

Escherichia coli contamination of rural well water in Alberta, Canada is associated with soil properties, density of livestock and precipitation

Journal:	Canadian Water Resources Journal
Manuscript ID	TCWR-2018-0062.R2
Manuscript Type:	Original Paper
Date Submitted by the Author:	n/a
Complete List of Authors:	Invik, Jesse; University of Calgary, Ecosystem and Public Health Barkema, Herman; University of Calgary, Department of Animal Production Health, Faculty of Veterinary Medicine; University of Calgary, Cumming School of Medicine Massolo, Alessandro; University of Calgary, Department of Ecosystem and Public Health, Faculty of Veterinary Medicine; Universita di Pisa, Ethology Unit Neumann, Norman; University of Alberta, School of Public Health Cey, Edwin; University of Calgary, Department of Geoscience Checkley, Sylvia; University of Calgary, Ecosystem and Public Health, Faculty of Veterinary Medicine; University of Calgary, Cumming School of Medicine; Alberta Provincial Laboratory for Public Health, Calgary Laboratory Site
Keywords:	<i>Escherichia coli</i> , groundwater, geographic information systems, generalized estimating equations, Alberta

SCHOLARONE[™] Manuscripts

1	Title: Escherichia coli contamination of rural well water in Alberta, Canada is
---	---

- 2 associated with soil properties, density of livestock and precipitation
- 3
- 4 Jesse Invik^a, Herman W. Barkema^{b,c}, Alessandro Massolo^{a,c*}, Norman F. Neumann^d,
- 5 Edwin Cey^e, Sylvia Checkley^{a,c,f**}
- 6
- 7 ^a Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University
- 8 of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
- 9 ^b Department of Production Animal Health, Faculty of Veterinary Medicine, University of
- 10 Calgary, Calgary, 3330 Hospital Dr. NW, AB, T2N 4N1, Canada
- ¹¹ ^cCumming School of Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB,
- 12 Canada T2N 4Z6, Canada
- ¹³ ^d School of Public Health, University of Alberta, 3-300 Edmonton Clinic Health Authority,
- 14 11405-87 Ave Edmonton, AB, T6G 1C9, Canada
- ¹⁵ ^e Department of Geoscience, University of Calgary, 2500 University Dr. NW, Calgary, AB,
- 16 *T2N 4N1, Canada*
- ¹⁷ ^f Alberta Provincial Laboratory for Public Health, Calgary Laboratory Site, 3030 Hospital
- 18 Dr. NW, Calgary, AB, T2N 4W4, Canada
- 19
- 20 *A. Massolo is now at Ethology Unit, Department of Biology, Università di Pisa, Pisa,
- 21 Italy.
- 22 ***Corresponding author, Sylvia Checkley, Department of Ecosystem and Public Health,*
- 23 Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB,
- 24 T2N 4Z6, Canada, slcheckl@ucalgary.ca

25 ABSTRACT

26	Waterborne outbreaks of infectious disease continue to be a public health risk,
27	particularly those in areas where testing of private and public small system groundwater
28	systems is left to the owners/overseers of these wells who may not recognize the
29	importance of testing and treatment. Recognizing factors associated with contamination
30	of wells is important for public safety and can encourage well owners/overseers to test
31	regularly and properly maintain drinking water supplies. Tests results for
32	presence/absence of total coliforms and Escherichia coli for private and public untreated
33	well water for the years 2010-2012 (n=56,609) were provided by the Alberta Provincial
34	Laboratory for Public Health. Tests were geolocated with the Alberta Township Survey
35	System and aggregated to the quarter section. Agricultural independent variables were
36	provided by the Canadian Agricultural Census and monthly cumulative precipitation was
37	calculated using Alberta Agriculture and Forestry's website of weather station data.
38	Overall frequency of <i>E. coli</i> -positive wells in the study was 1.4%. A marginal
39	multivariable logistic regression model was fit using generalized estimating equations to
40	account for repeat testing of some quarter sections. Three significant factors associated
41	with increased E. coli-positive untreated drinking water wells were identified: soil
42	properties (KSat and sand content), animal density and monthly cumulative
43	precipitation.
44	RÉSUMÉ

Les maladies infectieuses reliée à l'eau continuent de présenter un risque a la santé
publique. Ceci particulièrement dans les endroits ou les tests de la qualité de l'eau sont

URL: https://mc.manuscriptcentral.com/tcwr

47	laissés aux mains des propriétaires des puits artésiens, qui peuvent parfois être dans
48	l'ignorance dans le domaine des tests et du traitement de l'eau. Reconnaître les facteurs
49	associés à la contamination pour les puits est une facette importante pour la santé
50	publique et peux emmener les propriétaires de ceux-ci a procéder a des test réguliers
51	pour aider à maintenir l'approvisionnement en eau potable. Les résultats concernant la
52	présence ou l'absence de coliformes et de l' <i>Escherichia coli</i> pour les puits privé et les
53	puits d'eau non-traitée publique pour les années 2010-2012 (56,609) furent obtenu du
54	laboratoire pour la santé publique de la province de l'Alberta. Les tests utilisaient des
55	données de géolocation des contés de l'Alberta et organisé en quarts de sections. Les
56	indépendant agricoles furent obtenus au sein du recensement agricole du Canada et les
57	précipitations cumulatives mensuelles furent obtenu depuis le site internet des stations
58	météorologiques du ministère de l'agriculture et de la foresterie de l'Alberta. Un modèle
59	de régression logistique multivariable marginal fut installé en utilisant des équations
60	d'estimation générales pour prendre en considération les tests répétitifs de certaines
61	propriétés. Au total, la fréquence de tests positifs pour l'E Coli dans cette étude est de
62	1.4%. Trois facteurs importants associés à l'augmentation du nombre de puits d'eau
63	potable non traités pour E. loci ont été identifiés: propriétés du sol (de conductivité
64	hydraulique et teneur en sable), les animaux en pâturage, et l'accumulation des
65	précipitations mensuelles.

Keywords: *Escherichia coli*; groundwater; geographic information systems; generalized
estimating equations; Alberta; drinking water

69 Introduction

70	Worldwide, over 1.8 billion people access drinking water contaminated with faecal
71	material. Unsafe water causes over 500,000 deaths due to diarrhea annually (WHO
72	2016). Although considered safer than surface water, groundwater contamination of
73	drinking water with pathogenic bacteria is a public health issue worldwide (Garvey et al.
74	2016; Liu XiaoQing et al. 2015). North America is not exempt from this public health
75	issue, and disease outbreaks from untreated drinking water are not uncommon in
76	Canada and the United States (Hynds et al. 2014; Wallender et al. 2014). A 2016 study
77	estimated that over 100,000 cases of acute gastrointestinal illness were due to
78	pathogens in small private water systems and small communal systems in Canada,
79	which would be primarily ground water systems (Murphy et al. 2016).
80	Drinking water for over 400,000 Albertans is supplied by private wells or small
81	communal systems (Government of Alberta n.d.; Summers 2010). Much of the water
82	consumed from private wells and small communal systems is untreated, and
83	maintenance and monitoring falls to the discretion of the well owner/overseer. A 2010
84	survey of well owners in Alberta reported that only 11% of private well owners tested
85	their wells at least annually for bacterial quality indicators and 70% felt maintenance
86	and decontamination were unnecessary except in response to a problem. Some of the
87	reasons people may not test and/or treat well water included a lack of understanding
88	about ground water. For instance more than 50% of respondents in the study did not
89	believe that a deeper well offered safer water. A high level of confidence in the safety of
90	wells was coupled with a lack of any kind of testing of those same wells. A majority of

91	respondents felt that it was better not to perform preventative maintenance on their
92	wells unless motivated by a specific reason, such as health concerns or concerns over
93	events such as flooding (Summers 2010). A similar study from Wisconsin identified that
94	only 10% of respondents had tested their well in the previous year, and reasons for not
95	testing, not performing maintenance were also similar (Malecki et al. 2017). As previous
96	outbreaks have demonstrated, waterborne pathogens are a risk to public health and
97	incidence of waterborne disease may even be increasing (Neumann et al. 2005). In
98	addition, climate change is predicted to increase evaporation and precipitation with
99	increasing storms, storm intensity and flooding in some regions (Dettinger 2011; Scaife
100	et al. 2012). Understanding what factors are associated with contamination can help
101	motivate well owners to make smart decisions concerning the maintenance and
102	monitoring of their water supply.
103	Coliforms have been used as an indicator for microbial water quality since the 1880's
104	(Gleeson and Gray 1996). Escherichia coli is recommended as an indicator of fecal
105	contamination by the World Health Organization (WHO), however with caveats and
106	
	recommendations to include other indicators depending on the particular conditions
107	recommendations to include other indicators depending on the particular conditions and threats (World Health Organization 2011). As laboratory techniques such as
107 108	
	and threats (World Health Organization 2011). As laboratory techniques such as

111	A number of factors associated with total coliforms and <i>E. coli</i> contamination of rural
112	well water have been identified. Cattle and other ruminants are well documented as
113	reservoirs for pathogenic and non-pathogenic <i>E. coli</i> (Arthur et al. 2009; Berry et al.
114	2010; Karmali 2002), and there has been an association between areas where animal
115	husbandry is combined with manure spreading, and higher incidence of pathogenic
116	human <i>E. coli</i> cases (Michel et al. 1999; Valcour et al. 2002). Other livestock can also
117	harbour pathogenic as well as non-pathogenic <i>E. coli</i> , including pigs, sheep, and chickens
118	(Bergeron et al. 2012; Dassouli-Mrani-Belkebir et al. 1988; Deckert et al. 2010). A
119	seasonal trend has been reported both in human cases of <i>E. coli</i> O157:H7 (peak in July)
120	(Michel et al. 1999), and in prevalence of <i>E. coli</i> O157 in rectal samples of cattle (peaks
121	in Spring and late Summer) (Chapman et al. 1997). According to the 2011 census of
122	agriculture in Canada, Alberta has 40% of the nation's cattle (5,104,605 head), as well as
123	37% of llamas and alpacas (11,740), 46% of domestic bison (57,483) and 52% of
124	domestic elk (16,286)(Government of Canada 2012). These animals represent potential
125	sources of <i>E. coli</i> and TC contamination of water. In addition, zero-tillage farming, the
126	practice of not breaking up the soil yearly with a tiller to better maintain moisture
127	content, (Mitchell et al. 2012), can lead to the creation of macropores which allow
128	water to by-pass the filtering action of soil and may lead to contamination of
129	groundwater supplies (Samarajeewa et al. 2012; Thiagarajan et al. 2007; Krog et al.
130	2017). Extreme weather events have also been linked to waterborne pathogen
131	outbreaks, as rapid transport of pathogens can be increased when soils become heavily
132	saturated, potentially transporting pathogens into water sources (Cann et al. 2013;

- 133 Curriero et al. 2001). Human sources of fecal material also may impact water quality and
- 134 human health (Denno et al. 2009).
- The objectives of the study were to determine if there is an association between agricultural practices, soil types and precipitation patterns with the contamination of rural well water with *E. coli* and TC.
- 138 Methods
- 139 Study Region

The study region for this project focuses on the Central region of the Province of 140 141 Alberta, Canada (Figure 1) to enhance generalizability of results. The Central region has 142 the highest numbers of water quality tests in the province performed by the Alberta 143 Provincial Laboratory for Public Health (ProvLab) and has areas of both high and low 144 intensity of agriculture. The counties containing National Parks (Banff and Jasper) were 145 excluded because water quality tests from Federal Parks were not available for this 146 study. Counties including Calgary and Edmonton, the two largest cities in the province 147 and the town of Drumheller, were also excluded as these counties represent (by 148 percentage of land mass) primarily urban areas whereas other included counties may 149 include cities or towns but are primarily rural (by percentage land mass) and these urban areas would decrease generalizability of study results. 150 151 152 Figure 1: Study area (shaded), with counties demarcated with black outlines for

153 Alberta, Canada.

155 Samp	les
----------	-----

156	Water submission data were provided by ProvLab for the years 2010-2012 and were
157	accessed using the Data Integration for Alberta Laboratories (DIAL) tool, a web-based
158	surveillance tool developed by ProvLab (Mukhi et al. 2011). The data included 56,609
159	tests of rural groundwater samples, both public and private. Public/communal systems
160	included non-transient systems (<15 connections) and transient systems such as
161	community halls and campgrounds as defined by Alberta Environment (Alberta
162	Environment and Parks 2009). All water samples were provided voluntarily by the well
163	owner/overseer. Samples were excluded from the study if they were missing the Alberta
164	Township Survey System (ATS) location or if the attributes of this system were incorrect
165	making geolocation impossible, and if the location of the well was outside of the study
166	area.
166 167	area. The Alberta Township Survey System was used to assign geographical coordinates to
167	The Alberta Township Survey System was used to assign geographical coordinates to
167 168	The Alberta Township Survey System was used to assign geographical coordinates to the submission data. This information allows a parcel of land to be located to a
167 168 169	The Alberta Township Survey System was used to assign geographical coordinates to the submission data. This information allows a parcel of land to be located to a resolution of one quarter section (0.65km ²) (Alberta Environment and Parks 2010). This
167 168 169 170	The Alberta Township Survey System was used to assign geographical coordinates to the submission data. This information allows a parcel of land to be located to a resolution of one quarter section (0.65km ²) (Alberta Environment and Parks 2010). This information was voluntarily provided by a portion of the water sample submitters (70%)
167 168 169 170 171	The Alberta Township Survey System was used to assign geographical coordinates to the submission data. This information allows a parcel of land to be located to a resolution of one quarter section (0.65km ²) (Alberta Environment and Parks 2010). This information was voluntarily provided by a portion of the water sample submitters (70%) at the ProvLab. In some cases not all attributes of the ATS system were provided or one
167 168 169 170 171 172	The Alberta Township Survey System was used to assign geographical coordinates to the submission data. This information allows a parcel of land to be located to a resolution of one quarter section (0.65km ²) (Alberta Environment and Parks 2010). This information was voluntarily provided by a portion of the water sample submitters (70%) at the ProvLab. In some cases not all attributes of the ATS system were provided or one or more attributes were incorrect. Samples with missing or invalid ATS attributes were

modelling. In some cases the quarter section could contain multiple wells, but each
quarter section was treated as though all tests from a single quarter section were from
the same well. Multiple tests from the same quarter section were treated as clusters in
the model.

180 Laboratory Analyses

181	Microbiological water quality testing for <i>E. coli</i> and TC was performed by ProvLab, an
182	ISO 17025 accredited laboratory. As part of routine provincial water testing, water
183	samples were collected in 250 mL sterilized plastic vessels and delivered to ProvLab's
184	Environmental Waters Laboratory within 24 hours of collection where 100 mL were
185	tested for TC and <i>E. coli</i> using an enzyme substrate test (Colilert [®] , IDEXX Laboratories,
186	Westbrook, ME, USA) according to the manufacturer's protocol (IDEXX Laboratories
187	2012). In the case of a positive sample, local public health agencies informed the well
188	owner/overseer of the microbiologically contaminated drinking water samples and
189	provide further information regarding re-testing/decontamination as per Alberta Health
190	and Wellness's Environmental Public Health Field Manual (Technical Advisory
191	Committee on Safe Drinking Water 2007).
192	Independent Variables
193	Four groups of independent variables were identified for inclusion in the study;
194	agricultural, temporal, precipitation, and soil properties. Agricultural variable
195	information was extracted from the Canadian Census of Agriculture for 2011 and

aggregated to census regions (Government of Canada 2012). There were 39 agricultural

URL: https://mc.manuscriptcentral.com/tcwr

197	census regions included in the study area, with a median size of 4,278 km ² (ranging from
198	1,308 to 19,038 km ²). Four agricultural variables were selected for possible inclusion
199	into the models: 1) density of large animals (cattle, sheep, horses, goats, lamas, bison,
200	elk, and deer) excluding pigs (animals/km ²), 2) percentage of land devoted to zero-till
201	farming, 3) percentage of land with manure applied, and 4) percentage of land devoted
202	to animal grazing. The Geospatial Modelling Environment (GME) software (version
203	0.7.2.1; Beyer, 2012) was used to extract values for the centroid of each quarter section.
204	A complete list of variable categories is provided with the full model output in Appendix
205	А.
206	Year and month of collection of the sample was included in the models to account for
206 207	Year and month of collection of the sample was included in the models to account for different temperature/precipitation patterns over time. Precipitation data were
207	different temperature/precipitation patterns over time. Precipitation data were
207 208	different temperature/precipitation patterns over time. Precipitation data were collected from Alberta Agricultural and Forestry using daily precipitation data from all
207 208 209	different temperature/precipitation patterns over time. Precipitation data were collected from Alberta Agricultural and Forestry using daily precipitation data from all Alberta weather stations (Alberta Agriculture and Forestry 2014). Only data from
207 208 209 210	different temperature/precipitation patterns over time. Precipitation data were collected from Alberta Agricultural and Forestry using daily precipitation data from all Alberta weather stations (Alberta Agriculture and Forestry 2014). Only data from weather stations within and close to the study area (within 100 km of the boundaries of

214 continuous data for each quarter section using an ordinary kriging interpolation method

215 implemented in ArcGIS[®] (version 10.1, ESRI 2012, Redlands, CA, USA). Outliers were

216 removed before kriging was performed for each layer. Using this method, one raster

217 layer was created for each month of the study, showing accumulated precipitation for

that month (Cell resolution 2.063 km). The GME software (version 0.7.2.1, Beyer, 2012)

was then used to extract the accumulated precipitation monthly value from the
temporally appropriate raster layer for the geographical location of each water sample.
When the water sample was collected in the first half of the month, the previous
month's precipitation layer was used for extraction, and when the water sample was
collected in the second half of the month, the same month's precipitation layer was
used for extraction.

225 Soil data were provided by Agriculture and Agri-Food Canada through the Soil 226 Landscapes of Canada database, version 3.2, 2011 (Agricultural and Agri-Food Canada 227 2008). Three soil variables were selected for possible inclusion into the models: soil 228 saturated hydraulic conductivity (KSat) in cm/hour, average soil clay content in percent 229 and average soil sand content in percent. The GIS layers included with the database 230 were based on previous soil survey maps at a scale of 1:1 million (Agricultural and Agri-231 Food Canada 2008). Attribute tables for each polygon included a hierarchical association 232 between the polygon and one or more soil components with each component 233 associated with one or more soil layers. Clay content, sand content and KSat were 234 provided at the level of soil layers. For each soil component, the average vertical 235 hydraulic conductivity across all soil layers was calculated as follows:

236
$$K = \frac{b}{\sum_{i=1}^{n} \frac{b_i}{K_i}}$$
K=average hydraulic conductivity
(cm/hour)
K₁, K₂...K_n hydraulic conductivity of
individual layers
b_i = thickness of layer *i*
b=total thickness of all layers

- 239 After calculation for each soil component, an areal average for all soil components
- 240 within the polygon was calculated as follows:

²⁴¹
$$K = (K_1^{A_1} \times K_2^{A_2} \times \dots K_n^{A_{1n}})^{1/A}$$

243

K = average vertical hydraulic conductivity $K_1, K_2,..K_n$ = hydraulic conductivity of individual components 1, 2,...,n A_i = percentage for soil component 'i' A = total percentage of all soil regions = $A_1 + A_2 + ... + A_n$

244 Calculation of average sand and clay content for each polygon was calculated as follows:

245
$$A_c = \frac{\sum_{i=1}^{n} (b_i \times A_i)}{b}$$

 A_c = average percent clay/sand for soil component $A_1..A_n$ = average sand/clay for individual layers 1, 2,...,n b_i = thickness of layer *i* b=total thickness of all layers

246

- 247 Following this calculation, the simple average of the clay/sand for the different soil
- 248 components in the polygon was calculated.

249 Statistical Analysis

- 250 Data analysis was conducted using SPSS (version 22.0.0, IBM Corp© 2013), and
- statistical significance was set at p<.05. The relationship between all independent
- variables and the logit of the outcome variables was not linear (with the exception of
- 253 precipitation for *E. coli* contamination) by visual inspection. Data transformations of the
- independent variables were attempted including log-normal (log10(x)), square root (
- 255 \sqrt{x} and inverse transformation (1/x). Data transformations did not improve the

relationship between the logit of the outcome variables and the independent variables, so variables were categorized using quartiles to create categories in terms of number of samples in each category, with data ties (cases with the same value for the independent variable) going into the higher category. Correlation between the independent variables was tested in the categorical form using Cramer's V statistic, and values of > 0.6 were considered unacceptably high, leading to removal of one or more variables from the model.

Total coliform and E. coli positive samples were clustered by location, so logistic 263 264 regression using generalized estimating equations (GEE) (Zeger and Liang 1986) was 265 used for modelling. The first order autoregressive (AR-1) correlation structure was used 266 because wells that were tested multiple times were more likely to have dependent 267 results the closer in time the tests were to each other. The AR-1 correlation structure 268 appropriateness was also evaluated against exchangeable and unstructured correlation 269 structures using the quasi-likelihood criteria in the intercept-only models as well as the final models (Pan 2001). The Hosmer and Lemeshow seven-step procedure for logistic 270 271 regression model building (modified for GEE) was used for variable inclusion in the 272 model using the quasi-likelihood criteria for variable selection (Hosmer et al. 2013; Pan 273 2001). Once the main model was decided on, interactions were introduced one at a 274 time from a list of pairs that had a reasonable and biologically informed chance of 275 interaction and these pairs must have been significant at p=.05 to remain in the model. 276 Before the model was accepted, model fitness was checked (Hosmer et al. 2013). The 277 equation for predicting the probability of Y=1 or a positive test for *E. coli* or total

278 coliforms takes the following form (Horton et al. 1999), where x_{ij} refers to the value of x279 for sample *i* in cluster *j*.

280
$$P(Y_{ij} = 1 | x_{ij}) = \frac{\exp(\beta_0 + \beta_1 x_{1ij} + \beta_2 x_{2ij} + \dots + \beta_k x_{kij})}{1 + \exp(\beta_0 + \beta_1 x_{1ij} + \beta_2 x_{2ij} + \dots + \beta_k x_{kij})}$$

281	Year and month of collection of the sample were included in the models to account
282	for different temperature/precipitation patterns over time. For temporal variables,
283	month and year, the month or year with the lowest marginal mean for <i>E. coli</i> /TC
284	contamination was chosen as the reference month. Model goodness of fit was
285	evaluated by creating groups based on the deciles of estimated probability for the
286	outcome variable, and then expected and observed outcome were evaluated in a
287	contingency table with the Hosmer and Lemeshow test statistic for Goodness of Fit to
288	test if there was any significant lack of fit between the data and the model output
289	(Hosmer et al. 2013) (Evans and Li 2005). In addition, predictive efficacy of the models
290	was examined using the receiver sensitivity operating characteristic curve, area under
291	the curve statistic (ROC-AUC) (Hosmer et al. 2013). The ROC curve was calculated using
292	the predicted value of the mean of the response as the test variable and the outcome
293	variable (TC or <i>E. coli</i> positivity) as the state variable. Results were expressed in the
294	form of an odds ratio (OR) which is a measure of association between a factor and the
295	outcome, when controlling for other factors in the model (Szumilas 2010).

296 Results

297 *Outcome variable*

298	A total of 56,609 test results for TC and <i>E. coli</i> were provided by ProvLab for the years
299	2010-2012. Of these tests, 19,481 were excluded because ATS coordinates were missing
300	or incorrect and it was not possible to geolocate the tests. A further 12,708 were
301	outside the study area. The study time period was then further restricted to water
302	submissions made during the months when the ground in Alberta is typically not frozen
303	(April-October) to simplify issues around precipitation. Precipitation falling as snow and
304	accumulating on the ground rather than flowing down through soil would contribute
305	differently to contamination of groundwater than rainfall. This left 17,237 water
306	submission results, distributed over 7,728 unique quarter sections in the study. Multiple
307	tests on wells on the same quarter section of land resulted in clustered data. These tests
308	may or may not have been from the same well. The minimum cluster size was one and
309	maximum size was 326, with a median of 1 and an interquartile range of 1. Ignoring the
310	clusters of submissions within quarter sections, 1.7% of all tests were positive for <i>E. coli</i>
311	and 18.6% of all tests were TC-positive (16.9% were TC-positive but negative for <i>E. coli</i>).

312 Independent variables

Agricultural variables, % land devoted to grazing and % of land with manure applied, were both positively associated with density of large animals (Cramer's V =.60, P<.001 and Cramer's V =.72, P<.001, respectively). All three variables are indicators of the amount of fecal material on the land. Given the value of Cramer's V, density of large animals was arbitrarily chosen as a proxy of all three. A similar decision was made for the soil variables. Average clay content was inversely associated with average sand

319	content (Cramer's V = 0.60, P<.001), but both were less highly associated with KSat
320	(clay, Cramer's V = 0.44, P<.001, sand, Cramer's V = 0.45, P<.001). Average clay soil
321	content was discarded and average sand content and KSat were retained.
322	Total coliform models
323	In the TC model, all independent variables, except for KSat and sand were significant
324	in the unconditional logistic regression analyses (Table A.1) with a significance of .05. All
325	variables were associated with TC positivity at p<.25, and so were therefore included in
326	the initial multivariate model building process (Hosmer et al. 2013).
327	The final multivariable TC model (Table A.2) included the following variables:
328	precipitation, zero-till farming, sand, density of large animals, KSat, year and month. No
329	significant interaction terms were identified for inclusion (Table A.3). Significant
330	associations in the model included precipitation overall, though no individual categories
331	were significant. The odds of TC contamination was 1.29 times (95% CI 1.05-1.59, p=.02)
332	higher for zero till farming was between 24.1 and 61.9% compared to the reference
333	category, 0-5.1%, adjusting for all other factors in the model. Sand was associated with
334	TC-positivity in the model overall (Wald Chi-Square=11.006, df=3, p=.01), and all
335	categories were significant compared to the reference categories, with the odds of
336	contamination between 1.22 and 1.38 times higher compared to the reference level,
337	when adjusting for all other factors in the model. Only one category of density of large
338	animals was significant, with large animal densities of 26.3 to 32.7 animals/km ² actually
339	associated with decreased TC contamination in comparison to the reference level of less

340	than 14.9 animals/km ² when adjusting for all other factors in the model (OR=0.77, 95%
341	CI 0.63-0.93, p=.008). The odds of TC contamination was 1.31 to 1.48 times higher for
342	KSat values between 0.2 and 1.7 cm/h and between 2.6 and 3.7 cm/h than the
343	reference category (3.8-22.9 cm/h), respectively, adjusting for all other factors in the
344	model. TC contamination was higher in 2011 and 2012 compared to the reference year,
345	2010, with the odds of contamination 1.15 times (95% CI 1.03-1.29, p=.01) higher for
346	2012 and 1.22 (95% CI 1.09-1.37, p=.001) higher for 2011. All months except for May
347	were positively associated with increased TC contamination, with increases between
348	1.41 (June) (95% CI 1.16-1.72, p=.001) and 2.67 (September) (95% CI 2.21-3.23, p<.001)
349	compared to the reference month (April), adjusting for all other factors in the model.
350	The Hosmer Lemeshow test of Goodness of Fit based on the decile groups of
351	estimated probability (HL=11.480, df=8, p=.18) indicated that there was no evidence for
352	a lack of fit. The ROC-AOC statistic was 0.62, (95% CI 0.61-0.63, p<.001), indicating that
353	the model has poor predictive efficacy for TC contamination.
354	Escherichia coli models
355	Five independent variables were associated in the initial univariable analysis at α =
356	.05 with E. coli positivity (Table A.4) including precipitation, density of large animals,
357	KSat, month and year. Because the relationship between precipitation and the logit of
358	

- variable. All variables were associated with *E. coli* positivity at a p<.25, and so were
- 360 included in the initial multivariate model building process (Hosmer et al. 2013).

361	The final multivariable <i>E. coli</i> model (Table A.5) included the following variables:
362	precipitation, sand, density of large animals, KSat, month and year of collection. No
363	significant interaction terms were identified for inclusion (Table A.6). Precipitation was
364	associated with <i>E. coli</i> positivity as a continuous variable in the model. For each increase
365	of 1 mm precipitation, E. coli contamination increased 1.01 times (95%CI 1.00-1.01,
366	p<.001), adjusting for all other factors in the model. All categories of percentage of sand
367	in the soil (from 31.4-82.0%) were associated with a between 1.70 and 2.05 times
368	increase in the odds of <i>E. coli</i> contamination of the well water sample compared to the
369	reference category (0-30.9%) when adjusting for all other factors in the model. Density
370	of large animals between 15.0 and 25.9 animals/km ² was associated with a 1.50 times
371	(95% CI 1.02-2.17, p=.04) increase in the odds of <i>E. coli</i> contamination of the well water
372	sample compared to the reference category (2.5-14.9 animals/km ²), when adjusting for
373	all other factors in the model. The odds of <i>E. coli</i> positivity was between 2.00 and 2.69
374	higher for soils with a KSat between 0.2 and 3.7 cm/h compared with the reference level
375	(3.8-22.9 cm/hour), adjusting for all other factors in the model. The odds of <i>E. coli</i>
376	contamination was 1.45 times (95% CI 1.05-2.00, p=.02) higher in 2011 compared to the
377	reference year, 2012, adjusting for all other factors in the model. The odds of <i>E. coli</i>
378	contamination in August was 2.19 times higher than in the reference month, April (95%
379	CI 1.21-3.97, p=.009), and the odds of <i>E. coli</i> contamination was 2.02 times higher in
380	September than in the reference month, April (95% CI 1.09-3.75, p=.03), when adjusting
381	for all other factors in the model. No other months were correlated with increased E.
382	coli contamination.

The Hosmer Lemeshow test of Goodness of Fit based on the decile groups of estimated probability (HL=4.580, df=8,p=.80) indicated that there was no evidence for a lack of fit. The area under the curve statistic was 0.69 (95% CI 0.65-0.72, p<.001), indicating that the model has acceptable predictive efficacy for *E. coli* contamination (Hosmer et al. 2013).

388 Discussion

389 In this study increased TC contamination in rural well water in Central Alberta, 390 Canada was associated with increased zero-till farming, increased sand content, higher 391 density of large animals, decreased saturated hydraulic conductivity, year and month of 392 specimen. In addition, increased *E. coli* contamination in rural well water was associated 393 with increased precipitation, increased sand content, higher density of large animals, 394 decreased saturated hydraulic conductivity, and year and month of specimen. 395 Extreme precipitation events have been associated with waterborne disease 396 outbreaks across the United States, in Canada, and around the world (Cann et al. 2013; 397 Curriero et al. 2001; Thomas et al. 2006), while Page et al. (2012) noted increased E. coli 398 contamination of both groundwater and surface water during periods of rainfall in an 399 alluvial system. Whereas the relationship between outbreaks and extreme precipitation 400 events has been studied, rarely has this been the case for impact of non-extreme 401 precipitation, as in this study, and water well contamination. This study also 402 demonstrated an association between increased E. coli contamination and increased 403 precipitation, though the increase in contamination per mm increase of monthly

404	precipitation was relatively small. While these results are in accordance with results in
405	other studies (Cann et al. 2013; Curriero et al. 2001; Page et al. 2012; Thomas et al.
406	2006), the collection of the precipitation variable could have been more optimal. Total
407	monthly precipitation was estimated for each quarter section of land sampled in the
408	study for the month of sampling, or the previous month, depending on the day of the
409	month studied. Previous studies have determined a association with a specific lag time
410	of a month or more between extreme precipitation events and waterborne outbreaks,
411	especially with groundwater contamination (Curriero et al. 2001; Rose et al. 2000).
412	However much shorter lag times between precipitation events and increased
413	groundwater bacterial contaminations have been observed. In one study, lag times were
414	greater with a greater distance between a well and surface water (Page et al. 2012). A
415	2015 study of manure impact on <i>E. coli</i> concentrations used precipitation lags of 24, 48,
416	72, 96 and 120 hours prior to sampling, and found no direct relationship between
417	rainfall and <i>E. coli</i> concentration on their particular study site, indicating that rainfall lag
418	and groundwater bacterial concentration may be dependent on a number of other
419	factors (Arnaud et al. 2015). For the State of New Jersey, an optimal lag time of 10 days
420	cumulative precipitation pre-sampling was determined and used in a similar logistic
421	regression study (Procopio et al. 2017). The timing of the influence of precipitation on
422	ground water is complex, and dependent on a number of factors, some specific to
423	individual wells, such as depth, construction, and proximity to surface water. Using a
424	single lag time to predict the influence of precipitation on groundwater contamination
425	for such a large expanse of geography is a compromise. Ideally a large number of

426 different lag times, ranging from 24 hours to more than a month, would be used for
427 each individual well, but because of the samples size of this study, was deemed
428 impractical.

429	In other studies, bacterial transport into discharge water (tile water) was reduced by
430	tilling the land prior to application of liquid manure (Samarajeewa et al. 2012). Zero-till
431	farming over a number of seasons appeared to have a cumulative effect of increasing
432	the macropore structure in the soil, and was associated with increased volume of
433	subsurface water flow and numbers of <i>E. coli</i> in the discharge water (Thiagarajan et al.
434	2007). Soil columns containing earthworms or decaying roots also facilitated faster
435	transport of <i>E. coli</i> compared with packed columns (Safadoust et al. 2011; Steiner 2009).
436	This is, to the knowledge of the authors, the first study showing an association
437	specifically between zero-till farming and increased well water contamination with TC.
438	However, the results should be viewed with caution. The association was only seen
439	between TC and one category of zero till farming, which represented the highest
440	percentage of land devoted to zero-till farming. The effect size was small, an increase in
441	contamination of a factor of 1.3. The same association was not seen between zero-till
442	farming and elevated <i>E. coli</i> contamination. It is possible that this result was also due to
443	geographical confounding, as each category of zero-till farming represents results
444	aggregated to a limited number of census regions, and in the case of zero-till farming,
445	the significant category represented two large, contiguous areas of land (Figure 2).

Figure 2: Geographical locations of counties by zero-till categories for the study areain Alberta, Canada.

449

450	Animal grazing has been associated with increased E. coli levels in runoff water
451	(Muirhead 2009) as well as greater surface water contamination than recreation areas
452	or remote wildlife areas (Derlet et al. 2012). In addition, feces left by grazing sheep
453	under simulated rainfall conditions in New Zealand released <i>E. coli</i> in response to rainfall
454	as much as 30 days after deposition (McDowell 2006; Moriarty and Gilpin 2014). An
455	association was found in this study, again only between one level of animal density
456	(15.0-25.9 animals/km ²) and increased <i>E. coli</i> contamination. It is difficult to understand
457	how a moderate level of animal density was associated with increased contamination
458	while the highest level of animal density (35.0-44.3 animals/km ²) was not. In addition,
459	an association was found between animal density of 26.3-32.7 animals/km ² and
460	decreased contamination with TC. These results may suffer from the same problem as
461	identified with the zero-till result, a geographical confounding effect, as well as
462	ecological fallacy, or there may be an impact of different types on animal husbandry
463	between high density and lower density animal farming. Farms with the highest
464	densities of domestic animals may not have any cropland and may sell all manure
465	produced rather than storing or using on site.

466 The significant association between decreasing KSat values, and increasing *E. coli* 467 contamination, while adjusting for the other factors in the model, is an interesting and

468	somewhat paradoxical result. KSat is a measure of the rate that water moves through
469	saturated soil (Jhonson 2009). The greater the KSat, the more soil nutrients and
470	potentially bacteria will also move through the soil. However, in this study greater KSat
471	was associated with less contamination. This result may be reasonable depending on
472	how KSat was calculated. The soil database specifically states that a large portion of the
473	database was estimated rather than directly measured (Agricultural and Agri-Food
474	Canada 2008). If the KSat values were estimated based on, for instance the sand/clay
475	content in the soil, and macropores or other structural features were not included in the
476	calculation (not specified in the meta data provided by the database, and unlikely given
477	the level of estimation), then the database may only be describing part of the picture.
478	High sand content is associated with high KSat values, because sand has a large average
479	particle size and correspondingly larger pores allow rapid movement of water through
480	the soil. However, high sand content soils are less able to support structure than soils
481	with high clay content (Safadoust et al. 2011). In high clay content soils without
482	macropores, water moves slowly, and larger particles like bacteria are trapped.
483	However, macropores are more likely to form and keep their integrity over time in high
484	clay content soils (Safadoust et al. 2011). Macropores allow water, as well as larger
485	particles like bacteria, to move through the soil quickly (Cey et al. 2009). Therefore, in
486	our study, soil that might be perceived as having a low KSat, and thus be at low risk for
487	bacterial transport, may have secondary pathways for preferential transport of bacteria
488	and, as such, may be at greater risk for bacterial transport than soils with a higher KSat.

489	Year and month of sample collection were associated with both increased E. coli and
490	TC contamination. This is in accordance with the seasonality demonstrated in our
491	previous study using the same body of data (Invik et al. 2017).

492 The quality of the agricultural variables was a limiting factor in this study. While the 493 Canadian Agricultural Census (Government of Canada 2012) provides a wealth of 494 information, for confidentiality reasons it is aggregated to large regions. Using 495 geographically aggregated data leads to two problems, ecological fallacy and the 496 modifiable areal unit problem (MAUP). Ecological fallacy occurs when results based on 497 aggregated data are erroneously applied to specific members of the aggregated area. If 498 an aggregated area has an average animal density that is high, and animal density is 499 associated with contamination in a study, it is incorrect to infer from that study that well 500 X within that aggregated area will have a high rate of contamination. It is quite possible 501 that the high animal density is based on animal numbers from only one half of the 502 polygon and that well X is in the other half (Dark and Bram 2007). The two key concerns about MAUP are that the decision for the boundaries for the polygons is arbitrary and 503 504 different decisions on the boundaries will produce different statistical outcomes. In 505 addition, the aggregation of smaller units into larger areas means a decrease in the 506 variation in the data while the mean remains unchanged (Dark and Bram 2007). Data 507 aggregated to smaller regions or point data, such as specific locations of animals' 508 numbers would have improved the quality of the study considerably.

URL: https://mc.manuscriptcentral.com/tcwr

509	The addition of other variables not currently available to us into the model might
510	have explained the data more thoroughly. Variables that may have been of value
511	included data on individual wells such as depth of well, type of well, condition of well,
512	and aquifer type.

513 A number of associations were found between TC and E. coli contamination and 514 agriculture, soil properties and precipitation variables in this study; however caution 515 should be exercised in interpreting these results. This was a retrospective, observational 516 study of a voluntary testing program. The voluntary nature of the study introduces some 517 interesting potential for bias, which could either inflate the contamination with of E. coli 518 and TC or deflate it. For instance, people may be more likely to test when they are 519 concerned about their water quality or when someone in their home is ill, inflating the 520 proportion contaminated. Alternatively, it may be that those who chose to regularly test 521 their wells are also vigilant in ensuring regular maintenance and periodic shock 522 chlorination. It is likely that both factors were at play. The only way to get an idea of the size and direction of bias would be to couple testing of randomly selected wells with a 523 524 survey of testing attitudes.

525 Understanding risk factors is not always enough to motivate well owners to test or 526 perform preventative maintenance. A study of septic systems in Ireland looked at risk 527 perceptions and motivations (Devitt et al. 2016). Very much like the survey papers on 528 well owners and risk perception (Summers 2010; Malecki et al. 2017), sensory cues (bad 529 smells) or health concerns were required before people felt the need perform 530 inspections or preventative maintenance. The risk of fines was more highly motivating 531 than worries about environmental or health risks. In addition, fears about replacement 532 costs represented a barrier to septic system owners even inspecting their own systems, 533 in case they were to find an expensive problem brewing. Aside from legislation and 534 fines, some of the suggestions from Devitt et al. (2016) include using positively framed, 535 self-empowering messages, rather than fear inducing messages, use of visual frames of 536 reference and providing accurate information about costs, which may allay some of the fears, as actual costs seemed to often be less than owners feared. 537

538 Conclusions

538	Conclusions
539	The outcome data covered a large study area and had the advantage of a large number
540	of cases. While these data offers a wealth of information, pairing it with independent
541	variables of high enough resolution to be of value was a difficult task. Three significant
542	factors for increased <i>E. coli</i> -positive untreated drinking water wells were identified: soil
543	properties (KSat and sand content), animal density and monthly cumulative
544	precipitation. Awareness of these risk factors and appropriate mitigation strategies such
545	as shock chlorination of wells or more frequent testing of wells when these risk factors
546	are present can help protect users of untreated rural groundwater drinking sources.
547	Messages to well owners empowering them to seek out the benefits of these actions as
548	well as practical information about well water systems and approximate costs of
549	maintenance and replacement may increase motivation for individual owners. Further

550	studies incorporating point data of agricultural variables such as animal numbers and
551	land use practices would be of benefit in further evaluating these risk factors.
552	

553 Acknowledgements

554	This study was funded by the Government of Alberta, the University of Calgary,
555	Department of Ecosystem and Public Health, the Natural Sciences and Engineering
556	Research Council of Canada, and Mitacs. The authors wish to acknowledge the
557	contributions of the personnel at ProvLab, especially Jennifer May-Hadford, Sumana
558	Fathima and Lorraine Ingham for their help with data, maps and laboratory
559	protocols. In addition, we appreciate statistical advice from Henrik Stryhn and
560	Cheryl Waldner and help provided by Peter Peller of the University of Calgary
561	Library with GIS data and software. Thank you to Mathieu Petit for the French
562	translation of the abstract.
563	

565 **References**

566	Agriculture and Agri-Food Canada. 2008. Soil Landscapes of Canada Version 3.2. October
567	8, 2008. http://sis.agr.gc.ca/cansis/nsdb/slc/v3.2/index.html (accessed June
568	2018).
569	Alberta Agriculture and Forestry. 2014. Current and Historical Alberta Weather Station
570	Data Viewer. Current and Historical Alberta Weather Station Data Viewer. 2014.
571	http://agriculture.alberta.ca/acis/alberta-weather-data-viewer.jsp (accessed
572	June 2018).
573	Alberta Environment and Parks. 2009. Alberta Environment's Drinking Water Program:
574	A 'Source to Tap, Muli-Barrier' Approach. May 2009.
575	http://www.environment.alberta.ca/apps/RegulatedDWQ/More.aspx (accessed
576	June 2018).
577	Alberta Environment and Parks. 2010. Alberta Township Survey System AEP -
578	Environment and Parks. Alberta Township Survey System. 2010.
579	http://aep.alberta.ca/recreation-public-use/recreation-on-agricultural-public-
580	land/alberta-township-survey-system.aspx (accessed June 2018).
581	Arnaud, E., A. Best, B. L. Parker, R. Aravena, and K. Dunfield. 2015. Transport of
582	Escherichia Coli through a Thick Vadose Zone. Journal of Environmental Quality
583	44 (5): 1424–34. https://doi.org/10.2134/jeq2015.02.0067.
584	Arthur, T. M., T. L. Wheeler, S. D. Shackelford, M. Koohmaraie, X. Nou, J. M. Bosilevac, J.
585	E. Keen, N. Kalchayanand, and D. M. Brichta-Harhay. 2009. Longitudinal Study of
586	Escherichia Coli O157:H7 in a Beef Cattle Feedlot and Role of High-Level
587	Shedders in Hide Contamination. Applied and Environmental Microbiology AEM
588	75 (20): 6515–23. https://doi.org/10.1128/AEM.00081-09.
589	Bergeron, C. R., C. Prussing, L. Dutil, P. Boerlin, D. Daignault, R. J. Reid-Smith, G. G.
590	Zhanel, and A. R. Manges. 2012. Chicken as Reservoir for Extraintestinal
591	Pathogenic Escherichia Coli in Humans, Canada. Emerging Infectious Diseases 18
592	(3): 415–21. http://dx.doi.org/10.3201/eid1803.111099.
593	Berry, E. D., J. E. Wells, T. M. Arthur, B. L. Woodbury, J. A. Nienaber, T. M. Brown-Brandl,
594	and R. A. Eigenberg. 2010. Soil versus Pond Ash Surfacing of Feedlot Pens:
595	Occurrence of <i>Escherichia Coli</i> O157:H7 in Cattle and Persistence in Manure.
596	Journal of Food Protection 73 (7): 1269–77.
597	Cann, K. F., D. Rh. Thomas, R. L. Salmon, A. P. Wyn-Jones, and D. Kay. 2013. Extreme
598	Water-Related Weather Events and Waterborne Disease. Epidemiology &
599	Infection 141 (4): 671–86. https://doi.org/10.1017/S0950268812001653.
600	Cey, E. E., D. L. Rudolph, and J. Passmore. 2009. Influence of Macroporosity on
601	Preferential Solute and Colloid Transport in Unsaturated Field Soils. Journal of
602	Contaminant Hydrology 107 (1–2): 45–57.
603	https://doi.org/10.1016/j.jconhyd.2009.03.004.
604	Chapman, P.A., C.A. Siddons, A.T. Gerdan Malo, and M.A. Harkin. 1997. A 1-Year Study
605	of Escherichia Coli O157 in Cattle, Sheep, Pigs and Poultry. Epidemiology and

606	Infection 119: 245–50.
607	http://dx.doi.org.ezproxy.lib.ucalgary.ca/10.1017/S0950268897007826.
608	Curriero, F. C., J. A. Patz, and J. B. Rose. 2001. The Association between Extreme
609	Precipitation and Waterborne Disease Outbreaks in the United States, 1948-
610	1994. American Journal of Public Health 91 (8): 1194–99.
611	https://doi.org/10.2105/AJPH.91.8.1194.
612	Dark, S. J., and D. Bram. 2007. The Modifiable Areal Unit Problem (MAUP) in Physical
613	Geography. Progress in Physical Geography 31 (5): 471–79.
614	https://doi.org/10.1177/0309133307083294.
615	Dassouli-Mrani-Belkebir, A, M Contrepois, J P Girardeau, and M der Vartanian. 1988.
616	Characters of Escherichia Coli 078 Isolated from Septicaemic Animals. Veterinary
617	Microbiology 17 (4): 345–56.
618	Deckert, A., S. Gow, L. Rosengren, D. Léger, B. Avery, D. Daignault, L. Dutil, R. Reid-
619	Smith, and R. Irwin. 2010. Canadian Integrated Program for Antimicrobial
620	Resistance Surveillance (CIPARS) Farm Program: Results from Finisher Pig
621	Surveillance. Zoonoses & Public Health 57: 71–84.
622	https://doi.org/10.1111/j.1863-2378.2010.01356.x.
623	Denno, D. M., W. E. Keene, C. M. Hutter, J. K. Koepsell, M. Patnode, D. Flodin-Hursh, L.
624	K. Stewart, et al. 2009. Tri-County Comprehensive Assessment of Risk Factors for
625	Sporadic Reportable Bacterial Enteric Infection in Children. Journal of Infectious
626	<i>Diseases</i> 199 (4): 467–76. https://doi.org/10.1086/596555.
627	Derlet, Robert W., J. R. Richards, L. L. Tanaka, C. Hayden, K. A. Ger, and C. R. Goldman.
628	2012. Impact of Summer Cattle Grazing on the Sierra Nevada Watershed:
629	Aquatic Algae and Bacteria. Journal of Environmental & Public Health, January,
630	1–7. <u>https://doi.org/10.1155/2012/760108</u> .
631	Dettinger, M. 2011. Climate Change, Atmospheric Rivers, and Floods in California - A
632	Multimodel Analysis of Storm Frequency and Magnitude Changes. Journal of the
633	American Water Resources Association 47 (3): 514–23.
634	https://doi.org/10.1111/j.1752-1688.2011.00546.x.
635	Devitt, C., E. O'Neill, and R. Waldron. 2016. Drivers and Barriers among Householders to
636	Managing Domestic Waste Water Treatment Systems in the Republic of Ireland;
637	Implications for Risk Prevention Behaviour. Journal of Hydrology 535 (April):
638	534–46. https://doi.org/10.1016/j.jhydrol.2016.02.015.
639	Evans, S., and L. Li. 2005. A Comparison of Goodness of Fit Tests for the Logistic GEE
640	Model. Statistics In Medicine 24 (8): 1245–61.
641	Garvey, P., A. Carroll, E. McNamara, and P. J. McKeown. 2016. Verotoxigenic Escherichia
642	Coli Transmission in Ireland: A Review of Notified Outbreaks, 2004-2012.
643	Epidemiology and Infection 144 (5): 917–26.
644	Gleeson, C., and N. Gray. 1996. The Coliform Index and Waterborne Disease: Problems of
645	Microbial Drinking Water Assessment. London, Great Britain: E & FN Spon.
646	Government of Alberta. 2014. Water Wells: How to Manage a Water Well. Fact sheet.
647	http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/wqe14939
648	(accessed June 2018).

649	Government of Canada. 2012. 2011 Census of Agriculture. 2012.
650	http://www.statcan.gc.ca/eng/ca2011/index accessed June 2018).
651	Horton, NJ, J D Bebchuk, C L Jones, S R Lipsitz, P J Catalano, G E Zahner, and G M
652	Fitzmaurice. 1999. Goodness-of-Fit for GEE: An Example with Mental Health
653	Service Utilization. Statistics In Medicine 18 (2): 213–22.
654	Hosmer, D. W., S. Lemeshow, and R. X. Sturdivant. 2013. Wiley Series in Probability and
655	Statistics : Applied Logistic Regression (3rd Edition). New York, NY, USA: Wiley.
656	Hynds, P. D., M. K. Thomas, and K. D. M. Pintar. 2014. Contamination of Groundwater
657	Systems in the US and Canada by Enteric Pathogens, 1990-2013; a Review and
658	Pooled-Analysis. PloS One 2014 (e93301).
659	https://doi.org/10.1371/journal.pone.0093301.
660	IDEXX Laboratories. 2012. Colilert. 2012. https://www.idexx.com/en/water/water-
661	products-services/colilert/ (accessed June 2018).
662	Invik, J., H. W. Barkema, A. Massolo, N. F. Neumann, and S. Checkley. 2017. Total
663	Coliform and Escherichia Coli Contamination in Rural Well Water: Analysis for
664	Passive Surveillance. Journal of Water & Health 15 (5): 729–40.
665	https://doi.org/10.2166/wh.2017.185.
666	Jhonson, C 2009. <i>Biology of Soil Science</i> . Oxford Book Co.
667	Karmali, M. 2002. The Medical Significance of Shiga Toxin-Producing Eschereichia Coli
668	Infections. In <i>E. Coli: Shiga Toxin Methods and Protocols,</i> edited by D. Philpott
669	and Frank Ebel, 1–7. Totowa, New Jersey: Humana Press.
670	Krog, J. S., A. Forslund, L. E. Larsen, A. Dalsgaard, J. Kjaer, P. Olsen, and A. C. Schultz.
671	2017. Leaching of Viruses and Other Microorganisms Naturally Occurring in Pig
672	Slurry to Tile Drains on a Well-Structured Loamy Field in Denmark. Hydrogeology
673	<i>Journal</i> 25 (4): 1045–62. https://doi.org/10.1007/s10040-016-1530-8.
674	Liu X., Z. YuQin, Y. Meng, Z. HongYun, W. Peng, Z. WenJuan, and Y. Hui. 2015. The
675	Epidemiological Characteristics Analysis and the Pathogen Source Tracking of a
676	Bacterial Dysentery Outbreak. Modern Preventive Medicine 42 (16): 2904–7.
677	Malecki, K. M. C., A. A. Schultz, D. J. Severtson, H. A. Anderson, and J. A. VanDerslice.
678	2017. Private-Well Stewardship among a General Population Based Sample of
679	Private Well-Owners. Science of the Total Environment 601/602: 1533–43.
680	McDowell, R. W. 2006. Contaminant Losses in Overland Flow from Cattle, Deer and
681	Sheep Dung. Water, Air & Soil Pollution 174 (1–4): 211–22.
682	https://doi.org/10.1007/s11270-006-9098-x.
683	Michel, P., J. B. Wilson, S. W. Martin, R. C. Clarke, S. A. McEwen, and C. L. Gyles. 1999.
684	Temporal and Geographical Distributions of Reported Cases of Escherichia Coli
685	O157:H7 Infection in Ontario. <i>Epidemiology and Infection</i> 122 (2): 193–200.
686	https://doi.org/10.1017/S0950268899002083.
687	Mitchell, J. P., P. N. Singh, W. W. Wallender, D. S. Munk, J. F. Wroble, W. R. Horwath, P.
688	Hogan, R. Roy, and B. R. Hanson. 2012. No-Tillage and High-Residue Practices
689	Reduce Soil Water Evaporation. <i>California Agriculture</i> 66 (2): 55–61.
690	https://doi.org/10.3733/ca.v066n02p55.

 Simulated Rainfall Events. Letters in Applied Microbiology 58 (6): 569–75. https://doi.org/10.1111/lam.12230. Muirhead, R. W. 2009. Soil and Faecal Material Reservoirs of Escherichia Coli in a Grazed Pasture. New Zealand Journal of Agricultural Research 52 (1): 1–8. Mukhi, S. N., J. May-Hadford, S. Plitt, J. K. Preiksaitis, and B. E. Lee. 2011. DIAL: A Platform for Real-Time Laboratory Surveillance. Online Journal of Public Health Informatics 2 (3). https://doi.org/10.5210/0jphi.v2i3.3041. Murphy, H. M., M. K. Thomas, P. J. Schmidt, D. T. Medeiros, S. McFadyen, and K. D. M. Pintar. 2016. Estimating the Burden of Acute Gastrointestinal Illness Due to Giardia, Cryptosporidium, Campylobacter, E. Coli 0157 and Norovirus Associated with Private Wells and Small Water Systems in Canada. Epidemiology and Infection 144 (7): 1355–70. https://doi.org/10.1017/S0950268815002071. Neumann, N. F, D. W Smith, and M. Belozevic. 2005. Waterborne Disease: An Old Foe Re-Emerging? Journal of Environmental Engineering & Science 4 (3): 155–71. https://doi.org/10.1139/S04-061. Page, R., S. Scheidler, E. Polat, P. Svoboda, and P. Huggenberger. 2012. Faecal Indicator Bacteria: Groundwater Dynamics and Transport Following Precipitation and River Water Infiltration. Water, Air & Soil Pollution 223 (5): 2771–82. https://doi.org/10.1007/s11270-011-1065-5. Pan, W. 2001. Akaike's Information Criterion in Generalized Estimating Equations. Biometrics 57 (1): 120–25. Procopio, N. A., T. B. Atherholt, S. M. Goodrow, and L. A. Lester. 2017. The Likelihood of Coliform Bacteria in NJ Domestic Wells Based on Precipitation and Other Factors. Ground Water 55 (5): 722–35. Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P.	691	Moriarty, EM, and BJ Gilpin. 2014. Leaching of Escherichia Coli from Sheep Faeces during
 Muirhead, R. W. 2009. Soil and Faecal Material Reservoirs of <i>Escherichia Coli</i> in a Grazed Pasture. <i>New Zealand Journal of Agricultural Research</i> 52 (1): 1–8. Mukhi, S. N., J. May-Hadford, S. Plitt, J. K. Preiksaitis, and B. E. Lee. 2011. DIAL: A Platform for Real-Time Laboratory Surveillance. <i>Online Journal of Public Health</i> <i>Informatics</i> 2 (3). https://doi.org/10.5210/ojphi.v2i3.3041. Murphy, H. M., M. K. Thomas, P. J. Schmidt, D. T. Medeiros, S. McFadyen, and K. D. M. Pintar. 2016. Estimating the Burden of Acute Gastrointestinal Illness Due to Giardia, Cryptosporidium, Campylobacter, E. Coli O157 and Norovirus Associated with Private Wells and Small Water Systems in Canada. <i>Epidemiology and Infection</i> 144 (7): 1355–70. https://doi.org/10.1017/S0950268815002071. Neumann, N. F, D. W Smith, and M. Belozevic. 2005. Waterborne Disease: An Old Foe Re-Emerging? <i>Journal of Environmental Engineering & Science</i> 4 (3): 155–71. https://doi.org/10.1139/S04-061. Page, R., S. Scheidler, E. Polat, P. Svoboda, and P. Huggenberger. 2012. Faecal Indicator Bacteria: Groundwater Dynamics and Transport Following Precipitation and River Water Infiltration. <i>Water, Air & Soil Pollution</i> 223 (5): 2771–82. https://doi.org/10.1007/s11270-011-1065-5. Pan, W. 2001. Akaike's Information Criterion in Generalized Estimating Equations. <i>Biometrics</i> 57 (1): 120–25. Procopio, N. A., T. B. Atherholt, S. M. Goodrow, and L. A. Lester. 2017. The Likelihood of Collform Bacteria in NJ Domestic Wells Based on Precipitation and Other Factors. <i>Ground Water</i> 55 (5): 722–35. Rose, J. B., S. Daeschner, D. R. Easterling, F. C. Curriero, S. Lele, and J. A. Patz. 2000. Climate and Waterborne Disease Outbreaks. <i>Journal American Water Works Association</i> 92 (9): 77–87. Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A. Unc, and Gh. Sayad. 2011. Bacterial Filtration Rates in Repacked and Weathered Soil Columns. <i>G</i>	692	Simulated Rainfall Events. Letters in Applied Microbiology 58 (6): 569–75.
 Pasture. New Zealand Journal of Agricultural Research 52 (1): 1–8. Mukhi, S. N., J. May-Hadford, S. Plitt, J. K. Preiksaitis, and B. E. Lee. 2011. DIAL: A Platform for Real-Time Laboratory Surveillance. Online Journal of Public Health Informatics 2 (3). https://doi.org/10.5210/ojphi.v2i3.3041. Murphy, H. M., M. K. Thomas, P. J. Schmidt, D. T. Medeiros, S. McFadyen, and K. D. M. Pintar. 2016. Estimating the Burden of Acute Gastrointestinal Illness Due to Giardia, Cryptosporidium, Campylobacter, E. Coli 0157 and Norovirus Associated with Private Wells and Small Water Systems in Canada. Epidemiology and Infection 144 (7): 1355–70. https://doi.org/10.1017/S095026815002071. Neumann, N. F, D. W Smith, and M. Belozevic. 2005. Waterborne Disease: An Old Foe Re-Emerging? Journal of Environmental Engineering & Science 4 (3): 155–71. https://doi.org/10.1139/S04-061. Page, R., S. Scheidler, E. Polat, P. Svoboda, and P. Huggenberger. 2012. Faecal Indicator Bacteria: Groundwater Dynamics and Transport Following Precipitation and River Water Infiltration. Water, Air & Soil Pollution 223 (5): 2771–82. https://doi.org/10.1007/s11270-011-1065-5. Pan, W. 2001. Akaike's Information Criterion in Generalized Estimating Equations. Biometrics 57 (1): 120–25. Procopio, N. A., T. B. Atherholt, S. M. Goodrow, and L. A. Lester. 2017. The Likelihood of Coliform Bacteria in NJ Domestic Wells Based on Precipitation and Other Factors. Ground Water 55 (5): 722–35. Rose, J. B., S. Daeschner, D. R. Easterling, F. C. Curriero, S. Lele, and J. A. Patz. 2000. Climate and Waterborne Disease Outbreaks. Journal American Water Works Association 92 (9): 77–87. Safadoust, A., A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A.	693	https://doi.org/10.1111/lam.12230.
 Mukhi, S. N., J. May-Hadford, S. Plitt, J. K. Preiksaitis, and B. E. Lee. 2011. DIAL: A Platform for Real-Time Laboratory Surveillance. Online Journal of Public Health Informatics 2 (3). https://doi.org/10.5210/ojphi.v2i3.3041. Murphy, H. M., M. K. Thomas, P. J. Schmidt, D. T. Medeiros, S. McFadyen, and K. D. M. Pintar. 2016. Estimating the Burden of Acute Gastrointestinal Illness Due to Giardia, Cryptosporidium, Campylobacter, E. Coli O157 and Norovirus Associated with Private Wells and Small Water Systems in Canada. Epidemiology and Infection 144 (7): 1355–70. https://doi.org/10.1017/S0950268815002071. Neumann, N. F, D. W Smith, and M. Belozevic. 2005. Waterborne Disease: An Old Foe Re-Emerging? Journal of Environmental Engineering & Science 4 (3): 155–71. https://doi.org/10.1139/S04-061. Page, R., S. Scheidler, E. Polat, P. Svoboda, and P. Huggenberger. 2012. Faecal Indicator Bacteria: Groundwater Dynamics and Transport Following Precipitation and River Water Infiltration. Water, Air & Soil Pollution 223 (5): 2771–82. https://doi.org/10.1007/s11270-011-1065-5. Pan, W. 2001. Akaike's Information Criterion in Generalized Estimating Equations. Biometrics 57 (1): 120–25. Procopio, N. A., T. B. Atherholt, S. M. Goodrow, and L. A. Lester. 2017. The Likelihood of Coliform Bacteria in NJ Domestic Wells Based on Precipitation and Other Factors. Ground Water 55 (5): 722–35. Rose, J. B., S. Daeschner, D. R. Easterling, F. C. Curriero, S. Lele, and J. A. Patz. 2000. Climate and Waterborne Disease Outbreaks. Journal American Water Works Association 92 (9): 77–87. Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A. Unc, and Gh. Sayyad. 2011. Bacterial Filtration Rates in Repacke	694	Muirhead, R. W. 2009. Soil and Faecal Material Reservoirs of Escherichia Coli in a Grazed
 Platform for Real-Time Laboratory Surveillance. Online Journal of Public Health Informatics 2 (3). https://doi.org/10.5210/ojphi.v2i3.3041. Murphy, H. M., M. K. Thomas, P. J. Schmidt, D. T. Medeiros, S. McFadyen, and K. D. M. Pintar. 2016. Estimating the Burden of Acute Gastrointestinal Illness Due to Giardia, Cryptosporidium, Campylobacter, E. Coli 0157 and Norovirus Associated with Private Wells and Small Water Systems in Canada. <i>Epidemiology and Infection</i> 144 (7): 1355–70. https://doi.org/10.1017/S0950268815002071. Neumann, N. F, D. W Smith, and M. Belozevic. 2005. Waterborne Disease: An Old Foe Re-Emerging? Journal of Environmental Engineering & Science 4 (3): 155–71. https://doi.org/10.1139/S04-061. Page, R., S. Scheidler, E. Polat, P. Svoboda, and P. Huggenberger. 2012. Faecal Indicator Bacteria: Groundwater Dynamics and Transport Following Precipitation and River Water Infiltration. <i>Water, Air & Soil Pollution</i> 223 (5): 2771–82. https://doi.org/10.1007/s11270-011-1065-5. Pan, W. 2001. Akaike's Information Criterion in Generalized Estimating Equations. <i>Biometrics</i> 57 (1): 120–25. Procopio, N. A., T. B. Atherholt, S. M. Goodrow, and L. A. Lester. 2017. The Likelihood of Coliform Bacteria in NJ Domestic Wells Based on Precipitation and Other Factors. <i>Ground Water</i> 55 (5): 722–35. Rose, J. B., S. Daeschner, D. R. Easterling, F. C. Curriero, S. Lele, and J. A. Patz. 2000. Climate and Waterborne Disease Outbreaks. Journal American Water Works Association 92 (9): 77–87. Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A. Unc, and Gh. Sayyad. 2011. Bacterial Filtration Rates in Repacked and Weathered Soil Columns. <i>Geoderma</i> 167–168 (November): 204–13. https://doi.org/10.1016/j.geoderma.2011.08.014. Samarajeewa, A D, S M Glasauer, J D Lauzon, I P O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Different Application Methods o	695	Pasture. New Zealand Journal of Agricultural Research 52 (1): 1–8.
 Informatics 2 (3). https://doi.org/10.5210/ojphi.v2i3.3041. Murphy, H. M., M. K. Thomas, P. J. Schmidt, D. T. Medeiros, S. McFadyen, and K. D. M. Pintar. 2016. Estimating the Burden of Acute Gastrointestinal Illness Due to Giardia, Cryptosporidium, Campylobacter, E. Coli O157 and Norovirus Associated with Private Wells and Small Water Systems in Canada. <i>Epidemiology and</i> Infection 144 (7): 1355–70. https://doi.org/10.1017/S0950268815002071. Neumann, N. F, D. W Smith, and M. Belozevic. 2005. Waterborne Disease: An Old Foe Re-Emerging? Journal of Environmental Engineering & Science 4 (3): 155–71. https://doi.org/10.1139/S04-061. Page, R., S. Scheidler, E. Polat, P. Svoboda, and P. Huggenberger. 2012. Faecal Indicator Bacteria: Groundwater Dynamics and Transport Following Precipitation and River Water Infiltration. <i>Water, Air & Soil Pollution</i> 223 (5): 2771–82. https://doi.org/10.1007/s11270-011-1065-5. Pan, W. 2001. Akaike's Information Criterion in Generalized Estimating Equations. <i>Biometrics</i> 57 (1): 120–25. Procopio, N. A., T. B. Atherholt, S. M. Goodrow, and L. A. Lester. 2017. The Likelihood of Coliform Bacteria in NJ Domestic Wells Based on Precipitation and Other Factors. <i>Ground Water</i> 55 (5): 722–35. Rose, J. B., S. Daeschner, D. R. Easterling, F. C. Curriero, S. Lele, and J. A. Patz. 2000. Climate and Waterborne Disease Outbreaks. Journal American Water Works Association 92 (9): 77–87. Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A. Unc, and Gh. Sayyad. 2011. Bacterial Filtration Rates in Repacked and Weathered Soil Columns. <i>Geoderma</i> 167–168 (November): 204–13. https://doi.org/10.1016/j.geoderma.2011.08.014. Samarajeewa, A. D, S. M Glasauer, J D Lauzon, I P O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination	696	Mukhi, S. N., J. May-Hadford, S. Plitt, J. K. Preiksaitis, and B. E. Lee. 2011. DIAL: A
 Murphy, H. M., M. K. Thomas, P. J. Schmidt, D. T. Medeiros, S. McFadyen, and K. D. M. Pintar. 2016. Estimating the Burden of Acute Gastrointestinal Illness Due to Giardia, Cryptosporidium, Campylobacter, E. Coli O157 and Norovirus Associated with Private Wells and Small Water Systems in Canada. <i>Epidemiology and</i> <i>Infection</i> 144 (7): 1355–70. https://doi.org/10.1017/S0950268815002071. Neumann, N. F, D. W Smith, and M. Belozevic. 2005. Waterborne Disease: An Old Foe Re-Emerging? <i>Journal of Environmental Engineering & Science</i> 4 (3): 155–71. https://doi.org/10.1139/S04-061. Page, R., S. Scheidler, E. Polat, P. Svoboda, and P. Huggenberger. 2012. Faecal Indicator Bacteria: Groundwater Dynamics and Transport Following Precipitation and River Water Infiltration. <i>Water, Air & Soil Pollution</i> 223 (5): 2771–82. https://doi.org/10.1007/s11270-011-1065-5. Pan, W. 2001. Akaike's Information Criterion in Generalized Estimating Equations. <i>Biometrics</i> 57 (1): 120–25. Procopio, N. A., T. B. Atherholt, S. M. Goodrow, and L. A. Lester. 2017. The Likelihood of Coliform Bacteria in NJ Domestic Wells Based on Precipitation and Other Factors. <i>Ground Water</i> 55 (5): 722–35. Rose, J. B., S. Daeschner, D. R. Easterling, F. C. Curriero, S. Lele, and J. A. Patz. 2000. Climate and Waterborne Disease Outbreaks. <i>Journal American Water Works</i> Association 92 (9): 77–87. Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A. Unc, and Gh. Sayyad. 2011. Bacterial Filtration Rates in Repacked and Weathered Soil Columns. <i>Geoderma</i> 167–168 (November): 204–13. https://doi.org/10.1016/j.geoderma.2011.08.014. Samarajeewa, A D, S M Glasauer, J D Lauzon, I P O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Dif	697	Platform for Real-Time Laboratory Surveillance. Online Journal of Public Health
 Pintar. 2016. Estimating the Burden of Acute Gastrointestinal Illness Due to Giardia, Cryptosporidium, Campylobacter, E. Coli O157 and Norovirus Associated with Private Wells and Small Water Systems in Canada. <i>Epidemiology and</i> <i>Infection</i> 144 (7): 1355–70. https://doi.org/10.1017/S0950268815002071. Neumann, N. F, D. W Smith, and M. Belozevic. 2005. Waterborne Disease: An Old Foe Re-Emerging? <i>Journal of Environmental Engineering & Science</i> 4 (3): 155–71. https://doi.org/10.1139/S04-061. Page, R., S. Scheidler, E. Polat, P. Svoboda, and P. Huggenberger. 2012. Faecal Indicator Bacteria: Groundwater Dynamics and Transport Following Precipitation and River Water Infiltration. <i>Water, Air & Soil Pollution</i> 223 (5): 2771–82. https://doi.org/10.1007/s11270-011-1065-5. Pan, W. 2001. Akaike's Information Criterion in Generalized Estimating Equations. <i>Biometrics</i> 57 (1): 120–25. Procopio, N. A., T. B. Atherholt, S. M. Goodrow, and L. A. Lester. 2017. The Likelihood of Coliform Bacteria in NJ Domestic Wells Based on Precipitation and Other Factors. <i>Ground Water</i> 55 (5): 722–35. Rose, J. B., S. Daeschner, D. R. Easterling, F. C. Curriero, S. Lele, and J. A. Patz. 2000. Climate and Waterborne Disease Outbreaks. <i>Journal American Water Works</i> <i>Association</i> 92 (9): 77–87. Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A. Unc, and Gh. Sayyad. 2011. Bacterial Filtration Rates in Repacked and Weathered Soil Columns. <i>Geoderma</i> 167–168 (November): 204–13. https://doi.org/10.1016/j.geoderma.2011.08.014. Samarajeewa, A. D, S. M Glasauer, J. D. Lauzon, I. P. O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Different Application Methods of Liquid Swine Manure. <i>Canadian Journal Of Microb</i>	698	Informatics 2 (3). https://doi.org/10.5210/ojphi.v2i3.3041.
 Giardia, Cryptosporidium, Campylobacter, E. Coli O157 and Norovirus Associated with Private Wells and Small Water Systems in Canada. <i>Epidemiology and</i> <i>Infection</i> 144 (7): 1355–70. https://doi.org/10.1017/S0950268815002071. Neumann, N. F, D. W Smith, and M. Belozevic. 2005. Waterborne Disease: An Old Foe Re-Emerging? <i>Journal of Environmental Engineering & Science</i> 4 (3): 155–71. https://doi.org/10.1139/S04-061. Page, R., S. Scheidler, E. Polat, P. Svoboda, and P. Huggenberger. 2012. Faecal Indicator Bacteria: Groundwater Dynamics and Transport Following Precipitation and River Water Infiltration. <i>Water, Air & Soil Pollution</i> 223 (5): 2771–82. https://doi.org/10.1007/s11270-011-1065-5. Pan, W. 2001. Akaike's Information Criterion in Generalized Estimating Equations. <i>Biometrics</i> 57 (1): 120–25. Procopio, N. A., T. B. Atherholt, S. M. Goodrow, and L. A. Lester. 2017. The Likelihood of Coliform Bacteria in NJ Domestic Wells Based on Precipitation and Other Factors. <i>Ground Water</i> 55 (5): 722–35. Rose, J. B., S. Daeschner, D. R. Easterling, F. C. Curriero, S. Lele, and J. A. Patz. 2000. Climate and Waterborne Disease Outbreaks. <i>Journal American Water Works</i> <i>Association</i> 92 (9): 77–87. Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A. Unc, and Gh. Sayyad. 2011. Bacterial Filtration Rates in Repacked and Weathered Soil Columns. <i>Geoderma</i> 167–168 (November): 204–13. https://doi.org/10.1016/j.geoderma.2011.08.014. Samarajeewa, A D, S M Glasauer, J D Lauzon, I P O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Different Application Methods of Liquid Swine Manure. <i>Canadian Journal Of Microbiology</i> 58 (5): 668–77. 	699	Murphy, H. M., M. K. Thomas, P. J. Schmidt, D. T. Medeiros, S. McFadyen, and K. D. M.
 with Private Wells and Small Water Systems in Canada. <i>Epidemiology and</i> <i>Infection</i> 144 (7): 1355–70. https://doi.org/10.1017/S0950268815002071. Neumann, N. F, D. W Smith, and M. Belozevic. 2005. Waterborne Disease: An Old Foe Re-Emerging? <i>Journal of Environmental Engineering & Science</i> 4 (3): 155–71. https://doi.org/10.1139/S04-061. Page, R., S. Scheidler, E. Polat, P. Svoboda, and P. Huggenberger. 2012. Faecal Indicator Bacteria: Groundwater Dynamics and Transport Following Precipitation and River Water Infiltration. <i>Water, Air & Soil Pollution</i> 223 (5): 2771–82. https://doi.org/10.1007/s11270-011-1065-5. Pan, W. 2001. Akaike's Information Criterion in Generalized Estimating Equations. <i>Biometrics</i> 57 (1): 120–25. Procopio, N. A., T. B. Atherholt, S. M. Goodrow, and L. A. Lester. 2017. The Likelihood of Coliform Bacteria in NJ Domestic Wells Based on Precipitation and Other Factors. <i>Ground Water</i> 55 (5): 722–35. Rose, J. B., S. Daeschner, D. R. Easterling, F. C. Curriero, S. Lele, and J. A. Patz. 2000. Climate and Waterborne Disease Outbreaks. <i>Journal American Water Works</i> <i>Association</i> 92 (9): 77–87. Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A. Unc, and Gh. Sayyad. 2011. Bacterial Filtration Rates in Repacked and Weathered Soil Columns. <i>Geoderma</i> 167–168 (November): 204–13. https://doi.org/10.1016/j.geoderma.2011.08.014. Samarajeewa, A. D, S. M Glasauer, J. D Lauzon, I.P O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Different Application Methods of Liquid Swine Manure. <i>Canadian Journal Of Microbiology</i> 58 (5): 668–77. 	700	Pintar. 2016. Estimating the Burden of Acute Gastrointestinal Illness Due to
 <i>Infection</i> 144 (7): 1355–70. https://doi.org/10.1017/S0950268815002071. Neumann, N. F, D. W Smith, and M. Belozevic. 2005. Waterborne Disease: An Old Foe Re-Emerging? <i>Journal of Environmental Engineering & Science</i> 4 (3): 155–71. https://doi.org/10.1139/S04-061. Page, R., S. Scheidler, E. Polat, P. Svoboda, and P. Huggenberger. 2012. Faecal Indicator Bacteria: Groundwater Dynamics and Transport Following Precipitation and River Water Infiltration. <i>Water, Air & Soil Pollution</i> 223 (5): 2771–82. https://doi.org/10.1007/s11270-011-1065-5. Pan, W. 2001. Akaike's Information Criterion in Generalized Estimating Equations. <i>Biometrics</i> 57 (1): 120–25. Procopio, N. A., T. B. Atherholt, S. M. Goodrow, and L. A. Lester. 2017. The Likelihood of Coliform Bacteria in NJ Domestic Wells Based on Precipitation and Other Factors. <i>Ground Water</i> 55 (5): 722–35. Rose, J. B., S. Daeschner, D. R. Easterling, F. C. Curriero, S. Lele, and J. A. Patz. 2000. Climate and Waterborne Disease Outbreaks. <i>Journal American Water Works</i> <i>Association</i> 92 (9): 77–87. Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A. Unc, and Gh. Sayyad. 2011. Bacterial Filtration Rates in Repacked and Weathered Soil Columns. <i>Geoderma</i> 167–168 (November): 204–13. https://doi.org/10.1016/j.geoderma.2011.08.014. Samarajeewa, A D, S M Glasauer, J D Lauzon, I P O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Different Application Methods of Liquid Swine Manure. <i>Canadian Journal</i> Of Microbiology 58 (5): 668–77. 	701	Giardia, Cryptosporidium, Campylobacter, E. Coli O157 and Norovirus Associated
 Neumann, N. F, D. W Smith, and M. Belozevic. 2005. Waterborne Disease: An Old Foe Re-Emerging? Journal of Environmental Engineering & Science 4 (3): 155–71. https://doi.org/10.1139/S04-061. Page, R., S. Scheidler, E. Polat, P. Svoboda, and P. Huggenberger. 2012. Faecal Indicator Bacteria: Groundwater Dynamics and Transport Following Precipitation and River Water Infiltration. Water, Air & Soil Pollution 223 (5): 2771–82. https://doi.org/10.1007/s11270-011-1065-5. Pan, W. 2001. Akaike's Information Criterion in Generalized Estimating Equations. Biometrics 57 (1): 120–25. Procopio, N. A., T. B. Atherholt, S. M. Goodrow, and L. A. Lester. 2017. The Likelihood of Coliform Bacteria in NJ Domestic Wells Based on Precipitation and Other Factors. Ground Water 55 (5): 722–35. Rose, J. B., S. Daeschner, D. R. Easterling, F. C. Curriero, S. Lele, and J. A. Patz. 2000. Climate and Waterborne Disease Outbreaks. Journal American Water Works Association 92 (9): 77–87. Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A. Unc, and Gh. Sayyad. 2011. Bacterial Filtration Rates in Repacked and Weathered Soil Columns. Geoderma 167–168 (November): 204–13. https://doi.org/10.1016/j.geoderma.2011.08.014. Samarajeewa, A D, S M Glasauer, J D Lauzon, I P O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Different Application Methods of Liquid Swine Manure. Canadian Journal Of Microbiology 58 (5): 668–77. 	702	with Private Wells and Small Water Systems in Canada. Epidemiology and
 Re-Emerging? Journal of Environmental Engineering & Science 4 (3): 155–71. https://doi.org/10.1139/S04-061. Page, R., S. Scheidler, E. Polat, P. Svoboda, and P. Huggenberger. 2012. Faecal Indicator Bacteria: Groundwater Dynamics and Transport Following Precipitation and River Water Infiltration. Water, Air & Soil Pollution 223 (5): 2771–82. https://doi.org/10.1007/s11270-011-1065-5. Pan, W. 2001. Akaike's Information Criterion in Generalized Estimating Equations. Biometrics 57 (1): 120–25. Procopio, N. A., T. B. Atherholt, S. M. Goodrow, and L. A. Lester. 2017. The Likelihood of Coliform Bacteria in NJ Domestic Wells Based on Precipitation and Other Factors. Ground Water 55 (5): 722–35. Rose, J. B., S. Daeschner, D. R. Easterling, F. C. Curriero, S. Lele, and J. A. Patz. 2000. Climate and Waterborne Disease Outbreaks. Journal American Water Works Association 92 (9): 77–87. Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A. Unc, and Gh. Sayyad. 2011. Bacterial Filtration Rates in Repacked and Weathered Soil Columns. Geoderma 167–168 (November): 204–13. https://doi.org/10.1016/j.geoderma.2011.08.014. Samarajeewa, A D, S M Glasauer, J D Lauzon, I P O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Different Application Methods of Liquid Swine Manure. Canadian Journal Of Microbiology 58 (5): 668–77. 	703	Infection 144 (7): 1355–70. https://doi.org/10.1017/S0950268815002071.
 https://doi.org/10.1139/S04-061. Page, R., S. Scheidler, E. Polat, P. Svoboda, and P. Huggenberger. 2012. Faecal Indicator Bacteria: Groundwater Dynamics and Transport Following Precipitation and River Water Infiltration. <i>Water, Air & Soil Pollution</i> 223 (5): 2771–82. https://doi.org/10.1007/s11270-011-1065-5. Pan, W. 2001. Akaike's Information Criterion in Generalized Estimating Equations. <i>Biometrics</i> 57 (1): 120–25. Procopio, N. A., T. B. Atherholt, S. M. Goodrow, and L. A. Lester. 2017. The Likelihood of Coliform Bacteria in NJ Domestic Wells Based on Precipitation and Other Factors. <i>Ground Water</i> 55 (5): 722–35. Rose, J. B., S. Daeschner, D. R. Easterling, F. C. Curriero, S. Lele, and J. A. Patz. 2000. Climate and Waterborne Disease Outbreaks. <i>Journal American Water Works</i> <i>Association</i> 92 (9): 77–87. Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A. Unc, and Gh. Sayyad. 2011. Bacterial Filtration Rates in Repacked and Weathered Soil Columns. <i>Geoderma</i> 167–168 (November): 204–13. https://doi.org/10.1016/j.geoderma.2011.08.014. Samarajeewa, A D, S M Glasauer, J D Lauzon, I P O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Different Application Methods of Liquid Swine Manure. <i>Canadian Journal Of Microbiology</i> 58 (5): 668–77. 	704	Neumann, N. F, D. W Smith, and M. Belozevic. 2005. Waterborne Disease: An Old Foe
 Page, R., S. Scheidler, E. Polat, P. Svoboda, and P. Huggenberger. 2012. Faecal Indicator Bacteria: Groundwater Dynamics and Transport Following Precipitation and River Water Infiltration. <i>Water, Air & Soil Pollution</i> 223 (5): 2771–82. https://doi.org/10.1007/s11270-011-1065-5. Pan, W. 2001. Akaike's Information Criterion in Generalized Estimating Equations. <i>Biometrics</i> 57 (1): 120–25. Procopio, N. A., T. B. Atherholt, S. M. Goodrow, and L. A. Lester. 2017. The Likelihood of Coliform Bacteria in NJ Domestic Wells Based on Precipitation and Other Factors. <i>Ground Water</i> 55 (5): 722–35. Rose, J. B., S. Daeschner, D. R. Easterling, F. C. Curriero, S. Lele, and J. A. Patz. 2000. Climate and Waterborne Disease Outbreaks. <i>Journal American Water Works</i> <i>Association</i> 92 (9): 77–87. Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A. Unc, and Gh. Sayyad. 2011. Bacterial Filtration Rates in Repacked and Weathered Soil Columns. <i>Geoderma</i> 167–168 (November): 204–13. https://doi.org/10.1016/j.geoderma.2011.08.014. Samarajeewa, A D, S M Glasauer, J D Lauzon, I P O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Different Application Methods of Liquid Swine Manure. <i>Canadian Journal Of Microbiology</i> 58 (5): 668–77. 	705	Re-Emerging? Journal of Environmental Engineering & Science 4 (3): 155–71.
 Bacteria: Groundwater Dynamics and Transport Following Precipitation and River Water Infiltration. Water, Air & Soil Pollution 223 (5): 2771–82. https://doi.org/10.1007/s11270-011-1065-5. Pan, W. 2001. Akaike's Information Criterion in Generalized Estimating Equations. Biometrics 57 (1): 120–25. Procopio, N. A., T. B. Atherholt, S. M. Goodrow, and L. A. Lester. 2017. The Likelihood of Coliform Bacteria in NJ Domestic Wells Based on Precipitation and Other Factors. Ground Water 55 (5): 722–35. Rose, J. B., S. Daeschner, D. R. Easterling, F. C. Curriero, S. Lele, and J. A. Patz. 2000. Climate and Waterborne Disease Outbreaks. Journal American Water Works Association 92 (9): 77–87. Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A. Unc, and Gh. Sayyad. 2011. Bacterial Filtration Rates in Repacked and Weathered Soil Columns. Geoderma 167–168 (November): 204–13. https://doi.org/10.1016/j.geoderma.2011.08.014. Samarajeewa, A D, S M Glasauer, J D Lauzon, I P O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Different Application Methods of Liquid Swine Manure. Canadian Journal Of Microbiology 58 (5): 668–77. 	706	https://doi.org/10.1139/S04-061.
 Water Infiltration. <i>Water, Air & Soil Pollution</i> 223 (5): 2771–82. https://doi.org/10.1007/s11270-011-1065-5. Pan, W. 2001. Akaike's Information Criterion in Generalized Estimating Equations. <i>Biometrics</i> 57 (1): 120–25. Procopio, N. A., T. B. Atherholt, S. M. Goodrow, and L. A. Lester. 2017. The Likelihood of Coliform Bacteria in NJ Domestic Wells Based on Precipitation and Other Factors. <i>Ground Water</i> 55 (5): 722–35. Rose, J. B., S. Daeschner, D. R. Easterling, F. C. Curriero, S. Lele, and J. A. Patz. 2000. Climate and Waterborne Disease Outbreaks. <i>Journal American Water Works</i> <i>Association</i> 92 (9): 77–87. Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A. Unc, and Gh. Sayyad. 2011. Bacterial Filtration Rates in Repacked and Weathered Soil Columns. <i>Geoderma</i> 167–168 (November): 204–13. https://doi.org/10.1016/j.geoderma.2011.08.014. Samarajeewa, A D, S M Glasauer, J D Lauzon, I P O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Different Application Methods of Liquid Swine Manure. <i>Canadian Journal Of Microbiology</i> 58 (5): 668–77. 	707	Page, R., S. Scheidler, E. Polat, P. Svoboda, and P. Huggenberger. 2012. Faecal Indicator
 https://doi.org/10.1007/s11270-011-1065-5. Pan, W. 2001. Akaike's Information Criterion in Generalized Estimating Equations. <i>Biometrics</i> 57 (1): 120–25. Procopio, N. A., T. B. Atherholt, S. M. Goodrow, and L. A. Lester. 2017. The Likelihood of Coliform Bacteria in NJ Domestic Wells Based on Precipitation and Other Factors. <i>Ground Water</i> 55 (5): 722–35. Rose, J. B., S. Daeschner, D. R. Easterling, F. C. Curriero, S. Lele, and J. A. Patz. 2000. Climate and Waterborne Disease Outbreaks. <i>Journal American Water Works</i> <i>Association</i> 92 (9): 77–87. Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A. Unc, and Gh. Sayyad. 2011. Bacterial Filtration Rates in Repacked and Weathered Soil Columns. <i>Geoderma</i> 167–168 (November): 204–13. https://doi.org/10.1016/j.geoderma.2011.08.014. Samarajeewa, A D, S M Glasauer, J D Lauzon, I P O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Different Application Methods of Liquid Swine Manure. <i>Canadian Journal Of Microbiology</i> 58 (5): 668–77. 	708	Bacteria: Groundwater Dynamics and Transport Following Precipitation and River
 Pan, W. 2001. Akaike's Information Criterion in Generalized Estimating Equations. <i>Biometrics</i> 57 (1): 120–25. Procopio, N. A., T. B. Atherholt, S. M. Goodrow, and L. A. Lester. 2017. The Likelihood of Coliform Bacteria in NJ Domestic Wells Based on Precipitation and Other Factors. <i>Ground Water</i> 55 (5): 722–35. Rose, J. B., S. Daeschner, D. R. Easterling, F. C. Curriero, S. Lele, and J. A. Patz. 2000. Climate and Waterborne Disease Outbreaks. <i>Journal American Water Works</i> <i>Association</i> 92 (9): 77–87. Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A. Unc, and Gh. Sayyad. 2011. Bacterial Filtration Rates in Repacked and Weathered Soil Columns. <i>Geoderma</i> 167–168 (November): 204–13. https://doi.org/10.1016/j.geoderma.2011.08.014. Samarajeewa, A D, S M Glasauer, J D Lauzon, I P O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Different Application Methods of Liquid Swine Manure. <i>Canadian Journal Of Microbiology</i> 58 (5): 668–77. 	709	Water Infiltration. Water, Air & Soil Pollution 223 (5): 2771–82.
 Biometrics 57 (1): 120–25. Procopio, N. A., T. B. Atherholt, S. M. Goodrow, and L. A. Lester. 2017. The Likelihood of Coliform Bacteria in NJ Domestic Wells Based on Precipitation and Other Factors. <i>Ground Water</i> 55 (5): 722–35. Rose, J. B., S. Daeschner, D. R. Easterling, F. C. Curriero, S. Lele, and J. A. Patz. 2000. Climate and Waterborne Disease Outbreaks. <i>Journal American Water Works</i> <i>Association</i> 92 (9): 77–87. Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A. Unc, and Gh. Sayyad. 2011. Bacterial Filtration Rates in Repacked and Weathered Soil Columns. <i>Geoderma</i> 167–168 (November): 204–13. https://doi.org/10.1016/j.geoderma.2011.08.014. Samarajeewa, A D, S M Glasauer, J D Lauzon, I P O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Different Application Methods of Liquid Swine Manure. <i>Canadian Journal Of Microbiology</i> 58 (5): 668–77. 	710	https://doi.org/10.1007/s11270-011-1065-5.
 Procopio, N. A., T. B. Atherholt, S. M. Goodrow, and L. A. Lester. 2017. The Likelihood of Coliform Bacteria in NJ Domestic Wells Based on Precipitation and Other Factors. <i>Ground Water</i> 55 (5): 722–35. Rose, J. B., S. Daeschner, D. R. Easterling, F. C. Curriero, S. Lele, and J. A. Patz. 2000. Climate and Waterborne Disease Outbreaks. <i>Journal American Water Works</i> <i>Association</i> 92 (9): 77–87. Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A. Unc, and Gh. Sayyad. 2011. Bacterial Filtration Rates in Repacked and Weathered Soil Columns. <i>Geoderma</i> 167–168 (November): 204–13. https://doi.org/10.1016/j.geoderma.2011.08.014. Samarajeewa, A D, S M Glasauer, J D Lauzon, I P O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Different Application Methods of Liquid Swine Manure. <i>Canadian Journal Of Microbiology</i> 58 (5): 668–77. 	711	Pan, W. 2001. Akaike's Information Criterion in Generalized Estimating Equations.
 Coliform Bacteria in NJ Domestic Wells Based on Precipitation and Other Factors. <i>Ground Water</i> 55 (5): 722–35. Rose, J. B., S. Daeschner, D. R. Easterling, F. C. Curriero, S. Lele, and J. A. Patz. 2000. Climate and Waterborne Disease Outbreaks. <i>Journal American Water Works</i> <i>Association</i> 92 (9): 77–87. Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A. Unc, and Gh. Sayyad. 2011. Bacterial Filtration Rates in Repacked and Weathered Soil Columns. <i>Geoderma</i> 167–168 (November): 204–13. https://doi.org/10.1016/j.geoderma.2011.08.014. Samarajeewa, A D, S M Glasauer, J D Lauzon, I P O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Different Application Methods of Liquid Swine Manure. <i>Canadian Journal Of Microbiology</i> 58 (5): 668–77. 	712	Biometrics 57 (1): 120–25.
 Ground Water 55 (5): 722–35. Rose, J. B., S. Daeschner, D. R. Easterling, F. C. Curriero, S. Lele, and J. A. Patz. 2000. Climate and Waterborne Disease Outbreaks. Journal American Water Works Association 92 (9): 77–87. Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A. Unc, and Gh. Sayyad. 2011. Bacterial Filtration Rates in Repacked and Weathered Soil Columns. Geoderma 167–168 (November): 204–13. https://doi.org/10.1016/j.geoderma.2011.08.014. Samarajeewa, A D, S M Glasauer, J D Lauzon, I P O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Different Application Methods of Liquid Swine Manure. Canadian Journal Of Microbiology 58 (5): 668–77. 	713	Procopio, N. A., T. B. Atherholt, S. M. Goodrow, and L. A. Lester. 2017. The Likelihood of
 Rose, J. B., S. Daeschner, D. R. Easterling, F. C. Curriero, S. Lele, and J. A. Patz. 2000. Climate and Waterborne Disease Outbreaks. <i>Journal American Water Works</i> <i>Association</i> 92 (9): 77–87. Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A. Unc, and Gh. Sayyad. 2011. Bacterial Filtration Rates in Repacked and Weathered Soil Columns. <i>Geoderma</i> 167–168 (November): 204–13. https://doi.org/10.1016/j.geoderma.2011.08.014. Samarajeewa, A D, S M Glasauer, J D Lauzon, I P O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Different Application Methods of Liquid Swine Manure. <i>Canadian Journal Of Microbiology</i> 58 (5): 668–77. 	714	Coliform Bacteria in NJ Domestic Wells Based on Precipitation and Other Factors.
 Climate and Waterborne Disease Outbreaks. Journal American Water Works Association 92 (9): 77–87. Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A. Unc, and Gh. Sayyad. 2011. Bacterial Filtration Rates in Repacked and Weathered Soil Columns. Geoderma 167–168 (November): 204–13. https://doi.org/10.1016/j.geoderma.2011.08.014. Samarajeewa, A D, S M Glasauer, J D Lauzon, I P O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Different Application Methods of Liquid Swine Manure. <i>Canadian Journal Of Microbiology</i> 58 (5): 668–77. 	715	Ground Water 55 (5): 722–35.
 Association 92 (9): 77–87. Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A. Unc, and Gh. Sayyad. 2011. Bacterial Filtration Rates in Repacked and Weathered Soil Columns. <i>Geoderma</i> 167–168 (November): 204–13. https://doi.org/10.1016/j.geoderma.2011.08.014. Samarajeewa, A D, S M Glasauer, J D Lauzon, I P O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Different Application Methods of Liquid Swine Manure. <i>Canadian Journal Of Microbiology</i> 58 (5): 668–77. 	716	Rose, J. B., S. Daeschner, D. R. Easterling, F. C. Curriero, S. Lele, and J. A. Patz. 2000.
 Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A. Unc, and Gh. Sayyad. 2011. Bacterial Filtration Rates in Repacked and Weathered Soil Columns. <i>Geoderma</i> 167–168 (November): 204–13. https://doi.org/10.1016/j.geoderma.2011.08.014. Samarajeewa, A D, S M Glasauer, J D Lauzon, I P O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Different Application Methods of Liquid Swine Manure. <i>Canadian Journal Of Microbiology</i> 58 (5): 668–77. 	717	Climate and Waterborne Disease Outbreaks. Journal American Water Works
 Gh. Sayyad. 2011. Bacterial Filtration Rates in Repacked and Weathered Soil Columns. <i>Geoderma</i> 167–168 (November): 204–13. https://doi.org/10.1016/j.geoderma.2011.08.014. Samarajeewa, A D, S M Glasauer, J D Lauzon, I P O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Different Application Methods of Liquid Swine Manure. <i>Canadian Journal Of Microbiology</i> 58 (5): 668–77. 	718	Association 92 (9): 77–87.
 Columns. <i>Geoderma</i> 167–168 (November): 204–13. https://doi.org/10.1016/j.geoderma.2011.08.014. Samarajeewa, A D, S M Glasauer, J D Lauzon, I P O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Different Application Methods of Liquid Swine Manure. <i>Canadian Journal Of Microbiology</i> 58 (5): 668–77. 	719	Safadoust, A., A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, P. Voroney, A. Unc, and
 https://doi.org/10.1016/j.geoderma.2011.08.014. Samarajeewa, A D, S M Glasauer, J D Lauzon, I P O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Different Application Methods of Liquid Swine Manure. <i>Canadian Journal Of Microbiology</i> 58 (5): 668–77. 	720	Gh. Sayyad. 2011. Bacterial Filtration Rates in Repacked and Weathered Soil
 Samarajeewa, A D, S M Glasauer, J D Lauzon, I P O'Halloran, Gary W Parkin, and K E Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Different Application Methods of Liquid Swine Manure. <i>Canadian Journal Of Microbiology</i> 58 (5): 668–77. 	721	Columns. <i>Geoderma</i> 167–168 (November): 204–13.
 Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow Groundwater under Different Application Methods of Liquid Swine Manure. <i>Canadian Journal Of Microbiology</i> 58 (5): 668–77. 	722	https://doi.org/10.1016/j.geoderma.2011.08.014.
 Groundwater under Different Application Methods of Liquid Swine Manure. <i>Canadian Journal Of Microbiology</i> 58 (5): 668–77. 	723	Samarajeewa, A D, S M Glasauer, J D Lauzon, I P O'Halloran, Gary W Parkin, and K E
726 Canadian Journal Of Microbiology 58 (5): 668–77.	724	Dunfield. 2012. Bacterial Contamination of Tile Drainage Water and Shallow
	725	Groundwater under Different Application Methods of Liquid Swine Manure.
727 Scaife, A., T. Spangehl, D. Fereday, U. Cubasch, U. Langematz, H. Akiyoshi, S. Bekki, et al.	726	Canadian Journal Of Microbiology 58 (5): 668–77.
	727	Scaife, A., T. Spangehl, D. Fereday, U. Cubasch, U. Langematz, H. Akiyoshi, S. Bekki, et al.
728 2012. Climate Change Projections and Stratosphere-Troposphere Interaction.	728	2012. Climate Change Projections and Stratosphere-Troposphere Interaction.
729 <i>Climate Dynamics</i> 38 (9/10): 2089–97. https://doi.org/10.1007/s00382-011-	729	Climate Dynamics 38 (9/10): 2089–97. https://doi.org/10.1007/s00382-011-
730 1080-7.	730	1080-7.
	731	Steiner, P. N 2009. Effects of Growing and Desiccated Roots or E. Coli Movement
	732	through Soil Columns. Masters of Science, USA: Michigan State University.
731 Steiner, P. N 2009. Effects of Growing and Desiccated Roots or <i>E. Coli</i> Movement	733	Summers, R. 2010. Alberta Water Well Survey: A Report Prepared for Alberta
 Steiner, P. N 2009. Effects of Growing and Desiccated Roots or <i>E. Coli</i> Movement through Soil Columns. Masters of Science, USA: Michigan State University. 	734	Environment. http://aep.alberta.ca/water/programs-and-
731 Steiner, P. N 2009. Effects of Growing and Desiccated Roots or <i>E. Coli</i> Movement	733	Summers, R. 2010. Alberta Water Well Survey: A Report Prepared for Alberta
 Steiner, P. N 2009. Effects of Growing and Desiccated Roots or <i>E. Coli</i> Movement through Soil Columns. Masters of Science, USA: Michigan State University. Summers, R. 2010. Alberta Water Well Survey: A Report Prepared for Alberta 	734	Environment. <u>http://aep.alberta.ca/water/programs-and-</u>

735	<u>services/groundwater/documents/AlbertaWaterWellSurvey-Report-Dec2010.pdf</u>
736	(accessed June 2018).
737	Technical Advisory Committee on Safe Drinking Water. 2007. Environmental Public
738	Health Field Manual for Private, Public and Communal Drinking Water Systems in
739	Alberta. Third Edition. Alberta Health and Wellness.
740	Thiagarajan, A., R. Gordon, A. Madani, and G. W. Stratton. 2007. Discharge of
741	Escherichia Coli from Agricultural Surface and Subsurface Drainage Water: Tillage
742	Effects. <i>Water</i> , no. 1: 3–12. https://doi.org/10.1007/s11270-006-9300-1.
743	Thomas, MK, DF Charron, D Waltner-Toews, C Schuster, AR Maarouf, and JD Holt. 2006.
744	A Role of High Impact Weather Events in Waterborne Disease Outbreaks in
745	Canada, 1975 - 2001. International Journal of Environmental Health Research 16
746	(3): 167–80.
747	Valcour, J. E., P. Michel, S. A. McEwen, and J. B. Wilson. 2002. Associations between
748	Indicators of Livestock Farming Intensity and Incidence of Human Shiga Toxin-
749	Producing Escherichia Coli Infection. Emerging Infectious Diseases 8 (3): 252–57.
750	https://doi.org/10.3201/eid0803.010159.
751	Wallender, E. K., E. C. Ailes, J. S. Yoder, V. A. Roberts, and J. M. Brunkard. 2014.
752	Contributing Factors to Disease Outbreaks Associated with Untreated
753	Groundwater. Ground Water 52 (6): 886–97.
754	World Health Organization. 2018. Drinking-Water. WHO. February 2018.
755	http://www.who.int/en/news-room/fact-sheets/detail/drinking-water (accessed
756	June 2018).
757	World Health Organization. 2011. Guidelines for Drinking-Water Quality, Fourth Edition
758	2011. WHO. 2011. http://www.who.int/water_sanitation_health/water-
759	<u>quality/guidelines/dwq-guidelines-4/en/</u> (accessed June 2018).
760	Zeger, S L, and K Y Liang. 1986. Longitudinal Data Analysis for Discrete and Continuous
761	Outcomes. Biometrics 42 (1): 121–30.
762	

Appendix A

- 765 **Table A.1** Unconditional associations of various predictor variables with total
- coliform positive well water samples using logistic regression with generalized
- restimating equations for 2010-2012 (April-Oct), Alberta, Canada.

	I	1	1	1	1
	Odds		Wald Chi		
Variable	Ratio	OR 95% CI	Square	df	p-value
Precipitation Overall			35.019	4	<.001
Precipitation					
99.05-230.77 mm/month	1.22	1.07-1.39	9.074	1	.003
Precipitation					
64.56-99.04 mm/month	0.86	0.75-0.99	4.719	1	.03
Precipitation					
45.77-64.55 mm/month	0.88	0.77-1.00	4.017	1	.04
Precipitation					
24.47-45.76 mm/month	0.99	0.87-1.130	0.015	1	.90
Precipitation					
0.877-24.461 mm/month	Ref				
Zero Till Overall			10.789	3	.01
Zero Till					
24.1-61.9%	1.19	0.96-1.47	2.452	1	.12
Zero Till					
17.7-21.8%	0.90	0.71-1.14	0.770	1	.38
Zero Till					
6.0-17.2%	1.13	0.91-1.41	1.254	1	.26
Zero Till					
0-5.1%	Ref				
Sand Overall			7.648	3	.05

Sand					
42.9-81.9%	1.15	0.97-1.40	2.483	1	.12
Sand					
38.8-42.8%	1.16	0.94-1.45	1.845	1	.17
Sand					
31.4-38.7%	1.25	0.94-1.47	7.627	1	.006
Sand					
0-30.9%	Ref				
Density of large animals Overall			11.329	3	.01
Density of large animals					
35.0-44.3 animals/km ²	0.86	0.70-1.05	2.188	1	.14
Density of large animals					
26.3-32.7 animals/km ²	0.83	0.68-1.03	2.923	1	.09
Density of large animals					
15.0-25.9 animals/km ²	1.07	0.87-1.31	0.402	1	.53
Density of large animals					
2.5-15.0 animals/km ²	Ref				
KSat Overall			7.290	3	.06
KSat					
.2-1.7 cm/hour	1.30	1.06-1.59	6.302	1	.01
KSat					
1.7-2.5 cm/hour	1.21	0.99-1.49	3.324	1	.07
KSat					
2.6-3.7 cm/hour	1.28	1.05-1.57	5.974	1	.02
KSat					
3.8-22.9 cm/hour	Ref				
Year overall			21.419	2	<.001
2012	1.17	1.05-1.31	8.252	1	.004

2011	1.27	1.15-1.41	21.087	1	<.001
2010	Ref				
Month overall			267.87	72 6	<.001
Мау	1.07	0.80-1.30	0.443	1	.51
Jun	1.37	1.14-1.70	11.500	1	.001
July	2.12	1.84-2.65	72.999	1	<.001
Aug	2.50	2.08-3.00	98.875	1	<.001
Sept	2.56	2.13-3.08	100.16	9 1	<.001
Oct	2.37	1.96-2.87	78.753	1	<.001
Apr	Ref				

Table A.2 Final multivariable model for total coliform contamination for 2010-2012

770 (April-Oct), Alberta, Canada.

	Odds				p-
Variable	Ratio	95% CI OR	Wald Chi- Square	df	value
Precipitation Overall	1	7	10.714	4	.03
Precipitation 99.1-230.8 mm/month	1.13	.95-1.34	1.945	1	.163
Precipitation 64.6-99.0 mm/month	0.93	0.78-1.10	0.789	1	.37
Precipitation 45.8-64.5 mm/month	0.98	0.84-1.15	0.059	1	.81
Precipitation 24.5-45.8 mm/month	1.10	0.94-1.26	1.407	1	.24
Precipitation .087-24.5 mm/month	Ref				

Zero Till Overall			9.987	3	.02
Zero Till	1.29	1.05-1.59	5.590	1	.02
24.1-61.9%	1.29	1.03-1.37	5.590	1	.02
Zero Till	1.02	0 70 1 22	0.020	1	.88
17.7-21.8%	1.02	0.78-1.33	0.020	1	.88
Zero Till	1.18	0.95-1.46	2.220	1	.14
6.0-17.2%	1.18	0.95-1.46	2.220	1	.14
Zero Till	Ref				
0-5.1%	Ref				
Sand Overall			11.006	3	.01
Sand					
42.9-81.9%	1.38	1.09-1.75	7.174	1	.007
Sand					
38.8-42.8%	1.22	1.01-1.48	4.0514	1	.04
Sand					
31.4-38.7%	1.30	1.10-1.55	8.423	1	.004
Sand					
0-30.9%	Ref				
Animal Density Overall			10.668	3	.01
			101000	U	101
Density of large animals	0.91	0.72-1.13	0.751	1	.39
35.0-44.3 animals/km ²	0.71	0.72-1.15	0.751	1	.57
Density of large animals	0.77	0.63-0.93	6.941	1	.008
26.3-32.7 animals/km ²	0.77	0.05-0.75	0.741	1	.000
Density of large animals	1.02	0.846-1.24	0.061	1	.81
15.0-25.9 animals/km ²	1.02	0.040-1.24	0.001	I	.01
Density of large animals	Ref				
2.5-15.0 animals/km ²	Rei				

KSat Overall			9.458	3	.02
KSat .2-1.7 cm/hour	1.48	1.18-1.91	9.123	1	.003
KSat 1.7-2.5 cm/hour	1.31	1.01-1.71	4.019	1	.05
KSat 2.6-3.7 cm/hour	1.31	1.05-1.64	5.620	1	.02
KSat 3.8-22.9 cm/hour	Ref				
Year Overall			12.272	2	.002
2012	1.15	1.03-1.29	6.338	1	.01
2011	1.22	1.09-1.37	11.559	1	.001
2010	Ref				
Month Overall			259.746	6	<.001
Мау	1.09	0.90-1.33	0.676	1	.41
Jun	1.41	1.16-1.72	11.688	1	.001
Jul	2.17	1.76-2.68	51.976	1	<.001
Aug	2.51	2.05-3.05	82.482	1	<.001
Sep	2.67	2.21-3.23	104.465	1	<.001
Oct	2.42	2.00-2.93	79.018	1	<.001
Apr	Ref				

772 **Table A.3** Interaction terms tested in the total coliform model and their

773 significances:

Interaction term	Significance
Zero Till*Animal Density	.606
Zero Till*KSat	.079
Zero Till*Precipitation	.907
Animal Density*KSat	.087
Animal Density*Precipitation	.410
KSat*Precipitation	.589
Month*Animal Density	.287
Month*Zero Till	.109
Month*KSat	.161

774

775 **Table A.4** Unconditional associations of various predictor variables with *E. coli*

positive well water samples using logistic regression with generalized estimating

equations for 2010-2012 (April-Oct), Alberta, Canada.

	Odds				
Variable	Ratio	95% CI OR	Wald Chi- Square	Df	p-value
Precipitation	1.01	1.01-1.01	39.131	1	<.001

Zero Till Overall			7.189	3	.07
Zero Till					
24.1-61.9%	1.36	0.89-2.07	2.061	1	.15
Zero Till					
17.7-21.8%	0.82	0.50-1.33	0.661	1	.42
Zero Till					
6.0-17.2%	1.24	0.81-1.91	0.985	1	.32
Zero Till					
0-5.1%	Ref				
Sand Overall			7.749	3	.05
Sand					
42.9-81.9%	1.38	0.91-2.10	2.342	1	.13
Sand					
38.8-42.8%	1.62	1.06-2.47	5.059	1	.02
Sand					
31.4-38.7%	1.70	1.14-2.52	6.856	1	.009
Sand					
0-30.9%	Ref				
Animal Density					
Overall			16.069	3	.001
overall			10.007	9	.001
Density of large animals	0.86	0.58-1.29	0.527	1	.47
35.0-44.3 animals/km ²	0.00	0.50 1.27	0.527	1	.17
Density of large animals	0.67	0.04-1.02	3.467	1	.06
26.3-32.7 animals/km ²	0.07	0.04-1.02	5.407	1	.00
Density of large animals	1.42	0.97-2.09	3.183	1	.07
15.0-25.9 animals/km ²	1.12	5.77 2. 07	5.105	Ŧ	.07
Density of large animals	Ref				

2.5-14.9 animals/km²

KSat Overall			9.586	3	.02
KSat .2-1.7 cm/hour	1.90	1.25-2.89	8.877	1	.003
KSat 1.7-2.5 cm/hour	1.65	1.07-2.55	5.028	1	.03
KSat 2.6-3.7 cm/hour	1.75	1.15-2.68	6.694	1	.01
KSat 3.8-22.9 cm/hour	Ref				
Year Overall			7.066	2	.03
2010	1.10	0.79-1.34	0.292	1	.59
2011	1.48	1.08-2.04	5.819	1	.02
2012	Ref				
Month Overall			47.796	6	<.001
Мау	0.74	0.36-1.52	0.660	1	.42
Jun	1.70	0.94-3.08	3.030	1	.08
Jul	3.09	1.80-5.41	15.683	1	<.001
Aug	3.13	1.78-5.50	15.702	1	<.001
Sep	2.07	1.12-3.84	5.388	1	.02
Oct	1.69	0.88-3.26	2.486	1	.12
Apr	Ref				

- 779 **Table A.5** Final multivariable model for *Escherichia coli* contamination for 2010-
- 780 2012 (April-Oct), Alberta, Canada.

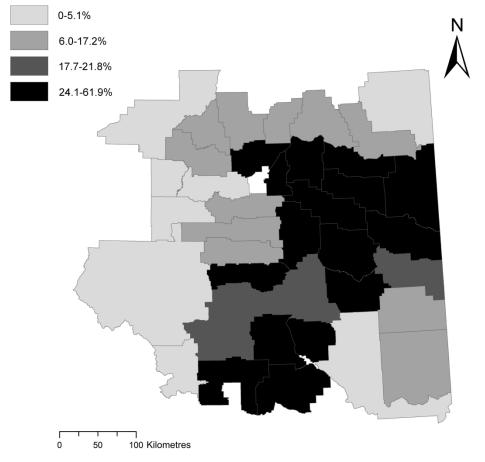
	Odds		I	I	1
Variable	Ratio	95% CI OR	Wald Chi-Square	df	p-value
Precipitation	1.007	1.003-1.01	15.453	1	<.001
Sand Overall			9.332	3	.03
Sand					
42.9-81.9%	2.05	1.19-3.53	6.771	1	.009
Sand					
38.8-42.8%	1.86	1.21-2.87	7.840	1	.005
Sand					
31.4-38.7%	1.70	1.07-2.70	5.123	1	.02
Sand					
0-30.9%	Ref				
Animal Density					
Overall			15.732	3	.001
Density of large animals					
35.0-44.3 animals/km ²	1.00	0.66-1.46	0.011	1	.92
Density of large animals					
26.3-32.7 animals/km ²	0.67	0.44-1.01	3.604	1	.06
Density of large animals					
15.0-25.9 animals/km ²	1.48	1.02-2.16	4.320	1	.04
Density of large animals					
2.5-15.0 animals/km ²	Ref				
KSat overall			14.698	3	.002
KSat					
.2-1.7 cm/hour	2.69	1.60-4.50	14.153	1	<.001

KSat					
1.7-2.5 cm/hour	2.13	1.23-3.70	7.241	1	.007
KSat					
2.6-3.7 cm/hour	2.00	1.27-3.13	9.078	1	.003
KSat					
3.8-22.9 cm/hour					
Year Overall			6.141	2	.05
Year 2010	1.10	0.78-1.53	0.283	1	.59
Year 2011	1.45	1.05-2.00	5.076	1	.02
Year 2012	Ref				
Month Overall			25.266	6	<.001
Month Overall May	0.67	0.33-1.36	25.266 1.239	6 1	<.001 .27
	0.67 1.25	0.33-1.36 0.67-2.33			
Мау			1.239	1	.27
May Jun	1.25	0.67-2.33	1.239 0.506	1 1	.27 .48
May Jun Jul	1.25 1.82	0.67-2.33 0.99-3.33	1.239 0.506 3.722	1 1 1	.27 .48 .05
May Jun Jul Aug	1.25 1.82 2.19	0.67-2.33 0.99-3.33 1.21-3.97	1.239 0.506 3.722 6.772	1 1 1	.27 .48 .05 .009
May Jun Jul Aug Sep	1.25 1.82 2.19 2.02	0.67-2.33 0.99-3.33 1.21-3.97 1.09-3.75	1.239 0.506 3.722 6.772 4.955	1 1 1 1	.27 .48 .05 .009 .03
May Jun Jul Aug Sep Oct	1.25 1.82 2.19 2.02 1.79	0.67-2.33 0.99-3.33 1.21-3.97 1.09-3.75	1.239 0.506 3.722 6.772 4.955	1 1 1 1	.27 .48 .05 .009 .03

- 782 **Table A.6** Interaction terms tested in the *Escherichia coli* model and their
- 783 significances:

Interaction term	Significance
Sand*Animal Density	.296
Sand *KSat	Quasi-separation, analysis not completed

Sand*Precipitation	.543
Animal Density * KSat	.065
Animal Density * Precipitation	.415
KSat*Precipitation	.727


785

URL: https://mc.manuscriptcentral.com/tcwr

Study area (shaded), with counties demarcated with black outlines for Alberta, Canada.

215x279mm (300 x 300 DPI)

Geographical locations of counties by zero-till categories for the study area in Alberta, Canada.

Geographical locations of counties by zero-till categories for the study area in Alberta, Canada.

203x198mm (300 x 300 DPI)