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We study the superfluid state of atomic Fermi gases using a BCS-Bose-Einstein-condensation crossover
theory. Our approach emphasizes noncondensed fermion pairs which strongly hybridize with their(Feshbach-
induced) molecular boson counterparts. These pairs lead to pseudogap effects aboveTc and non-BCS charac-
teristics below. We discuss how these effects influence the experimental signatures of superfluidity.
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There has been considerable interest in achieving “reso-
nance superfluidity” in an ultracold, extremely dilute,
trapped Fermi gas in which a Feshbach resonance[1,2] is
used to tune the interatomic attraction by variation of a mag-
netic field. These systems allow for the direct study of the
crossover problem where the nature of the superfluid transi-
tion changes from BCS to Bose-Einstein condensation
(BEC). Recently, several groups have observed superfluidity
in the BEC regime[3–5]. This provides an exciting opportu-
nity for theoretical work which can address the entire range
of behavior, in anticipation of future experiments.

In this paper we consider the case of a homogeneous gas
as a first and necessary step. Our goals are to present a theory
for Tc, for the superfluid phase as well as some signatures of
the transition, which are shown to be very different from
conventional expectations based on BCS theory. Using cur-
rent understanding of bosonic superfluidity, it is useful to
begin with a number of inferences about the nature of the
superfluidity induced when molecular bosons are admixed
with fermions. For temperaturesT above Tc sufficiently
strong hybridizationsgbq

†aq−kakd between molecular bosons
sbq

†d and fermion pairs will result in metastable “preformed”
pairs saq−k

† ak
†d. These are necessarily associated with a nor-

mal state excitation gap which represents the energy needed
to break them apart into fermionic quasi-particlessak

†d. For
0,TøTc the presence of noncondensed molecular bosons
similarly induces the formation of noncondensed fermion
pairs. These must be present in addition to the usual fermi-
onic single particle excitations of the condensate. We may,
thus, quite generally infer that since the molecular bosons
and the fermion pairs are so strongly entangled, they must be
treated on a similar footing.

Previous [6,7] studies of the crossover problem in an
atomic Fermi gas atTÞ0 have been based on the work[8]
of Nozières and Schmitt-Rink(NSR). This approach, which
effectively omits noncondensed fermion pairs, addressesTc
in a fashion which is not manifestly compatible with the
presumed ground state[9]. Moreover, pairing correlations
are only included in the number equation and within an ap-
proximate and evidently[10,11] problematic fashion. In this
paper we address these shortcomings, but similarly base our
analysis of the standard BCS-like crossover ground state[9],
for the fermionic component. We begin with the important

observation that the noncondensed fermion pairs are in
chemical equilibrium withboth the noncondensed molecular
bosons and the condensate. Consequently, they must satisfy

mpairsTd = mbosonsTd = 0, T ø Tc. s1d

This last relation, which is a central equation of this paper,
will be rewritten shortly in a more concrete form. To imple-
ment the physical picture discussed above, we follow the
theory in Ref.[12], extending it to include a Feshbach reso-
nance. This approach was originally developed to treat high
Tc superconductors. The physics in the context of boson-
fermion models is shown here to be different from fermion-
only models, although such hybridization models have been
also applied to the cuprates[13,14].

Our Hamiltonian[1] is given by

H − mN = o
k,s

ekak,s
† ak,s + o

q
se q

m + ndbq
†bq

+ o
q,k,k8

Usk,k8daq/2+k,↑
† aq/2−k,↓

† aq/2−k8,↓aq/2+k8,↑

+ o
q,k

sgskdbq
†aq/2−k,↓aq/2+k,↑ + H.c.d. s2d

The sum ins runs over both spin statesh↑ ,↓j. The free
dispersion relations for fermions and bosons are given by
and e q

m=E q
0−2m with E q

0=q2/2M, respectively, where we
assumem↑=m↓, andM =2m is the boson mass. Heren is the
detuning of the resonance state,Usk ,k8d=Uwkwk8 is the di-
rect s-wave interaction andgskd=gwk is the Feshbach cou-
pling, with the functionwk

2=exph−sk/Kcd2j providing the
momentum cutoff. Here we set"=kB=1.

The three propagators for fermion pairs,tsQd, molecular
bosons, DsQd, and single fermions,GsQd are coupled.
(Throughout we take the conventionoK;T ovn

ok, where
K ,Q, etc. are 4-vectors.) With these definitions Eq.(1) can
also be rewritten

D−1s0d = t−1s0d = 0, T ø Tc. s3d

The effective pairing interaction is given by[7]
g̃ef f sQ,K ,K8d=gef f sQdwkwk8 with gef f sQd;U+g2D0sQd,
where D0sQd;1/fiVn−E q

0−n+2mg is the noninteracting
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molecular boson propagator with Matsubara frequencyVn.
We have from Eq.(3) and the general form of theT matrix
the important result that

t−1s0d ; gef f
−1 s0d + xs0d = 0, T ø Tc. s4d

We now impose the reasonable constraints that at weak cou-
pling our results are compatible with theT dependence found
in the BCS limit for DsTd, and for general coupling, the
fermions are described by the standardT=0 crossover state
[9]. This, in turn, constrains the fermion pair susceptibility
xsQd,

xsQd = o
K

GsKdG0sQ − Kdwk−q/2
2 , s5d

provided also the fermion self-energy appearing inG is

SsKd = o
Q

tsQdG0sQ − Kdwk−q/2
2 . s6d

This form for x andS can also be derived by truncating the
equations of motion for Green’s functions at the three-
particle level. This approach is also closely related to
Hartree-approximated time dependent Ginzburg-Landau
theory [15].

TheT matrix consists of two contributions: from the con-
densed or superconductingsscd and noncondensed or
“pseudogap”-associatedspgd pairs. The molecular bosons
also contribute to theT matrix via the effective pairing inter-
action:

t = tpg + tsc, s7d

tpgsQd =
gef f sQd

1 + gef f sQdx sQd
, Q Þ 0, s8d

tscsQd = −
D̃sc

2

T
d sQd, s9d

where D̃sc=Dsc−gfm, with Dsc=−Uokka−k↓ak↑lwk and fm

=kbq=0l. Without loss of generality, we choose order param-

etersD̃sc andfm to be real and positive withg,0. The order
parameter is a linear combination of both paired atoms and
condensed molecules. These two components are connected
[16] by the relationfm=gDsc/ fsn−2mdUg. This implies that

D̃sc=−gef f s0dokka−k↓ak↑lwk, as expected. Following Eq.(3),
for TøTc we may approximate[17] Eq. (6) to yield a BCS-

like self-energy withD2; D̃sc
2 +Dpg

2 ,

SsKd < − G0s− KdD2wk
2, s10d

where we define the pseudogapDpg

Dpg
2 ; − o

QÞ0
tpgsQd. s11d

At T=0, Dpg=0, so thatD̃scs0d=Ds0d. Equation(4) can be
written as

gef f
−1 s0d + o

k

1 − 2fsEkd
2Ek

wk
2 = 0, T ø Tc, s12d

where Ek =Îek
2+D2wk

2. Equation (12) has the form of the
conventional BCS equation, but the full excitation gapD, as

distinguished from the order parameter,D̃sc, appears in the
dispersionEk.

We show next that this equation for the excitation gap
DsTd coincides with the equivalent condition on the molecu-
lar bosons, given in Eq.(3). Taking the same pair suscepti-
bility x in the boson self-energySB, we obtain

SBsQd ; − g2xsQd/f1 + Ux sQdg s13d

so that the boson propagator is

DsQd ;
1

iVn − E q
0 − n + 2m − SBsQd

. s14d

After some algebra, Eq.(3) leads directly to Eq.(12). We
may now calculate the number equation from the propaga-
tors involved. The number of noncondensed molecular
bosons is given directly bynb=−oQDsQd. For TøTc, the
number of fermions is

nf = o
k
F1 −

ek

Ek
+ 2

ek

Ek
fsEkdG , s15d

as follows from the conditionnf =2oK GsKd with a BCS-like
self-energySsKd. The total numbersnd of fermions is then

nf + 2nb + 2nb
0 = n, s16d

wherenb
0=fm

2 is the number of molecular bosons in the con-
densate.

We now have a closed set of equations for our resonance
system which requires a numerical solution. The cutoff func-
tion wk introduces a renormalization ofU, g, andn. Extend-
ing the derivation given in Ref.[16] to a nonconstant, sepa-
rable potential, we find thatU=GU0, g=Gg0, and n=n0
+aGg0

2. HereU0=4pabg/m,0 whereabg is the background
scattering length andg0 is the physical scattering parameter
reflecting the width of the Feshbach resonance. The scaling
factor G=1/s1−aU0d anda=mKc/ s4p 3/2d.

At the physical level, the essential distinction between
this and previous crossover studies based on the NSR ap-
proach[18] below Tc is associated with noncondensed pair
excitations[19] of the superfluid. At a more formal level, it
should be noted that there is an important difference between
Eq. (5) and previous related work[8]. This NSR approach
presumes that there are two bare Green’s functionsG0 in
xsQd: the particles acquire a self-energy from the pairs, but
these self-energy effects are not fed back into the propagator
for the pairs.

To evaluateTc, DsTd, msTd, as well asD̃scsTd and other
transport properties[12,15] below Tc, we solve Eqs.(11),
(12), and(16) for fixed U0, g0, andn0 and a sufficiently large
cutoff Kc. Due to the divergence of theT matrix [Eq. (4)], we
may Taylor expand the quantityxsQd in Eqs.(16) and(11) to
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first order inV andq2:xsQd=xs0d+a0siVn−B0q
2d [15], and

expandgef f sQd andSBsQd similarly. This considerably sim-
plifies the analysis.

We begin with calculations ofTc as a function ofn0 which
are plotted in Fig. 1. Here we takeg0=−42EF /kF

3/2 and U0
=−3EF /kF

3 as is expected to be reasonably indicative of the
behavior forTc in currently trapped atomic Fermi gases. For
n0→−` only molecular bosons are present andTc ap-
proaches the ideal BEC limit. Asn0→ +`, molecular bosons
become irrelevant and the asymptote of the curve is dictated
by the behavior of fermions in the presence ofU. In this
paper we have chosenU0 deliberately to be small so that the
n0→` limit is close to BCS.

Indicated in the upper right inset is the behavior ofDsTcd
as a function ofn0. The lower left inset shows a plot of the
molecular Bose condensate weightnb

0, and the fermionic
chemical potentialm as a function ofn0. For positive, but
decreasing n0, Tc follows the BCS curve until the
“pseudogap” orDsTcd becomes appreciable. After its maxi-
mum (at slightly negativen0), Tc decreases, as doesm, until
m=0. Beyond this point, towards negativen0, the system is
effectively bosonic. The condensate consists of two contri-
butions, although the weight of the fermion pair component
rapidly disappears, as can be inferred from the lower inset.
Similarly Tc rises, although slowly, towards the ideal BEC
asymptote, following the inverse effective boson mass. The
corresponding curve based on the NSR approach has only
one extremum, but nevertheless the overall magnitudes are
not so different[6,7]. There are, however, key differences
between the behavior of the fermionic excitation gapDsTcd
and its highTc counterpart. Because all of the condensate
comes from molecular bosons in the strict BEC limit,DsTcd
reaches a maximum(where the molecular bosonic and fer-
mionic weights are comparable), and then decreases, asn0
decreases. This is in contrast to fermion-only based models
[12] where this parameter increases indefinitely as the attrac-
tive coupling becomes stronger.

In the inset to Fig. 2, we plot the temperature dependence
of the normalized excitation gapDsTd /Ds0d for three values
of n0/EF=−200,−5, +200. The second value corresponds

roughly to the maximum inTc, where pseudogap effects are
apparent. The first and last are illustrative of the BEC and
BCS limits, respectively. We, thus, refer below to these three
values as BEC, PG, and BCS cases. While not shown here,m
is positive for the latter two and negative for the first. The
order parameter,D̃sc, is not plotted here, but for all three
cases it is rather close to the solid line in the inset. ThatDsTd
is relatively constant withT through the superfluid transition
is to be expected in the presence of “preformed pairs,” as for
n0/EF=−5 and −200.

It should be stressed thatTc is only apparent inDsTd for
the BCS case. To underline this point, in the main body of
Fig. 2 we plot the fermionic momentum distribution function
nk [20], which is the summand in Eq.(15), at T=0 andT
=Tc. The fact that there is very little change fromT=0 to
T=Tc makes the important point that this momentum distri-
bution function is not a good indicator of phase coherent
pairing. For the PG case, this, in turn, derives from the fact
thatDsTd is nearly constant. For the BEC limit the excitation
gap, which is dominated bym, similarly, does not vary
throughTc. In the BCS regime,DsTd is sufficiently small as
to be barely perceptible on the scale of the figure. In order to
address the measurable particle density distribution, these
observations will have to be incorporated into previous BCS-
based(i.e., D; D̃sc) calculations[21,22], albeit generalized
to include inhomogeneity effects.

This pseudogap-based phenomenology is well docu-
mented in the highTc superconductors, although for these
materials, penetration depth data(with no analog here) are
direct probes of the transition to superconductivity. Interest-
ingly, densities of state measurements in the cuprates also
show some indications of when order is well established. To
see how phase coherence enters in the atomic physics con-
text, we relax the approximation in Eq.(10) by noting that
incoherent or finite momentum pairsspgd are distinguishable
from coherent or zero momentum pairssscd through lifetime
effects in the self-energy. For thepg term we write
Spgsv ,kd<Dpg

2 / sv+ek + igd. For simplicity, we treatg as a
phenomenological parameter which is independent ofT. This
distinction betweenpg andsc is required to arrive at general
thermodynamic signatures(not discussed here) of the transi-
tion.

Figures 3(a)–3(c) show the resulting density of states
Nsvd=−2ok Im Gsv+ i0,kd and correspond to the BEC,

FIG. 1. Tc vs detuningn0. The upper inset plots the pseudogap
at Tc vs n0, and the lower inset plots molecular boson contribution
to the condensate weight and fermionic chemical potential atT=0.

FIG. 2. Fermionic momentum distribution function atT=0 and
T=Tc for the three regimes. PG corresponds to maximalTc. The
inset plots theT dependent excitation gap belowTc.
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PG, and BCS cases, as in Fig. 2. The temperatures shown are
just aboveTc, and for T=0.75Tc and 0.5Tc. The BCS case
indicates an abrupt transition atTc, but with a very small gap
and very lowTc, which may be hard to observe experimen-
tally. The BEC case shows very little temperature depen-
dence throughout, since the fermions are well gapped at all
temperatures. Only the PG case, whereTc is maximal, indi-
cates the presence of superfluidity, not so much atTc but
once superfluid order is well established atT=0.5Tc, through
the presence of sharper coherence features, much as seen in
the cuprates.

These plots have important implications for interpreting
predicted signatures of superfluidity, such as those[23] based
on laser probing of “atomic Cooper pairs,” where it has been
argued that there is a conceptual analogy between normal

metal-superconductor tunneling[which measuresNsvd], and
resonant scattering of laser light. The present work intro-
duces a caution in interpreting future atomic trap experi-
ments: Because of the presence of a pseudogap, the signa-
tures of superfluid onset are not as simple as in BCS or the
related Bogoliubov-de Gennes theory. In general one has to
distinguish between the superfluid order parameter and the
fermionic excitation gap. Nevertheless, superfluid coherence
appears to be visible as fine structure effects in the fermionic
density of states. While the fermionic contributions[via
Nsvd, nk] do not provide a clear indication of superfluidity,
they do establish the nature of the pairing regime: BCS, BEC
or PG, a “pseudogapped superfluid.”

In addition to investigating and revisiting experimental
signatures, the main theoretical contributions of this paper
are to establish the presence and role of preformed fermion
pairs at and aboveTc, which evolve into noncondensed pairs
belowTc. These pairs hybridize strongly with their molecular
boson counterparts associated with the Feshbach resonance.
In this context we present a generalized mean field treatment
of the broken symmetry phase for ultracold fermionic atoms,
which unlike otherTÞ0 approaches, connects smoothly to
the conventional[9] crossover ground state. Because the Fes-
hbach resonance has no natural analog in highTc systems, it
remains to be seen whether the differences in these two sys-
tems will outweigh the similarities.
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