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Abstract 

As a continuation of our studies on 2-phenylindol-3-ylglyoxylamides as potent and selective 

Translocator Protein (TSPO) ligands, two subsets of novel derivatives, featuring hydrophilic group 

(OH, NH2, COOH) at the para-position of the pendant 2-phenyl ring (8-16) or different 2-aryl 

moieties, namely 3-thienyl, p-biphenyl, 2-naphthyl, (23-35), were synthesized and biologically 

evaluated, some of them showing Ki values in the subnanomolar range and the 2-naphthyl group 

performance being the best. The resulting SARs confirmed the key role played by interactions 

taking place between ligands and the lipophilic L1 pocket of the TSPO binding site. Docking 

simulations were performed on the most potent compound of the present series (29) exploiting the 

recently available 3D structures of TSPO bound to its standard ligand (PK11195). Our theoretical 

model was fully consistent with SARs of the newly investigated as well of the previously reported 

2-phenylindol-3-ylglyoxylamide derivatives.  



 

 

Introduction 

The Translocator Protein (TSPO), first described as peripheral benzodiazepine receptor (PBR),1,2 is 

an 18 kDa protein mainly expressed in the outer mitochondrial membranes, where it interacts with a 

number of associated proteins including the voltage-dependent anion channel (VDAC, 32 kDa), the 

adenine nucleotide transporter (ANT, 30 kDa), the PBR associated protein-1 (PRAX-1, 220-250 

kDa), the steroidogenesis regulatory protein (StAR, 37 kDa), and the TSPO and protein kinase A 

regulatory subunit RIα-associated protein (PAP7, 52 kDa).1 Additional cellular locations of TSPO 

have been identified such as nucleus, lysosome, Golgi apparatus, peroxisomes, and plasma 

membrane.1,3 TSPO is an evolutionarily well-conserved and tryptophan-rich 169 amino acids 

protein organized into five transmembrane helices linked by hydrophobic loops, with a carboxy-

terminal and a short amino-terminal tails located outside and inside the mitochondria, respectively.1 

Site-directed mutagenesis experiments,4 together with a recent NMR study,5 demonstrated that the 

portion of the receptor that recognizes the ligands is located at the bottom of the transmembrane 

bundle, also contacting the first cytoplasmatic loop. 

TSPO is involved in numerous cellular processes related to the regulation of mitochondrial 

cholesterol translocation, porphyrin transport and heme synthesis, cellular proliferation and 

apoptosis, regulation of mitochondrial functions, immunomodulation and inflammation.1,4,6 This 

protein is ubiquitously expressed, with higher levels in tissues that produce steroids and that are 

mitochondrially enriched such as myocardium, skeletal muscle, and renal tissue;1 other peripheral 

tissues, including liver and lung, express TSPO to a less extent.1 In the central nervous system 

(CNS), TSPO is mainly located in glial cells, but it is also present in neurons.7 Such a distribution in 

the CNS may be related to the crucial role that TSPO plays in the regulation of cholesterol 

translocation from the outer to the inner mitochondrial membrane, where it is converted into 

pregnenolone, the precursor of all neurosteroids.8 A number of these endogenous molecules, such as 

pregnenolone and allopregnanolone, are able to rapidly inhibit neuron excitability as a result of a 



 

positive allosteric modulation of type A receptors for GABA (GABAA), the major inhibitory 

neurotransmitter in the brain.9 

Altered expression of TSPO has been linked to multiple diseases, including anxiety, cancer, 

ischemia-reperfusion injury, brain injury, and neurodegenerative conditions such as Alzheimer’s 

and Parkinson’s diseases.10 In this view, TSPO ligands have potential as diagnostic tools for the 

state and progression of these related-diseases,10,11 as well as therapeutic antiproliferative and 

neuroprotective agents.12-14 

Since identification of TSPO by means of the benzodiazepines diazepam and Ro5−4864 1 (Chart 

1),2 structurally different classes of highly potent and selective ligands have been reported (Chart 1), 

including the isoquinolinecarboxamides, of which the 1-(2-chlorophenyl)-N-methyl-N-(1-

methylpropyl)-1-isoquinolinecarboxamide (PK11195, 2) is widely considered as a prototypical 

TSPO ligand,15 imidazopyridines (alpidem, 3), indoleacetamides (FGIN-1-27, 4),16 

tetrahydrocarbazolecarboxamides (GE-180, 5),17-19 and purineacetamides (AC-5216, 6).20-24 

In this context, we disclosed the N,N-dialkyl-2-phenylindol-3-ylglyoxylamides 7 as a class of potent 

and selective TSPO ligands (Chart 1), the majority of which showed Ki values in the 

nanomolar/subnanomolar range and were able to stimulate steroid biosynthesis in rat C6 glioma 

cells to an extent similar to or higher than that of classic TSPO ligands Ro5-4864, and PK11195.25-

27 A large number of derivatives 7 was synthesized and biologically evaluated, featuring different 

combinations of R1-R5 substituents. The structure-affinity relationships (SARs) of these compounds 

were rationalized in light of a pharmacophore/topological model made up of three lipophilic 

pockets (L1, L3, and L4) and an H-bond donor group H1 (Chart 1).25,26,28 According to our model, 

the amide carbonyl oxygen of the oxalyl bridge engages an H-bond with the donor site H1; the two 

lipophilic substituents on the amide nitrogen, R1, and R2 interact through hydrophobic contacts with 

the L3 and/or L4 lipophilic pockets; the 2-phenyl moiety establishes a putative π-stacking 

interaction within the L1 pocket. The optimum binding affinity to TSPO in series 7 requires two 

lipophilic substituents on the amide nitrogen (R1, R2 = methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-



 

hexyl, benzyl, etc.) to fit both in the L3 and L4 lipophilic pockets. Symmetrically (R1 = R2) and 

asymmetrically (R1 ≠ R2) N,N-disubstituted indoles were investigated revealing that: (i) an aromatic 

moiety (R1/R2) is equivalent to an aliphatic one of similar size in taking hydrophobic contacts with 

the L3 or L4 lipophilic pocket; (ii) the L3 and L4 pockets are probably different in their dimensions 

as substitution pattern on the amide nitrogen with R1 and R2 of different sizes yielded high affinity 

derivatives. Moreover, the R3 substituent has to feature electron-withdrawing properties to reinforce 

the putative π-stacking interaction within the L1 pocket, and R4 has to be both electron-withdrawing 

and very small for optimal binding, a combination of properties only featured by the fluorine atom. 

Conversely, substitutions at position 7 of the indole nucleus (R5) do not produce any affinity 

gain.25,26 

As stated above, TSPO may also represent a marker for related disease progression, so that the 2-

phenylindolylglyoxylamide scaffold has been studied as a novel chemotype for the development of 

specific TSPO molecular probes. Novel reversible and irreversible fluorescent probes targeting 

TSPO were developed which featured the 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) group as a 

fluorophore.29,30 Furthermore, a new 11C-radiolabeled probe from class 7, the N,N-di-n-propyl-(N1-

methyl-2-(4'-nitrophenyl)indol-3-yl)glyoxylamide, was synthesized and evaluated with positron 

emission tomography in monkey, showing to enter brain and give a high proportion of TSPO-

specific binding, auguring well for its future application in humans as biomarker of 

neuroinflammation.31 

As a continuation of our studies on 2-phenylindol-3-ylglyoxylamides as potent and selective TSPO 

ligands, our attention has been now focused on the effects on binding affinity of different aryl 

moieties at the 2-position of the indole nucleus. The aim of our project was to probe the L1 

lipophilic pocket and its surroundings to better define the whole topology of the TSPO binding site. 

For this purpose, a first subset of novel indole derivatives (8-16) were designed, featuring 

hydrophilic group (OH, NH2, COOH) at the para-position of the pendant 2-phenyl ring. Actually, 

Trapani and colleagues reported that the introduction of polar and ionisable substituents at the para-



 

and meta-positions of the 2-phenyl ring of 2-phenylimidazopyridine TSPO ligands, yielded 

compounds showing very high affinity and selectivity for TSPO, with Ki values in the low 

nanomolar/subnanomolar range.32 To expand the SARs, derivatives 17-22 (Ar = p-CH3O-C6H4 and 

p-CH3OOC-C6H4, respectively), which are the intermediates in the synthesis of compounds 8-10 

and 14-16 (see Scheme 1), were biologically evaluated. The second subset is represented by indoles 

23-35, which are functionalized at 2-position with aryl moieties different from the variously 

substituted phenyl ring, that is 3-thienyl (23-25), and the highly steric-demanding p-biphenyl (26-

28) or 2-naphthyl (29-35) group. 

All the novel indole derivatives 8-35 were biologically evaluated for their binding affinity to TSPO.  

Finally, a 3D model of the rTSPO was developed employing the newly published NMR model of 

mTSPO (PDB code: 2MGY),5 and docking studies were conducted using compound 29 as reference 

ligand, in order to rationalize the SARs within the 2-arylindol-3-ylglyoxylamide TSPO ligands 

described so far. 

 

RESULTS AND DISCUSSION 

Chemistry. The target N,N-dialkyl-2-(4-substituted-phenyl)indol-3-ylglyoxylamides 8-16, N,N-

dialkyl-2-(thien-3-yl)indol-3-ylglyoxylamides 23-25, N,N-dialkyl-2-(p-biphenyl)indol-3-

ylglyoxylamides 26-28, and N,N-dialkyl-2-(naphth-2-yl)indol-3-ylglyoxylamides 29-35 were 

synthesized through the 2-arylindoles 36-38 and 42-44, which were in turn simply obtained, with 

the exception of the commercially 2-(biphenyl-4-yl)indole 43 and 2-(naphth-2-yl)indole 44, with a 

one-step Fischer indole synthesis by reacting phenylhydrazine hydrochloride and the appropriate 

acetyl derivative, Schemes 1 and 2. Under acid catalysis [excess of polyphosphoric acid (PPA)], the 

phenylhydrazone initially formed undergoes a number of isomerizations/rearrangements, and finally 

eliminates NH3 to give the indole products. 

Acylation of the appropriate 2-(4-substituted-phenyl)indole 36-38 with oxalyl chloride, in 

anhydrous diethyl ether, at room temperature, yielded the corresponding 2-(4-substituted-



 

phenyl)indolylglyoxylyl chlorides 39-41, which were allowed to react with the appropriate 

dialkylamine, in the presence of triethylamine, in dry toluene solution, at room temperature, to give 

compounds 7d-f, 17-22 (Scheme 1).  

The indolylglyoxylamide derivatives featuring a OH group in R3 (8-10) were achieved through a 

demethylation of the methoxy group of compounds 17-19 by treatment with BBr3 in a nitrogen 

atmosphere (Scheme 1). At the end of the reaction, methanol was added to hydrolyze the excess of 

BBr3, and crude compounds were recovered as a solid precipitated after evaporation under reduced 

pressure.  

The N,N-dialkyl-[2-(4-nitrophenyl)indol-3-yl]glyoxylamide derivatives 7d-f were catalytically 

hydrogenated over palladium to yield the corresponding 2-phenylindolylglyoxylamide analogues 

11-13 bearing a NH2 in para-position at the 2-phenyl ring (Scheme 1).  

Finally, hydrolysis of the methyl ester group of compounds 20-22 with lithium hydroxide 

monohydrate, in a solution of methanol/water (3:1) gave the target compounds 14-16 (Scheme 1).  

Scheme 2 outlined the general procedure for the synthesis of N,N-dialkyl-2-(aryl)indol-3-

ylglyoxylamides 23-35. The 2-arylindoles 42-44 were acylated with oxalyl chloride, in anhydrous 

diethyl ether, at room temperature, to obtain the corresponding indolylglyoxylyl chlorides 45-47. 

The subsequent condensation with the appropriate amines, in the presence of triethylamine, in dry 

toluene solution, yielded the target derivatives 23-35. 

The reaction yields, the chemical physical constants and spectroscopic data of compounds 8-35 are 

listed in the Experimental Section. 

The (2-arylindol-3-yl)glyoxylyl chlorides 39, 41, 45-47 have never been described before in the 

literature and were characterized as their corresponding ethyl ester derivatives (see Experimental 

Section). 

Biological studies. The binding affinity of all the newly synthesized 2-arylindol-3-ylglyoxylamide 

derivatives 8-35 for the TSPO was determined by binding competition experiments against 

[3H]PK11195,25,26 carried out in rat kidney membrane homogenates (Tables 1 and 2). Because of 



 

the well-established TSPO versus central benzodiazepine receptor (BzR) selectivity of N,N-dialkyl-

2-phenylindol-3-ylglyoxylamides,25,26 a few randomly selected derivatives were evaluated for their 

BzR affinity by experiments against [3H]flumazenil in rat cerebral cortex membrane 

homogenates.25,26 The tested compounds showed no significant binding properties in this assay 

(inhibition percentages at 10 μM concentration ranging from 0% to 23%, data not shown). 

The TSPO binding affinities of compounds 8-22, and 23-35, expressed as Ki values, are listed in 

Tables 1, and 2, respectively, together with the Ki values of the standard TSPO ligands Ro5-4864, 

and PK11195 (Chart 1). The binding data of some of the previously investigated indole 

derivatives25,26 are included for comparison at the bottom of Table 1 (7a-f) and Table 2 (7a-c, g-j).  

In the 8-16 series, the amide nitrogen is symmetrically disubstituted (R1 = R2, Table 1) with n-

propyl, n-butyl, and n-hexyl chains and the 2-phenyl moiety is decorated by small hydrophilic 

groups inserted at the para-position (R3 = OH, NH2, COOH, Table 1); derivatives 17-22 (R3 = 

OCH3, COOCH3, Table 1), which are the intermediates in the synthesis of compounds 8-10 and 14-

16, respectively (see Scheme 1), were also biologically evaluated to expand the SARs. 

In general, the introduction of a hydrophilic group at the para-position of the 2-phenyl ring (OH, 

NH2, COOH) did not determine any significant improvement of the affinity, suggesting that the 

interaction at the level of the L1 pocket is mostly lipophilic (Table 1). In particular, the insertion of 

an OH group at the para-position of the 2-phenyl ring is tolerated for affinity (8 Ki 16.1 nM, 9 Ki 

25.7 nM, 10 Ki 6.3 nM, vs 7a Ki 12.2 nM, 7b Ki 7.5 nM, 7c Ki 1.4 nM, respectively). Conversely, a 

decrease of the binding affinity is observed introducing a NH2 (11 Ki  44.4 nM, 12 Ki 133 nM, 13 Ki 

4.2 nM, vs 7a Ki  12.2 nM, 7b Ki 7.5 nM, 7c Ki 1.4 nM, respectively) or, to a major extent, a COOH 

group (14 Ki 343 nM, 15 Ki 406 nM, 16 Ki 184 nM vs 7a Ki 12.2 nM, 7b Ki 7.5 nM, 7c Ki 1.4 nM, 

respectively, Table 1). In addition, in all the subsets, compounds bearing n-hexyl chains on the 

symmetrically disubstituted amide nitrogen are more potent than the others. A different trend is 

observed for derivatives 17-19 and 20-22, featuring a p-methoxy and p-methoxycarbonyl 

substituent, respectively, that show, with the exception of compound 18 (Ki 20.3 nM), appreciable 



 

and comparable affinity (Ki values in the low nanomolar range), whatever is the length of the side 

alkyl chains, Table 1. 

The data listed in Table 2 evidence that the replacement of the 2-phenyl group with a thien-3-yl (23-

25), a p-biphenyl (26-28), or a naphth-2-yl (29-35) moiety produces, with few exceptions, superior 

affinity TSPO ligands, with Ki values in the subnanomolar range. As the presence of a naphthyl 

group seemed to be particularly favourable for affinity, this subset was further investigated by the 

synthesis of a number of asymmetrically N,N-disubstituted indoles (32-35, Table 2), to more deeply 

probe the L3 and L4 lipophilic pockets of the TSPO binding site (R1 = methyl, ethyl; R2 = n-butyl, 

n-pentyl, benzyl). Interestingly, within the subset of the 2-(naphth-2-yl)-substituted derivatives 29-

35, all compounds showed almost identical Ki values in the subnanomolar range, ranging from 0.30 

nM to 0.56 nM (Table 2). Thus, the nature of the groups bound to the amide nitrogen does not 

significantly influence the binding of ligands 29-35 at TSPO. These data suggest a key role played 

by the lipophilic interaction at the level of the L1 pocket that, reaching its optimum with a naphthyl 

group, makes less significant the contribution to the binding of the remaining lipophilic interactions 

established by the ligand within the receptor binding site.  

Due to the well-established steroidogenic effect of derivatives from the 2-phenylindol-3-

ylglyoxylamide class,25,26 compound 29 was selected and routinely evaluated for its ability to 

stimulate pregnenolone formation from rat C6 glioma cells,25,26 showing an increase percentage in 

pregnenolone production vs control similar to that of the reference standard PK1119525,26 (see 

Supplementary Information for Method details). 

Computational Studies: rTSPO model construction and docking calculations. A survey in the 

available literature demonstrates that, to date, several X-ray33,34 and solution5 (NMR) structures 

were deposited in the Protein Data Bank (PDB).35 Among them, we decided to choose the solution 

one (mTSPO) as a template for the construction of our rTSPO model, given the higher sequence 

identity shared by the two proteins (95%). Therefore, several 3D models of the rTSPO were 

generated using the newly published NMR model of mTSPO (PDB code: 2MGY),5 by applying the 



 

following protocol: (i) 20 NMR snapshots are available in the structure of the mTSPO and we used 

each of them as a template for the construction of the rTSPO; (ii) for each template, 20 models were 

generated making a total of 400 rTSPO models, grouped in 20 groups (one for each NMR 

snapshot); (iii) then, the best rTSPO models in each group were selected (i.e. the models giving the 

highest score according to the modeller native scoring function and featuring the best 

Ramachandran plots) for a total of 20 rTSPO structures. The selected 20 rTSPO models were 

refined through the protein preparation protocol available in Maestro9.8.36  

Comparison between the rTSPO model (see docking studies) and its corresponding mTSPO NMR 

snapshot template is depicted in Supplementary Figure S1 (SI), with the corresponding 

Ramachandran plots.  

Docking was performed using Glide tool of Maestro 9.836 on the 20 selected mTSPO structures. To 

set up the docking studies the following considerations were made: (i) the stoichiometry of the 

protein-ligand interaction is 1:1;5 (ii) the indolylglyoxylamide derivatives are competing for the 

same PK11195 binding site.25-27,29 On the basis of these observations, the docking studies were 

conducted on the monomeric rTSPO, and using compound 29 as reference ligand (i.e. the one 

endowed with the best binding properties). Among the 20 29/rTSPO generated complexes, we 

considered only those in which: i) the ligand was occupying the same PK11195 binding regions (17 

complexes), ii) there was agreement with the SARs reported by us in literature25-27,29,37 and in this 

work (2 complexes). Of these latter complexes, we considered the one having the highest glide 

score (1 complex) (Supplementary Figure S2, SI).  

The binding mode and the SARs of the indolylglyoxylamide derivatives. Glide software36 

predicts 29 to fairly recapitulate the experimental TSPO/ PK11195 interactions (see Supplementary 

Figure S3, SI), so that the ligand is nicely adapted in the mainly hydrophobic binding pocket of 

rTSPO (see Figure 1a). In the proposed binding mode of 29 to TSPO, the naphthyl moiety is placed 

inside a roomy aromatic cage (herein referred to as L1 pocket), establishing hydrophobic interaction 

with V110, W95, W107, L114, W143, F146 and L150 residues. This is in agreement with our 



 

previous works21,22,24 25-27 showing that, among the indolylglyoxylamides, p-substitution of the 

phenyl ring at position 2 of the indole ring results in higher affinity with respect to the unsubstituted 

phenyl moiety (i.e. 7a vs 7d). Interestingly, given the aromatic/hydrophobic nature of the L1 region, 

it is not surprising that R3 polar and/or electron-donating groups are generally less tolerated than 

hydrophobic and/or electron-withdrawing ones. In particular, in the proposed binding mode (Figure 

1a-c), the aromatic ring at position 2 of the indole ring establishes a parallel displaced π-π 

interaction with W107, thus explaining the general correlation between the R3 electron-withdrawing 

effect and the affinity for rTSPO observed for the N,N-dipropyl (7d > 20 > 17 > 7a > 8 > 11 > 14) 

and for the N,N-dibutyl (7e > 21 > 7b > 18 > 9 > 12 > 15) series, but less evident for the N,N-

dihexyl one (7f > 7c > 22 > 13 > 19 > 10 > 16) (See Supplementary Figure S4, SI, for a qualitative 

correlation). This observation highlights that a cooperative effect between the nature of the 

substituents on the N,N-alkyl branches and the electronic nature of the substituents in R3 exists, and 

in turn a proper balance is required. Indeed, in the case of the N,N-dihexyl derivatives, the 

hydrophobic nature of the N,N-alkyl branches predominates over the electronic effects of the R3 

substituents.  

The extension and the chemical nature of the cleft lodging in the aforementioned group (Figure 1a-

d) would also explain why substitution with a biphenyl (26) results in comparably high affinities, 

while the presence of the smaller phenyl/thienyl groups results in lower binding (29 = 26 > 23 > 

7a).  

According to the present binding mode (Figure 1a) the N-propyl branch in the cisoid configuration 

protrudes toward the membrane environment, while the second N-propyl branch establishes 

hydrophobic interactions with V26, W107, and L150.  

The proposed theoretical model (Figure 1a) is also in agreement with our previous works where 

fluorescent probes were developed.29 In particular, we derivatized our 2-phenylindol-3-

ylglyoxylamides with a 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) group that is well-known for 

displaying low quantum yields in water, while becoming highly fluorescent in more lipophilic 



 

environments, such as membranes or hydrophobic receptor pockets.30 Indeed, according to our 

model, the attached NBD linker would be hosted outside the receptor in the membrane 

environment, thus explaining why our previously published TSPO NBD-labelled fluorescent 

probes29 are so efficient in staining rat and human glioma cells.   

The position of the N,N-disubstituted branches would also explain why bulkier substituents on the 

ligand amide moiety do not significantly affect the activity for the naphthyl derivatives (29 vs 30-

35). Interestingly, the amide branches accommodates in a similar region with respect to the amide 

branches of the PK11195 (Supplementary Figure S3, SI), and we already demonstrated in our 

previous works that bulkier substituents are well tolerated in this region.5,21,22,24,26,27,35 Differently 

from the naphthyl series (29-35), the biphenyl one seems to be affected by the presence of bulkier 

substituents on the amide branch of the glyoxylamide moiety (26 vs 27, 28). This effect can be 

explained by the different bulkiness and shape of the biphenyl moiety with respect to the naphthyl 

one (Figure 1b-d and Supplementary Figure S5, SI), which in turn does not tolerate bulkier 

substituents on the amide group.  

Furthermore, on the basis of the proposed binding mode (Figure 1a), the hydrophobic residues A23, 

W53, L49, and W143 surround the indole ring of 29. This agrees with our previous works showing 

that substitutions on position 5 and 7 of the indole ring are tolerated.25-27 Finally, in our previous 

works, based on pharmacophoric models, it was suggested that the distal carbonyl oxygen of the 

oxalyl bridge engages an H-bond with the donor site H1 of the pharmacophore/topological model 

(Chart 1), in the TSPO binding site.25-27 On the contrary, the present binding mode lacks any polar 

interaction between the glyoxylamide branch and the receptor binding site (Figure 1a). In this 

regard, it can be argued that the presence of the amide/glyoxylamide groups in TSPO binders, rather 

than engaging specific interactions with the receptor, has a role in constraining the flexibility of the 

ligand branch so as to adopt the bioactive conformation. We cannot rule out the presence of water 

molecules inside the TSPO binding pocket that mediate polar interactions between the 

amide/glyoxylamide and the protein binding site. The same interaction (H-bond with the H1 site) 



 

was also postulated in a previous paper for the PK11195/TSPO pharmacophore/topological model38 

and was not lately verified by the NMR experimental structure.5 

 

CONCLUSIONS 

Novel 2-arylindol-3-ylglyoxylamides were synthesized and biologically evaluated to clarify the 

effect of different aryl moieties at the 2-position of the indole nucleus on modulation of affinity to 

TSPO, and thus to probe the L1 lipophilic pocket and its surroundings.  

Within the first subset of novel indole derivatives (8-16), the introduction of a hydrophilic group at 

the para-position of the 2-phenyl ring (OH, NH2, COOH) does not determine any significant 

improvement of the affinity; conversely, the replacement of the 2-phenyl group with thien-3-yl (23-

25), p-biphenyl (26-28), or naphth-2-yl (29-35) moiety produces, with few exceptions, superior 

affinity TSPO ligands, with Ki values in the subnanomolar range. Of note, within the subseries of 

the 2-(naphth-2-yl)-substituted derivatives 29-35, all compounds showed almost identical Ki 

subnanomolar values, independently from the nature of the groups bound to the amide nitrogen. 

Taken together, the SARs suggest a key role of the lipophilic interaction at the level of the L1 

pocket that, when reaches its optimum with a naphthyl group, makes less significant all the other 

lipophilic interactions of the molecule within the receptor protein.  

A 3D model of the rTSPO was developed employing the newly published NMR model of mTSPO 

(PDB code: 2MGY).5 Docking studies were conducted using compound 29 as reference ligand, and 

the proposed binding mode highlighted the cooperative effects between the nature of the 

substituents on the N,N-alkyl branches and the electronic features of the moiety at indole 2-position, 

rationalizing the SARs within the 2-arylindol-3-ylglyoxylamide TSPO ligands described so far. 

 

EXPERIMENTAL SECTION 

Chemistry. Evaporation was performed in vacuo (rotary evaporator). Analytical TLC was carried 

out on Merck 0.2 mm precoated silica gel aluminum sheets (60 F-254). Silica gel 60 (230-400 



 

mesh) was used for column chromatography. Melting points were determined using a Reichert 

Köfler hot-stage apparatus and are uncorrected. Routine nuclear magnetic resonance spectra were 

recorded in DMSO-d6 solution on a Varian Gemini 200 spectrometer operating at 200 MHz. The 

NMR spectra of tertiary amides show the presence of two different conformational isomers (ratio 

about 1:1) in equilibrium (see ref. n° 26,37 for details). Elemental analyses were performed by our 

analytical laboratory and agreed with theoretical values to within (0.4%). 

2-(p-Biphenyl-4-yl)indole 43 and 2-(naphth-2-yl)indole 44 are commercially available. 2-(4-

Methoxyphenyl)indole 36,39 2-(4-nitrophenyl)indole 37,26 2-(3-thienyl)-1H-indole 42,40 [2-(4-

nitrophenyl)indol-3-yl]glyoxylyl chloride 40,26 N,N-di-n-propyl-2-(4-nitrophenyl)indol-3-

ylglyoxylamide 7d,26 N,N-di-n-butyl-2-(4-nitrophenyl)indol-3-ylglyoxylamide 7e,26 N,N-di-n-

hexyl-2-(4-nitrophenyl)indol-3-ylglyoxylamide 7f,26 were prepared in accordance with reported 

procedures. 

Methyl-4-(1H-indol-2-yl)benzoate 38. 1 g of polyphosphoric acid (PPA) was added to a mixture 

of phenylhydrazine hydrochloride (0.541 g, 5.0 mmol) and methyl 4-acetylbenzoate (0.891 g, 5.0 

mmol). The reaction was maintained at 60 °C for 4 h and then poured into ice (ca 100 g). The 

precipitated solid was collected by filtration and purified by recrystallization from toluene (30 mL). 

Yield: 78%; mp 204-207 °C, lit. ref. n° 41 mp 206.3-207.5 °C. 

General procedure for the synthesis of [2-(4-substituted-phenyl)indol-3-yl]glyoxylyl chloride 

derivatives 39, 41, and (2-arylindol-3-yl)glyoxylyl chloride derivatives 45-47. Oxalyl chloride 

(8.0 mmol) was added dropwise at 0 °C to a well-stirred mixture of the appropriate indole 36, 38, 

42-44 (4.0 mmol) in freshly distilled diethyl ether (10 mL). The mixture was maintained at room 

temperature for 2-24 h (TLC analysis). The precipitate formed was collected and washed with 

portions of diethyl ether (20 mL) to give the desired glyoxylyl chlorides, which were dried over 

P2O5 in vacuo and directly used in the subsequent reaction. All glyoxylyl chloride derivatives, were 

characterized by conversion into their corresponding ethyl esters. 

2-(4-Methoxyphenyl)indol-3-ylglyoxylyl chloride (39). Yield: 72% 



 

Ethyl [2-(4-methoxyphenyl)-1H-indol-3-yl](oxo)acetate 39a. Yield: 70%; mp 194-196 °C. 1H-

NMR (DMSO-d6, ppm): 0.99 (t, J = 7.2 Hz, 3H, CH2CH3); 3.68 (q, J = 7.2 Hz, 2H, CH2CH3); 3.85 

(s, 3H, OCH3); 7.12 (d, J = 6.8 Hz, 2H, 3'-H, 5'-H); 7.26-7.33 (m, 2H, Ar-H); 7.49-7.52 (m, 3H, Ar-

H); 8.12-8.15 (m, 1H, 4-H); 12.52 (bs, 1H, NH, exch. with D2O). Anal. Calcd for C19H17NO4: C, 

70.58; H, 5.30; N, 4.33. Found: C, 70.45; H, 5.17; N, 4.27. 

Methyl 4-{3-[chloro(oxo)acetyl]-1H-indol-2-yl} benzoate (41). Yield: 80% 

Methyl 4-{3-[ethoxy(oxo)acetyl]-1H-indol-2-yl}benzoate 41a. Yield: 70%; mp 152-154 °C. 1H-

NMR (DMSO-d6, ppm): 0.97 (t, J = 7.2 Hz, 3H, CH2CH3); 3.63 (q, J = 7.2 Hz, 2H, CH2CH3); 3.92 

(s, 3H, OCH3); 7.32-7.36 (m, 2H, Ar-H); 7.54-7.57 (m, 1H, Ar-H); 7.74 (d, J = 8.4 Hz, 2H, 2'-H, 6'-

H); 8.11-8.16 (m, 3H, Ar-H); 12.80 (bs, 1H, NH, exch. with D2O). Anal. Calcd for C20H17NO5: C, 

68.37; H, 4.88; N, 3.99. Found: C, 68.51; H, 4.71; N, 4.05. 

Oxo[2-(3-thienyl)-1H-indol-3-yl]acetyl chloride (45). Yield: 65% 

Ethyl oxo[2-(3-thienyl)-1H-indol-3-yl]acetate 45a. Yield: 72%; mp 168-170 °C. 1H-NMR 

(DMSO-d6, ppm): 1.06 (t, J = 7.2 Hz, 3H, CH2CH3); 3.82 (q, J = 7.2 Hz, 2H, CH2CH3); 7.28-7.33 

(m, 2H, Ar-H); 7.37-7.40 (m, 1H, Ar-H); 7.48-7.51 (m, 1H, Ar-H); 7.77-7.79 (m, 1H, Ar-H); 7.93-

7.94 (m, 1H, Ar-H); 8.07-8.09 (m, 1H, 4-H); 12.59 (bs, 1H, NH, exch. with D2O). Anal. Calcd for 

C16H13NO3S: C, 64.20; H, 4.38; N, 4.68. Found: C, 64.08; H, 4.47; N, 4.75. 

(2-Biphenyl-4-yl-1H-indol-3-yl)(oxo)acetyl chloride (46). Yield: 80% 

Ethyl (2-biphenyl-4-yl-1H-indol-3-yl)(oxo)acetate 46a. Yield: 90%; mp 145-147 °C. 1H-NMR 

(DMSO-d6, ppm): 0.98 (t, J = 7.2 Hz, 3H, CH2CH3); 3.67 (q, J = 7.2 Hz, 2H, CH2CH3); 7.31-7.36 

(m, 2H, Ar-H); 7.42-7.46 (m, 1H, Ar-H); 7.52-7.55 (m, 3H, Ar-H); 7.67 (d, J = 8.2 Hz, 2H, 3'-H, 5'-

H); 7.76-7.78 (m, 2H, Ar-H); 7.88 (d, J = 8.2 Hz, 2H, 2'-H, 6'-H); 8.16-8.18 (m, 1H, 4-H); 12.70 

(bs, 1H, NH, exch. with D2O). Anal. Calcd for C24H19NO3: C, 78.03; H, 5.18; N, 3.79. Found: C, 

78.19; H, 5.33; N, 3.61. 

[2-(2-Naphthyl)-1H-indol-3-yl](oxo)acetyl chloride (47). Yield: 82% 

Ethyl [2-(2-naphthyl)-1H-indol-3-yl](oxo)acetate 47a. Yield: 79%; mp 143-145 °C. 1H-NMR 

(DMSO-d6, ppm): 0.79 (t, J = 7.2 Hz, 3H, CH2CH3); 3.34 (q, J = 7.2 Hz, 2H, CH2CH3); 7.32-7.38 



 

(m, 2H, Ar-H); 7.56-7.58 (m, 1H, Ar-H); 7.64-7.66 (m, 2H, Ar-H); 7.70-7.72 (m, 1H, Ar-H); 8.04-

8.06 (m, 2H, Ar-H); 8.09-8.14 (m, 2H, Ar-H); 8.19-8.21 (m, 1H, 4-H); 12.76 (bs, 1H, NH, exch. 

with D2O). Anal. Calcd for C22H17NO3: C, 76.95; H, 4.99; N, 4.08. Found: C, 77.10; H, 4.83; N, 

4.17. 

General procedure for the synthesis of N,N-dialkyl-[2-(4-substituted-phenyl)indol-3-

yl]glyoxylamide derivatives 17-22, and N,N-dialkyl-[(2-arylindol)-3-yl]glyoxylamide 

derivatives 23-35. A solution of the appropriate amine (2.0 mmol) in 5 mL of dry toluene was 

added dropwise to a stirred suspension, cooled at 0 °C, of the glyoxylyl chlorides 39-41, 45-47 (2.0 

mmol) in 50 mL of the same solvent, followed by the addition of triethylamine (2.0 mmol). The 

reaction mixture was left under stirring for 2-24 h at room temperature (TLC analysis), and then 

filtered. The collected precipitate was triturated with a 5% NaHCO3 aqueous solution (10 mL), 

washed with water (10 mL), and collected again to give a first portion of crude product. The toluene 

was removed under reduced pressure, and the oily residue dissolved with CHCl3 (20-30 mL). The 

organic solution was washed with diluted HCl (10 mL), a 5% NaHCO3 aqueous solution (10 mL) 

and water (10 mL), dried (MgSO4), and evaporated to dryness to yield an additional amount of 

crude products, which were finally purified by flash chromatography (CHCl3 as eluent). 

2-[2-(4-Methoxyphenyl)-1H-indol-3-yl]-2-oxo-N,N-dipropylacetamide (17). Yield: 72%; mp 

121-123 °C. 1H-NMR (DMSO-d6, ppm, mixture of conformational isomers): 0.68, 0.76 (2t, J = 7.2 

Hz, 6H, 2(CH2)2CH3); 1.21-1.26, 1.39-1.47 (2m, 4H, 2CH2CH2CH3); 2.93-3.06 (m, 4H, 2NCH2); 

3.83 (s, 3H, OCH3); 7.06 (d, J = 8.8 Hz, 2H, 3'-H, 5'-H); 7.18-7.30 (m, 2H, Ar-H); 7.44-7.56 (m, 

3H, Ar-H); 7.99-8.04 (m, 1H, 4-H); 12.34 (bs, 1H, NH, exch. with D2O). 13C-NMR (DMSO-d6, 

ppm, mixture of conformational isomers): 11.38; 11.76; 20.55; 21.71; 46.03; 49.76; 55.82; 109.84; 

112.39; 113.94; 121.20; 122.71; 123.44; 123.66; 127.35; 131.81; 136.14; 147.75; 160.90; 168.18; 

187.62. Anal. Calcd for C23H26N2O3: C, 72.99; H, 6.92; N, 7.40. Found: C, 73.12; H, 6.80; N, 7.33. 

N,N-Dibutyl-2-[2-(4-methoxyphenyl)-1H-indol-3-yl]-2-oxoacetamide (18). Yield: 75%; mp 119-

121 °C. 1H-NMR (DMSO-d6, ppm, mixture of conformational isomers): 0.72, 0.84 (2t, J = 7.0 Hz, 



 

6H, 2(CH2)3CH3); 1.02-1.13 (m, 6H, Aliph-H); 1.35-1.43 (m, 2H, Aliph-H); 2.98-3.07 (m, 4H, 

2NCH2); 3.83 (s, 3H, OCH3); 7.06 (d, J = 8.8 Hz, 2H, 3'-H, 5'-H); 7.20-7.28 (m, 2H, Ar-H); 7.44-

7.55 (m, 3H, Ar-H); 8.03-8.06 (m, 1H, 4-H); 12.53 (bs, 1H, NH, exch. with D2O). 13C-NMR 

(DMSO-d6, ppm, mixture of conformational isomers): 13.89; 14.11; 19.70; 20.23; 29.28; 30.40; 

43.89; 47.55; 55.77; 109.87; 112.37; 113.91; 121.24; 122.70; 123.38; 123.67; 127.38; 131.86; 

136.17; 147.79; 160.88; 168.00; 187.70. Anal. Calcd for C25H30N2O3: C, 73.86; H, 7.44; N, 6.89. 

Found: C, 73.72 ; H, 7.51; N, 6.99. 

N,N-Dihexyl-2-[2-(4-methoxyphenyl)-1H-indol-3-yl]-2-oxoacetamide (19). Yield: 65%; oil. 1H-

NMR (DMSO-d6, ppm, mixture of conformational isomers): 0.73-1.36 (m, 22H, Aliph-H); 2.98-

3.05 (m, 4H, 2NCH2); 3.81 (s, 3H, OCH3); 7.05 (d, J = 6.8 Hz, 2H, 3'-H, 5'-H); 7.20-7.25 (m, 2H, 

Ar-H); 7.43-7.54 (m, 3H, Ar-H); 8.01-8.04 (m, 1H, 4-H); 12.33 (bs, 1H, NH, exch. with D2O). 13C-

NMR (DMSO-d6, ppm, mixture of conformational isomers): 14.20; 14.36; 22.26; 22.47; 26.02; 

26.64; 27.09; 28.19; 31.08; 31.46; 43.57; 47.79; 55.77; 109.87; 112.38; 113.90; 121.26; 121.65; 

122.32; 123.35; 127.35; 131.87; 136.19; 148.12; 159.34; 168.00; 187.91. Anal. Calcd for 

C29H38N2O3: C, 75.29; H, 8.28; N, 6.06. Found: C, 75.13; H, 8.21; N, 6.00. 

Methyl 4-{3-[(dipropylamino)(oxo)acetyl]-1H-indol-2-yl}benzoate (20). Yield: 65%; mp 139-

141 °C; 1H-NMR (DMSO-d6, ppm, mixture of conformational isomers): 0.66-0.77 (m, 6H, 

2(CH2)2CH3); 1.20-1.27, 1.45-1.49 (2m, 4H, 2CH2CH2CH3); 2.93-3.10 (m, 4H, 2NCH2); 3.92 (s, 

3H, OCH3); 7.27-7.31 (m, 2H, Ar-H); 7.50-7.54 (m, 1H, Ar-H); 7.74 (d, J = 8.0 Hz, 2H, 2'-H, 6'-H); 

8.02-8.09 (m, 3H, 4-H); 12.64 (bs, 1H, NH, exch. with D2O). 13C-NMR (DMSO-d6, ppm, mixture 

of conformational isomers): 11.38; 11.71; 20.46; 21.77; 46.03; 49.77; 52.83; 110.49; 112.79; 

121.27; 123.02; 124.10; 127.13; 129.10; 130.74; 130.82; 136.12; 136.51; 146.10; 166.37; 167.95; 

187.37. Anal. Calcd for C24H26N2O4: C, 70.92; H, 6.45; N, 6.89. Found: C, 7.79; H, 6.53; N, 6.95. 

Methyl 4-{3-[(dibutylamino)(oxo)acetyl]-1H-indol-2-yl}benzoate (21). Yield: 71%; mp 119-121 

°C; 1H-NMR (DMSO-d6, ppm, mixture of conformational isomers): 0.69-0.80 (m, 6H, 

2(CH2)3CH3); 1.00-1.15 (m, 4H, 2(CH2)2CH2CH3); 1.25-1.41 (m, 4H, 2CH2CH2CH2CH3); 2.95-



 

3.09 (m, 4H, 2NCH2); 3.89 (s, 3H, OCH3); 7.25-7.30 (m, 2H, Ar-H); 7.48-7.52 (m, 1H, Ar-H); 7.72 

(d, J = 8.0 Hz, 2H, 2'-H, 6'-H); 8.04-8.09 (m, 3H, 4-H); 12.59 (bs, 1H, NH, exch. with D2O). 13C-

NMR (DMSO-d6, ppm, mixture of conformational isomers): 13.90; 14.01; 19.70; 20.16; 29.12; 

30.41; 43.93; 47.55; 52.78; 110.63; 112.70; 121.42; 123.06; 124.17; 127.17; 129.17; 130.81; 

130.90; 136.01; 136.42; 146.08; 166.32; 167.69; 187.56. Anal. Calcd for C26H30N2O4: C, 71.87; H, 

6.96; N, 6.45. Found: C, 71.72; H, 6.89; N, 6.54. 

Methyl 4-{3-[(dihexylamino)(oxo)acetyl]-1H-indol-2-yl}benzoate (22). Yield: 65%; oil. 1H-NMR 

(DMSO-d6, ppm, mixture of conformational isomers): 0.66-1.46 (m, 22H, Aliph-H); 2.85-2.97 (m, 

4H, 2NCH2); 3.81 (s, 3H, OCH3); 7.18-7.21 (m, 2H, Ar-H); 7.39-7.42 (m, 1H); 7.64 (d, J = 7.8 Hz, 

2H, 2'-H, 6'-H); 7.96-8.00 (m, 3H, Ar-H); 12.53 (bs, 1H, NH, exch. with D2O). 13C-NMR (DMSO-

d6, ppm, mixture of conformational isomers): 14.19; 14.33; 22.28; 22.47; 26.03; 26.60; 26.87; 

28.14; 31.09; 31.45; 44.18; 47.76; 52.76; 110.61; 112.67; 121.43; 123.04; 124.17; 127.14; 129.16; 

130.79; 130.91; 135.96; 136.39; 145.98; 166.29; 167.67; 187.61. Anal. Calcd for C30H38N2O4: C, 

73.44; H, 7.81; N, 5.71. Found: C, 73.56; H, 7.72; N, 5.65. 

2-Oxo-N,N-dipropyl-2-[2-(3-thienyl)-1H-indol-3-yl]acetamide (23). Yield: 78%; mp 69-71 °C. 

1H-NMR (DMSO-d6, ppm, mixture of conformational isomers): 0.65, 0.71 (2t, J = 7.2 Hz, 6H, 

2(CH2)2CH3); 1.30-1.50 (m, 4H, 2CH2CH2CH3); 3.00-3.14 (m, 4H, 2NCH2); 7.21-7.27 (m, 2H, Ar-

H); 7.46-7.50 (m, 2H, Ar-H); 7.69-7.73 (m, 1H, Ar-H); 7.89-7.93 (m, 1H, 4-H); 8.13 (s, 1H, 2'-H); 

12.45 (bs, 1H, NH, exch. with D2O). 13C-NMR (DMSO-d6, ppm, mixture of conformational 

isomers): 11.36; 11.81; 20.64; 21.73; 46.09; 49.72; 109.87; 112.48; 120.92; 122.75; 123.85; 126.53; 

127.05; 128.74; 129.23; 131.42; 136.05; 142.02; 168.49; 187.32. Anal. Calcd for C20H22N2O2S: C, 

67.77; H, 6.26; N, 7.90. Found: C, 67.91; H, 6.19; N, 7.95. 

N,N-Dibutyl-2-oxo-2-[2-(3-thienyl)-1H-indol-3-yl]acetamide (24). Yield: 79%; mp 119-121 °C. 

1H-NMR (DMSO-d6, ppm, mixture of conformational isomers): 0.66-1.09 (m, 10H, Aliph-H); 1.22-

1.35 (m, 4H, 2CH2CH2CH2CH3); 3.00-3.32 (m, 4H, 2NCH2); 7.16-7.30 (m, 2H, Ar-H); 7.45-7.49 

(m, 2H, Ar-H); 7.68-7.72 (m, 1H, Ar-H); 7.88-7.92 (m, 1H, 4-H); 8.11 (s, 1H, 2'-H); 12.43 (bs, 1H, 



 

NH, exch. with D2O). 13C-NMR (DMSO-d6, ppm, mixture of conformational isomers): 13.82; 

14.21; 19.66; 20.24; 29.41; 30.44; 43.98; 47.59; 109.85; 112.46; 120.93; 122.73; 123.86; 126.55; 

127.04; 128.79; 129.23; 131.38; 136.04; 141.98; 168.37; 187.37. Anal. Calcd for C22H26N2O2S: C, 

69.08; H, 6.85; N, 7.32. Found: C, 69.19; H, 6.76; N, 7.39. 

N,N-Dihexyl-2-oxo-2-[2-(3-thienyl)-1H-indol-3-yl]acetamide (25). Yield: 82%; oil. 1H-NMR 

(DMSO-d6, ppm, mixture of conformational isomers, mixture of conformational isomers): 0.66-

1.12 (m, 14H, Aliph-H); 1.26-1.39 (m, 8H, Aliph-H); 3.00-3.20 (m, 4H, 2NCH2); 7.18-7.29 (m, 2H, 

Ar-H); 7.45-7.51 (m, 2H, Ar-H); 7.68-7.72 (m, 1H, Ar-H); 7.87-7.93 (m, 1H, 4-H); 8.14 (s, 1H, 2'-

H); 12.44 (bs, 1H, NH, exch. with D2O). 13C-NMR (DMSO-d6, ppm, mixture of conformational 

isomers): 14.17; 14.37; 22.21; 22.50; 25.98; 26.63; 27.22; 28.14; 31.00; 31.48; 44.23; 47.48; 

109.76; 112.49; 120.88; 122.67; 123.82; 126.50; 127.02; 128.81; 129.21; 131.40; 136.07; 141.90; 

168.43; 187.32. Anal. Calcd for C26H34N2O2S: C, 71.19; H, 7.81; N, 6.39. Found: C, 71.05; H, 7.89; 

N, 6.32. 

2-(2-Biphenyl-4-yl-1H-indol-3-yl)-2-oxo-N,N-dipropylacetamide (26). Yield: 70%; mp 155-157 

°C. 1H-NMR (DMSO-d6, ppm, mixture of conformational isomers): 0.67-0.73 (m, 6H, 

2(CH2)2CH3); 1.15-1.20, 1.45-1.51 (2m, 4H, 2CH2CH2CH3); 2.92-3.10 (m, 4H, 2NCH2); 7.29-7.32 

(m, 2H, Ar-H); 7.51-7.55 (m, 4H, Ar-H); 7.68-7.81 (m, 6H, Ar-H); 8.06-8.08 (m, 1H, 4-H), 12.52 

(bs, 1H, NH, exch. with D2O). 13C-NMR (DMSO-d6, ppm, mixture of conformational isomers): 

11.40; 11.77; 20.93; 21.71; 46.01; 49.75; 110.29; 112.55; 121.31; 122.90; 123.91; 126.68; 127.24; 

127.28; 128.39; 129.53; 130.33; 130.99; 136.26; 139.94; 141.80; 147.31; 168.02; 187.68. Anal. 

Calcd for C28H28N2O2: C, 79.22; H, 6.65; N, 6.60. Found: C, 79.56; H, 6.81; N, 6.44. 

2-(2-Biphenyl-4-yl-1H-indol-3-yl)-N,N-dibutyl-2-oxoacetamide (27). Yield: 67%; mp 153-155 

°C. 1H-NMR (DMSO-d6, ppm, mixture of conformational isomers): 0.71-0.78 (m, 6H, 

2(CH2)3CH3); 1.07-1.15 (m, 6H, Aliph-H); 1.41-1.44 (m, 2H, Aliph-H); 2.98-3.11 (m, 4H, 2NCH2); 

7.27-7.34 (m, 2H, Ar-H); 7.42-7.57 (m, 4H, Ar-H); 7.66-7.86 (m, 6H, Ar-H); 8.07-8.11 (m, 1H, 4-

H); 12.51 (bs, 1H, NH, exch. with D2O). 13C-NMR (DMSO-d6, ppm, mixture of conformational 



 

isomers): 13.93; 13.99; 19.72; 20.18; 29.08; 30.45; 43.95; 47.65; 110.27; 112.55; 121.33; 122.87; 

123.90; 126.58; 127.18; 127.34; 128.40; 129.50; 130.33; 131.02; 136.33; 139.77; 141.64; 147.31; 

167.93; 187.72. Anal. Calcd for C30H32N2O2: C, 79.61; H, 7.13; N, 6.19. Found: C, 79.91; H, 7.27; 

N, 5.92. 

2-(2-Biphenyl-4-yl-1H-indol-3-yl)-N,N-dihexyl-2-oxoacetamide (28). Yield: 65%; mp 50-52 °C. 

1H-NMR (DMSO-d6, ppm, mixture of conformational isomers): 0.72-0.75 (m, 6H, 2(CH2)5CH3); 

1.07-1.14 (m, 14H, Aliph-H); 1.41-1.44 (m, 2H, Aliph-H); 2.92-3.08 (m, 4H, 2NCH2); 7.25-7.34 

(m, 2H, Ar-H); 7.42-7.52 (m, 4H, Ar-H); 7.66-7.85 (m, 6H, Ar-H); 8.07-8.10 (m, 1H, 4-H), 12.51 

(bs, 1H, NH, exch. with D2O). 13C-NMR (DMSO-d6, ppm, mixture of conformational isomers): 

14.21; 14.24; 22.31; 22.48; 26.07; 26.69; 28.18; 31.13; 31.38; 39.40; 44.20; 47.84; 110.30; 112.51; 

121.40; 122.86; 123.91; 126.55; 127.15; 127.33; 128.38; 129.47; 130.29; 131.04; 136.30; 139.70; 

141.61; 147.26; 167.88; 187.77. Anal. Calcd for C34H40N2O2: C, 80.28; H, 7.93; N, 5.51. Found: C, 

80.29; H, 8.15; N, 5.40. 

2-[2-(2-Naphthyl)-1H-indol-3-yl]-2-oxo-N,N-dipropylacetamide (29). Yield: 60%; mp 171-172 

°C. 1H-NMR (DMSO-d6, ppm, mixture of conformational isomers): 0.51, 0.71 (2t, J = 7.2 Hz, 6H, 

2(CH2)2CH3); 0.86-0.98, 1.41-1.52 (2m, 4H, 2CH2CH2CH3); 2.79, 3.08 (2t, J = 7.0 Hz, 4H, 

2NCH2); 7.28-7.32 (m, 2H, Ar-H); 7.51-7.56 (m, 1H, Ar-H); 7.64-7.72 (m, 3H, Ar-H); 8.00-8.09 

(m, 4H, Ar-H); 8.17 (s, 1H, 1'-H); 12.60 (bs, 1H, NH, exch. with D2O). 13C-NMR (DMSO-d6, ppm, 

mixture of conformational isomers): 11.39; 11.56; 20.18; 21.75; 45.94; 49.81; 110.46; 112.57; 

121.33; 122.92; 123.94; 127.15; 127.29; 127.57; 127.60; 127.82; 128.07; 128.76; 128.85; 130.06; 

132.65; 133.65; 136.35; 147.62; 168.00; 187.68. Anal. Calcd for C26H26N2O2: C, 78.36; H, 6.58; N, 

7.03. Found: C, 78.49; H, 6.63; N, 6.95. 

N,N-Dibutyl-2-[2-(2-naphthyl)-1H-indol-3-yl]-2-oxoacetamide (30). Yield: 79%; mp 98-100 °C. 

1H-NMR (DMSO-d6, ppm, mixture of conformational isomers): 0.54, 075 (2t, J = 7.2 Hz, 6H, 

2(CH2)3CH3); 0.63-0.70, 0.83-0.90 (2m, 4H, 2(CH2)2CH2CH3); 1.09-1.14, 1.37-1.42 (2m, 4H, 

2CH2CH2CH2CH3); 2.79, 3.09 (2t, J = 7.6 Hz, 4H, 2NCH2); 7.27-7.35 (m, 2H, Ar-H); 7.50-7.53 (m, 



 

1H, Ar-H); 7.60-7.70 (m, 3H, Ar-H); 8.00-8.05 (m, 3H, Ar-H); 8.11-8.14 (m, 1H, 4-H); 8.16 (s, 1H, 

1'-H); 12.56 (bs, 1H, NH, exch. with D2O). 13C-NMR (DMSO-d6, ppm, mixture of conformational 

isomers): 13.89; 13.94; 19.72; 19.96; 28.78; 30.43; 43.81; 47.59; 110.55; 112.53; 121.43; 122.93; 

123.96; 127.16; 127.34; 127.57; 127.59; 127.87; 128.14; 128.77; 130.20; 132.67; 133.68; 136.36; 

147.66; 167.80; 187.83. Anal. Calcd for C28H30N2O2: C, 78.84; H, 7.09; N, 6.57. Found: C, 78.71; 

H, 7.05; N, 6.49. 

N,N-Dihexyl-2-[2-(2-naphthyl)-1H-indol-3-yl]-2-oxoacetamide (31). Yield: 88%; oil. 1H-NMR 

(DMSO-d6, ppm, mixture of conformational isomers): 0.70-0.88 (m, 10H, Aliph-H); 1.08-1.41 (m, 

12H, Aliph-H); 2.82, 3.10 (2t, J = 7.6 Hz, 4H, 2NCH2); 7.27-7.35 (m, 2H, Ar-H); 7.51-7.59 (m, 1H, 

Ar-H); 7.61-7.71 (m, 3H, Ar-H); 8.00-8.04 (m, 3H, Ar-H); 8.10-8.12 (m, 1H, 4-H); 8.16 (s, 1H, 1'-

H); 12.57 (bs, 1H, NH, exch. with D2O). 13C-NMR (DMSO-d6, ppm, mixture of conformational 

isomers): 14.22; 14.31; 22.31; 22.36; 26.07; 26.41; 26.58; 28.18; 31.14; 31.19; 44.08; 47.82; 

110.50; 112.54; 121.42; 122.89; 123.94; 127.14; 127.33; 127.57; 127.85; 128.12; 128.76; 130.20; 

132.66; 133.66; 136.38; 147.61; 167.80; 187.82. Anal. Calcd for C32H38N2O2: C, 79.63; H, 7.94; N, 

5.80. Found: C, 79.75; H, 7.97; N, 5.86. 

N-Butyl-N-methyl-2-[2-(2-naphthyl)-1H-indol-3-yl]-2-oxoacetamide (32). Yield: 70%; mp 74-

76 °C. 1H-NMR (DMSO-d6, ppm, mixture of conformational isomers): 0.56-0.92 (m, 5H, 

(CH2)2CH2CH3); 1.12-1.56 (m, 2H, CH2CH2CH2CH3); 2.24, 2.82 (2s, 3H, NCH3); 2.67, 3.13 (2t, J 

=7.2 Hz, 2H, NCH2); 7.29-7.36 (m, 2H, Ar-H); 7.51-7.55 (m, 1H, Ar-H); 7.61-7.69 (m, 3H, Ar-H); 

8.01-8.05 (m, 3H, Ar-H); 8.15 (s, 1H, 1'-H); 8.17-8.19 (m, 1H, 4-H); 12.62 (bs, 1H, NH, exch. with 

D2O). 13C-NMR (DMSO-d6, ppm, mixture of conformational isomers): 13.89; 13.99; 19.60; 19.74; 

28.08; 29.93; 31.04; 35.02; 45.49; 49.44; 110.57; 110.59; 112.56; 121.47; 121.51; 123.04; 124.02; 

124.05; 127.18; 127.20; 127.27; 127.39; 127.46; 127.50; 127.63; 127.65; 127.86; 128.14; 128.66; 

128.68; 128.74; 128.75; 129.92; 130.12; 132.53; 132.62; 133.56; 133.69; 136.33; 136.39; 147.83; 

148.01; 167.48; 167.74; 187.78; 188.03. Anal. Calcd for C25H24N2O2: C, 78.10; H, 6.29; N, 7.29. 

Found: C, 78.23; H, 6.21; N, 7.32. 



 

N-Methyl-2-[2-(2-naphthyl)-1H-indol-3-yl]-2-oxo-N-pentylacetamide (33). Yield: 65%; mp 153-

155 °C. 1H-NMR (DMSO-d6, ppm, mixture of conformational isomers): 0.70-1.00 (m, 7H, Aliph-

H); 1.08-1.42 (m, 2H, CH2CH2(CH2)2CH3); 2.25, 2.82 (2s, 3H, NCH3); 2.66, 3.12 (2t, J = 7.2 Hz, 

2H, NCH2); 7.28-7.36 (m, 2H, Ar-H); 7.51-7.55 (m, 1H, Ar-H); 7.64-7.69 (m, 3H, Ar-H); 8.01-8.05 

(m, 3H, Ar-H); 8.15 (s, 1H, 1'-H); 8.16-8.18 (m, 1H, 4-H); 12.60 (bs, 1H, NH, exch. with D2O). 

13C-NMR (DMSO-d6, ppm, mixture of conformational isomers): 14.28; 14.23; 22.06; 22.14; 25.60; 

27.42; 28.47; 28.72; 31.03; 35.04; 45.75; 49.65; 110.56; 110.59; 112.56; 121.46; 121.50; 123.04; 

124.02; 124.05; 127.18; 127.26; 127.39; 127.44; 127.50; 127.61; 127.65; 127.86; 128.13; 128.67; 

128.69; 128.74; 129.91; 130.12; 132.53; 132.62; 133.56; 133.67; 136.33; 136.39; 147.80; 148.01; 

167.47; 167.76; 187.76; 188.01. Anal. Calcd for C26H26N2O2: C, 78.36; H, 6.58; N, 7.03. Found: C, 

78.49; H, 6.62; N, 6.97. 

N-Butyl-N-ethyl-2-[2-(2-naphthyl)-1H-indol-3-yl]-2-oxoacetamide (34). Yield: 63%; mp 179-

181 °C. 1H-NMR (DMSO-d6, ppm, mixture of conformational isomers): 0.53-1.04 (m, 10H, Aliph-

H); 2.81-2.87 (m, 2H, Aliph-H); 3.20-3.33 (m, 2H, Aliph-H); 7.27-7.32 (m, 2H, Ar-H); 7.51-7.53 

(m, 1H, Ar-H); 7.61-7.70 (m, 3H, Ar-H); 8.00-8.04 (m, 3H, Ar-H); 8.12-8.14 (m, 1H, 4-H); 8.15 (s 

1H, 1'-H); 12.58 (bs, 1H, NH, exch. with D2O). 13C-NMR (DMSO-d6, ppm, mixture of 

conformational isomers): 12.28; 13.91; 13.96; 14.02; 19.74; 19.95; 28.81; 30.54; 38.84; 42.58; 

43.26; 47.47; 121.34; 121.44; 122.90; 123.92; 127.14; 127.16; 127.39; 127.45; 127.58; 127.80; 

127.86; 128.10; 128.14; 128.75; 128.77; 128.89; 128.93; 130.10; 130.20; 132.64; 132.67; 133.61; 

133.67; 136.52; 147.80; 147.98; 167.70; 187.66; 187.83. Anal. Calcd for C26H26N2O2: C, 78.36; H, 

6.58; N, 7.03. Found: C, 78.49; H, 6.49; N, 7.07. 

N-Benzyl-N-ethyl-2-[2-(2-naphthyl)-1H-indol-3-yl]-2-oxoacetamide (35). Yield: 70%; mp 83-85 

°C. 1H-NMR (DMSO-d6, ppm, mixture of conformational isomers): 0.26, 0.91 (2t, J = 7.0 Hz, 3H, 

CH3); 2.73, 3.22 (2q, J = 7.0 Hz, 2H, NCH2CH3); 4.17, 4.41 (2s, 2H, NCH2C6H5); 7.00-7.04 (m, 

2H, Ar-H); 7.18-7.35 (m, 5H, Ar-H); 7.53-7.77 (m, 4H, Ar-H); 7.97-8.06 (m, 4H, Ar-H); 8.23-8.25 

(m, 1H, 4-H); 12.65 (bs, 1H, NH, exch. with D2O). 13C-NMR (DMSO-d6, ppm, mixture of 



 

conformational isomers): 11.47; 13.96; 38.40; 42.85; 46.73; 50.96; 110.02; 110.80; 112.62; 112.67; 

121.22; 121.46; 122.96; 123.08; 123.98; 123.98; 124.08; 127.25; 127.38; 127.56; 127.59; 127.71; 

127.83; 127.96; 128.14; 128.21; 128.27; 128.54; 128.74; 128.80; 128.83; 128.85; 130.07; 130.20; 

132.66; 132.69; 133.67; 133.69; 136.42; 136.76; 137.36; 147.72; 148.17; 167.80; 168.39; 187.29; 

187.68. Anal. Calcd for C29H24N2O2: C, 80.53; H, 5.59; N, 6.48. Found: C, 80.41; H, 5.49; N, 6.57. 

General procedure for the synthesis of N,N-dialkyl-2-(4-hydroxyphenyl)indol-3-

ylglyoxylamide derivatives 8-10. A stirred suspension of the appropriate derivative 17-19 (0.5 

mmol) in 10 mL of dry dichloromethane was cooled to -10 °C and an excess (0.2 mL) of BBr3 was 

added dropwise. The mixture was left under stirring for 30 min. at -10 °C, and subsequently at room 

temperature for 1h under nitrogen atmosphere. Finally, the solution was cooled again, and methanol 

(5 mL) was added to hydrolyze the excess of BBr3. The solvent was evaporated at reduced pressure, 

and the solid precipitate was washed several times with methanol (3 x 5 mL). The residues obtained 

were purified by crystallization from toluene (compound 8, 20 mL) or by flash chromatography 

(compounds 9 and 10, ethyl acetate-petroleum ether 60-80 °C in varying v/v ratios as eluting 

system). 

2-[2-(4-Hydroxyphenyl)-1H-indol-3-yl]-2-oxo-N,N-dipropylacetamide (8). Yield: 59%; mp 210-

212 °C. 1H-NMR (DMSO-d6, ppm, mixture of conformational isomers): 0.64-0.82 (m, 6H, 

2(CH2)2CH3); 1.27-1.46 (m, 4H, 2CH2CH2CH3); 2.95-3.02 (m, 4H, 2NCH2); 6.86 (d, J = 8.4 Hz, 

2H, 3'-H, 5'-H); 7.17-7.25 (m, 2H, Ar-H); 7.40-7.44 (m, 3H, Ar-H); 8.00-8.03 (m, 1H, 4-H); 9.90 

(bs, 1H, OH, exch. with D2O); 12.27 (bs, 1H, NH, exch. with D2O). 13C NMR (DMSO-d6, ppm, 

mixture of conformational isomers): 11.39; 11.84; 20.58; 21.72; 46.10; 49.82; 109.60; 112.32; 

115.22; 121.15; 121.74; 122.63; 123.55; 127.40; 131.80; 136.08; 148.31; 159.32; 168.22; 187.64. 

Anal. Calcd for C22H24N2O3: C, 72.50; H, 6.64; N, 7.69. Found: C, 72.39; H, 6.59; N, 7.77. 

N,N-Dibutyl-2-[2-(4-hydroxyphenyl)-1H-indol-3-yl]-2-oxoacetamide (9). Yield: 68%; mp 250-

252 °C. 1H-NMR (DMSO-d6, ppm, mixture of conformational isomers): 0.68-0.84 (m, 6H, 

2(CH2)3CH3); 1.02-1.35 (m, 8H, 2CH2(CH2)2CH3); 1.21-1.36, 2.96-2.99 (2m, 4H, 2NCH2); 6.83 (d, 



 

J = 6.2 Hz, 2H, 3'-H, 5'-H); 7.19-7.21 (m, 2H, Ar-H); 7.37-7.40 (m, 3H, Ar-H); 7.98-8.00 (m, 1H, 

4-H); 9.84 (bs, 1H, OH, exch. with D2O); 12.22 (bs, 1H, NH, exch. with D2O). 13C-NMR (DMSO-

d6, ppm, mixture of conformational isomers): 13.99; 14.14; 19.75; 20.27; 29.50; 30.57; 44.07; 

47.93; 111.04; 111.38; 115.25; 119.50; 121.55; 123.29; 123.83; 126.45; 132.47; 137.17; 149.73; 

159.25; 167.54; 187.95. Anal. Calcd for C24H28N2O3: C, 73.44; H, 7.19; N, 7.14. Found: C, 73.59; 

H, 7.28; N, 7.26. 

N,N-Dihexyl-2-[2-(4-hydroxyphenyl)-1H-indol-3-yl]-2-oxoacetamide (10). Yield: 55%; oil. 1H-

NMR (DMSO-d6, ppm, mixture of conformational isomers): 0.68-0.88 (m, 6H, 2(CH2)5CH3); 1.04-

1.23 (m, 16H, Aliph-H); 2.95-3.05 (m, 4H, 2NCH2); 6.85 (d, J = 8.4 Hz, 2H, 3'-H, 5'-H); 7.18-7.22 

(m, 2H, Ar-H); 7.38-7.45 (m, 3H, Ar-H); 7.97-8.00 (m, 1H, 4-H); 9.88 (bs, 1H, OH, exch. with 

D2O); 12.27 (bs, 1H, NH, exch. with D2O). 13C-NMR (DMSO-d6, ppm, mixture of conformational 

isomers): 14.13; 14.23; 22.30; 22.56; 26.07; 26.71; 27.19; 28.21; 31.12; 31.47; 44.28; 47.81; 

109.50; 112.24; 115.16; 121.20; 121.65; 122.54; 123.48; 127.37; 131.87; 136.06; 148.23; 159.34; 

168.01; 187.90. Anal. Calcd for C28H36N2O3: C, 74.97; H, 8.09; N, 6.24. Found: C, 74.85; H, 7.98; 

N, 6.30. 

General procedure for the synthesis of N,N-dialkyl-2-(4-aminophenyl)indol-3-

ylglyoxylamide derivatives 11-13. Pd/C 10% (0.05 g) was added to a suspension of the 

appropriate derivative 7d-f26 (0.65 mmol) in 150 mL of absolute ethanol. The mixture was 

hydrogenated under stirring at room temperature. Once hydrogen absorption ceased, the catalyst 

was filtered off and the solution was evaporated to dryness at reduced pressure. The crude products 

obtained were finally purified by recrystallization from toluene (20-30 mL).  

2-[2-(4-Aminophenyl)-1H-indol-3-yl]-2-oxo-N,N-dipropylacetamide (11). Yield: 62%; mp 197-

199 °C. 1H-NMR (DMSO-d6, ppm, mixture of conformational isomers): 0.67, 0.81 (2t, J = 7.2 Hz, 

6H, 2(CH2)2CH3); 1.29-1.49 (m, 4H, 2CH2CH2CH3); 2.97-3.08 (m, 4H, 2NCH2); 5.57 (bs, 2H, 

NH2, exch. with D2O); 6.62 (d, J = 8.4 Hz, 2H, 3'-H, 5'-H); 7.17-7.43 (m, 5H, Ar-H); 7.92-7.97 (m, 

1H, 4-H); 12.09 (bs, 1H, NH, exch. with D2O). 13C-NMR (DMSO-d6, ppm, mixture of 



 

conformational isomers): 11.41; 11.89; 20.60; 21.67; 46.08; 49.77; 108.90; 112.14; 113.23; 117.84; 

120.93; 122.39; 123.25; 127.64; 131.29; 136.10; 149.30; 150.87; 168.50; 187.45. Anal. Calcd for 

C22H25N3O2: C, 72.70; H, 6.93; N, 11.56. Found: C, 72.82; H, 6.87; N, 11.62. 

2-[2-(4-Aminophenyl)-1H-indol-3-yl]-N,N-dibutyl-2-oxoacetamide (12). Yield: 61%; mp 225-

227 °C; 1H-NMR (DMSO-d6, ppm, mixture of conformational isomers): 0.64, 0.87 (2t, J = 7.2 Hz, 

6H, 2(CH2)3CH3); 0.98-1.36 (m, 8H, 2CH2(CH2)2CH3); 3.00-3.06 (m, 4H, 2NCH2); 5.52 (bs, 2H, 

NH2, exch. with D2O); 6.61 (d, J = 8.4 Hz, 2H, 3'-H, 5'-H); 7.15-7.41 (m, 5H, Ar-H); 7.93-7.96 (m, 

1H, 4-H); 12.08 (bs, 1H, NH, exch. with D2O). 13C-NMR (DMSO-d6, ppm, mixture of 

conformational isomers): 13.88; 14.23; 19.72; 20.28; 29.34; 30.38; 43.90; 47.56; 108.92; 112.11; 

113.22; 117.74; 120.97; 122.38; 123.27; 127.66; 131.35; 136.11; 149.33; 150.89; 168.34; 187.54. 

Anal. Calcd for C24H29N3O2: C, 73.63; H, 7.47; N, 10.73. Found: C, 73.52; H, 7.56; N, 10.79. 

2-[2-(4-Aminophenyl)-1H-indol-3-yl]-N,N-dihexyl-2-oxoacetamide (13). Yield: 68%; mp 147-

149 °C. 1H-NMR (DMSO-d6, ppm, mixture of conformational isomers): 0.68-0.89 (m, 6H, 

2(CH2)3CH3); 0.93-1.24 (m, 16H, Aliph-H); 2.97-3.12 (m, 4H, 2NCH2); 5.58 (bs, 2H, NH2, exch. 

with D2O); 6.60 (d, J = 8.6 Hz, 2H, 3'-H, 5'-H); 7.16-7.41 (m, 5H, Ar-H); 7.90-7.93 (m, 1H, 4-H); 

12.08 (bs, 1H, NH, exch. with D2O). 13C-NMR (DMSO-d6, ppm, mixture of conformational 

isomers): 14.20; 14.37; 22.26; 22.54; 26.05; 26.71; 27.19; 28.13; 31.08; 31.45; 44.21; 47.83; 

108.82; 112.12; 113.33; 117.94; 120.90; 122.33; 123.23; 127.61; 131.35; 136.13; 149.22; 150.64; 

168.42; 187.43. Anal. Calcd for C28H37N3O2: C, 75.13; H, 8.33; N, 9.39. Found: C, 75.02; H, 8.39; 

N, 9.28. 

General procedure for the synthesis of N,N-dialkyl-2-(4-carboxyphenyl)indol-3-

ylglyoxylamide derivatives 14-16. Lithium hydroxide monohydrate (0.3 mmol) was added to a 

suspension of the appropriate ester derivative 20-23 (0.5 mmol) in 20 mL of a MeOH/H2O (3:1) 

solution. The mixture was stirred under reflux at 80 °C overnight. The solid precipitate was 

eliminated through vacuum filtration, and the solution was acidified with 10% HCl to pH 5. The 

acid precipitated was collected by filtration and did not need any further purification. 



 

4-{3-[(Dipropylamino)(oxo)acetyl]-1H-indol-2-yl}benzoic acid (14). Yield: 85%; mp 292-294 

°C. 1H-NMR (DMSO-d6, ppm, mixture of conformational isomers): 0.64-0.75 (m, 6H, 

2(CH2)2CH3); 1.15-1.26, 1.43-1.47 (2m, 4H, 2CH2CH2CH3); 2.91-3.11 (m, 4H, 2NCH2); 7.27-7.31 

(m, 2H, Ar-H); 7.49-7.51 (m, 1H, Ar-H); 8.10 (d, J = 7.8 Hz, 2H, 3'-H, 5'-H); 8.03-8.07 (m, 3H, Ar-

H); 12.63 (bs, 1H, NH, exch. with D2O). 13C-NMR (DMSO-d6, ppm, mixture of conformational 

isomers): 11.38; 11.73; 20.43; 21.76; 46.03; 49.78; 110.48; 112.69; 121.32; 123.05; 124.12; 127.09; 

129.24; 130.64; 132.10; 135.51; 136.31; 146.27; 167.40; 167.89; 187.50. Anal. Calcd for 

C23H24N2O4: C, 70.39; H, 6.16; N, 7.14. Found: C, 70.22; H, 6.25; N, 7.18. 

4-{3-[(Dibutylamino)(oxo)acetyl]-1H-indol-2-yl}benzoic acid (15). Yield: 87%; mp 148-150 °C. 

1H-NMR (DMSO-d6, ppm, mixture of conformational isomers): 0.68-0.81 (m, 6H, 2(CH2)3CH3); 

1.03-1.40 (m, 8H, 2CH2(CH2)2CH3); 2.93-3.04 (m, 4H, 2NCH2); 7.25-7.28 (m, 2H, Ar-H); 7.46-

7.50 (m, 1H, Ar-H); 7.68 (d, J = 6.8 Hz, 2H, 3'-H, 5'-H); 8.00-8.08 (m, 3H, Ar-H); 12.56 (bs, 1H, 

NH, exch. with D2O). 13C-NMR (DMSO-d6, ppm, mixture of conformational isomers): 13.91; 

14.07; 19.70; 20.17; 29.09; 30.42; 43.93; 47.57; 110.57; 112.65; 121.44; 123.05; 124.14; 127.17; 

129.31; 130.71; 132.11; 135.48; 136.33; 146.32; 167.37; 167.68; 187.64. Anal. Calcd for 

C25H28N2O4: C, 71.41; H, 6.71; N, 6.66. Found: C, 71.27; H, 6.79; N, 6.57. 

4-{3-[(Dihexylamino)(oxo)acetyl]-1H-indol-2-yl}benzoic acid (16). Yield: 79%; mp 242-244 °C. 

1H-NMR (DMSO-d6, ppm, mixture of conformational isomers): 0.73-0.84 (m, 6H, 2(CH2)5CH3); 

1.00-1.38 (m, 16H, Aliph-H); 2.93-3.03 (m, 4H, 2NCH2); 7.24-7.27 (m, 2H, Ar-H); 7.46-7.50 (m, 

1H, Ar-H); 7.68 (d, J = 7.8 Hz, 2H, 3'-H, 5'-H); 8.00-8.05 (m, 3H, Ar-H); 12.56 (bs, 1H, NH, exch. 

with D2O). 13C-NMR (DMSO-d6, ppm, mixture of conformational isomers): 14.20; 14.32; 22.29; 

22.48; 26.04; 26.59; 26.88; 28.17; 31.10; 31.38; 44.19; 47.80; 110.53; 112.64; 121.42; 123.01; 

124.12; 127.15; 129.28; 130.70; 132.09; 135.47; 136.35; 146.25; 167.33; 167.70; 187.63. Anal. 

Calcd for C29H36N2O4: C, 73.08; H, 7.61; N, 5.88. Found: C, 72.95; H, 7.71; N, 5.96. 

Biological Methods. Materials. [3H]PK11195 (S.A. 85.5 Ci/mmol) and [3H]Ro15-1788 (S.A. 83.4 

Ci/mmol) were purchased from Perkin-Elmer Life Sciences. Culture medium, fetal bovine serum 



 

(FBS), L-glutamine, and antibiotics were purchased from Euroclone SpA (Milano, Italy). PK11195 

and Ro5-4864 were obtained from Sigma-Aldrich. All other reagents were obtained from 

commercial suppliers. 

[3H]PK11195 Binding to Rat Kidney Mitochondrial Membranes. For binding studies, crude 

mitochondrial membranes were incubated with 0.5 nM [3H]PK11195 in the presence of a 

compound concentration range (1 pM to 10 M) in 50 mM Tris-HCl, pH 7.4, as previously 

described.25,26 For the active compounds, the IC50 values were determined and Ki values were 

derived in accordance with the equation of Cheng and Prusoff.42 

[3H]Ro15-1788 Binding to Rat Cerebral Cortex Membranes. Rat cerebral cortex membranes were 

prepared as previously described.2 After differential centrifugation, the crude membrane fraction 

obtained was subjected to washing procedures to remove endogenous GABA.43 The washed 

membranes were incubated with 0.4 nM [3H]Ro15-1788 for 90 min at 0 °C in 500 L of 50 mM 

Tris-citrate buffer, pH 7.4, as previously described.44 

Computational Studies. Homology Modeling. Recently the group of Zweckstetter released the 

NMR structure of the mouse TSPO (mTSPO) in complex with the PK11195 modulator,5 thus, 

paving the way for a better definition of the interaction mode between TSPO and its synthetic 

modulators. Our group in the last decades embarked in the discovery of new promising TSPO 

modulators, describing different ligand classes able to interact with rat TSPO (rTSPO) at the sub-

nanomolar range, with the indolylglyoxylamide class being the most promising one.25-27,29,30 

mTSPO and rTSPO share a 95% sequence identity, making mTSPO a suitable template for 

homology modeling approaches. Therefore, we decided to build a three-dimensional (3D) rTSPO 

model by using the Modeller9.13 software, and mTSPO as template (See Supplementary Figure S6 

for the sequence alignment). The final rTSPO model was subsequently used to perform docking 

studies and to rationalize the SARs of the new series of indolylglyoxylamide derivatives described 

herein.  



 

Docking studies. The selected 20 rTSPO models were used to dock the new series of 

indolylglyoxylamide derivatives reported in this work. All the docking studies were performed 

employing the Glide tool implemented in Maestro9.8.36 The ligand used for the validation step of 

the rTSPO structures was represented by our lead in the new series of the indolylglyoxylamide 

(Chart 1, compound 29, Table 2). The 3D structures of 29 was generated with the Maestro 

fragment Build tool and then geometrically optimized with Macromodel.36 The rTSPO structures 

were prepared through the Protein Preparation Wizard of the Maestro 9.836 graphical user interface 

which assigns bond orders, adds hydrogen atoms, and generates appropriate protonation states. 

The docking grid box was centered on the residues lining the PK11195 binding pocket, with a grid 

box dimension equal to 24 x 24 x 24 Å (See Supplementary Figure S7). In detail the residues 

considered to center the docking grid are: A23, V26, L49, A50, I52, W107, V110, L114, A147, and 

L150 (which are conserved between the mTSPO and rTSPO, a part A110V). Finally, docking runs 

were carried out using the standard precision (SP) method. Finally, all the compounds reported in 

Tables 1-2 were docked using the refined rTSPO-29 complex applying the same docking protocol.  
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Table 1. TSPO Binding Affinity of N,N-Dialkyl-2-(4'-substitutedphenyl)indol-3-ylglyoxylylamide 

Derivatives 8-22, 7a-f. 

N

O

R2
N

R1

O

R3H

 
 

cmpd 
 

R1 = R2 
 

R3 

 

Ki (nM)a  

     
8 (CH2)2CH3 OH 16.1 ± 1.0 

9 (CH2)3CH3 OH 25.7 ± 2.6 

10 (CH2)5CH3 OH 6.3  0.5 

11 (CH2)2CH3 NH2 44.4  5.0 

12 (CH2)3CH3 NH2 133  13 

13 (CH2)5CH3 NH2 4.2  0.4 

14 (CH2)2CH3 COOH 343 ± 10 

15 (CH2)3CH3 COOH 406 ± 4 

16 (CH2)5CH3 COOH 184  1 

17 (CH2)2CH3 OCH3 5.8  0.5 

18 (CH2)3CH3 OCH3 20.3  2.2 

19 (CH2)5CH3 OCH3 4.0  0.4 

20 (CH2)2CH3 COOCH3 3.1  0.3 

21 (CH2)3CH3 COOCH3 2.7  0.3 

22 (CH2)5CH3 COOCH3 3.3  0.3 

7ab (CH2)2CH3 H 12.2  1.0 

7bb (CH2)3CH3 H 7.5  0.7 

7cb (CH2)5CH3 H 1.4  0.2 

7db (CH2)2CH3 NO2 0.95  0.10 

7eb (CH2)3CH3 NO2 0.27  0.10 

7fb (CH2)5CH3 NO2 0.23  0.10 

Ro5-4864 (1)   23.0  3.1 

PK11195 (2)   9.3  0.5 

aThe concentration of tested compounds that inhibited [3H]PK11195 binding to rat kidney mitochondrial membranes 

by 50% (IC50)  was determined with eight concentrations of the displacers, each performed in triplicate. K i values are 

the means  SEM of three determinations.  bData taken from ref. n. 26. 



 

Table 2. TSPO Binding Affinity of N,N-Dialkyl-2-arylindol-3-ylglyoxylylamide Derivatives 23-35, 7a-c, g-

j. 

N
H

NO
R1

R2

O

Ar

 

     
 

cmpd 
 

R1 
 

R2 
 

Ar 

 

Ki (nM)a   

     
23 (CH2)2CH3 (CH2)2CH3 thien-3-yl 1.2 ± 0.1 

24 (CH2)3CH3 (CH2)3CH3 thien-3-yl 2.8 ± 0.3 

25 (CH2)5CH3 (CH2)5CH3 thien-3-yl 0.89 ± 0.10 

26 (CH2)2CH3 (CH2)2CH3 p-biphenyl 0.53  0.05 

27 (CH2)3CH3 (CH2)3CH3 p-biphenyl 5.5  1.0 

28 (CH2)5CH3 (CH2)5CH3 p-biphenyl 1.8  0.2 

29 (CH2)2CH3 (CH2)2CH3 naphth-2-yl 0.31  0.04 

30 (CH2)3CH3 (CH2)3CH3 naphth-2-yl 0.54  0.06 

31 (CH2)5CH3 (CH2)5CH3 naphth-2-yl 0.52  0.06 

32 CH3 (CH2)3CH3 naphth-2-yl 0.56  0.06 

33 CH3 (CH2)4CH3 naphth-2-yl 0.37  0.04 

34 CH2CH3 (CH2)3CH3 naphth-2-yl 0.51  0.05 

35 CH2CH3 CH2C6H5 naphth-2-yl 0.51  0.05 

7ab (CH2)2CH3 (CH2)2CH3 C6H5 12.2  1.0 

7bb (CH2)3CH3 (CH2)3CH3 C6H5 7.5  0.7 

7cb (CH2)5CH3 (CH2)5CH3 C6H5 1.4  0.2 

7gb CH3 (CH2)3CH3 C6H5 53.3  4.0 

7hb CH3 (CH2)4CH3 C6H5 12.1  1.0 

7ib CH2CH3 (CH2)3CH3 C6H5 12.6  1.0 

7jb CH2CH3 CH2C6H5 C6H5 11.0  1.0 

Ro5-4864 (1)    23.0  3.1 

PK11195 (2)    9.3  0.5 

aThe concentration of tested compound that inhibited [3H]PK11195 binding to rat kidney mitochondrial membranes  

by 50% (IC50) was determined with eight concentrations of the displacers, each performed in triplicate. K i values are 

the means  SEM of three determinations.  bData taken from ref. n. 26. 



 

 

 

 

 

 

Figure 1. a) Binding mode of 29 (orange sticks) into the rTSPO binding site (white cartoon and 

sticks). b) Bottom view of 29 binding mode, (the TSPO structure is highlighted in blue and gray 

surfaces in this as well as in pictures c and d). c) Bottom view of 7a binding mode. d) Bottom view 

of 29 (orange sticks), 20 (purple sticks), and 26 (cyan sticks) binding modes.  
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Scheme 1. Synthesis of indolylglyoxylamide derivatives 8-16. 
 



 

 

N
H

Ar

ClCOCOCl

anh. Et2O
r.t., 2-24 h

N
H

Ar

O
Cl

O

HN

R1

R2

anh. Toluene
NEt3

r.t, 2-24 h

N
H

Ar

O
N

O

R1

R2

42-44

45-47

23-35

NHNH2

O

PPA
120°C, 4h

S

for 42

42 and 45  Ar = thien-3-yl
43 and 46  Ar = p-biphenyl
44 and 47  Ar = naphth-2-yl

cmpd

23

24

25

26

27

28

29

30

31

32

33

34

35

R1

(CH2)2CH3

(CH2)3CH3

(CH2)5CH3

(CH2)2CH3

(CH2)3CH3

(CH2)5CH3

(CH2)2CH3

(CH2)3CH3

(CH2)5CH3

CH3

CH3

CH2CH3

CH2CH3

R2

(CH2)2CH3

(CH2)3CH3

(CH2)5CH3

(CH2)2CH3

(CH2)3CH3

(CH2)5CH3

(CH2)2CH3

(CH2)3CH3

(CH2)5CH3

(CH2)3CH3

(CH2)4CH3

(CH2)3CH3

CH2C6H5

Ar

thien-3-yl

thien-3-yl

thien-3-yl

p-biphenyl

p-biphenyl

p-biphenyl

naphth-2-yl

naphth-2-yl

naphth-2-yl

naphth-2-yl

naphth-2-yl

naphth-2-yl

naphth-2-yl

-H+, -NH3

 
 

Scheme 2. Synthesis of indolylglyoxylamide derivatives 23-35. 
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Chart 1. Structures of known (1-7) and newly synthesized (8-35) TSPO ligands. Structures 7-35 

have been drawn embedded within a pharmacophore/topological model of ligand-TSPO 

interaction.25,26,28  
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