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We study the phase diagram of Nf ¼ 2þ 1 QCD in the T − μB plane and investigate the critical point
corresponding to the onset of the Roberge-Weiss transition, which is found for imaginary values of μB.
We make use of stout improved staggered fermions and of the tree level Symanzik gauge action and explore
four different sets of lattice spacings, corresponding to Nt ¼ 4, 6, 8, 10, and different spatial sizes, in order
to assess the universality class of the critical point. The continuum extrapolated value of the endpoint
temperature is found to be TRW ¼ 208ð5Þ MeV, i.e. TRW=Tc ∼ 1.34ð7Þ, where Tc is the chiral
pseudocritical temperature at zero chemical potential, while our finite size scaling analysis, performed
on Nt ¼ 4 and Nt ¼ 6 lattices, provides evidence for a critical point in the 3D Ising universality class.
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I. INTRODUCTION

The remarkable changes expected for the properties of
strongly interacting matter when it is put under extreme
conditions are the subject of intense ongoing theoretical
and experimental research. Various parameters of phenom-
enological interest enter the description of such extreme
conditions, like temperature, chemical potentials or exter-
nal background fields. Part of this research consists in the
study of the QCD phase diagram, i.e. in mapping the
various phases of strongly interacting matter in equilibrium
conditions, and the associated phase transitions and critical
points, as a function of those parameters.
At high temperature, confinement and chiral symmetry

breaking are expected to disappear, and QCD is expected to
be described in terms of quark and gluon effective degrees
of freedom (quark-gluon plasma). Lattice QCD simulations
show that, indeed, a rapid change of properties takes place
around a well-defined temperature Tc. There is no com-
pelling reason for expecting a true phase transition, since no
exact symmetry of QCD, which could possibly change its
realization at Tc, is known; chiral symmetry is exact only
for vanishing quark masses, while the Z3 center symmetry
is exact only in the pure gauge theory, where its sponta-
neous breaking is associated to deconfinement. In fact,
lattice simulations have shown that only a smooth cross-
over is present in the case of physical quark masses, at a
temperature Tc ∼ 155 MeV [1–5].

The situation could be different in the presence of other
external parameters. In particular, the crossover could turn
into a real transition for large enough baryon chemical
potential μB, starting from a critical endpoint in the T − μB
plane. Such a critical point, and the associated critical
behavior around it, could have a huge impact on strong
interactions phenomenology, so that large theoretical and
experimental efforts are being dedicated to prove its
existence and locate it. Unfortunately, numerical progress
by lattice QCD simulations is strongly hindered by the sign
problem affecting the path-integral formulation at nonzero
baryon chemical potential.
There are, however, well-defined locations, in an

extended QCD phase diagram, where exact symmetries
are known for any value of the quark masses. Critical points
associated with their spontaneous symmetry breaking are
predicted to exist and can be investigated by standard lattice
simulations. This is the case of QCD with a purely
imaginary baryon chemical potential [6–9], the partition
function of which is

ZðT; θBÞ ¼ Trðe−H
TeiθBBÞ; ð1Þ

where H is the QCD Hamiltonian, B is the baryon charge,
and θB ¼ ImðμBÞ=T. All physical states of the theory, over
which the trace is taken, are globally color neutral and carry
an integer valued baryon charge B; hence Z is 2π-periodic
in θB or alternatively 2π=Nc-periodic in θq ¼ ImðμqÞ=T,
where μq ¼ μB=Nc is the quark chemical potential
and Nc is the number of colors. That can also be proven
by making use of center transformations in the path-integral
formulation of the partition function, as we review in
Sec. II.
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On the other hand, in the high-T phase, quarks, which
carry a baryon charge 1=Nc, become the effective degrees
of freedom propagating through the thermal medium:
modes which are 2π-periodic in θq and hence 2πNc

periodic in θB appear in the functional dependence of
the partition function. As a consequence, the 2π periodicity
in θB is possible only through the appearance of a
nonanalytic behavior in ZðT; θBÞ, associated with first
order phase transition lines present for θB ¼ π or odd
multiples of it, which are known as Roberge-Weiss (RW)
transitions [10] and have been widely studied by lattice
QCD simulations [8,9,11–25].
In correspondence with such points, analogously to what

happens when θB is a multiple of 2π, the theory is invariant
under charge conjugation, but contrary to that case charge
conjugation is spontaneously broken at high T, where the
system develops a nonzero expectation value for the
imaginary part of the baryon number density: the temper-
ature TRW where the spontaneous breaking takes place is
precisely the endpoint of the Roberge-Weiss first order
transition lines. An alternative point of view about the same
transition is to look at it as a quantum (i.e. zero temperature)
transition, with an associated spontaneous breaking of
charge conjugation, driven by the compactification of one
of the spatial directions beyond a critical size LC ¼ 1=TRW
(finite size transition [26,27]). Since charge conjugation is a
Z2 symmetry, one expects a 3D-Ising universality class if the
transition is second order, or alternatively a first order
transition with the development of a latent heat.
The temperature TRW and the critical behavior to which

it is related represent universal properties of strong inter-
actions, directly related to the change in the effective
degrees of freedom propagating in the thermal medium,
hence to deconfinement. They can be carefully studied by
lattice QCD simulations, since the path-integral measure is
real and positive for imaginary chemical potentials. Despite
being related to a critical point located in an unphysical
region of the QCD phase diagram, their importance and
relevance to a full understanding of strong interactions
stems from various considerations:

(i) The RWendpoint may influence physics in a critical
region around it. Moreover, if at the RW endpoint a
first order transition is present, the endpoint is
actually a triple point, with further departing first
order lines, the endpoints of which may be even
closer to the μB ¼ 0 axis, with more interesting
consequences.

(ii) Early studies have shown that the RW endpoint
transition is first order for small quarkmasses, second
order for intermediate masses, and again first order
for large masses; the three regions are separated by
two tricritical points [13–15]. The emergence of this
interesting structure has inducedmany further studies
in effective models [28–40] which try to reproduce
the essential features of QCD. Moreover, interesting

proposals have been made on the connection of this
phase structure with that present at μB ¼ 0 (the so-
calledColumbia plot) and on the possibility to exploit
the whole phase structure at imaginary chemical
potential in order to clarify currently open issues
on the phase structure at μB ¼ 0, like the order of the
chiral transition for Nf ¼ 2 [21,24].

(iii) Once the RW endpoint has been precisely located, it
can be taken as a test ground to compare the lattice
techniques presently used to locate the critical point
at real μB, so as to assess their reliability and guide
future research on the subject.

(iv) The relation of the RW endpoint to the other sym-
metries of QCD, which are present at least in well-
defined limits of strong interactions, is an interesting
issue by itself, which can help elucidate some
fundamental nonperturbative properties of the theory.

In this paper,we study theproperties of theRWendpoint by
lattice simulations of QCD with physical quark masses. Its
location TRW is determined for various lattice spacings,
corresponding to temporal extensions Nt ¼ 4, 6, 8, 10 and
then extrapolated to the continuum limit. Moreover, we are
able to determine its universality class, through a finite size
scaling analysis, at two different lattice spacings, namely
Nt ¼ 4, 6. Finally, in order to approach the issue of the
interconnection between chiral symmetry and the RW end-
point, we consider the relation of the endpoint location to the
analytic continuation of the pseudocritical chiral transition
temperature TcðμBÞ to imaginary chemical potentials.
The paper is organized as follows. In Sec. II, we review

the general framework regarding the RW endpoint in a
path-integral approach and present details about our
numerical setup and the observables used to investigate
the critical behavior. In Sec. III, we report on our numerical
results regarding the universality class of the endpoint, the
continuum extrapolated value of TRW, and its relation with
TcðμBÞ. Finally, in Sec. IV, we draw our conclusions.

II. GENERAL FRAMEWORK
AND NUMERICAL SETUP

We consider a staggered discretization of theNf ¼ 2þ 1
QCD partition function in the presence of imaginary quark
chemical potentials:

Z ¼
Z

DUe−SYM

Y
f¼u;d;s

det ðMf
st½U; μf;I�Þ1=4; ð2Þ

SYM ¼ −
β

3

X
i;μ≠ν

�
5

6
W1×1

i;μν −
1

12
W1×2

i;μν

�
; ð3Þ

ðMf
stÞi;j ¼ amfδi;j þ

X4
ν¼1

ηi;ν
2

½eiaμf;Iδν;4Uð2Þ
i;ν δi;j−ν̂

− e−iaμf;Iδν;4Uð2Þ†
i−ν̂;νδi;jþν̂�: ð4Þ
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The gauge link variables U are used to construct the tree
level improved Symanzik pure gauge action [41,42], SYM,
where Wn×m

i;μν is the trace of the n ×m rectangular loop
constructed along the directions μ, ν departing from the i
site. The staggered Dirac operator ðMf

stÞi;j, instead, is built
up in terms of the two times stout-smeared [43] links Uð2Þ

i;ν ,
in order to reduce taste symmetry violations, with an
isotropic smearing parameter ρ ¼ 0.15. As usual, the
rooting procedure is adopted to remove the residual
degeneracy of the staggered Dirac operator.
When thermal boundary conditions (periodic/antiperi-

odic for boson/fermion fields) are taken in the temporal
direction, the temperature of the system is given by
T ¼ 1=ðNtaÞ, where Nt is the number of temporal lattice
sites and a is the lattice spacing, related to the bare
parameters of the theory. For a given number of lattice
sites in the temporal direction, we can choose the simulated
temperature by tuning the value of the bare coupling
constant β and the quark masses ms and mu ¼ md ≡ml,
in order to change the lattice spacing while remaining on a
line of constant physics, where mπ ≃ 135 MeV and
ms=ml ¼ 28.15; this line has been determined by a spline
interpolation of the results reported in Refs. [44–46].
Let us now sketch the structure of the phase diagram at

imaginary μB. This has already been done in the introduc-
tion, by considering the effective degrees of freedom at
work in the different regimes; now, we will proceed through
an analysis of the properties of the path integral. In the
presence of a purely baryonic chemical potential (i.e.
μQ¼0 and μS ¼ 0), one has μu ¼ μd ¼ μs ≡ μq ¼ μB=3.
When μq is purely imaginary, its introduction is equivalent
to a global rotation of fermionic boundary conditions in the
temporal direction by an angle θq ¼ ImðμqÞ=T, and there-
fore one expects at least a 2π-periodicity in θq (2πNc in θB).
However, the actual periodicity is 2π=Nc, since a rotation
of the fermionic boundary conditions by that angle is
equivalent to a center transformation on the gauge fields,
and hence it can be reabsorbed without modifying the path
integral [10].
Numerical simulations show that such a periodicity is

smoothly realized at low temperatures [8,9]. At high T,
instead, since the Polyakov loop L (trace of the temporal
Wilson line normalized by Nc) enters the fermionic
determinant expansion multiplied by expðiθqÞ, the value
of θq selects the true vacuum among the three different
minima of the Polyakov loop effective potential, which are
related to each other by center transformations. Hence,
phase transitions occur as θq crosses the boundary between
two different center sectors, i.e. for θq ¼ ð2kþ 1Þπ=Nc and
k integer (in which case θB is an odd multiple of π), where
hLi jumps from one center sector to the other [10]; the
phase of L can serve as a possible order parameter in this
case. The T-θq phase diagram then consists of a periodic
repetition of first-order lines (RW lines) in the high-T

regime, which disappear at low T. Therefore, they have an
endpoint at some temperature TRW, where an exact Z2

symmetry breaks spontaneously. A schematic view of the
diagram is reported in Fig. 1.
An alternative order parameter is represented by any of

the quark number densities (where q ¼ u, d, s)

hnqi≡ 1

V4

∂ logZ
∂μq ; ð5Þ

where V4 is the four-dimensional lattice volume. Since Z is
an even function of μB, each hnqi is odd, and for purely
imaginary μB, it is purely imaginary as well. Invariance
under charge conjugation, or alternatively oddness and the
required 2π periodicity in θB, implies that hnqi vanishes for
θB ¼ π or integer multiples of it, unless a discontinuity
takes place at such points, in correspondence of a sponta-
neous breaking of charge conjugation invariance. This is
exactly what happens at the RW lines, so that a nonzero
hnqi signals the onset of the RW transition.
In the following, it will be convenient to consider one

particular RW line, corresponding to θq ¼ π, for which the
imaginary part of the Polyakov loop, together with the
imaginary part of the quark number density, can be taken as
an order parameter. The order parameter susceptibility is
then defined as

χL ≡ NtN3
sðhðImðLÞÞ2i − hjImðLÞji2Þ; ð6Þ

where Ns (Nt) is the spatial (temporal) size in lattice units.
The susceptibility χL is expected to scale, moving around
the endpoint at fixed Nt and θq, as

χL ¼ Nγ=ν
s ϕðtN1=ν

s Þ; ð7Þ

0 1 2 3 4
θ

B
/π = μ

B,I
/(πT)

 T
 

T
RW

Tc

FIG. 1. Phase diagram of QCD in the presence of an imaginary
baryon chemical potential. The vertical lines represent the
Roberge-Weiss transitions taking place in the high-T regime,
while the dashed lines represent the analytic continuation of the
pseudocritical line.

ROBERGE-WEISS ENDPOINT AT THE PHYSICAL POINT … PHYSICAL REVIEW D 93, 074504 (2016)

074504-3



where t ¼ ðT − TRWÞ=TRW is the reduced temperature,
which is proportional to ðβ − βRWÞ close enough to the
critical point. That means that the quantity χL=N

γ=ν
s ,

measured on different spatial sizes, should lie on the same
curve when plotted against ðβ − βRWÞN1=ν

s . Alternatively,
we will consider also the susceptibility of the imaginary
part of the quark number density, which is defined, for
every flavor q, by

χq ≡ NtN3
sðh½ImðnqÞ�2i − hjImðnqÞji2Þ ð8Þ

and is expected to show a scaling behavior as in Eq. (7).

III. NUMERICAL RESULTS

In this section, we present our numerical results, starting
from an analysis of the critical behavior around the RW
endpoint transition, in order to assess its order and
universality class on lattices with Nt ¼ 4, 6. Then, we
will consider also lattices with Nt ¼ 8, 10 in order to
provide a continuum extrapolated value for TRW.
Since we are interested in studying the behavior near the

phase transition, long time histories are required, to cope
with the critical slowing down (see Fig. 2); for the
couplings around the critical value, we used ∼40–50K
trajectories for each run when performing the finite size
analysis.

A. Finite size scaling and universality class
of the transition

The effective theory associated with the spontaneous
breaking of the charge conjugation at finite temperature is a
three-dimensional theory with Z2 symmetry, so the tran-
sition can be either first order or second order in the three-
dimensional Ising universality class. A tricritical scaling is
in principle possible as well; however, the tricritical point is

just a single point at the boundary of first- and second-order
regions. As a consequence (apart from the unlikely case of
being exactly on it), tricritical indices can be observed only
as scaling corrections, the ultimate large volume behavior
being either first order or Ising 3D [15,47–49]. The critical
indices that will be used in the following are reported for
convenience in Table I.
We will now present the finite size scaling analysis

performed to identify the nature of the transition on lattices
with temporal extent Nt ¼ 4 and 6. As previously dis-
cussed, we adopt two different order parameters, namely
the imaginary part of the average Polyakov loop and the
quark number density; the former turned out to have
smaller corrections to scaling, so we will start our analysis
from the study of the susceptibility χL defined in Eq. (6).
Figure 3 shows χL obtained on Nt ¼ 4 lattices and

rescaled according to Eq. (7), using alternatively the critical
indices of the 3D Ising universality class or those corre-
sponding to a first-order transition (the values used for the
critical coupling are the ones reported in Table II). Using
3D Ising indices, the results on different volumes collapse
on top of each other, whereas this is not the case using first-
order indices, which strongly indicates that the transition is
second order forNt ¼ 4. Note that, since we are performing
simulations on a line of constant physics, the mass
parameters change with β; it is thus not possible to use
standard reweighting methods [52,53]. In Fig. 4, we repeat
the same analysis using the Polyakov loop measured on
lattices with temporal extent Nt ¼ 6. Again, the 3D-Ising
universality class appears to describe the scaling of the
susceptibility of the Polyakov loop significantly better than
a first order class, although larger corrections to scaling are
present with respect to the Nt ¼ 4 case.
A confirmation of the previous analysis comes from the

study of the fourth-order Binder ratio, which in our case is
defined as

B4 ¼
hðImLÞ4i
hðImLÞ2i2 : ð9Þ

It is easy to show that, in the thermodynamical limit,
B4 → 3 in the absence of a phase transition, while B4 → 1
if a first-order transition is present. At second-order
transitions, B4 assumes nontrivial values, which are char-
acteristic of the universal critical behavior associated with
the transition [50,54,55]. For the particular case of the
three-dimensional Ising universality class, the critical value
is B4 ¼ 1.604ð1Þ; see Ref. [51]. From these general
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0
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N
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16

0 10000 20000 30000 40000
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|Im
(L

)|

N
s=

24

0 10000 20000 30000 40000
trajectories

0
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0.04

0.06

N
s=

32

FIG. 2. Monte Carlo histories of jImLj for Nt ¼ 4 and the β
values closest to the peak of χL, showing the peculiar features
expected near a second-order transition: the increase of the
autocorrelation time and the absence of a double peak structure
in the histogram.

TABLE I. The critical exponents relevant for this study (see,
e.g., Refs. [50,51]).

ν γ γ=ν 1=ν

3D Ising 0.6301(4) 1.2372(5) ∼1.963 ∼1.587
1st Order 1=3 1 3 3
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properties, the following simple procedure follows to locate
the critical endpoint of a line of first-order transition: study
the behavior of B4 as a function of the coupling for different
values of the lattice size; the endpoint coupling value will
correspond (up to scaling corrections) to the crossing point
of these curves.
In Fig. 5, we show the values of B4 in a neighborhood of

the critical coupling at three different volumes both for
Nt ¼ 4 and Nt ¼ 6 temporal extent. The behavior of the
Binder ratio as a function of β is clearly the one expected at
a critical endpoint, and the value at the crossing point is in

reasonable agreement with that expected for a transition of
the 3D-Ising universality class, while a first order is clearly
excluded.
The same conclusions are obtained by studying the

susceptibility of the u quark number density defined in
Eq. (8), although in this case the scaling corrections appear
to be larger. As an example, in Fig. 6 we show the behavior
of χu on Nt ¼ 4 lattices, rescaled according to Eq. (7):
again, the 3D-Ising critical indices are favored. The case of
the strange susceptibility χs is similar, as well as the
Nt ¼ 6 case.

B. Critical temperature: Continuum
extrapolated value

Having established that the RW transition is second
order for lattices with temporal extent Nt ¼ 4 and 6, we
now proceed to estimate the continuum value of TRW. To
this purpose, simulations have been performed also on
lattices with Nt ¼ 8 and 10, considering a limited number
of spatial volumes (one or two) per simulation setup.
The pseudocritical value of the coupling has been

determined for each lattice size by estimating the position

-4 -2 0 2 4
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FIG. 3. Susceptibility of the imaginary part of the Polyakov
loop on Nt ¼ 4 lattices rescaled using the 3D-Ising critical
indices (top) or the first-order ones (bottom).

TABLE II. Critical values of the coupling for different Nt
values (estimated by using lattices of spatial extent Ns) and
corresponding values for the lattice spacing. Only the statistical
error of the lattice spacing is reported in the table; the systematic
error is about 2%–3% [44–46].

Nt βc Ns a (fm)

4 3.4498(7) 16, 24, 32 0.2424(6)
6 3.6310(15) 24, 32, 40 0.1714(3)
8 3.7540(25) 32, 40 0.1233(3)
10 3.8600(25) 40 0.0968(2)

-4 -2 0 2 4 6
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0
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4
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3
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 N

s1.
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3
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N
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FIG. 4. Susceptibility of the imaginary part of the Polyakov
loop on Nt ¼ 6 lattices rescaled using the 3D-Ising critical
indices (top) or the first-order ones (bottom).
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of the maximum of χL and χu. To this purpose, we have
fitted the peak with a Lorentzian function:

fðβÞ ¼ a
1þ ðβ − βpcÞ2=c2

: ð10Þ

The results for the large volume limit of βpc, denoted by βc,
are reported in Table II; the error also takes into account the
systematics related to the choice of the fit range. The
volume dependence of the pseudocritical coupling is very
mild for a lattice with aspect ratio 4 or larger, with
variations at the level of 0.1% in terms of β (which become
0.5% in terms of temperature), as can be seen in Fig. 7 for
the case of theNt ¼ 4 lattices. The pseudocritical couplings
determined by using χL or χu have a priori to coincide only
in the thermodynamical limit; however, in all the cases, the
differences between the two determinations are well below
0.1%, and, with the exception of the lattice 4 × 163, they
are compatible with each other at one standard deviation.
In order to convert the critical temperatures to physical

units, we used the lattice spacings values reported in
Table II, which are obtained by a spline interpolation of

the results presented in Refs. [44–46]. The systematic
uncertainty on these lattice spacings is 2–3% [44–46],
and this is by far the largest source of error in the final
temperature estimates. The results obtained at the different
Nt are plotted in Fig. 8 together with the linear fit in 1=N2

t ,

β
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FIG. 5. Binder fourth-order ratio of the Polyakov loop imagi-
nary part computed on Nt ¼ 4 lattices (top) and Nt ¼ 6 lattices
(bottom). The horizontal line denotes the value expected for a
second-order transition of the 3D-Ising universality class.
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FIG. 6. Disconnected susceptibility of the light baryon number
computed on Nt ¼ 4 lattices and rescaled with the critical
exponents of the 3D-Ising universality class (top) or correspond-
ing to a first-order transition (bottom).
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which describes well the approach to the continuum limit
and from which we extract the value 208(4) MeV for the
continuum limit of the RW endpoint temperature. Using as
systematical error the difference between this value and the
one obtained using just the three finer lattices, we get our
final estimate TRW ¼ 208ð5Þ MeV.

C. Relation with the pseudocritical
chiral transition line

An interesting issue that remains to be investigated is the
relation between the RW endpoint and the chiral transition.
In particular, the question can be posed in the following
way: does the pseudocritical line really get to the RW
endpoint, as assumed in Fig. 1 and as suggested by early
studies on the subject?
A number of investigations appeared recently, reproduc-

ing the pseudocritical line for imaginary chemical poten-
tials at or close to the physical point and with the setup of
chemical potentials relevant to the RW endpoint, i.e.
μs ¼ μl ¼ μB=3; see Refs. [56–59]. A possible way to
approach the question is to try extrapolating the location of
the pseudocritical line up to θB ¼ π on the basis of those
determinations. To this aim, we considered results for
TcðθBÞ obtained in Ref. [58] on the Nt ¼ 8 lattices and
adopting the same discretization used in the present study.
In Fig. 9, we present two different extrapolations of such
data, corresponding to the fit ansatz

TcðθBÞ ¼ Tcð1þ κθ2B þ bθ4B þ cθ6BÞ; ð11Þ

with or without the sixth-order term included (a simple
linear dependence on θ2B was excluded in Ref. [58]). In both
cases, one gets reasonably close, within errors, to the RW
endpoint.
Of course, the issue can be checked also directly, by

determining the location of the pseudocritical line exactly
at θB ¼ π. To that aim, in Fig. 10, we plot the renormalized
light chiral susceptibility (as defined, e.g., in Ref. [58]) for

lattices with temporal extent Nt ¼ 6, 8, together with the
positions of the RW endpoint as previously determined on
the same lattices. It is clearly seen that the location of the
maxima of the chiral susceptibility is compatible with the
position of the RWendpoints. For instance, for Nt ¼ 8 and
Ns ¼ 32, we obtain, by fitting the chiral susceptibility to a
Lorentzian peak, βc ¼ 3.749ð3Þ, which is at just one
standard deviation from the RWendpoint coupling reported
in Table II.
We can thus confirm, within present errors, evidence that

the RW endpoint is located at a point where the analytic
continuation of the pseudocritical line and the RW first-
order line meet each other. To conclude, based on this
evidence, we have performed a final fit, including terms up
to the sixth order in θ2B, which includes the RWendpoint as
a part of the pseudocritical line. The result is the dashed line
reported in Fig. 9, which has been continued also to the
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other center sectors, so as to reproduce a realistic version
(i.e. for Nf ¼ 2þ 1 QCD with physical quark masses,
even if just for Nt ¼ 8) of the phase diagram sketched
in Fig. 1.

IV. CONCLUSIONS

We have investigated the properties of the RW endpoint
by lattice simulations of Nf ¼ 2þ 1 QCD with physical
quark masses and making use of two different order
parameters for the transition, namely the imaginary part
of the Polyakov line and the imaginary part of the quark
number density, which have led to consistent results.
The temperature of the endpoint, TRW, has been deter-

mined at four different values of the lattice temporal extent,
Nt ¼ 4, 6, 8, 10, from which we have obtained a continuum
extrapolated value TRW ¼ 208ð5Þ MeV, where the error
includes both statistical and systematic contributions,
stemming mostly from the determination of the physical
scale. That leads to the estimate TRW=Tc ¼ 1.34ð7Þ, where
the error also takes into account the systematics involved in
the determination of Tc, originating both from the scale
setting and from the difficulties in defining a critical
temperature when no real transition is present. This ratio
is significantly larger than the ones obtained in previous
studies; indeed, with unimproved actions, unphysical quark
masses, and no extrapolation to the continuum limit, TRW
was typically found to be only about 10% larger than Tc.
The larger value is partially due to the larger curvature κ
and partially to the more significant contribution from
nonlinear terms in μ2B [see Eq. (11)] which are present in the
case μu ¼ μd ¼ μs (see Ref. [58]).
Regarding the order of the transition, our finite size

scaling analysis provides evidence that a second-order
transition of the 3D-Ising universality class takes place,
rather than a first-order one, at least for Nt ¼ 4 and Nt ¼ 6
lattices. Our investigation has been performed at a fixed
value of the pion mass, corresponding to its physical
value mπ ≃ 135 MeV.
Previous studies on the subject, performed in the Nf ¼ 2

theory with both staggered and Wilson fermions, have
shown that the order of the transition changes as a function
of mπ; in particular, there are two tricritical pion masses,
mtric:light

π and mtric:light
π , and the transition is second order for

mtric:light
π < mπ < mtric:heavy

π and first order for lighter or
heavier pion masses. The value of the heavy tricritical mass
is typically well above the GeV scale. The lighter critical
pion mass has been found to be mtric:light

π ∼ 400 MeV for
standard staggered fermions on Nt ¼ 4 lattices [15] and
around 930 and 680 MeV for standard Wilson fermions on,
respectively, Nt ¼ 4 [19] and Nt ¼ 6 [25] lattices. Given
these results, even if we have studied just the physical value
of the pion mass, we can conclude the following: for stout
improved staggered fermions, one has mtric:light

π <135MeV
on both the Nt ¼ 4 and Nt ¼ 6 lattices. When compared to

previous results, that demonstrates the presence of signifi-
cant cutoff effects on the values of this tricritical mass, even
when working at fixed Nt but with a different action.
Moreover, based on the observed tendency of the tricritical
mass to decrease with the increase of Nt, we suggest that
mtric:light

π should be smaller than mphys
π ¼ 135 MeV in the

continuum limit, so that the RW endpoint should be a
second-order transition in the continuum limit at the
physical pion mass.
We must, however, remark that the mechanism driving

the change of nature of RW endpoint transition, from
second to first order as the pion mass decreases, is still
unknown. If such a mechanism is related to the chiral
properties of quarks, unexpected behaviors could occur as
the continuum chiral symmetry group is fully recovered.
This is known to happen, at least for staggered fermions, for
lattice spacings well below those explored in the present
study (see Ref. [60] for a recent investigation about
this issue).
Let us spend a few words about what, in our opinion,

future studies should clarify. First of all, one would like to
check the second-order nature of the RW endpoint at the
physical point on finer lattices, i.e. for Nt > 6. Then, our
study with stout improved staggered fermions should be
extended to different values of the pion mass, in order to
locate the values of the tricritical masses mtric:light

π and
mtric:light

π and possibly extrapolate them to the continuum
limit. Such a program, which goes beyond our present
computational capabilities, would clarify the universal
properties of the only critical point of strong interactions
(in the presence of finite quark masses) that one can predict
a priori, based on the known symmetries of QCD.
Finally, another open issue regards the relation of the RW

critical point to those predicted in well-defined limits of
QCD. The relation to the deconfinement transition present
in the quenched case is obvious, since the two transitions
trivially coincide in this case and are both related to
center symmetry. The relation to the chiral transition in
the limit of massless quarks is far less trivial. Suppose to
move (varying the temperature) along the line θB ¼ π in the
presence of massless quarks; in principle, one expects
two different critical temperatures, one at which chiral
symmetry is restored, Tχ , and one at which the Z2 charge
conjugation symmetry spontaneously breaks, TRW.
What is the relation between Tχ and TRW? Our present
results at finite quark masses prove that the location of the
peak of the renormalized chiral susceptibility coincides,
within errors, with TRW, see Fig. 10, so that the analytic
continuation of the pseudocritical line meets the RW line at
its endpoint. However, in order to obtain a definite
answer, the issue should be explored while approaching
the chiral limit; this is something which goes beyond
the purpose of the present study and is left to future
investigations.
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