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a b s t r a c t

We consider two Large Eddy Simulation (LES) models for the approximation of large scales
of equations of Magnetohydrodynamics (MHD in the sequel). We study two α-models,
which are obtained adapting to theMHD the approach by Stolz and Adamswith van Cittert
approximate deconvolution operators. First, we prove the existence and uniqueness of a
regularweak solution for a systemwith filtering and deconvolution in both equations. Then
we study the behavior of solutions as the deconvolution parameter goes to infinity. The
main result of this paper is the convergence to a solution of the filtered MHD equations.
Next, we also study the problem with filtering acting only on the velocity equation.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we study the equations of (double viscous) incompressible MHD

∂tu + ∇ · (u ⊗ u) − ∇ · (B ⊗ B) + ∇p − ν∆u = f,
∂tB + ∇ · (B ⊗ u) − ∇ · (u ⊗ B) − µ∆B = 0,
∇ · u = ∇ · B = 0,
u(0, x) = u0(x), B(0, x) = B0(x),

(1.1)

where ν > 0 is the kinematic viscosity, while µ > 0 is the magnetic diffusivity. The vector fields u and B are the velocity
and the magnetic field respectively, while the scalar p is the pressure (rescaled by the density supposed constant here).
We consider the problem in the three dimensional setting, and most of the technical difficulties are those known for the
3D Navier–Stokes equations (NSE). Examples of fluids which can be described by Eqs. (1.1) are for instance plasmas, liquid
metals, and salt water or electrolytes. See Davidson [15] for an introduction to the topic. In this paper we aim to study
the approximate deconvolution procedure (developed for turbulent flows by Stolz and Adams [40,41,1]) and especially its
adaption to the MHD with the perspective of numerical simulations of turbulent incompressible flows, when coupled to a
magnetic field.
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In the recent years, the topic of MHD attracted the interest of many researchers and, for the study of the question of
existence, uniqueness, regularity, and estimates on the number of degrees of freedom, we recall the following papers [9,10,
21,23–25,30,32].

Approximate Deconvolution Models (ADM) for turbulent flows without magnetic effects were studied in [6,17,29,31].
The problem of the limiting behavior of the models when the grid mesh size goes to zero is already under control [17,26,
27,35]. On the other hand, the question of the limiting behavior of the solutions when the deconvolution parameter goes to
infinity is a very recent topic, and is well-studied just for the NSE – without any coupling – in [6] (see also a short review
in [4]).

In the context of MHD, the topic seems not explored yet, hence we adapt here the results of [6] to the equations with
the magnetic field and we find also some interesting unexpected variant, related to the applications of two different filters.
Especially the equation for the magnetic field turns out to behave much better than that for the velocity, hence it seems not
to require filtering.

To briefly introduce the problem (the reader can find more details in the introduction of [6]), we recall that the main
underlying idea of LES, see [5,12,37], is that of computing the ‘‘mean values’’ of the flow fields u = (u1, u2, u3), B =
(B1, B2, B3), and p. In the spirit of the work started with Boussinesq [8] and then with Reynolds [36], this corresponds to
find a suitable computational decomposition

u = u + u′, B = B + B′, and p = p + p′,

where the primed variables are fluctuations around the over-lined mean fields. In our context, the mean fields are defined
by application of the inverse of a differential operator. By assuming that the averaging operation commutes with differential
operators, one gets the filtered MHD equations

∂tu + ∇ · (u ⊗ u) − ∇ · (B ⊗ B) + ∇p − ν∆u = f,

∂tB + ∇ · (B ⊗ u) − ∇ · (u ⊗ B) − µ∆B = 0,

∇ · u = ∇ · B = 0,

u(0, x) = u0(x), B(0, x) = B0(x).

(1.2)

This raises the question of the interior closure problem, that is the modeling of the tensors

(c ⊗ d) with either c, d = u or B
in terms of the filtered variables (u, B, p).

From this point, there are many modeling options. The basic model is the sub-grid model (SGM) that introduces an eddy
viscosity of the form νt = Ch(x)2|∇u|, which may be deduced from Kolmogorov similarity theory (see [12]), where h(x)
denotes the local size of a computational grid, and C is a constant to be fixed from experiments. This model, that already
appears in Prandtl’s work [34] with the mixing length % instead of h(x), was firstly used by Smagorinsky for numerical
simulations [38]. This is a very good model, but introduces numerical instabilities in high-gradient regions, depending on
the numerical scheme and potential CFL constraints.

Among all procedures to stabilize the SGM, the most popular was suggested by Bardina et al. [2], which reveals being
a little bit too diffusive and underestimates some of the resolved scales, that are called ‘‘Sub Filter Scales’’ (SFS) (see for
instance [13,20]). Then the model needs to be ‘‘deconvolved’’ to reconstruct accurately the SFS. Hence, many options
occur here, too. In the present paper we study the Approximate Deconvolution Model (ADM), introduced by Adams and
Stolz [40,1], who have successfully transferred image modeling procedures [7] to turbulence modeling.

From a simplified and naive mathematical viewpoint, this model, which uses similarity properties of turbulence, is
defined by approximating the filtered bi-linear terms as follows:

(c ⊗ d) ∼ (DN(c) ⊗ DN(d)).

Here the filtering operators Gi are defined thanks to the Helmholtz filter (cf. (2.1)–(2.2) below) by G1u = u, G2B = B, where
Gi := (I−α2

i ∆)−1, i = 1, 2. Observe thatwe can then have two different filters corresponding to the equation for the velocity
and for that of the magnetic field. There are two interesting values for the couple of parameters (α1, α2) ∈ R+ × R+:
1. α1 = α2 > 0. In this case the approximate equations conserve Alfvén waves, see [24];
2. α1 > 0, α2 = 0, which means no filtering in the equation for B.
The deconvolution operators DNi are defined through the van Cittert algorithm (2.10) and the initial value problem that we
consider in the space periodic setting is:

∂tw + ∇ · G1
(
DN1(w) ⊗ DN1(w)

)
− ∇ · G1

(
DN2(b) ⊗ DN2(b)

)
+ ∇q − ν∆w = G1f,

∂tb + ∇ · G2
(
DN1(w) ⊗ DN2(b)

)
− ∇ · G2

(
DN2(b) ⊗ DN1(w)

)
− µ∆b = 0,

∇ · w = ∇ · b = 0, (1.3)
w(0, x) = G1u0(x), b(0, x) = G2B0(x),
α1 > 0, α2 ≥ 0.
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As usual, we observe that the Eqs. (1.3) are not the Eqs. (1.2) satisfied by (u, B), but we are aimed at considering (1.3) as an
approximation of (1.2), hencew * G1u and b * G2B. This is mathematically sound since, at least formally,

DNi → Ai := I − α2
i ∆ in the limit Ni → +∞,

hence, again formally, (1.3) will become the filtered MHD equations (1.2). The existence and uniqueness issues have been
also treated (even if without looking for estimates independent of Ni) in [24,23] (for arbitrary deconvolution orders). What
seems more challenging is to understand whether this convergence property is true or not, namely to show that as the
approximation parameters Ni grow, then (as recently proved for the Navier–Stokes equations in [6])

w → G1u, b → G2B, and q → G1q.

We prove that the model (1.3) converges, in some sense, to the averaged MHD equations (1.2), when the typical scales of
filtration αi remain fixed. Before analyzing such a convergence, we need to prove more precise existence results. To this
end we follow the same approach from [6], which revisits the approach in [17] for the Navier–Stokes equations. To be more
precise, themain result dealswithα1 > 0 andα2 > 0.We first prove (cf. Theorem3.1) existence and uniqueness of solutions
(wN , bB, qN) of (1.3), with N = (N1,N2), such that

wN , bN ∈ L2([0, T ];H2(T3)
3) ∩ L∞([0, T ];H1(T3)

3),

qN ∈ L2([0, T ];W 1,2(T3)) ∩ L5/3([0, T ];W 2,5/3(T3)),

and our main result is the following one.

Theorem 1.1. Let α1 > 0 and α2 > 0; then, from the sequence {(wN , bN , qN)}N∈N2 , one can extract a (diagonal) sub-sequence
(still denoted {(wN , bN , qN)}N∈N2 )

wN → w
bN → b

{
weakly in L2([0, T ];H2(T3)

3)

weakly∗ in L∞([0, T ];H1(T3)
3),

wN → w
bN → b strongly in Lp([0, T ];H1(T3)

3), ∀1 ≤ p < +∞,

qN → q weakly in L2([0, T ];W 1,2(T3)) ∩ L5/3([0, T ];W 2,5/3(T3)),

such that the system

∂tw + ∇ · G1(A1w ⊗ A1w) − ∇ · G1(A2b ⊗ A2b) + ∇q − ν∆w = G1f,
∇ · w = ∇ · b = 0,
∂tb + ∇ · G2(A2b ⊗ A1w) − ∇ · G2(A1w ⊗ A2b) − µ∆b = 0,
w(0, x) = G1u0(x), b(0, x) = G2B0(x),

(1.4)

holds in the distributional sense. Moreover, the following energy inequality holds:

1
2

d
dt

(
‖A1w‖2 + ‖A2b‖2) + ν‖∇A1w‖2 + µ‖∇A2b‖2 ≤ 〈f, A1w〉. (1.5)

As a consequence of Theorem 1.1, we deduce that the field (u, B, p) = (A1w, A2b, A1q) is a dissipative (of Leray–Hopf’s
type) solution to the MHD equations (1.1).
Plan of the paper. In Section 2 we introduce the notation and the filtering operations. In Sections 3 and 4 we consider the
model with the double filtering with non-vanishing parameters αi and then we study the limiting behavior as Ni → +∞.
In Section 5, we treat the same problems in the case α1 > 0 and α2 = 0. Since most of the calculations are in the same spirit
of those in [6], instead of proofs at full length we just point out the changes needed to adapt the proof valid for the NSE to
the MHD equations. Finally, further remarks and open problems are exposed in the last Section 6. The discussion focuses
on the questions of: boundary conditions more general than the periodic ones; other filtering processes such as generalized
Helmholtz and/or Gaussian filter (see [6,18]); other techniques of deconvolution such as the Leray–Tikhonov deconvolution
operator introduced in [39].

2. Notation and filter/deconvolution operators

This section is devoted to the definition of the functional setting which we will use, and to the definition of the filter
through the Helmholtz equation, with the related deconvolution operator. All the results are well-known and we refer
to [6,29,31] for further details. We will use the customary Lebesgue Lp and Sobolev Wk,p and Ws,2 = Hs spaces, in the
periodic setting. Hence, we use Fourier series on the 3D torus T3. Let be given L ∈ R&

+ := {x ∈ R : x > 0}, and define
Ω := ]0, L[3 ⊂ R3. We denote by (e1, e2, e3) the orthonormal basis of R3, and by x := (x1, x2, x3) ∈ R3 the standard point
in R3. We put T3 := 2πZ3/L and T3 is the torus defined by T3 :=

(
R3/T3

)
. We use ‖ · ‖ to denote the L2(T3)-norm and
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associated operator norms. We always impose the zero mean condition on the fields that we consider and we define, for a
general exponent s ≥ 0,

Hs :=
{
w : T3 → R3,w ∈ Hs(T3)

3, ∇ · w = 0,
∫

T3

w dx = 0
}

.

For w ∈ Hs, we can expand the fields as w(x) = ∑
k∈T &

3
ŵk e+ik·x, where k ∈ T &

3 is the wave-number, and the Fourier

coefficients are ŵk := 1
|T3|

∫
T3

w(x) e−ik·xdx. The magnitude of k is defined by k := |k| = {|k1|2 + |k2|2 + |k3|2}
1
2 . We define

the Hs norms by ‖w‖2
s := ∑

k∈T &
3

|k|2s|ŵk|2, where of course ‖w‖2
0 := ‖w‖2. The inner products associated to these norms

are (w, v)Hs := ∑
k∈T &

3
|k|2sŵk · v̂k, where v̂k denotes the complex conjugate of v̂k. To have real valued vector fields, we

impose ŵ−k = ŵk for any k ∈ T &
3 and for any field denoted by w. It can be shown (see e.g. [16]) that when s is an integer,

‖w‖2
s := ‖∇sw‖2 and also, for general s ∈ R, (Hs)

′ = H−s.
We now recall the main properties of the Helmholtz filter. In the sequel, α > 0 denotes a given fixed number and for

w ∈ Hs the fieldw is the solution of the Stokes-like problem:

−α2∆w + w + ∇π = w in T3,

∇ · w = 0 in T3, (2.1)∫

T3

w dx = 0,
∫

T3

π dx = 0.

For w ∈ Hs this problem has a unique solution (w, π) ∈ Hs+2 × Hs+1(T3), whose velocity is denoted also by w = Gw.
Observe that, with a common abuse of notation, for a scalar function χ we still denote (this is a standard notation) by χ the
solution of the pure Helmholtz problem

Aχ := −α2∆χ + χ = χ in T3. (2.2)

In particular, in the LES model (1.3) and in the filtered equations (1.2)–(1.4), the symbol ‘‘ ’’ denotes the pure Helmholtz
filter, applied component-wise to the various tensor fields.

We recall now a definition that we will use several times in the sequel.

Definition 2.1. Let K be an operator acting on Hs. Assume that e−ik·x are eigenvectors of K with corresponding eigenvalues
K̂k. Then we shall say that K̂k is the symbol of K .

The deconvolution operator DN is constructed thanks to the Van Cittert algorithm by DN := ∑N
n=0(I −G)n. Starting from

this formula, we can express the deconvolution operator in terms of Fourier series DN(w) = ∑
k∈T &

3
D̂N(k)ŵke+ik·x, where

D̂N(k) =
N∑

n=0

(
α2|k|2

1 + α2|k|2
)n

= (1 + α2|k|2)ρN,k, ρN,k = 1 −
(

α2|k|2
1 + α2|k|2

)N+1

. (2.3)

The basic properties satisfied by D̂N that we will need are summarized in the following lemma.

Lemma 2.1. For each N ∈ N the operator DN : Hs → Hs is self-adjoint, it commutes with differentiation, and the following
properties hold true:

1 ≤ D̂N(k) ≤ N + 1 ∀k ∈ T3; (2.4)

D̂N(k) ≈ (N + 1)
1 + α2|k|2

α2|k|2 for large |k|; (2.5)

lim
|k|→+∞

D̂N(k) = N + 1 for fixed α > 0; (2.6)

D̂N(k) ≤ (1 + α2|k|2) ∀k ∈ T3, α > 0; (2.7)
the map w 5→ DN(w) is an isomorphism s.t. ‖DN‖Hs = O(N + 1) ∀s ≥ 0; (2.8)

lim
N→+∞

DN(w) = Aw in Hs ∀s ∈ R and w ∈ Hs+2. (2.9)

All these claims follow fromdirect inspection of the formula (2.3) and, in the sequel, wewill also use the natural notations
Gi := A−1

i := (I − α2
i ∆)−1 and

DNi :=
Ni∑

n=0

(I − Gi)
n, i = 1, 2. (2.10)
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3. Existence results

In order to be self-contained, we start by considering the initial value problem for the model (1.3). In this section,
N1,N2 ∈ N are fixed as well as α1 > 0, α2 > 0, and we assume that the data are such that

u0, B0 ∈ H0, f ∈ L2([0, T ] × T3), (3.1)

which naturally yields G1u0,G2B0 ∈ H2,G1f ∈ L2([0, T ];H2). We start by defining the notion of what we call a ‘‘regular
weak’’ solution to this system.

Definition 3.1 (‘‘Regular Weak’’ Solution).We say that the triple (w, b, q) is a ‘‘regular weak’’ solution to system (1.3) if and
only if the three following items are satisfied:
(1) Regularity:

w, b ∈ L2([0, T ];H2) ∩ C([0, T ];H1), (3.2)

∂tw, ∂tb ∈ L2([0, T ];H0) (3.3)

q ∈ L2([0, T ];H1(T3)). (3.4)

(2) Initial data:

lim
t→0

‖w(t, ·) − G1u0‖H1 = 0, lim
t→0

‖b(t, ·) − G2B0‖H1 = 0, (3.5)

(3) Weak formulation: For all v,h ∈ L2([0, T ];H1(T3)
3)

∫ T

0

∫

T3

∂tw · v −
∫ T

0

∫

T3

G1(DN1(w) ⊗ DN1(w)) : ∇v +
∫ T

0

∫

T3

G1(DN2(b) ⊗ DN2(b)) : ∇v

+
∫ T

0

∫

T3

∇q · v + ν

∫ T

0

∫

T3

∇w : ∇v =
∫ T

0

∫

T3

G1f · v, (3.6)

∫ T

0

∫

T3

∂tb · h −
∫ T

0

∫

T3

G2(DN2(b) ⊗ DN1(w)) : ∇h +
∫ T

0

∫

T3

G2(DN1(w) ⊗ DN2(b)) : ∇h

+ µ

∫ T

0

∫

T3

∇b : ∇h = 0. (3.7)

Observe that, for simplicity, we suppressed all dx and dt from the space–time integrals. With the same observations
as in [6], one can easily check that all integrals involving DN1w and DN2b in (3.6)–(3.7) are finite under the regularity in
(3.2)–(3.3). We now prove the following theorem, which is an adaption of the existence theorem in [6] and at the same time
a slightly more precise form of the various existence theorems available in literature for doubly viscous MHD systems.

Theorem 3.1. Assume that (3.1) holds, 0 < αi ∈ R and Ni ∈ N, i = 1, 2, are given and fixed. Then, problem (1.3) has a unique
regular weak solution.

In the proof we use the usual Galerkin method (see for instance the basics for incompressible fluids in [33]) with
divergence-free finite dimensional approximate velocities and magnetic fields. We also point out that Theorem 3.1 greatly
improves the corresponding existence result in [24] and it is not a simple restatement of those results. Some of the main
original contributions are here the estimates, uniform in N , that will allow later on to pass to the limit when Ni → +∞.

Proof of Theorem 3.1. Let be givenm ∈ N& and defineVm to be the following space of real valued trigonometric polynomial
vector fields

Vm :=
{
w ∈ H1 :

∫

T3

w(x) e−ik·x = 0, ∀kwith |k| > m
}

.

In order to use classical tools for systems of ordinary differential equations, we approximate the external force fwith f1/m by
means of Friederichs mollifiers. Thanks to the Cauchy–Lipschitz Theorem, we can prove existence of Tm > 0 and of unique
C1 solutionswm(t, x) and bm(t, x) (belonging to Vm for all t ∈ [0, Tm[) to

∫

T3

∂twm · v −
∫

T3

G1(DN1(wm) ⊗ DN1(wm)) : ∇v +
∫

T3

G1(DN2(bm) ⊗ DN2(bm)) : ∇v + ν

∫

T3

∇wm : ∇v

=
∫

T3

G1f1/m · v, (3.8)
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∫

T3

∂tbm · h −
∫

T3

G2(DN2(bm) ⊗ DN1(wm)) : ∇h +
∫

T3

G2(DN1(wm) ⊗ DN2(bm)) : ∇h

+ µ

∫

T3

∇bm : ∇h = 0, (3.9)

for all v,h ∈ L2([0, T ];Vm).

Remark 3.1. Instead of (wm, bm), a more precise and appropriate notation for the solution of the Galerkin system would
be (wm,N1,N2,α1,α2 , bm,N1,N2,α1,α2). We are asking for a simplification, since in this section Ni and αi are fixed and the only
relevant parameter is the Galerkin onem ∈ N&.

The natural and correct test functions to get a priori estimates are A1DN1(wm) for the first equation and A2DN2(bm) for
the second one. Arguing as in [6], it is easily checked that both are in Vm. Since A1, A2 are self-adjoint and commute with
differential operators, it holds:

∫

T3

G1(DN1(wm) ⊗ DN1(wm)) : ∇(A1DN1(wm)) dx = 0,
∫

T3

G2(DN2(bm) ⊗ DN2(bm)) : ∇(A2DN2(bm)) dx = 0.

Moreover,
∫

T3

G1(DN2(bm) ⊗ DN2(bm)) : ∇(A1DN1(wm)) dx −
∫

T3

G2(DN2(bm) ⊗ DN1(wm)) : ∇(A2DN2(bm)) dx

+
∫

T3

G2(DN1(wm) ⊗ DN2(bm)) : ∇(A2DN2(bm)) dx

= −
∫

T3

(DN2(bm) · ∇)DN2(bm) · DN1(wm) dx +
∫

T3

(DN1(wm) · ∇)DN2(bm) · DN2(bm) dx

−
∫

T3

(DN2(bm) · ∇)DN1(wm) · DN2(bm) dx = 0.

Summing up the equations satisfied bywm and bm, using standard integration by parts and Poincaré’s inequality combined
with Young’s inequality, we obtain

‖A
1
2
1 D

1
2
N1

(wm)(t, ·)‖2 + ‖A
1
2
2 D

1
2
N2

(bm)(t, ·)‖2 +
∫ t

0
‖∇A

1
2
1 D

1
2
N1

(wm)‖2 dτ +
∫ t

0
‖∇A

1
2
2 D

1
2
N2

(bm)‖2 dτ

≤ C(‖u0‖, ‖B0‖, ν−1‖f‖L2([0,T ];H−1)
), (3.10)

which shows that the natural quantities under control are A
1
2
1 D

1
2
N1

(wm) and A
1
2
2 D

1
2
N2

(bm).
Since we need to prove many a priori estimates, for the reader’s convenience we organize the results in tables as (3.11).

In the first column we have labeled the estimates, while the second column specifies the variable under concern. The third
one explains the bound in terms of function spaces: The symbol of a space means that the considered sequence is bounded
in such a space. Finally, the fourth column states the order in terms of α, m and N for each bound.

Label Variable Bound Order

a) A
1
2
1 D

1
2
N1

(wm), A
1
2
2 D

1
2
N2

(bm) L∞([0, T ];H0) ∩ L2([0, T ];H1) O(1)
b) D1/2

N1
(wm), D1/2

N2
(bm) L∞([0, T ];H0) ∩ L2([0, T ];H1) O(1)

c) D1/2
N1

(wm), D1/2
N2

(bm) L∞([0, T ];H1) ∩ L2([0, T ];H2) O(α−1)

d) wm, bm L∞([0, T ];H0) ∩ L2([0, T ];H1) O(1)
e) wm, bm L∞([0, T ];H1) ∩ L2([0, T ];H2) O(α−1)

f ) DN1(wm), DN2(bm) L∞([0, T ];H0) ∩ L2([0, T ];H1) O(1)

g) DN1(wm), DN2(bm) L∞([0, T ];H1) ∩ L2([0, T ];H2) O(
√
Ni+1
α

)

h) ∂twm, ∂tbm L2([0, T ];H0) O(α−1).

(3.11)

In the previous table, α = α1 forwm, α = α2 for bm, while in (h) we can take α := min{α1, α2} for bothwm and bm.
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Proof of (3.11-a). This estimate follows directly from (3.10). Notice also that since the operator A
− 1

2
i D

1
2
Ni

has for symbol

ρ
1/2
Ni,k ≤ 1, then ‖A

1
2
1 D

1
2
N1
G1f1/m‖ ≤ C‖f‖ and also

‖A
1
2
i D

1
2
Ni

PmGia‖ =‖ PmA
1
2
i D

1
2
Ni
Gia‖ ≤ ‖A

1
2
i D

1
2
Ni
a‖ ≤ ‖a‖,

which will be used with a = u0, B0. !

Proof of (3.11-b)–(3.11-c). Let v ∈ H2. Then, with obvious notations, one has

‖A
1
2
i v‖2 =

∑

k∈T &
3

(1 + α2
i |k|2)|̂vk|2 = ‖v‖2 + α2

i ‖∇v‖2.

It suffices to apply this identity to v = D
1
2
N1

(wm),D
1
2
N2

(bm) and to v = ∂iD
1
2
N1

(wm), ∂iD
1
2
N1

(bm) (i = 1, 2, 3) in (3.10) to get the
claimed result. !

Proof of (3.11-d)–(3.11-e)–(3.11-f). These are direct consequence of ((3.11)-a)–((3.11)-b)–((3.11)-c) combined with
(2.4). !

Proof of (3.11-g). This follows directly from ((3.11)-e), together with (2.4). !

Remark 3.2. One crucial point is that ((3.11)-g) is valid for each N = (N1,N2), but the bound may grow with Ni.

Proof of (3.11-h). Let us take ∂twm, ∂tbm ∈ Vm as test vector fields in (3.8). We get

‖∂twm‖2 +
∫

T3

G1
(
∇ · [DN1(wm) ⊗ DN1(wm)]

)
· ∂twm

−
∫

T3

G1
(
∇ · [DN2(bm) ⊗ DN2(bm)]

)
· ∂twm + ν

2
d
dt

‖∇wm‖2 =
∫

T3

G1f1/m · ∂twm,

‖∂tbm‖2 +
∫

T3

G2
(
∇ · [DN2(bm) ⊗ DN1(wm)]

)
· ∂tbm

−
∫

T3

G2
(
∇ · [DN1(wm) ⊗ DN2(bm)]

)
· ∂tbm + µ

2
d
dt

‖∇bm‖2 = 0.

To estimate the time derivative, we need bounds on the bi-linear terms

AN,m := G1∇ ·
(
DN1(wm) ⊗ DN1(wm)

)
,

BN,m := G1∇ ·
(
DN2(bm) ⊗ DN2(bm)

)
,

CN,m := G2∇ ·
(
DN1(wm) ⊗ DN2(bm)

)
.

Even if we have two additional terms, this can be easily done as in [6] by observing that, by interpolation inequalities,
both DN1(wm) and DN2(bm) belong to L4([0, T ]; L3(T3)

3). Therefore, by observing that the operator (∇·) ◦ Gi has symbol
corresponding to the inverse of one space derivative, it easily follows that AN,m, BN,m, CN,m ∈ L2([0, T ] × T3)

3. Moreover,
the bound is of order O(α−1

i ) as well. !

From the bounds proved in (3.11) and classical Aubin–Lions compactness tools, we can extract sub-sequences
{wm, bm}m∈N converging tow, b ∈ L∞([0, T ];H1) ∩ L2([0, T ];H2) and such that

wm → w
bm → b weakly in L2([0, T ];H2), (3.12)

wm → w
bm → b strongly in Lp([0, T ];H1), ∀p ∈ [1, ∞[, (3.13)

∂twm → ∂tw
∂tbm → ∂tb

weakly in L2([0, T ];H0). (3.14)

This already implies that (w, b) satisfies (3.2)–(3.3). From (3.13) and the continuity ofDNi inHs, we get strong convergence
of DN1(wm),DN2(bm) in L4([0, T ] × T3), hence the convergence of the corresponding bi-linear products in L2([0, T ] × T3).
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This proves that for all v,h ∈ L2([0, T ];H1)
∫ T

0

∫

T3

∂tw · v −
∫ T

0

∫

T3

G1(DN1(w) ⊗ DN1(w)) : ∇v +
∫ T

0

∫

T3

G1(DN2(b) ⊗ DN2(b)) : ∇v

+ ν

∫ T

0

∫

T3

∇w : ∇v =
∫ T

0

∫

T3

G1f · v, (3.15)
∫ T

0

∫

T3

∂tb · h −
∫ T

0

∫

T3

G2(DN2(b) ⊗ DN1(w)) : ∇h

+
∫ T

0

∫

T3

G2(DN1(w) ⊗ DN2(b)) : ∇h + µ

∫ T

0

∫

T3

∇b : ∇h = 0. (3.16)

To introduce the pressure, observe that taking the divergence of the equation forw, we get

∆q = ∇ · G1f + ∇ · AN , (3.17)

for AN := −G1
[
∇ ·

(
DN1(w) ⊗ DN1(w)

)
− ∇ ·

(
DN2(b) ⊗ DN2(b)

)]
. A fairly standard application of De Rham’s Theorem

shows existence of q, and the regularity of AN yields q ∈ L2([0, T ];H1(T3)).
Themeaning in which the initial data are taken is completely standard andwe end the proof by showing uniqueness: Let

(w1, b1) and (w2, b2) be two solutions corresponding to the same data (u0, B0, f) and let us define, as usual, W := w1 −w2
and B := b1 − b2. By standard calculations (mimicking those employed in [6]), we get

1
2

d
dt

(
‖A

1
2
1 D

1
2
N1

(W)‖2 + ‖A
1
2
2 D

1
2
N2

(B)‖2
)

+ ν‖∇A
1
2
1 D

1
2
N1

(W)‖2 + µ‖∇A
1
2
2 D

1
2
N2

(B)‖2

=
∫

T3

(DN2(B) · ∇)DN2(b1) · DN1(W) −
∫

T3

(DN1(W) · ∇)DN1(w1) · DN1(W)

+
∫

T3

(DN2(B) · ∇)DN1(w1) · DN2(B) −
∫

T3

(DN1(W) · ∇)DN2(b1) · DN2(B)

≤ 2‖DN2(B)‖L4‖DN1W‖L4‖∇DN2(b1)‖L2 + ‖DN1W‖2
L4‖∇DN1(w1)‖L2 + ‖DN2(B)‖2

L4‖∇DN1(w1)‖L2

≤ 2‖DN2(B)‖1/4‖DN1(W)‖1/4‖∇DN2(B)‖3/4‖∇DN1(W)‖3/4‖∇DN2(b1)‖
+ ‖DN1(W)‖1/2‖∇DN1(W)‖3/2‖∇DN1(w1)‖ +‖ DN2(B)‖1/2‖∇DN2(B)‖3/2‖∇DN1(w1)‖.

By using ‖DNi‖ = (Ni + 1), the bound ofw1, b1 in L∞([0, T ];H1), and Young’s inequality, we obtain

1
2

d
dt

(
‖A

1
2
1 D

1
2
N1

(W)‖2 + ‖A
1
2
2 D

1
2
N2

(B)‖2
)

+ ν

2
‖∇A

1
2
1 D

1
2
N1

(W)‖2 + µ

2
‖∇A

1
2
2 D

1
2
N2

(B)‖2

≤ C(N1 + 1)4
(
sup
t≥0

‖∇w1‖4
) [

1
ν3 ‖A

1
2
1 D

1
2
N1

(W)‖2 + 1
µ3 ‖A

1
2
2 D

1
2
N2

(B)‖2
]

+ C(N2 + 1)4
(
sup
t≥0

‖∇b1‖4
)

1
ν3/2µ3/2

[
‖A

1
2
1 D

1
2
N1

(W)‖2 + ‖A
1
2
2 D

1
2
N2

(B)‖2
]

.

In particular, we get

1
2

d
dt

(
‖A

1
2
1 D

1
2
N1

(W)‖2 + ‖A
1
2
2 D

1
2
N2

(B)‖2
)

≤ M
[
‖A

1
2
1 D

1
2
N1

(W)‖2 + ‖A
1
2
2 D

1
2
N2

(B)‖2
]

,

where

M := C
(
max

{
1
ν
,
1
µ

})3 [
(N1 + 1)4

(
sup
t≥0

‖∇w1‖4
)

+ (N2 + 1)4
(
sup
t≥0

‖∇b1‖4
)]

.

Since the initial values W(0) = B(0) are vanishing, we deduce from Gronwall’s Lemma that A
1
2
1 D

1
2
N1

(W) = A
1
2
2 D

1
2
N2

(B) = 0
and we conclude that W = B = 0. !

Remark 3.3. The same calculations show also that the following energy equality is satisfied

1
2

d
dt

(
‖A

1
2
1 D

1
2
N1

(w)‖2 + ‖A
1
2
2 D

1
2
N2

(b)‖2
)

+ ν‖∇A
1
2
1 D

1
2
N1

(w)‖2 + µ‖∇A
1
2
2 D

1
2
N2

(b)‖2 =
(
A

1
2
2 D

1
2
N1

(G1f) , A
1
2
1 D

1
2
N1

(w)

)
.

As we shall see in the sequel, it seems that it is not possible to pass to the limit N → +∞ directly in this ‘‘energy equality’’
and some work to obtain an ‘‘energy inequality’’ is needed.
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4. Passing to the limit when N → ∞

The aim of this section is the proof of the main result of the paper. For a given N ∈ N, we denote by (wN , bN , qN) the
unique ‘‘regular weak’’ solution to problem (1.3), where N = min{N1,N2} → +∞. For the sake of completeness and to
avoid possible confusion between the Galerkin indexm and the deconvolution index N , we write again the system:

∂twN + ∇ · G1(DN1(wN) ⊗ DN1(wN)) − ∇ · G1(DN2(bN) ⊗ DN2(bN)) + ∇qN − ν∆wN = G1f in [0, T ] × T3,

∂tbN + ∇ · G2(DN2(bN) ⊗ DN1(wN)) − ∇ · G2(DN1(wN) ⊗ DN2(bN)) − µ∆bN = 0 in [0, T ] × T3,

∇ · wN = ∇ · bN = 0 in [0, T ] × T3,

(wN , bN)(0, x) = (G1u0,G2B0)(x) in T3.

(4.1)

More precisely, for all fixed scales α1, α2 > 0, we set

wN = lim
m→+∞

wm,N1,N2,α1,α2

and similarly for bN .

Proof of Theorem 1.1. We look for additional estimates, uniform in N , to get compactness properties about the sequences
{DN1(wN),DN2(bN)}N∈N and {wN , bN}N∈N. We then prove strong enough convergence results in order to pass to the limit in
the Eq. (4.1), especially in the nonlinear terms. With the same notation of the previous section, we quote in the following
table the estimates that we will use for passing to the limit. The Table (4.2) is organized as (3.11) and α = min{α1, α2}.

Label Variable Bound Order
a wN , bN L∞([0, T ];H0) ∩ L2([0, T ];H1) O(1)
b wN , bN L∞([0, T ];H1) ∩ L2([0, T ];H2) O(α−1)

c DN1(wN), DN2(bN) L∞([0, T ];H0) ∩ L2([0, T ];H1) O(1)
d ∂twN , ∂tbN L2([0, T ] × T3)

3 O(α−1)

e qN L2([0, T ];H1(T3)) ∩ L5/3([0, T ];W 2,5/3(T3)) O(α−1)

f ∂tDN1(wN), ∂tDN2(bN) L4/3([0, T ];H−1) O(1)

(4.2)

Estimates ((4.2)-a), ((4.2)-b), ((4.2)-c), and ((4.2)-d) have already been obtained in the previous section. Therefore, we just
have to check ((4.2)-e) and ((4.2)-f). !

Proof of (4.2-e). To obtain further regularity properties of the pressure we use again (3.17). We already know from the
estimates proved in the previous section thatAN ∈ L2([0, T ]×T3)

3. Moreover, classical interpolation inequalities combined
with ((4.2)-c) yield DN1(wN),DN2(bN) ∈ L10/3([0, T ] × T3). Therefore, AN ∈ L5/3([0, T ];W 1,5/3(T3)). Consequently, we
obtain the claimed bound on qN . !

Proof of (4.2-f). Let be given v,h ∈ L4([0, T ];H1). We use DN1(v),DN2(h) as test functions. By using that ∂tw, ∂tb ∈
L2([0, T ] × T3)

3, DNi commute with differential operators, Gi and DNi are self-adjoint, and classical integrations by parts,
we get

(∂twN ,DN1(v)) = (∂tDN1(wN), v)
= ν(∆wN ,DN1(v)) + (DN1(wN) ⊗ DN1(wN),G1DN1(∇v))

− (DN2(bN) ⊗ DN2(bN),G1DN1(∇v)) + (DN1(G1f), v),
(∂tbN ,DN2(h)) = (∂tDN2(bN),h)

= µ(∆bN ,DN2(h)) + (DN2(bN) ⊗ DN1(wN),G2DN2(∇h))
− (DN1(wN) ⊗ DN2(bN),G2DN2(∇h)).

We first observe that

|(∆wN ,DN1(v))| = |(∇DN(wN), ∇v)| ≤ C1(t)‖v‖1,

|(∆bN ,DN2(h))| = |(∇DN2(bN), ∇h)| ≤ C1(t)‖h‖1,

and that the L2([0, T ];H1(T3)
3) bound for DN1(wN),DN2(bN) implies that C1(t) ∈ L2([0, T ]), uniformly with respect to

N ∈ N. Therefore, when we combine the latter estimates with the properties of DNi we get, uniformly in N ,

|(∂tDN1(wN), v)| + |(∂tDN2(bN), v)| ≤ (νC1(t) + C2(t)) ‖v‖1 + (µC1(t) + C2(t)) ‖h‖1 + ‖f(t, ·)‖ ∈ L4/3(0, T ).

From the estimates (4.2) and classical rules of functional analysis, we can infer that there exist

w, b ∈ L∞([0, T ];H1) ∩ L2([0, T ];H2),

z1, z2 ∈ L∞([0, T ];H0) ∩ L2([0, T ];H1),

q ∈ L2([0, T ];H1(T3)) ∩ L5/3([0, T ];W 2,5/3(T3))



L.C. Berselli et al. / J. Math. Anal. Appl. 401 (2013) 864–880 873

such that, up to sub-sequences,

wN → w
bN → b






weakly in L2([0, T ];H2),
weakly∗ in L∞([0, T ];H1),
strongly in Lp([0, T ];H1) ∀p ∈ [1, ∞[,

∂twN → ∂tw
∂tbN → ∂tb

weakly in L2([0, T ] × T3),

DN1(wN) → z1
DN2(bN) → z2






weakly in L2([0, T ];H1),
weakly∗ in L∞([0, T ];H0),

strongly in Lp([0, T ] × T3)
3 ∀p ∈ [1, 10/3[,

(4.3)

∂tDN1(wN) → ∂tz1
∂tDN2(bN) → ∂tz2

weakly in L4/3([0, T ];H−1),

qN → q weakly in L2([0, T ];H1(T3)) ∩ L5/3([0, T ];W 2,5/3(T3)).

We notice that

DN1(wN) ⊗ DN1(wN) −→ z1 ⊗ z1 strongly in Lp([0, T ] × T3)
9 ∀p ∈ [1, 5/3[,

DN2(bN) ⊗ DN2(bN) −→ z2 ⊗ z2 strongly in Lp([0, T ] × T3)
9∀p ∈ [1, 5/3[, (4.4)

DN1(wN) ⊗ DN2(bN) −→ z1 ⊗ z2 strongly in Lp([0, T ] × T3)
9∀p ∈ [1, 5/3[,

while all other terms in the equation pass easily to the limit as well. By using the same identification of the limit used in [6],
we can easily check that z1 = A1w and z2 = A2b, ending the proof. !

By usingwell established results on semicontinuity and adapting calculations well-known for the NSE, we can prove that
the solution (w, b) satisfies an ‘‘energy inequality’’.

Proposition 4.1. Let be given u0, B0 ∈ H0, f ∈ L2([0, T ];H0), and let {(wN , bN , qN)}N∈N be a (possibly relabeled) sequence of
regular weak solutions converging to a weak solution (w, b, q) of the filtered MHD equations. Then (w, b) satisfies the energy
inequality (1.5) in the sense of distributions (see also [14,19,42]). This implies that (w, b) is the average of a weak (in the sense
of Leray–Hopf) or dissipative solution (u, B) of the MHD equations (1.1). In fact, the energy inequality can also be read as

1
2

d
dt

(‖u‖2 + ‖B‖2) + ν‖∇u‖2 + µ‖∇B‖2 ≤ 〈f,u〉.

Proof. The proof is a straightforward adaption of the one in [6]. We start from the energy equality for the approximate
model as in Remark 3.3 and we observe that the same arguments as before show also that

D1/2
N1

(wN) → A1/2
1 (w)

D1/2
N2

(bN) → A1/2
2 (b)

weakly in L2([0, T ];H1).

Next, due to the assumptions on f, we have A−1/2
1 D1/2

N f → f strongly in L2([0, T ];H0) and, since for all N ∈ N we have
wN(0) = G1u(0) ∈ H2 and bN(0) = G2b(0) ∈ H2, we get

1
2
(‖A1/2

1 D1/2
N1

(wN)(0)‖2 + ‖A1/2
2 D1/2

N2
(bN)(0)‖2) +

∫ t

0

(
A−1/2
1 D1/2

N1
(f), A1/2

1 D1/2
N1

(wN)
)

ds

N→+∞−→ 1
2
(‖A1w(0)‖2 + ‖A2b(0)‖2) +

∫ t

0
(f, A1w) ds.

Next, we use the elementary inequalities for lim inf and lim sup to infer that

lim sup
N→+∞

1
2

(
‖A1/2

1 D1/2
N1

(wN)(t)‖2 + ‖A1/2
2 D1/2

N2
(bN)(t)‖2

)

+ lim inf
N→+∞

(
ν

∫ t

0
‖∇A1/2

1 D1/2
N1

(wN)(s)‖2 ds + µ

∫ t

0
‖∇A1/2

2 D1/2
N2

(bN)(s)‖2 ds
)

≤ 1
2

(
‖A1w(0)‖2 + ‖A2b(0)‖2) +

∫ t

0
(f(s), A1w(s)) ds.

By lower semicontinuity of the norm and identification of the weak limit, we get the thesis. !
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5. Results for the second model

In this section, we consider the following LES model for MHD, which is based on filtering only the velocity equation
(and on the use of deconvolution operators):

∂tw + ∇ · G1
(
DN1(w) ⊗ DN1(w)

)
− ∇ · G1 (B ⊗ B) + ∇q − ν∆w = G1f,

∂tB + ∇ ·
(
B ⊗ DN1(w)

)
− ∇ ·

(
DN1(w) ⊗ B

)
− µ∆B = 0,

∇ · w = ∇ · B = 0,
w(0, x) = G1u0(x), B(0, x) = B0(x),

(5.1)

and we will work with periodic boundary conditions. A similar model in the case without deconvolution has been also
studied in [11].

Here we take α2 = 0, so that b = B and A2 = G2 = I , and N2 = 0, so that DN2B = I B = B. We set for simplicity

α = α1 > 0, G = G1, A = A1, N = N1.

The first aim of this section is to show the changes needed (w.r.t Theorem 3.1) to prove the existence of a unique solution
to the system (5.1) for a given N ∈ N, when we assume that the data are such that

u0 ∈ H0, B0 ∈ H0, and f ∈ L2([0, T ] × T3), (5.2)

which naturally yields G1u0 ∈ H2, G1f ∈ L2([0, T ];H2).
We start by defining the notion of what we call a ‘‘regular weak’’ solution to this system.

Definition 5.1 (‘‘Regular Weak’’ Solution).We say that the triple (w, B, q) is a ‘‘regular weak’’ solution to system (5.1) if and
only if the three following items are satisfied:

(1) Regularity

w ∈ L2([0, T ];H2) ∩ C([0, T ];H1), B ∈ L2([0, T ];H1) ∩ C([0, T ];H0), (5.3)

∂tw ∈ L2([0, T ];H0), ∂tB ∈ L2([0, T ];H−1), (5.4)

q ∈ L2([0, T ];H1(T3)). (5.5)

(2) Initial data

lim
t→0

‖w(t, ·) − G1u0‖H1 = 0, lim
t→0

‖B(t, ·) − B0‖H0 = 0, (5.6)

(3) Weak formulation: For all v,h ∈ L2([0, T ];H1(T3)
3),

∫ T

0

∫

T3

∂tw · v −
∫ T

0

∫

T3

G1(DN1(w) ⊗ DN1(w)) : ∇v +
∫ T

0

∫

T3

G1(B ⊗ B) : ∇v +
∫ T

0

∫

T3

∇q · v

+ ν

∫ T

0

∫

T3

∇w : ∇v =
∫ T

0

∫

T3

(G1f) · v, (5.7)

∫ T

0

∫

T3

∂tB · h −
∫ T

0

∫

T3

(B ⊗ DN1(w)) : ∇h +
∫ T

0

∫

T3

(DN1(w) ⊗ B) : ∇h + µ

∫ T

0

∫

T3

∇B : ∇h = 0. (5.8)

Remark 5.1. Due to the certain symmetry in the equations, it turns out that B has the same regularity of DNw (not that
ofw).

All terms in the weak formulation are well-defined. Indeed, the only term to be checked (which is different from the
previous section) is the bi-linear one involving B ∈ L4([0, T ]; L3(T3))

3 and DN(w) ∈ L∞([0, T ]; L6(T3))
3. To this end, we

observe that
∫ T

0

∫

T3

(B ⊗ DN(w)) : ∇h ≤ C
∫ T

0
‖B(t)‖L3‖DN(w)(t)‖L6‖∇h(t)‖L2

≤ CT‖B‖L4([0,T ];L3)‖DN(w)‖L∞([0,T ];L6)‖∇h‖L2([0,T ];L2).

We have now the following theorem showing that system (5.1) is well-posed.
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Theorem 5.1. Assume that (5.2) holds, α > 0 and N ∈ N are given. Then, Problem (5.1) has a unique regular weak solution
satisfying the energy inequality

d
dt

(
‖A 1

2 D
1
2
N (w)‖2 + ‖B‖2

)
+ ν‖∇A

1
2 D

1
2
N (w)‖2 + µ‖∇B‖2 ≤ C(‖u0‖, ‖B0‖, ν−1‖f‖L2([0,T ];H−1)

).

Proof. We use the same notation and tools from the previous section and the main result can be derived from the energy
estimate. We just give some details on the estimates which are different from the previous case, since the reader can readily
fill the missing details. We use DN(wm) in the first equation and Bm in the second one as test functions to obtain

1
2

d
dt

(
‖A1/2D1/2

N (wm)‖2 + ‖Bm‖2
)

+ ν‖∇A1/2D1/2
N (wm)‖2 + µ‖∇Bm‖2 =

(
A1/2D1/2

N (Gf1/m), A1/2D1/2
N (wm)

)
.

Then, by using the same tools employed in the previous section, we have the following estimates.

Label Variable Bound Order

a) A
1
2 D

1
2
N (wm), Bm L∞([0, T ];H0) ∩ L2([0, T ];H1) O(1)

b) D1/2
N (wm) L∞([0, T ];H0) ∩ L2([0, T ];H1) O(1)

c) D1/2
N (wm) L∞([0, T ];H1) ∩ L2([0, T ];H2) O(α−1)

d) wm L∞([0, T ];H0) ∩ L2([0, T ];H1) O(1)
e) wm L∞([0, T ];H1) ∩ L2([0, T ];H2) O(α−1)

f ) DN(wm) L∞([0, T ];H0) ∩ L2([0, T ];H1) O(1)

g) DN(wm) L∞([0, T ];H1) ∩ L2([0, T ];H2) O(
√
N+1
α

)

h) ∂twm L2([0, T ];H0) O(α−1)

i) ∂tBm L2([0, T ];H−1) O( (N+1)1/4

α1/2 )

(5.9)

The estimates ((5.9)-a)–((5.9)-h) are the exact analogous of the corresponding ones from (3.11). What it remains to be
proved is just ((5.9)-i). Let be given h ∈ L2([0, T ];H1); then

(∂tBm,h) = −µ(∇Bm, ∇h) + (Bm ⊗ DN(wm), ∇h) − (DN(wm) ⊗ Bm, ∇h).

Hence we obtain, by the usual Sobolev and convex interpolation inequalities,

|(∂tBm,h)| ≤ µ‖∇Bm‖ ‖∇h‖ + 2‖Bm‖L6‖DNwm‖L3‖∇h‖
≤ ‖∇Bm‖

(
µ + C‖DNwm‖1/2‖∇DNwm‖1/2) ‖∇h‖.

Next, by employing estimates ((5.9)-a)–d)–f)–g), we get
∣∣∣∣

∫ T

0
(∂tBm,h) dt

∣∣∣∣ ≤ ‖Bm‖L2([0,T ];H1)

(
µ + ‖DN(wm)‖1/2

L∞([0,T ];H0)
‖∇DN(wm)‖1/2

L∞([0,T ];H0)

)
‖∇h‖L2([0,T ];L2)

≤ C
(

µ + (N + 1)1/4

α1/2

)
‖∇h‖L2([0,T ];L2).

These estimates are enough to pass to the limit as m → +∞ and to show that the limit (w, B) is a weak solution which
satisfies

∫ T

0

∫

T3

∂tw · v −
∫ T

0

∫

T3

G(DN(w) ⊗ DN(w)) : ∇v +
∫ T

0

∫

T3

G(B ⊗ B) : ∇v

+ ν

∫ T

0

∫

T3

∇w : ∇v =
∫ T

0

∫

T3

Gf · v, (5.10)

∫ T

0

∫

T3

∂tB · h −
∫ T

0

∫

T3

(B ⊗ DN(w)) : ∇h

+
∫ T

0

∫

T3

(DN(w) ⊗ B) : ∇h + µ

∫ T

0

∫

T3

∇B : ∇h = 0. (5.11)

The introduction of the pressure follows exactly as in the previous section, while the uniqueness needs some minor
adjustments. Let in fact (w1, B1) and (w2, B2) be two solutions corresponding to the same data (u0, B0, f) and let us define
as usual W := w1 −w2 and B := B1 − B2. We will use ADN(W) and B as test functions in the equations satisfied by W and
B, respectively. Observe that, by standard calculations, ADN(W) lives in L2([0, T ] × T3)

3, while B ∈ L2([0, T ];H1). In order
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to justify the calculations – those for the velocity equation are analogous to the previous ones – first observe that, for any
fixed order of deconvolution N ,

∫ t

0
〈∂tB, B〉H1,H−1 = 1

2
(
‖B(t)‖2 − ‖B(0)‖2) ,

since the duality is well-defined thanks to ((5.9)-a)–i). We formally write the distributional expression, keeping the time
derivative, and we get the following equality (to be more precise, one should write directly the integral formula, after
integration over [0, t], but the reader can easily fill the details):

1
2

d
dt

(
‖A1/2D1/2

N (W)‖2 + ‖B‖2
)

+ ν‖∇A1/2D1/2
N (W)‖2 + µ‖∇B‖2

= − ((DN(W) · ∇)DN(w1),DN(W)) + ((B · ∇)B1,DN(W)) − ((DN(W) · ∇)B1, B) + ((B · ∇)DN(w1), B)

=: I1 + I2 + I3 + I4.

Now, we need to estimate the four integrals in the right-hand side. The estimates are obtained by using the standard
interpolation and Sobolev inequalities together with the properties of DN . We have:

|I1| ≤ εν‖∇A1/2D1/2
N (W)‖2 +

Cε(N + 1)4 sup
t≥0

‖∇w1‖4

ν3 ‖A1/2D1/2
N (W)‖2,

|I2| ≤‖ B‖L4‖∇DN(W)‖L4‖B1‖
≤ C‖B‖1/4‖∇B‖3/4‖∇DN(W)‖1/4‖∆DN(W)‖3/4‖B1‖
≤ C

(N + 1)1/2

α
‖B‖1/4‖∇B‖3/4α1/4‖∇D1/2

N (W)‖1/4α3/4‖∆D1/2
N (W)‖3/4‖B1‖

≤ C
(N + 1)1/2

α
‖B‖1/4‖∇B‖3/4‖A1/2D1/2

N (W)‖1/4‖∇A1/2D1/2
N (W)‖3/4‖B1‖

≤ εµ‖∇B‖2 + Cε(N + 1)4/5

µ3/5α8/5 ‖B‖2/5‖A1/2D1/2
N (W)‖2/5‖∇A1/2D1/2

N (W)‖6/5‖B1‖8/5

≤ εµ‖∇B‖2 + εν‖∇A1/2D1/2
N (W)‖2 + Cε(N + 1)2

µ3/2ν3/2α4 ‖B‖ ‖A1/2D1/2
N (W)‖ ‖B1‖4

≤ εµ‖∇B‖2 + εν‖∇A1/2D1/2
N (W)‖2 + Cε(N + 1)2

µ3/2ν3/2α4 ‖B1‖4
(
‖B‖2 + ‖A1/2D1/2

N (W)‖2
)

.

|I3| ≤‖ DN(W)‖L∞‖∇B‖ ‖B1‖
≤ C‖∇DN(W)‖1/2‖∆DN(W)‖1/2‖∇B‖ ‖B1‖
≤ C

(N + 1)1/2

α
‖A1/2D1/2

N (W)‖1/2‖∇A1/2D1/2
N (W)‖1/2‖∇B‖ ‖B1‖

≤ εµ‖∇B‖2 + Cε(N + 1)
µα2 ‖A1/2D1/2

N (W)‖ ‖∇A1/2D1/2
N (W)‖ ‖B1‖2

≤ εµ‖∇B‖2 + εν‖∇A1/2D1/2
N (W)‖2 + Cε(N + 1)2

µ2να4 ‖B1‖4‖A1/2D1/2
N (W)‖2,

|I4| ≤‖ B‖2
L4‖∇DN(W)‖ ≤ C‖B‖1/2‖∇B‖3/2(N + 1)‖∇w1‖

≤ εµ‖∇B‖2 + Cε(N + 1)4

µ3 ‖∇w1‖4‖B‖2.

We then set ε = 1/6 and, by collecting all the estimates, we finally obtain

d
dt

(
‖A1/2D1/2

N (W)‖2 + ‖B‖2
)

+ ν‖∇A1/2D1/2
N (W)‖2 + µ‖∇B‖2 ≤ CM

(
‖A1/2D1/2

N (W)‖2 + ‖B‖2
)

,

where

M .= (N + 1)4 max sup
t≥0

{‖∇w1(t)‖4

ν3 ,
‖∇w1(t)‖4

µ3 ,
‖B1(t)‖4

µ3/2ν3/2α4 ,
‖B1(t)‖4

µ2να4

}
.

An application of the Gronwall’s lemma proves (for any fixed N) that ‖A1/2D1/2
N (W)‖2 + ‖B‖2 = 0; hence, by using the

properties of A and DN exploited before, we finally get W = B ≡ 0. !

We can now pass to the problem of the convergence as N → +∞, proving the counterpart of Theorem 1.1.
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Theorem 5.2. From the sequence {(wN , BN , qN)}N∈N, one can extract a sub-sequence (still denoted {(wN , BN , qN)}N∈N) such that

wN −→ w






weakly in L2([0, T ];H2),
weakly∗ in L∞([0, T ];H1),
strongly in Lp([0, T ];H1) ∀p ∈ [1, ∞[,

BN −→ B






weakly in L2([0, T ];H1),
weakly∗ in L∞([0, T ];H0),

strongly in Lp([0, T ] × T3)
3 ∀p ∈ [1, 10/3[,

qN −→ q weakly in L2([0, T ];H1(T3)) ∩ L5/3([0, T ];W 2,5/3(T3)),

and such that the system

∂tw + ∇ · G(Aw ⊗ Aw) − ∇ · G(B ⊗ B) + ∇q − ν∆w = f,
∇ · w = ∇ · B = 0,
∂tB + ∇ · (B ⊗ Aw) − ∇ · (Aw ⊗ B) − µ∆b = 0,
w(0, x) = Gu0(x), B(0, x) = B0(x)

(5.12)

holds in distributional sense and the following energy inequality is satisfied:

1
2

d
dt

(‖Aw‖2 + ‖b‖2) + ν‖∇Aw‖2 + µ‖∇b‖2 ≤ (f, Aw).

Proof. This result is based on the following estimates and from compactness results.

Label Variable Bound Order
a) wN L∞([0, T ];H0) ∩ L2([0, T ];H1) O(1)
b) wN L∞([0, T ];H1) ∩ L2([0, T ];H2) O(α−1)

c) DN(wN), BN L∞([0, T ];H0) ∩ L2([0, T ];H1) O(1)
d) qN L2([0, T ];H1(T3)) ∩ L5/3([0, T ];W 2,5/3(T3)) O(α−1)

e) ∂twN L2([0, T ];H0) O(α−1)

f ) ∂tDN(wN), ∂tBN L4/3([0, T ];H−1) O(1)

(5.13)

The only new bound here is represented by the one for ∂tBN from ((5.13)-f). In fact, by the usual interpolation inequalities,
we get

|(∂tBN ,h)| ≤ µ‖∇BN‖ ‖∇h‖ + 2‖BN‖L4‖DN(wN)‖L4‖∇h‖
≤

(
µ‖∇BN‖ + C‖BN‖1/4‖∇BN‖3/4‖DN(wN)‖1/4‖∇DN(wN)‖3/4) ‖∇h‖.

Next, by employing estimate ((5.13)-c), we get

|(∂tBN ,h)| ≤
(
µ‖∇BN‖ + C‖∇BN‖3/4‖∇DN(wN)‖3/4) ‖∇h‖,

and since both ∇BN , ∇DN(w) ∈ L2([0, T ]; L2(T3)
9), we can show that

∣∣∣∣

∫ T

0
(∂tBN ,h) dt

∣∣∣∣ ≤ µ‖∇BN‖L2([0,T ];L2)‖∇h‖L2([0,T ];L2) + C‖∇BN‖3/4
L2([0,T ];L2)‖∇DN(w)N‖3/4

L2([0,T ];L2)‖∇h‖L4([0,T ];L2),

thus proving that ∂tBN ∈ L4/3([0, T ];H−1), independently of N .
The limit N → +∞ can be studied as in the previous section. In addition to the same estimates proved before, from the

bound on the time derivative of B we obtain that BN → B in Lp([0, T ];H0), ∀p ∈ [1, ∞[, and reasoning as in (4.4) we get

DN(wN) ⊗ DN(wN) −→ Aw ⊗ Aw strongly in Lp([0, T ] × T3)
9 ∀p ∈ [1, 5/3[,

BN ⊗ BN −→ B ⊗ B strongly in Lp([0, T ] × T3)
9 ∀p ∈ [1, 5/3[,

DN(wN) ⊗ BN −→ Aw ⊗ B strongly in Lp([0, T ] × T3)
9 ∀p ∈ [1, 5/3[.

Finally, the proof of the energy inequality follows the same steps as before. !

6. Final comments and open problems

In this section we make some comments on the obtained results and we discuss limitations, perspectives, and open
problems in the light of further possible generalizations and extensions.
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6.1. About boundary conditions

Although periodic boundary conditions arewell adapted to the electromagnetic framework, it is natural to consider other
boundary conditions (BC), such as for example: the no-slip BC and/or Navier BC for the velocity, homogeneous BC for the
magnetic field, wall laws for the velocity field, absorbing BC for the magnetic field.

To guess what might be hoped, let us summarize the essentials of the method we used:

1. The filtration process must be properly defined, to make the filter invertible;
2. Fractional powers of the operators must be specified;
3. Commutation properties with differential operators, such as Reynolds rules, need to be satisfied.

When the flow domain is the whole space R3, the method still applies by replacing Fourier series by Fourier transforms and
imposing suitable integrability conditions (at infinity).

In the case of no slip BC/homogeneous (w|∂Ω = b|∂Ω = 0) the filtration process has already been studied (see details
in [28]), and also the fractional powers of operators can be controlled, followingKato’s theory [22]. However there is a serious
trouble because of the commutation property between first order partial differential operators and the filtering operator,
which is not satisfied, yielding a hard open problem, see also the Appendix in [29]. Nevertheless, we conjecture that the
method might be adapted by a technical (and not easily adapted to a numerical treatment) adjustment of the filtration near
the boundary.

For the other BC above mentioned, there is almost no work about this class of approximate deconvolution models. To
our knowledge such a question has been addressed, up-to-now, only in Ref. [3], where a problem with a flow in a basin,
driven by the wind, is studied. In this work, a Helmholtz-like filtration that satisfies the friction driven law BC at the top of
the basin has been introduced and analyzed. Moreover, the model considered in [3] is the deconvolution model à la Leray,
with a continuous deconvolution process.

Unfortunately, it seems that themethod of [3] cannot be applied for deconvolutionmodels derived fromBardina’smodels
such as (1.3), which we study in the present paper. We do not know results about the corresponding fractional powers of
operators (they should exist in the literature). Commutation properties fail, and last and probably least, there is no good
energy equality in the corresponding Bardina’smodel because of the convective term,whose totalmechanicalwork does not
vanish. Therefore, the field is almost untouched, leaving many interesting and challenging open problems for the interested
researcher.

6.2. Further filters

One may ask if the method applies when using other filters, such as the generalized p-Helmholtz filter Gα,p = (I −
α2p∆p)−1, where ∆p denotes the p-power of the Laplacian, and Aα,p = I − α2p∆p = G−1, which means

−α2p∆pw + w + ∇π = w in T3,

∇ · w = 0 in T3, (6.1)∫

T3

w dx = 0,
∫

T3

π dx = 0,

and the transfer function of the filter is

Gα,p(x) =
∑

k∈T &
3

eik·x

1 + α2p|k|2p .

The question of deconvolution limits with the generalized filter (6.1) has been earlier considered in [6,18], for fluid models
without MHD, in the periodic case. We are confident that the method still applies whenMHD is added, but complete details
on this topic will appear in a forthcoming paper.

Moreover, we conjecture that themodeling error in case of MHD is still like of the order of (p (N +1))−1/4p. This suggests
that to minimize the error, it is not better to use filters that are too strongly regularizing.

Coming back to the most classical filters used in LES, as accounted in [5], one of the most popular filter is the Gaussian
one. In this case the integral kernel is given by

G̃α(x) = G̃(x) =
(

6
α2π

)3/2

e− 6
α2

‖x‖2
,

where we omit the subscript α for simplicity. Its transfer function (see [18]) is equal to

G̃(x) =
∑

k∈T3

G̃k e ik·x, where G̃k = e− α2 |k|2
24 .

We have studied this filtering method in [18] for incompressible turbulent flows without MHD, and results are not
encouraging. We failed in proving any convergence result of the deconvolution process. Roughly speaking, the main
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obstruction is that this filter can be approached by a sequence of operators based on p-Helmholtz filters, the modeling
error of which goes to 1 uniformly in N . Therefore, the error modeling for Gaussian filter is equal to a constant that does
not go to zero when N goes to infinity. Basically, the Gaussian filter has a too strong regularizing effect to be able to stably
reconstruct the initial fields by deconvolution. The situation looks of course worse when MHD is considered.

6.3. Further deconvolution operators

Another issue that would be interesting is to know how behave deconvolution processes other than the one we study in
this paper. Stanculescu and Manica studied in [39] the Leray–Tikhonov deconvolution process, in the case of a Leray model.
In this case, the deconvolution operator is specified (for the Helmholtz filtering) by

Dµ = (µ I + (1 − µ)G)−1 for µ > 0,

where µ > 0 is the deconvolution order. This operator has the same properties than our DN , such as those proved in
Lemma 2.1. Therefore, the same results should apply to our model in replacing DN by Dµ, and letting µ → 0. The method
introduced in [39] is a modification of the classical Tikhonov–Lavrentiev one (µ I + G)−1, to correct the behavior of smaller
scales. Observe that for an appropriate choice of the parameter, the Tikhonov–Lavrentiev operator is the same as the classical
Yosida regularization (when applied to the space-periodic Helmholtz filter). An account of their properties, especially in
connection with the validity of the counterpart of Lemma 2.1, is given in [4, Section 1], taking µ = (N + 1)−1 in order to
compare them. The results in Lemma 2.1 are in fact the cornerstone to approximate averages of weak solutions. To conclude,
we point out that we believe that an interesting question is to know whether it is possible to improve the error modeling,
and this will be the object of a forthcoming paper.
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