam (1983). 

 In the twin vertical surfaces model (Equation (20)): 

1. SV is the area of one of the vertical panels, calculated as shown in Figure 7; 

2. Cy V(WB) / Cy Veff depends on the span of vertical surfaces and on the distance between them, it can be found 

by means of charts (Roskam, 1983); 

3. Cy Veff depends on the span of vertical surfaces and can be found by means of charts (Roskam, 1983).  

Figure 7. Definition of vertical panel effective geometry 

 

In addition to twin vertical tails, Equation (20) has been used to calculate the Cy contribution given by the couple of 

vertical tip-wings. 
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Clβ and Cnβ derivatives 

As proposed by Roskam (1983), the -derivatives of roll moment (Cl) and yaw moment derivative (Cn) can be 

calculated by summing the contributions given by all the aircraft components: 

 
TVRFB lllll CCCCC  

  (21) 

 
TVRBF nnnnnn CCCCCC  

  (22) 

In particular, the moments generated by any vertical lifting surface (v) are calculated after evaluating Cy and the 

position of its aerodynamic centre: 

 
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 (24) 

where zv and lv are defined as shown in Figure 8 for any vertical lifting surface. Since zv and lv identify the position of 

the aerodynamic centre, they can be calculated using the same approach proposed for the longitudinal plane. In 

particular, Equation (17) can be used to calculate lv, whereas zv depends on the location of the mean aerodynamic 

chord of the vertical surface.  

Figure 8. Definition of vertical and horizontal distance between generic vertical surface aerodynamic centre 

and aircraft CG  

 

In Equation (21), Cl FB can be calculated through the following equation: 
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(25) 

where Γ is the wing geometric dihedral angle,  is the wing twist between root and tip sections of the wing and, 

according to Roskam: 
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 CL is the airplane lift coefficient; 

 (Clβ/CL)
Λc/2

 is the wing sweep contribution depending on λ, AR, Λc/2; 

 KMΛ
 is the compressibility correction sweep depending on M and Λc/2; 

 KB is a fuselage correction factor depending on AR and Λc/2; 

 (Clβ/CL)
AR

 is the aspect ratio contribution depending on λ and AR; 

 Cl/Γ is the wing dihedral effect depending on λ, AR and Λc/2; 

  KMΓ
 is the compressibility correction to dihedral depending on AR, M and Λc/2; 

 Cl /Γ and (ΔClβ)
ZF

 are body induced effects on the wing height depending on fuselage geometry; 

 ΔClβ/(θ∙ tan Λc/4) is a wing twist correction factor depending on AR. 

Then, the term Cl R of Equation (21) is given by: 

 
F

R
ll

S

S
CC

RBR  

 
(26) 

where Cl RB can be obtained from Equation (25) by applying to rear wing the same procedure previously detailed for 

front wing-fuselage system. 

Concerning the evaluation of the directional stability derivative Cn, as said, the contribution of vertical tip-wings and 

twin tails can be calculated through Equation (24), wings’ contributions (Cn F and Cn R) can be neglected at low 

angles of attack and, hence, it is necessary only to evaluate the fuselage contribution Cn B.  

As proposed by Roskam (1983), this term can be calculated by using Equation (27), where: 

 KN is an empirical factor for body and body + wing effects, depending on fuselage geometry and provided through 

on charts; 

 KRl is a correction factor depending on the Reynolds number of the fuselage, which can be obtained from charts; 

 SBS is the side area of the fuselage; 

 lB is the fuselage length. 
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(27) 
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PrP configuration tests cases and results 

Analysis on reference PrP configuration 

Figure 9. Dimensions of the PrP reference configuration used in the Roskam method (half-model)  

 

Figure 10. AVL model of the PrP reference configuration 

 

The PrP reference configuration has the following main characteristics: 

 the main dimensions of the lifting system and vertical tails are shown in Figure 9 and listed in Table 1, shows the 

same configuration as modelled in AVL;  

Table 1. Main dimensions of PrP reference configuration 

Reference dimensions Configuration parameters 

ca̅ [m]  5.46 Front Wing Λc/4 [deg]  38 
S [m

2
]  194 Rear Wing Λc/4 [deg] -20 

b [m]  36 h/b 0.22 
xCG [m]  17.9 l/b 0.70 

Front wing  Rear wing 

Cr [m] (projected) 9.27 Cr [m]  5.60 
Ct [m] 1.50 Ct [m] 1.90 
b [m] 36 b [m] 36 
S [m

2
] 194 S [m

2
] 135 

Λc/4 [deg] 45 Λc/4 [deg] -20 
Γ 4 Γ 0 

AR 6.7 AR 9.6 

 0.16  0.34 

Twin Tails  Fuselage 

Cr [m]  7.91 dB [m]  5.90 
Ct [m] 3.16 lB [m] 39 
b [m] 5.05 SBS [m

2
] 215 
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 front and rear wing sections have the shape of the supercritical airfoil NACA SC20-410 (shown in Figure 11), 

chosen during the preliminary studies of PARSIFAL project (Cipolla et al., 2018); 

Figure 11. Airfoil NACA SC20-410 

 

 vertical tails are made with a NACA 0012 airfoil (Figure 12); 

Figure 12. Airfoil NACA 0012 

 

As indicated in Table 1, the configuration parameters are the sweep angles of both wings, the ratio h/b, and the ratio 

l/b, in which l is defined as the distance between the leading edges of wings’ root chords. 

By applying the calibration procedure explained in Paragraph 0 to the PrP reference configuration the dynamic 

pressure ratio at the rear wing has been calculated, obtaining a value of ηR equal to 0.98.  

It is worth to note that the reference dimensions with which the aerodynamic coefficients have been calculated in AVL 

have been chosen in order to operate in analogy with the method proposed by Roskam for conventional airplanes. 

Therefore, the reference values for wing area, mean aerodynamic chord and wingspan are those related to the front 

wing equivalent area, defined according to Figure 6. 

The aerodynamic derivatives calculated with AVL and “Roskam-like” method, properly implemented in a Matlab 

program, are summarized in Table 2. Results show a good accordance for CL and Cl, a fair accordance for Cm and 

Cy, whereas the error is more significant in Cn estimation. The error concerning Stability Margin evaluation is 

presented in percentage of reference chord in order to have a direct understanding of the implications of such 

differences.  

From the standpoint of the assessment of flight mechanic requirements, in this case Dihedral Effect and Stability 

Margin are well estimated; in addition, being the error on this latter negative, the “Roskam-like” evaluation is 

conservative. On the other hand, the Directional Stability is significantly overestimated, making the “Roskam-like” 

method not conservative.  

 

 

 

Page 16 of 41Aircraft Engineering and Aerospace Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Aircraft Engineering and Aerospace Technology
   

Table 2. Results of comparison for the reference configuration 

Derivatives “Roskam” AVL Error (ref. AVL) 

CL [1/rad] 6.28 6.56 -4% 

Cm [1/rad] -0.23 -0.27 -15% 

Cy [1/rad] -0.84 -0.72 17% 

Cl [1/rad]: Dihedral Effect -0.13 -0.13 0% 

Cn [1/rad]: Directional Stability 0.22 0.15 47% 

hn - h: Static Stability Margin (% ca̅) 3.7% 4.1% Diff.: -0.5% 

 

In terms of accuracy with regards to experimental data, Figure 13 shows how the “Roskam-like” method provides a 

lower accuracy for all the derivatives with the only exception of Cl, thus confirming a good estimation of Dihedral 

Effect. In addition, the prediction of Stability Margin is fair conservative, whereas Directional Stability is overestimated. 

Figure 13. Accuracy factors for the reference configuration 

 

Since such results may be positively affected by the ηR calibration, carried out on this configuration, a sensitivity 

analysis is presented in next paragraph in order to define if the errors between the two evaluation tools are anyway 

related to the configuration.  

Sensitivity to design parameters 

In this section some configuration parameters have been varied, to perform sensitivity tests:  

 Test Case 1: the absolute values of wings’ sweep angles (Λc/4) have been reduced and tip-wings have been 

modified accordingly; 

 Test Case 2: the ratio between vertical distance between wings and wingspan (h/b) has been increased, 

changing the tip-wings length accordingly and moving the double fin vertically without changing its shape; 

 Test Case 3: the ratio between horizontal distance between wings and wingspan (l/b) has been increased, 

changing the tip-wings length accordingly and moving the double fin horizontally without changing its shape. 

As summarized in Table 3, for each design parameter two variations have been introduced: the first one (a) of 10% 

and the second one (b) of 30%. 

Page 17 of 41 Aircraft Engineering and Aerospace Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Aircraft Engineering and Aerospace Technology
 
 

Table 3. Design parameters variations for test cases  

Configuration Parameter Reference Test Case 1a Test Case 2a Test Case 3a Test Case 1b Test Case 2b Test Case 3b 

Front wing Λc/4 [deg] 38 34 (-10%) 38 (0%) 38 (0%) 27 (-30%) 38 (0%) 38 (0%) 
Rear wing Λc/4 [deg] -20 -18 (-10%) -20 (0%) -20 (0%) -14 (-30%) -20 (0%) -20 (0%) 
h/b 0.22 0.22 (0%) 0.24 (10%) 0.22 (0%) 0.22 (0%) 0.29 (30%) 0.22 (0%) 
l/b 0.70 0.70 (0%) 0.70 (0%) 0.77 (10%) 0.70 (0%) 0.70 (0%) 0.91 (30%) 

Test cases 1a and 1b: Λc/4 variation  

The PrP configurations generated by reducing the Λc/4 absolute value of both wings are shown in Figure 14. Fuselage 

and the vertical tails dimension and positions have not changed.  

Figure 14. Configurations of test cases 1a and 1b (half-model, fuselage and vertical tail dimensions as in 

reference configuration) 

 

Results reported in Table 4 and Table 5 show that, with the exception of CL and Cl, the errors have increased, 

although the increase does not seem directly related to the variation of design parameters. As for the reference 

configuration, the Dihedral Effect is well estimated, whereas the Stability Margin evaluation is less accurate as much 

as the design parameters is far from the reference value. Also in this case, the Stability Margin evaluation is 

conservative, whereas Directional Stability is overestimated. 

Table 4. Results of comparison for Test case 1a (-10% Λc/4) 

Derivatives “Roskam” AVL Error (ref. AVL) 

CL [1/rad] 6.44 6.71 -4% 

Cm [1/rad] 0.29 0.19 53% 

Cy [1/rad] -0.96 -0.67 43% 

Cl [1/rad]: Dihedral Effect -0.13 -0.13 0% 

Cn [1/rad]: Directional Stability 0.23 0.14 64% 

hn – h: Static Stability Margin (% ca̅) -4.5% -2.8% Diff.: -1.7% 

 

Table 5. Results of comparison for Test case 1b (-30% Λc/4) 

Derivatives “Roskam” AVL Error (ref. AVL) 

CL [1/rad] 6.67 6.90 -3% 

Cm [1/rad] 0.93 0.70 33% 

Cy [1/rad] -0.96 -0.61 57% 

Cl [1/rad]: Dihedral Effect -0.12 -0.12 0% 

Cn [1/rad]: Directional Stability 0.21 0.13 62% 

hn – h: Static Stability Margin (% ca̅) -13.9% -10.1% Diff.: -3.8% 
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In terms of accuracy compared to wind tunnel data, Figure 15 shows how the “Roskam-like” method provides again a 

good estimation of the Dihedral Effect and a conservative prediction of Stability Margin (which is negative in test cases 

1a and 1b), whereas Directional Stability is highly overestimated. 

Figure 15. Accuracy factors for Test Cases 1a and 1b 

 

Test cases 2a and 2b: h/b variation 

The PrP configurations generated by increasing h/b are shown in Figure 16; fuselage and the vertical tails dimension 

have not changed, although these latter have been moved upwards together with the rear wing. 

Figure 16. Configurations of test cases 2a and 2b (half-model, fuselage and vertical tail dimensions as in 

reference configuration)  

 

Table 6. Results of comparison for Test case 2a (+10% h/b) 

Derivatives “Roskam” AVL Error (ref. AVL) 

CL [1/rad] 6.31 6.60 -4% 

Cm [1/rad] -0.28 -0.36 -22% 

Cy [1/rad] -1.07 -0.80 34% 

Cl [1/rad]: Dihedral Effect -0.15 -0.15 0% 

Cn [1/rad]: Directional Stability 0.26 0.16 63% 

hn – h: Static Stability Margin (% ca̅) 4.4% 5.5% Diff.: -1.0% 

Table 7. Results of comparison for Test case 2b (+30% h/b) 

Derivatives “Roskam” AVL Error (ref. AVL) 

CL [1/rad] 6.37 6.67 -4% 

Cm [1/rad] -0.39 -0.54 -28% 

Cy [1/rad] -1.28 -0.95 35% 

Cl [1/rad]: Dihedral Effect -0.19 -0.19 0% 

Cn [1/rad]: Directional Stability 0.31 0.17 82% 

hn – h: Static Stability Margin (% ca̅) 6.1% 8.1% Diff.: -2.0% 

Results in Table 6 and Table 7 show that, with the exception of CL and Cl,, the errors increase as much as h/b is 

increased, which can be explained with the correlation between the dynamic pressure acting on the rear wing, hence 
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ηR, and the vertical distance between this latter and front wing wake, which is related to h/b. Nevertheless, the Stability 

Margin is fairly and conservatively estimated, even for the higher h/b value. Dihedral Effect is well predicted, whereas 

Directional stability is again overestimated. As Figure 17 shows, the same conclusions of previous test cases can be 

drawn concerning accuracy errors with respect to experimental data.  

Figure 17. Accuracy factors for Test Cases 2a and 2b 

 

Test cases 3a and 3b: l/b variation 

The PrP configurations generated by increasing l/b are shown in Figure 18; fuselage and the vertical tails dimension 

have not changed, although these latter have been moved rearwards together with the rear wing. 

Figure 18. Configurations of test cases 3a and 3b (half-model, fuselage and vertical tail dimensions as in 

reference configuration) 

 

Table 8. Results of comparison for Test case 3a (+10% l/b) 

Derivatives “Roskam” AVL Error (ref. AVL) 

CL [1/rad] 6.32 6.57 -4% 

Cm [1/rad] -1.27 -1.37 -7% 

Cy [1/rad] -0.96 -0.67 43% 

Cl [1/rad]: Dihedral Effect -0.14 -0.13 8% 

Cn [1/rad]: Directional Stability 0.25 0.18 39% 

hn – h: Static Stability Margin (% ca̅) 20.1% 20.9% Diff.: -0.8% 

Table 9. Results of comparison for Test case 3b (+30% l/b) 

Derivatives “Roskam” AVL Error (ref. AVL) 

CL [1/rad] 6.40 6.57 -3% 

Cm [1/rad] -3.40 -3.59 -5% 

Cy [1/rad] -0.96 -0.60 60% 

Cl [1/rad]: Dihedral Effect -0.14 -0.13 8% 

Cn [1/rad]: Directional Stability 0.27 0.23 17% 

hn – h: Static Stability Margin (% ca̅) 53.1% 54.6% Diff.: -1.5% 
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Results in Table 8 and Table 9 do not allow to find a correlation between the error of “Roskam-like” model and l/b 

variation. Contrary to h/b and Λc/4, l/b affects the Dihedral Effect, although the error is quite small. The Stability Margin 

is well and conservatively estimated, whereas the Directional Stability prediction remain not conservative and affected 

by significant errors (although reduced for higher l/b value). 

Figure 19. Accuracy factors for Test Cases 3a and 3b 

 

Also in these test cases, the Roskam-like method accuracy is fairly good for Dihedral Effect and Stability Margin 

evaluation, whereas the Directional Stability is too much overestimated (Figure 19).  

Conclusions and further developments 

In the present paper, a method for the evaluation of  and  derivatives of subsonic airplanes characterized by a 

PrandtlPlane (PrP) architecture is proposed with the aim of introducing a fast preliminary design tools, useful to 

support, and sometimes replace, the Vortex-Lattice Methods (VLM) commonly used for preliminary simulations and 

optimizations.  

In particular, the attention is focused on those derivatives which influence the longitudinal and lateral-directional 

stability of the aircraft, i.e.: CL and Cm, whose ratio defines the Static Margin of Stability, Cl, i.e. the Dihedral Effect, 

Cl, and the Directional Stability Cn. The good accuracy of evaluating such derivatives with the VLM code AVL is 

presented as well, discussing the comparison with wind tunnel data from previous research on PrP aircraft.  

The method here proposed is derived from the well-known models proposed by Roskam (1983) for conventional 

aircraft and it is presented in details in this paper, in order to show which way Roskam models have been adapted to 

the box-wing lifting system of the PrP.  

Results obtained with both the VLM and the “Roskam-like” method have been compared for a reference PrP 

configuration, the same used to calibrate the method itself by means of AVL, and for a series of different 

configurations, generated through the variations of the following design parameters: the front and rear wing sweep 

angles (Λc/4), the ratio between vertical distance between wings and wingspan (h/b) and the ratio between horizontal 

distance between wings and wingspan (l/b). 
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The comparisons have shown that the “Roskam-like” model gives accurate predictions for both the Stability Margin 

and Dihedral Effect, whereas the Directional Stability is always overestimated. More in details: 

 the error on Stability Margin evaluation is lower than 5% of the reference chord for all the configurations 

generated, the prediction is always conservative and the accuracy of CL evaluation is good as well; 

 the error on Dihedral Effect, hence Cl, evaluation is below 1% with the only exception of configurations generated 

by varying l/b, for which the error increases up to 8% making the prediction not conservative; 

 the error on Directional Stability is for most of the cases between 40% and 80% and the prediction is not 

conservative for all of them. 

Concerning the dependence of such results on the variations of design parameters from the reference configuration 

values, used to calibrate the variable dynamic pressure ratio ηR in “Roskam-like” method, for most of the cases a 

correlation is not evident. The main exception is the case of h/b whose increase generates bigger errors, since it 

affects directly the dynamic pressure on the rear wing, hence ηR.  

In addition, for each derivative an “accuracy factor” has been introduced in order to assess of the “Roskam-like” 

method accuracy on a scale derived from results of a VLM with “flat” fuselage, previously validated by means of 

experimental data. 

Both in terms of derivatives and accuracy factors, the comparison between AVL and the “Roskam-like” shows that this 

latter can be used in conceptual and preliminary design phases to evaluate both the Stability Margin and the Dihedral 

Effect of PrP configurations, since the errors introduced in derivatives evaluation are acceptably small and, even 

considering the variation of main design parameters, results are conservative. 

This does not happen for the Directional Stability, for which neither the VLM with “flat” fuselage nor the “Roskam-like” 

method are accurate. Moreover all the data here presented show that the “Roskam-like” method produce not 

conservative results, hence more investigations on Cn evaluation are required.  

Further development may be focused on refining the models adopted for vertical twin tails, e.g. introducing the effects 

of rear wing, and vertical tip wings, whose spanwise side force distribution is different than conventional vertical 

surfaces.  
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