
 

Effects of a strong magnetic field on the QCD flux tube
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In this work we investigate the effect of an external magnetic field B on the shape of flux tubes in QCD
by means of lattice simulations, performed with Nf ¼ 2þ 1 flavors of stout improved dynamical staggered
quarks with physical masses. After having discussed some difficulties in the practical definition of the flux
tube at B ¼ 0, we show that these ambiguities do not affect the determination of the flux tube modifications
induced by the magnetic field. Different results are obtained depending on the relative orientations of the
flux tube and of the magnetic field: they confirm that the magnetic field acts as a transverse confinement
catalyzer and longitudinal confinement inhibitor; moreover, the flux tube itself loses its axial symmetry
when it is not directed along the magnetic background.

DOI: 10.1103/PhysRevD.98.054501

I. INTRODUCTION

Despite the fact that a formal proof of color confinement
in quantum chromodynamics (QCD) is still lacking, Lattice
QCD simulations provided an overwhelming amount of
numerical evidence that color confinement is encoded in
the QCD Lagrangian. Particularly important in this respect
was the observation [1–7] that the field generated by two
opposite static color sources is not a dipole field like in
quantum electrodynamics: most of the field energy density
is concentrated in a linear structure that connects the two
static sources. The features of this linear structure closely
resemble the ones of the flux tubes experimentally observed
in type II superconductors, and for this reason the linear
structure was called color flux tube. Analogous linear net-
works are observed when three or more static color sources
are used [8–11].

The existence of the color flux tube provides an intuitive
explanation for the linearly rising potential between two
opposite static color sources: the slope of the potential (the
string tension σ) is nothing but the energy density per unit
length of the flux tube. As a consequence the study of the
color flux tube imposed itself as a tool to investigate the
origin of the confining potential in QCD in a way that is
independent of the details of the confining mechanism,
even though the very idea of flux tube emerges very
naturally within the dual superconductor scenario for color
confinement [12,13].
The purpose of this paper is to provide a first lattice QCD

investigation of flux tubes in the presence of a magnetic
background field. Various lattice studies have shown that
such an external magnetic field has a strong influence on
the confining properties of QCD [14–17], with the string
tension in the direction parallel to the magnetic field that
is strongly reduced and which, for large enough magnetic
fields, could even disappear. Magnetic field induced
anisotropies could play a relevant role, especially at the
level of heavy quark phenomenology [18–29]. A possible
interpretation of such results can be found in various model
computations [30–43], and looking at the flux tube pro-
vides a way to achieve a better comprehension of the
specific way in which the magnetic field influences the
confining properties of QCD.
A priori various phenomena could indeed take place: the

magnetic field could change the strength of the color field
within the flux tube, but it could also modify the shape of

*claudio.bonati@df.unipi.it
†scali@uni-wuppertal.de
‡massimo.delia@unipi.it
§michele.mesiti@swansea.ac.uk∥fnegro@pi.infn.it
¶andrea.rucci@pi.infn.it
**francesco.sanfilippo@roma3.infn.it

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 98, 054501 (2018)

2470-0010=2018=98(5)=054501(12) 054501-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.054501&domain=pdf&date_stamp=2018-09-04
https://doi.org/10.1103/PhysRevD.98.054501
https://doi.org/10.1103/PhysRevD.98.054501
https://doi.org/10.1103/PhysRevD.98.054501
https://doi.org/10.1103/PhysRevD.98.054501
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


the flux tube itself, which could even become anisotropic
and lose its axial symmetry when the quark-antiquark
separation is not collinear with the magnetic field. Even
if the tube profile remains cylindrical, one can look at the
characteristic lengths that characterize the flux tube and
inquire how they are modified by the presence of an
external magnetic field.
After the introduction in Sec. II of the numerical setup

adopted and of the observables used, a preliminary part of
our study is dedicated to the investigation of the flux tube
at zero magnetic field (Sec. III). Indeed, most studies in the
literature have been performed in pure gauge theories, and
only recently results for full QCD appeared [44]. Therefore
a study of the flux tube properties in Nf ¼ 2þ 1 QCD at
the physical point, using a discretization different from the
one adopted in Ref. [44], is interesting by itself.
This preliminary part will give us the opportunity of

discussing some ambiguities related to the flux tube
definition, that are associated with the smoothing procedure
adopted to improve the signal to noise ratio. Remarkably
these ambiguities are much less severe (and indeed practi-
cally absent) if one is interested only in modifications of the
flux tube induced by the magnetic field. This will be shown
in Sec. IV, where the main results of this paper will be
presented.1 Finally, in Sec. V we report our conclusions.

II. NUMERICAL SETUP

A. Lattice discretization of Nf = 2 + 1 QCD with
a magnetic background

In this work we simulate 2þ 1 flavor QCD making use
of the stout improved rooted staggered fermion discretiza-
tion and the Symanzik tree-level improved gauge action.
More explicitly, the partition function is written as

ZðBÞ ¼
Z

DUe−SYM
Y

f¼u;d;s

detðDf
st½B�Þ1=4; ð1Þ

where DU stands for the product of the SUð3Þ Haar
measure of all the links of the lattice. The gauge action
SYM is given by [46,47]

SYM ¼ −
β

3

X
i;μ≠ν

�
5

6
P1×1
i;μν −

1

12
P1×2
i;μν

�
; ð2Þ

where the symbols P1×1
i;μν and P

1×2
i;μν denote the real part of the

trace of 1 × 1 and 1 × 2Wilson loops. The staggered Dirac
matrix is

ðDf
stÞi;j ¼ amfδi;j þ

X4
ν¼1

ηi;ν
2

ðufi;νUð2Þ
i;ν δi;j−ν̂

− uf�i−ν̂;νU
ð2Þ†
i−ν̂;νδi;jþν̂Þ; ð3Þ

where the ηi;νs are the usual staggered phases, Uð2Þ
i;μ stands

for the 2 times stout-smeared link in position i and direction
μ [48] (with ρ ¼ 0.15 as isotropic smearing parameter) and
ufi;μ is the Abelian field parallel transporter.
The transporters corresponding to a uniform magnetic

field Bz directed along ẑ can be written as

ufi;y ¼ eia
2qfBzix ; ufi;xjix¼Nx

¼ e−ia
2qfNxBziy ; ð4Þ

where qf is the quark charge and all the other Abelian link
variables are set to 1 (Nk is the lattice extent in the direction
k̂ and 1 ≤ ik ≤ Nk). However in this expression the value of
Bz cannot be arbitrary: for Eq. (4) to describe a uniform
magnetic field on a lattice with periodic boundary con-
ditions, the value Bz has to satisfy the quantization
condition [49–51]

e
3
Bz ¼ 2πb=ða2NxNyÞ; ð5Þ

where b is an integer number.
Let us stress that the magnetic field is external: Abelian

transporters ufi;μ are not updated, so quarks interact with the
external magnetic field but they do not backreact on it. In
this way we are neglecting the direct quark-quark electro-
magnetic interactions, while we are properly taking into
account the effect of the external field on the quark loops.
Bare parameters have been chosen in such a way that

simulations stay on a line of constant physics with physical
values of the quark masses. Since the lattice spacing is
independent of the magnetic field [52], we could use for
this purpose the values reported in Refs. [53–55]. Gauge
configurations have been sampled by using the rational
hybrid Monte-Carlo (RHMC) [56–58] algorithm; simula-
tion parameters and details are reported in Table I.

B. Observables

To study the color flux tube in a lattice simulation two
basic ingredients are needed: two static color sources of
opposite charge, that are usually introduced by means of a
Wilson loop (or two Polyakov loops if the temperature is
nonvanishing), and a probe to investigate the field structure,
that is usually a plaquette, i.e., a Wilson loop of size 1 × 1.
The field profile around the static charges is extracted from
the correlation of the plaquette with the Wilson loop for
several positions and orientations of the plaquette.
Two different practical implementations of this general

idea exist in the literature: in the first case [1] one studies
the disconnected correlator between the Wilson loop and
the plaquette

1Preliminary results have been presented at the 35th
International Symposium on Lattice Field Theory (Lattice
2017) [45].
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ρdiscðW;PÞ ¼ hTrðWÞTrðPÞi
hTrðWÞi − hTrðPÞi; ð6Þ

in the second case [59,60] the connected correlator is used
instead

ρconnðW;PÞ ¼ hTrðWLPL†Þi
hTrðWÞi −

1

Nc

hTrðPÞTrðWÞi
hTrðWÞi ; ð7Þ

where Nc is the number of color and L is a parallel
transporter that connects the Wilson loop and the plaquette
(which is often called “Schwinger line”); see Fig. 1 for a
pictorial representation. Note that in both cases, given that
in the present case the electromagnetic field is not dynami-
cal, a possible Uð1Þ charge of the static pair is irrelevant,
since it would just add a phase to the Wilson loop which
cancels in the ratios, while the plaquette operator is by

definition limited to the SUð3Þ part, since we are interested
in the modifications of the non-Abelian fields in the flux
tube induced by the external magnetic background.
These two lattice implementations are not completely

equivalent, as they probe different quantities: in the naive
continuum limit the disconnected correlator ρdisc reduces to

ρμνdisc ≃ −a4g20

�hTrðWÞTr½F2
μν�i

hTrðWÞi − hTr½F2
μν�i

�
¼ −a4g20ðhTr½F2

μνðxÞ�iQQ̄ − hTr½F2
μνðxÞ�i0Þ; ð8Þ

where μ and ν identify the plaquette orientation (no sum on
μ, ν is intended in the rhs), Fμν is the continuum euclidean
field strength, a is the lattice spacing and g0 is the bare
coupling constant. The subscriptsQQ̄ and 0 are used in the
previous expression to denote the cases in which two
opposite static color charges are present in the background
or not. When using the connected correlator ρconn, the
plaquette operator appears in the same trace of the Wilson
loop operator, so in the naive continuum limit the term that
is linear in the non-Abelian field strength at the position of
the probe gives the leading contribution

ρμνconn ≃ a2g0
hTr½iWLFμνL†�i

hTrðWÞi ; ð9Þ

an expression that in the literature is often denoted, for the
sake of simplicity but with a clear abuse of notation,
by a2g0hFμνiQQ̄.
While ρconn and ρdisc display similar behaviors as a

function of the transverse displacement xt, the connected
correlator has a significantly larger signal to noise ratio.
This is related to the fact that using ρconn we access the field
strength and not its square; as a consequence ρconn is much
less sensitive to the fluctuations, which also means that it is
expected to be more stable under smoothing of the gauge
fields. In some cases one is interested precisely in fluc-
tuation effects (e.g., in the study of the fluctuation-induced
broadening of the flux tube), and it is then mandatory to use
ρdisc, which in pure gauge theories can be precisely estimated
using standard noise reduction techniques [61–65]; if this is
not the case and large statistics are not available ρconn is a
more convenient choice [44,66–69]. For these reasons and
to directly compare with the recent results [44] we used the
connected correlator ρconn defined in Eq. (7).
The geometry of the connected correlator ρconn is

depicted in Fig. 1: the Schwinger line L is attached to
the square Wilson loop W in the midpoint of its temporal
extent, it reaches half the distance between the static color
sources and then it moves xt lattice spacings in a direction
orthogonal to the Wilson loop plane. Since ρconn is a purely
gluonic observable, the magnetic field can affect its value
only by loop (sea) effects. In particular, to study different
values of B, different sets of configurations have to be

FIG. 1. Path used to define the first term of the connected
observable ρconn in Eq. (7). The orientations of the Wilson loop
and of the plaquette can in general be different; however in this
paper we focus on the longitudinal component of the chromo-
electric field, in which caseW and P are parallel to each other, as
in the figure.

TABLE I. Simulation details: the bare coupling β, the bare
light quark mass ml (ms=ml was always fixed to 28.15), the
lattice size, the value of the lattice spacing (with a systematic
uncertainty of 2%–3%, see [53–55]), the magnetic quantum b,
the magnetic field intensity eB and the number of independent
configurations Nconfs analyzed, separated by 10–25 molecular
dynamics trajectories.

β ml Lattice
a

[fm] b
eB

[GeV2] Nconfs

3.7500 0.001787 404 0.1249 0 0 51
3.8500 0.001400 483 × 96 0.0989 0 0 19

8 0.26 28
24 0.78 43
32 1.04 20
64 2.08 16
96 3.12 20

3.8950 0.001274 484 0.0898 0 0 23
16 0.63 19
24 0.94 13

3.9575 0.001130 484 0.0796 0 0 22
16 0.80 14
24 1.20 10
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generated. When evaluating ρconn it is important to realize
that the external magnetic field breaks the lattice octahedral
symmetry and Wilson loops oriented along different
directions in general will not be equivalent; analogously,
the two directions that are orthogonal to the plane of the
Wilson loop will not be equivalent for generic magnetic
field orientations (see later discussion).
In order to reduce the UV noise and improve the signal

to noise ratio we adopted, as usual, smearing. With the aim
of simplifying the comparison with previous results in the
literature, we chose the same smearing procedure adopted
in Ref. [44]: a single HYP smearing step [70] has been
applied to all the temporal links, with parameters
ðα1; α2; α3Þ ¼ ð1.0; 0.5; 0.5Þ, then several APE smearing
steps [71] have been applied to the spatial links, according
to the definition

UAPE
μ ðxÞ ¼ ProjSUð3ÞðUμðxÞ þ αAPESμðxÞÞ; ð10Þ

where αAPE was fixed to 1=6 and SμðxÞ is the sum of all the
spatial staples associated to the spatial link UμðxÞ.

III. RESULTS FOR Nf = 2 + 1 QCD AT B= 0

In order to investigate the profile of the flux tube we
measured the longitudinal (i.e., directed along the flux
tube) component of the chromoelectric field El, since all
previous studies showed this component of the field
strength to be the dominant one. If we denote by μ̂ the
axis of the relative separation between the two color
charges, the longitudinal chromoelectric field is given by

Elðd; xtÞ ¼
1

a2

ffiffiffi
β

6

r
ρðt;μÞconnðd; xtÞ; ð11Þ

where d is the distance between the charges, xt is the
transverse distance at which the flux profile is probed and
ðt; μÞ is the plaquette orientation.
Since smearing is used to reduce the UV noise, it is

important to study the dependence of the results on the
amount of smoothing adopted, in order to asses the reliability
of the results. As an example, in Fig. 2 we report the values
obtained for Elðd; xtÞ using a 483 × 96 lattice, with a ≃
0.0989 fm and d ≃ 0.7 fm: results are shown, as function of
the number of APE smearing steps NAPE, for three different
values of the transverse separation xt. It is clear that a
nontrivial dependence on NAPE is present and a prescription
is needed to fix the value of ρconn.
In Refs. [44,67–69] the prescription adopted was to take

the value at the plateau (or at themaximum)which is reached
after some smearing steps; this is analogous towhat has been
done in the literature for similar quantities, like the gauge-
invariant field strength correlators [15,72,73]. This prescrip-
tion implies that the field value has to be taken after different
numbers of smearing steps for different values of xt, since the

plateau (or maximum) is reached for larger values of NAPE
when increasing xt, as can be seen in Fig. 2.
In this study we explore also a different prescription, in

which all field strength values at different xt (and also at
different values of the lattice spacing a) are measured
keeping constant the smearing radius Rs in physical units.
The continuum limit is then taken at fixed Rs, and results
obtained using different smoothing radii can be compared
among them. Such a prescription is similar to the one
adopted to compute renormalized observables using the
gradient flow as a regulator (see e.g., [74]), and the
similarity is even more striking in view of the practical
equivalence between the smoothing techniques [75–78].
We fixed the value of the smearing radius Rs in physical

units according to the following relation (obtained in
Ref. [77]):

Rs ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8αAPE

1þ 6αAPE
NAPE

s
: ð12Þ

This expression slightly differs from the one reported in
[77], since in the present work we adopt a normalization of
the parameter entering the APE smearing that is different
from the one used in the original derivation,

α½77�APE ¼ αAPE
1þ αAPE

: ð13Þ

A further difference is that in this study we use only the
spatial staples in the APE smearing and we update only the
spatial links, while in Ref. [77] a four-dimensional smearing
was studied. This would results in a further multiplicative
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FIG. 2. Dependence on the number of APE smearing steps of
longitudinal chromoelectric field for d ≃ 0.7 fm and three xt
values, measured on a 483 × 96 lattice with lattice spacing a ≃
0.0989 fm [Rs is the smoothing radius in physical units defined in
Eq. (12)].
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factor in Eq. (12), independent ofNAPE and a. Since our aim
is to perform the continuum extrapolation at fixed Rs, this
multiplicative factor is practically irrelevant, and in the
following we will just use Eq. (12).
In Fig. 3 we show some results for the flux tube profile

extracted from simulations performed at lattice spacing a ¼
0.1249 fm (on a 404 lattice) using aWilson loop of physical
size d ≃ 0.7 fm: different symbols correspond to results
obtained using different values of the smoothing radius Rs,
and values extracted from the plateaux are also shown for
comparison. From Fig. 3 it can be seen that not only the
absolute scale of the flux tube depends on Rs but also its
shape. Similar behaviors are observed for all the values of a
and d explored in this work.
Two different strategies can be adopted in order to keep

the size of the Wilson loop constant in physical units while
changing the lattice spacing. An approach consists in fixing
a priori the extent of the Wilson loop in lattice units and the
value of lattice spacing, imposing the constraint of constant
physical size. A different possibility is to perform mea-
sures, for each value of the lattice spacing, using several
Wilson loop extents, in order to be able to interpolate the
results on a wide range of sizes. This second possibility
requires some more care during the analysis, to check for
possible systematics induced by the interpolation pro-
cedure; on the other hand it is much more flexible, since
one can a posteriori decide the optimal size to be used in
order to have small systematics and good signal to noise
ratio. For this reason we adopted the second possibility.
We verified that the interpolation in the smearing radius

is stable (i.e., independent of the interpolating function
adopted) to a high level of accuracy, as could have been

expected given the fact that the dependence on Rs is quite
smooth. More care is needed for the interpolation in the
distance d between the static color charges, since we have
less data points available: for the coarsest lattice we
measured Wilson loop from 4 × 4 up to 7 × 7, reaching
11 × 11 for the finest lattice. However, starting from
d≳ 0.6 fm, results are independent of the order of the
spline interpolation adopted (linear, quadratic and cubic
splines were tested). Using these interpolations we can
compare the results obtained at different lattice spacings
and, as an example, in Fig. 4 we show the outcome of this
analysis for d ≃ 0.7 fm and Rs ≃ 0.5 fm: finite cutoff
corrections seem to be small and more visible for small
values of xt; similar considerations apply to results obtained
for different values of Rs and for the plateau method.
In order to perform the continuum limit of our results in a

model independent way, data at all lattice spacings should
be available for each value of xt. As one can see from
Fig. 4, because of the discrete nature of the lattice distances
this is not the case. In principle, we could think of adopting
the same strategy used above and interpolate, for each
lattice spacing, results obtained at different values of xt.
However, in this case we find it more convenient to make
use of a well-known ansatz for the flux tube profile.
In particular, a parametrization that was shown in

previous studies [44,67–69] to well describe the data for
the longitudinal component of the electric field is the Clem
form

ElðxtÞ ¼
ϕ

2π

μ2

α

K0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2x2t þ α2

p
Þ

K1ðαÞ
; ð14Þ

where ϕ, α and μ are fit parameters andK0,K1 are modified
Bessel functions of the second kind. This parametrization

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

xt [fm]
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0.1

0.2

0.3

0.4
E

(x
t) 

 [
G

eV
2 ]

Rs=0.40 fm
Rs=0.60 fm
Rs=0.80 fm
Rs=1.00 fm
Plateau

FIG. 3. Flux tube shapes obtained using different values of
the smearing parameter Rs and using the plateau method. The
distance between the two opposite static color charges was fixed
to d ¼ 0.7 fm, and measures were performed on a 404 lattice with
a ≃ 0.1249 fm. Continuous lines are cubic spline interpolations
and are shown for the cases Rs ≃ 0.4 fm and Rs ≃ 1.0 fm in order
to guide the eye.
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xt [fm]

0

0.1

0.2

0.3

0.4

E
l(x

t) 
 [

G
eV

2 ]

a = 0.1249 fm
a = 0.0989 fm
a = 0.0898 fm
a = 0.0796 fm
Continuum Limit

0.5 0.6 0.7 0.8
0

0.025

0.05

FIG. 4. Dependence of the flux tube profile on the lattice
spacing at fixed distance between the color sources (d ≃ 0.7 fm)
and fixed smoothing radius (Rs ≃ 0.5 fm). The dashed line
represents the continuum limit performed according to the Clem
ansatz (see text).
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of the longitudinal (chromo)electric field is inspired by a
similar parametrization of the longitudinal magnetic field
around a vortex in type II superconductors, that was
obtained in Ref. [79] by variationally improving an ansatz
solution of the Ginzburg-Landau equations. We checked
that Eq. (14) is consistent with the observed flux tube
profiles for all the values of the lattice spacing, of the
smoothing radius and of the quark-antiquark distance
explored in the present work.
For the purpose of performing the continuum limit,

Eq. (14) is just a reasonably simple functional form that
well describes data using three parameters. From a broader
perspective, however, the fact that Eq. (14) well describes
lattice data supports the dual superconductivity picture of
confinement. In this picture condensation of the chromo-
magnetic degrees of freedom is expected to happen in the
vacuum, confinement is the chromoelectic analogue of the
standard Meissner effect and, in complete analogy with
ordinary superconductors, the vacuum is characterized by
two length scales: the penetration length λ and the coher-
ence length ξ. These scales are related to the parameters
entering Eq. (14) by the relations (see Ref. [79])

μ ¼ 1

λ
; κ ¼

ffiffiffi
2

p

α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

K2
0ðαÞ

K2
1ðαÞ

s
; ð15Þ

where κ ¼ λ=ξ is the Ginzburg-Landau parameter, whose
value discriminates between type I superconductors, cor-
responding to κ < 1=

ffiffiffi
2

p
, and type II superconductors, for

which κ > 1=
ffiffiffi
2

p
(see, e.g., Ref. [80]).

To investigate the lattice spacing dependence of the
results and to extract their continuum limit we used Eq. (14)
with a-dependent parameters. Since in our lattice discre-
tization the leading lattice artifacts are Oða2Þ, we per-
formed a global fit to all the data corresponding to fixed
values of d (quark-antiquark separation) and Rs (smoothing
radius), using the functional form in Eq. (14) with the
substitutions

ϕ → ϕ0 þ a2ϕ1

μ → μ0 þ a2μ1

α → α0 þ a2α1: ð16Þ
Quantities denoted by the “0” subscript are the continuum
values of ϕ, μ and α, while quantities with subscript “1”
parametrize lattice artifacts.
The global fit works reasonably well for all explored

values of Rs as well as for the plateau method. For instance,
for the data in Fig. 4 we obtain a value of the χ2=d:o:f:
around 1.3; moreover the fit parameters are stable, within
errors, when one eliminates data at the coarsest lattice
spacing from the fit. The continuum values of the param-
eters ϕ, μ and α that are obtained in this way are shown in
Figs. 5–7 for three different values of the distance between
the static color charges (d) and several values of the

smoothing radius (Rs). In all cases a sizable dependence
of the results on d and Rs can be seen. Results computed at
fixed smoothing radius converge, for large Rs, to the values
extracted using the plateau method, which displays only a
weak dependence on the value of d used. Also the values of
derived quantities like the Ginzburg-Landau parameter κ
are dependent on the specific values of d and Rs used, as
shown in Fig. 8. In principle, one could try an extrapolation
of continuum results to zero smearing radius, Rs ¼ 0;
however our present accuracy does not permit to perform
that reliably.
For all the combinations of d and Rs values studied we

did not found results incompatible with κ ≲ 1=
ffiffiffi
2

p
: only for

d ≃ 0.66 fm, using the plateau method or large smoothing
radii, results for κ larger than this critical value are obtained,
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FIG. 5. Continuum limit of the parameter ϕ of Eq. (14):
comparison of the extrapolations obtained via the fixed smearing
radius approach and the plateau method.
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which are however compatible with it at one standard
deviation. This behavior favors the interpretation of the
QCD vacuum as a type I superconductor, in accordance
with previous results in the literature [44]; however the
strong dependence of κ on the values of d and Rs makes it
very difficult to draw firm conclusions on the actual value
of κ in QCD.

IV. RESULTS IN A MAGNETIC
BACKGROUND FIELD

The numerical results that will be presented in this
section refer, unless otherwise explicitly stated, to the
483 × 96 lattice with lattice spacing a ≃ 0.0989 fm, that

is the lattice size on which the largest number of simu-
lations with B ≠ 0 have been performed (see Table I).
The presence of the external magnetic field explicitly

breaks some of the symmetries of the QCD Lagrangian,
both in the continuum and on the lattice. Particularly
important for our purpose is the breaking of the rotation
symmetry: the details of the flux tube profile will depend on
the relative orientations of the magnetic field, the Wilson
loop and the transverse direction chosen to probe the
chromoelectric field.
In this work the magnetic field will always be directed

along one of the lattice axes, which we can assume to be the
ẑ direction. The plane of theWilson loop is identified by the
couple of indices ðt; μÞ, with μ ∈ fx; y; zg, and we denote
by ρ̂ the spatial direction, orthogonal to the Wilson loop,
along which the chromoelectric field is evaluated (see
Fig. 1). If the color sources are separated along the
magnetic field, i.e., μ̂ ¼ ẑ, the theory is invariant under
rotations around the ẑ axis and the two possible choices
ρ̂ ¼ x̂ and ρ̂ ¼ ŷ of transverse direction are equivalent. If
instead μ̂ ¼ x̂, the orthogonal directions ρ̂ ¼ ŷ and ρ̂ ¼ ẑ
are not equivalent, and an analogous situation happens for
μ̂ ¼ ŷ. It is however simple to verify that the two combi-
nations μ̂ ¼ x̂, ρ̂ ¼ ŷ and μ̂ ¼ ŷ, ρ̂ ¼ x̂ can be mapped into
each other by using a rotation along the ẑ axes and a
reflection with respect to a plane containing the ẑ axis,
which are symmetry transformations also when a non-
vanishing magnetic field is present. In a similar way it can
be shown that the choice μ̂ ¼ x̂, ρ̂ ¼ ẑ is equivalent to
μ̂ ¼ ŷ, ρ̂ ¼ ẑ. We thus have, under the residual symmetry
that is present when B ≠ 0, three equivalence classes of flux
tubes, that will be denoted by the shorthand L, TT, TL (T
stands for transverse and L for longitudinal with respect to
the magnetic field) and are reported in Table II for later
reference.
The flux tube shapes obtained in the three inequivalent

geometries of Table II are shown in Fig. 9 for eB ≃
3.12 GeV2 (using Rs ≃ 0.5 fm). The intensity of the
longitudinal electric field when the flux tube is directed
along the magnetic field is strongly reduced with respect to
the case in which it is transverse to it. Moreover, in the
transverse case, the flux tube loses its axial symmetry, as

0 0.2 0.4 0.6 0.8 1 1.2

Rs [fm]

0

2

4

6

8
α

Plateau - d=0.76 fm
Plateau - d=0.70 fm
Plateau - d=0.66 fm
Rs - d=0.66 fm
Rs - d=0.70 fm
Rs - d=0.76 fm

FIG. 7. Continuum limit of the parameter α of Eq. (14):
comparison of the extrapolations obtained via the fixed smearing
radius approach and of the plateau method.

TABLE II. Equivalence classes of flux tubes, identified by the
relative orientations of the magnetic field (always assumed to be
directed along ẑ), the Wilson loop [in the plane ðt; μÞ] and the
transverse direction ρ̂, see Fig. 1.

μ̂ ρ̂ Class

ẑ x̂ L
ẑ ŷ
x̂ ŷ TT
ŷ x̂
x̂ ẑ TL
ŷ ẑ
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FIG. 8. Continuum limit of the Ginzburg-Landau parameter κ
[obtained from Eq. (15)]: comparison of the extrapolations
obtained via the fixed smearing radius approach and of the
plateau method. The dotted-dashed horizontal line corresponds to
the critical value 1=

ffiffiffi
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p
.
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seen from the fact that the results for the cases TT and TL
are different from each other. Notice that, in all cases, the
symmetry under the transformation xt → −xt is preserved:
in principle, one could expect asymmetries when the
magnetic field is orthogonal to the quark-antiquark sepa-
ration; however that would imply that the magnetic field
induces a component of the chromoelectric field parallel to
it, and this is protected by the CP symmetry, which is not
broken by the magnetic background.
Also in the presence of a nonvanishing magnetic field the

details of the flux tube strongly depend on the value of the
smoothing radius Rs. However the ratio of the chromo-
electric fields with and without the magnetic field [i.e.,
Elðd; xt; Rs; BÞ=Elðd; xt; Rs; B ¼ 0Þ] is remarkably insen-
sitive to the value of Rs. This is true for all the inequivalent
classes of Table II and for all the values of the transverse
distance xt studied, with some examples shown in Fig. 10.
This means that we can study the effect of the magnetic field
on the flux tube in an unambiguous way and for this reason
the dependence on Rs will be dropped in the following.
Figure 11 shows the changes in the flux tube induced by

the magnetic field. The most striking effect that can be seen
is the strong decrease of the chromoelectric field when the
tube is collinear with the magnetic field (case L), while it
slightly increases in the TT and TL cases. Two less
prominent but still significant effects that are due to the
magnetic field are the following:

(i) in the longitudinal case the flux tube gets squeezed,
since Eðd; xt; BÞ=Eðd; xt; B ¼ 0Þ is a decreasing
function of xt,

(ii) in the transverse case the flux tube loses its cylin-
drical symmetry, since the results for the cases TT
and TL are not equal to each other.

This behavior is consistent with the general picture that
emerges from previous studies of static potential and

screening masses [14,16,17]: the magnetic field acts as
transverse confinement catalyzer and longitudinal confine-
ment inhibitor. However previous studies (with the possible
exception of Ref. [15]) investigated “integrated” quantities
(like e.g., the static potential) and thus could not resolve the
difference between the TT and TL cases.
In the remaining part of this section we will concentrate

on the properties of the flux tube in the L case, i.e., the case
in which the separation between the two color sources is
collinear with the magnetic field. In this setup the cylin-
drical symmetry of the flux tube is preserved, and it is
reasonable to expect the Clem parametrization in Eq. (14)
to well describe the numerical data, which indeed turned
out to be the case.
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FIG. 9. Dependence of the flux tube profile on the orientation
of the magnetic field. Results obtained for eB ≃ 3.12 GeV2

(d ≃ 0.7 fm, Rs ≃ 0.5 fm) are compared with the ones at vanish-
ing magnetic field. Notation is defined in Table II.
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The previously noted fact that the ratios Elðd; xt; Rs; BÞ=
Elðd; xt; Rs; B ¼ 0Þ are independent of the smoothing
radius Rs does not a priori implies the ratios of the fit
parameters entering the Clem expression Eq. (14), like e.g.,
ϕðd; Rs; BÞ=ϕðd; Rs; B ¼ 0Þ, to be also independent of Rs.
This independence is however numerically observed to
hold true with reasonable accuracy: deviations from a
constant do not exceed the 5% for the range of parameters
explored, an example being shown in Fig. 12. As a
consequence, also the ratios of fit parameters computed
with and without the magnetic field can be used to extract
reliable information on the effect of B on flux tubes.
To characterize the properties of the flux tube it is

convenient to use, instead of the fit parameters ϕ, α, μ,
some numerical parameters of more direct physical and
geometrical interpretation. Two such parameters are the
average square width of the flux tube w2 and its energy
density per unit length ϵ, defined by the expressions,

w2 ¼
R
x2t Elðd; xtÞd2xtR
Elðd; xtÞd2xt

ϵ ¼ 1

2

Z
Elðd; xÞ2d2xt: ð17Þ

If we assume for the longitudinal chromoelectric field the
expression in Eq. (14), using known integrals of themodified
Bessel functions (see, e.g., Eqs. 5.52.1 and 5.54.2 in
Ref. [81]) it is not difficult to prove the relations [44]

w2 ¼ 2α

μ

K2ðαÞ
K1ðαÞ

ϵ ¼ ϕ2μ2

8π

�
1 −

K0ðαÞ2
K1ðαÞ2

�
; ð18Þ

that can be used to estimate w2 and ϵ without having to
numerically perform the integrals on the transverse direc-
tions. This is highly desirable due to the specific form of
the integrands of Eq. (17): they are very small everywhere
but for a sharp peak at intermediate values of xt, and this
makes the numerical integration unstable with the available
numerical precision.
The average square width of the flux tube w2 is not

strongly dependent on the magnetic field and slightly
decreases by increasing B, being reduced by about 10%
for the largest value of the magnetic field explored,
eB ≃ 3.12 GeV2, see Fig. 13. This is consistent with the
previously noted fact that (in the longitudinal case L) the
flux tube gets squeezed by the magnetic field, see Fig. 11.

0 0.2 0.4 0.6 0.8 1 1.2
Rs [fm]

0

0.2

0.4

0.6

0.8

1

φ(
B

)/
φ(

B
=

0)

B = 8
B=24
B=32
B=64
B=96

D=0.70 fm

FIG. 12. Dependence of the ratio ϕðd; B; RsÞ=ϕðd:B ¼ 0; RsÞ
on the smoothing radius Rs for several values of the magnetic
field. The figure refers to the case in which the magnetic field is in
the same direction as the separation between the color sources,
and d ≃ 0.7 fm.
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Since both the peak value and the squaremeanwidth of the
flux tube get smaller in the presence of an external magnetic
field, the energy density per unit length of the tube ϵðBÞwill
be a decreasing function of B. In a simple classical picture,
the energy density per unit length of the flux tube is nothing
but the string tension, and it is thus interesting to compare the
behavior of ϵðBÞwith that of the string tension σðBÞ, that has
been previously investigated in Ref. [16].
A direct comparison of ϵðBÞ and σðBÞ cannot however

be performed, due to the dependence of ϵðBÞ on the
smoothing radius Rs. This dependence disappears in the
ratio ϵðBÞ=ϵðB ¼ 0Þ and for this reason we show in Fig. 14
the dependence on B of the ratios ϵðBÞ=ϵðB ¼ 0Þ and
σðBÞ=σðB ¼ 0Þ (from [16]). Taking into account the fact
that these two sets of data have completely different
systematics and that in the determination of ϵðBÞ there
is also a theoretical bias [the form Eq. (14) of the flux tube
was explicitly used in Eq. (18)], the agreement is reason-
able. In future studies it will be highly desirable to have
more precise data available, in order to estimate in an
unbiased way the energy per unit length of the flux tube.

V. CONCLUSIONS

In this work we studied the dependence on a background
magnetic field B of the chromoelectric flux tubes between
two static color sources in QCD, using simulations per-
formed with Nf ¼ 2þ 1 dynamical quarks of physical
masses.
As a preliminary step we investigated the B ¼ 0 case,

pointing out that the smoothing procedure used to improve
the signal to noise ratio can lead to significant systematics.
We proposed, in an alternative to the “plateau” method that
is often used in the literature, the “fixed smoothing scale”
method, in which the smoothing radius Rs in physical units
is kept fixed as the continuum is approached. Continuum
results, however, still display a significant dependence on
Rs, and a further extrapolation Rs → 0 is desirable to obtain
physically sensible results, but our data are not precise
enough for this further extrapolation to be performed
reliably. This makes it very difficult to provide firm results
for interesting quantities like the value of the Ginzburg-
Landau parameter κ in QCD.
Luckily enough, these problems are absent if one is

just interested in studying the modifications of the flux
tube induced by the external magnetic field B, as we
showed in Sec. IV. Since for B ≠ 0 rotational invariance is
explicitly broken, three different cases have been studied,

corresponding to the inequivalent relative orientations of
the magnetic field, of the Wilson loop and of the trans-
verse direction.
When the distance between the two static color charges

is collinear with the direction of B, the two transverse
directions are equivalent, the flux tube stays cylindrical
and both the intensity of the chromoelectric field and the
average square width of the tube decrease with the
magnetic field. When the static charge separation and
the magnetic field are perpendicular, the cylindrical sym-
metry of the flux tube is instead broken and the chromo-
electric field inside the flux tube is a growing function of B.
When the flux tube keeps its cylindrical symmetry the

tube profile is still well described by the functional form
Eq. (14), like in the B ¼ 0 case. Using this fact we could
estimate the energy density per unit length ϵ of the flux
tube, and we verified that, at least at a semiquantitative
level, the dependence of ϵ on B is consistent with the
dependence of the string tension σ on B, as determined
previously in Ref. [16].
The general picture that emerges from several studies

[14,16,17], in which the magnetic field disfavors confine-
ment in the longitudinal direction and enhances confine-
ment in the transverse directions, is thus fully consistent
with the results of the present work. Since the properties of
the confining potential boil down to properties of the color
flux tube, our results can in fact be seen as the micro-
scopical origin of the macroscopic effects observed in
previous works.
A natural extension of this work would be the study of

other field components of the flux tube: while at a
vanishing magnetic field the longitudinal (chromo)electric
field is by far the dominant one; it is conceivable that at
eB ≠ 0 also other field components could be activated,
making the field structure within the flux tube more
complicated.
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