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Abstract
Wederive experimentallymeasurable lower bounds for the two-site entanglement of the spin-degrees
of freedomofmany-body systemswith local particle-number fluctuations. Ourmethod aims at
enabling the spatially resolved detection of spin-entanglement inHubbard systems using high-resolu-
tion imaging in optical lattices. A possible application is the observation of entanglement generation
and spreading during spin impurity dynamics, forwhichwe provide numerical simulations.More
generally, the scheme can simplify the entanglement detection in ion chains, Rydberg atoms, or simi-
lar atomic systems.

1. Introduction

The role of entanglement for the quantitative understanding of quantummany-body systems has been the topic
of a large number of theoretical studies [1–3]. In contrast, the experimental detection of entanglement in
quantummany-body systems is less developed, which currently hinders the establishment ofmore direct links
between experiments and theory. So far, entanglement witnesses have been extracted frommacroscopic
properties or diffractive probes, such asmagnetic susceptibilities [1, 4, 5], spin- or atom-number squeezing
parameters [6–9], or time-of-flight imaging [10, 11]. Further, experiments using controlled collisions in optical
lattices indicated the generation of entangled cluster states [12, 13].However, these experiments did not access
the spatial dependence of entanglementmeasures which is crucial for observing some of the elementary
properties of entanglement inmany-body systems, such as area laws [3] or the dynamical generation and
spreading of entanglement [1, 14, 15].

A candidate for establishing a direct experiment–theory connection are quantum spin systems [1–3, 16].
Such spinHamiltonians can effectively describe the low-energy physics of certainmaterials [17–20], for which a
local detection of entanglement seems challenging. However, recent atomic physics realizations of quantum
spin systems, such as neutral atoms in optical lattices [21–28] and trapped ions [29–35], offer the possibility of a
local read-out of spin correlations.

In ion traps, such local detection of spin correlations and entanglement has been the standard formany years
butwasmostly used in the context of quantum computing [36]. Only recently, these techniques were employed
to detect entanglement in a simulation of a spin system showing the first spatially resolved detection of
entanglement spreading after a local quantumquench [34].

For quantummany-body systems in optical lattices, local detection of individual particles and their
correlations has only been demonstrated in the past few years using high-resolutionmicroscopy [24–26, 37–40].
Proposals have beenmade to detect the Rényi entropy [15, 41–43] or the concurrence [44]with this technique
but no experiment has shown the spatially resolved detection of entanglement in such systems to date.

A key difference between quantummagnetism experiments in ion traps and optical lattices is that in the
latter, on-site numberfluctuations coexist with spin fluctuations. The reason is that spin interactions in optical
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lattices are typically generated via superexchange as a second-order process in the large interaction limit of
Hubbardmodels [21–23], where numberfluctuations are suppressed but not absent.

Particularly in low dimensions, local number fluctuations can be sizable even at zero temperature [38, 40],
and additionally the currently achievable temperatures lead to thermal activation of defects [39]. In solids,
numberfluctuations naturally arise through hole-doping ofMott insulators, leading to an effective description
in terms of t-Jmodels [18].

For such systems, a detection of spin-entanglementmust take the presence of occupation number
fluctuations into account. On the theoretical level, the distinction between entanglement in internal and number
degrees of freedomhas been clarified in [45–47].However, concrete experimental proposals for detecting the
entanglement between spins in quantummany-body systems of atomswith local particle-number fluctuations
are lacking (with the exception of [44]).

Here we propose an experimentally feasible scheme to detect spin-entanglement between two sites in the
presence of numberfluctuations inHubbard systems using single-atom- and single-site-resolved imaging of
atoms in optical lattices [37–39]. To this end, the key challenges are the current limitations in these setups,
namely the lack of arbitrary local spin rotations [48], the lack of full spin resolution [25], and the parity-
projection problem [38, 39]. Fully accounting for these restrictions, we derive detectable lower bounds for the
concurrence [49], an entanglementmeasure, of the spin-degree of subsystems consisting of two lattice sites. Our
method can be readily implemented in current high-resolution imaging setups for optical lattices without
technicalmodifications [24, 25, 37–40].

The scheme is immediately applicable to studying the entanglement generation and spreading during single
spin-impurity dynamics in one-dimensional Bose–Hubbard chains [25, 50, 51]. For this scenario, we provide
numerical simulations identifying a parameter rangewhere such experiments could be performed.

While our focus is on spin-impurity dynamics, themethod can be used in a broader context. For example, it
could be an important diagnostic tool in the current experimental search for antiferromagnetic order in the
fermionicHubbardmodel realizedwith cold gases [52]. For ion trap implementations of quantummagnetism,
the bounds derived in section 3 could lead to a simplified detection of entanglement in impurity dynamics [34]
or global quantumquenches [35]without the need for a full state reconstruction. Further, our results also apply
to experiments with Rydberg atoms in optical tweezers [53–57], where atomnumberfluctuations can result
from trap loss. Finally, ourmethod could be used to detect the entanglement in spatially ordered structures of
Rydberg excitations in optical lattices [58].

The outline of the paper is as follows. In section 2, we give an introduction to entanglement generation and
spreading during single impurity dynamics in the nearest neighbor spin-1/2 XX-chain [50, 51]. The derivation
of lower bounds for the concurrence then follows in several steps taking into account the known experimental
limitations for high-resolution imaging of quantumgases in optical lattices. In section 3, we derive a lower
boundneglecting numberfluctuations based only on global pulses in order to circumvent the lack of arbitrary
local spin rotations [48].We then give a conceptual introduction to the detection of spin-entanglement in the
presence of numberfluctuations in section 4, followed by a case study of spin impurity dynamics in the one-
dimensional Bose–Hubbardmodel in section 5.We extend the detection scheme to include number
fluctuations in section 6 assuming fully spin-resolved detection. In section 7, we account for the current inability
to detect two different spin states at once [25] and also treat the restriction to local parity imaging [38, 39].We
finishwith a conclusion and outlook section.

2. Entanglement during impurity dynamics in theXX-chain

Toprovide a concrete example and target application, we review the entanglement generation and spreading
during spin impurity dynamics in a spin-1/2 XX-chain [50, 51] withHamiltonian

∑= − ++
+
−

+
+ −( )H

J
S S S Sˆ

2
ˆ ˆ ˆ ˆ , (1)

j

j j j jXX
ex

1 1

where Jex is the exchange coupling and σ σ= ±±
Ŝ ( ˆ i ˆ )j j

x
j
y1

2
are spin-1/2 raising (lowering) operators.Withσ αˆ j

(α= x, y, z) we denote the Pauli operators applied to site j.
Hamiltonians of this type are important for describing recent experiments realizing spin-impurity dynamics

in one-dimensional Bose–Hubbard systems [25] and ion chains [34]. In the case ofHubbard systems, the spin-
description is precise only for a single spin impurity in the deepMott insulating limit at zero temperature, where
on-site numberfluctuations are strongly suppressed.Wewill come back to this point inmore detail in section 5
andfirst neglect on-site number fluctuations. For the ion trap implementation, the correct descriptionwould be
a long-range XXmodel instead of the nearest-neighborHamiltonian (1). Nonetheless, the following discussion
still applies to this casewith a simple substitution as detailed below.
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In the following, wewill write a state with a single up-spin impurity on site j as

≑ ↓ … ↓ ↑ ↓ ↓− − + −j , , , , ,.., ,L j j j L2 1 1 2 1

where L is the total number of sites, and ↑ 〉| ( ↓ 〉| ) refers to up-spin (down-spin) states in the z-basis. As an
initial state, we choose a single up-spin impurity at the center of the chain ψ 〉 = = 〉j| | 00 . For an infinite chain
( → ∞L ), the time-evolution underHamiltonian (1) leads to a spreading of this impurity according to

∑ψ ϕ=t j( ) , (2)
j

j0

withϕ = i J J t( )j
j

j ex , where Jj(x) is the Bessel function of the first kind, t is the evolution time, andℏ is the

reduced Planck constant. For the long-range XXmodel, which is relevant for ion chains,ϕ j must be substituted

by a different function that can be calculated numerically [34].
For the experimental observation in aHubbard system [25], the probability offinding the spin impurity on

site j after various evolution timeswas observed to be in quantitative agreementwith equation (2).However, this
experiment did not quantify the correlations and entanglement between spins on different sitesA andB. This
information is encoded in the two-site reduced density operator ρ ψ ψ= 〉 〈≠t t tˆ ( ) Tr [| ( ) |( )]A B

s
l A B, , 0 0 , where the

trace runs over all sites butA andB. The superscript s stands for single spin-impurity.Wefind

ρ
ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ

=

− −

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
tˆ ( )

0 0 0 0

0 0

0 0

0 0 0 1

(3)A B
s

A A B

A B B

A B

,

2
*

*
2

2 2

writing the two-site densitymatrix using basis states ↑ ↑ 〉 ↑ ↓ 〉 ↓ ↑ 〉 ↓ ↓ 〉| , , | , , | , , | , for theA andB sites.
For any statewith a single impurity in an otherwise polarized background, the reduced two-site densitymatrix
has the structural formof ρ tˆ ( )A B

s
, .

The entanglement between sitesA andB can be quantifiedwith the concurrenceC [49], a commonly used
bi-partite entanglementmeasure [59, 60]. The concurrence for a general bipartite pure state ψ 〉| 1,2 in a tensor
product ⊗ 1 2 of twofinite-dimensionalHilbert spaces ,1 2 can be defined as [61, 62]

Figure 1. (a)Density plot of the concurrence ρC t( ˆ ( ))A B
s
, for the single spin impurity dynamics as a function of lattice sitesA andB for

=tJ 0.2, 1, 3ex (left,middle, right). (b) Concurrence ρ −C t( ˆ ( ))A A
s
, for the single spin impurity dynamics evaluated at sites −A A, for

=tJ 3, 4, 5ex (open circles, filled circles, open rectangles). Lines are shown as a guide for the eye. (c)Density plot of the lower bound
for the concurrence ρK t( ˆ ( ))A B

s
, (see equation (9)) for the single spin impurity dynamics as a function of lattice sitesA andB for

=tJ 3ex . Note that ρ =K t( ˆ ( )) 0A B
s
, for odd distances −A B, which results in a checkerboard pattern.
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ψ ψ ψ ρ= −( )( ) ( )C 2 Tr ˆ , (4)1,2 1,2 1,2 1
2

where ρ ψ ψ= 〉〈ˆ Tr (| |)1 2 1,2 1,2 is the reduced density operator of subsystem1. The concurrence defined in this way
can also be applied to subnormalized states.

The concurrence ρC ( ˆ )1,2 of a bipartitemixed state ρ̂1,2 is defined via a convex roof construction [62] using
the infimum

∑ρ ϕ= ( )( )C p Cˆ inf (5)
i

i i1,2

over all decompositions of ρ̂1,2 into pure states ϕ 〉| i : ρ ϕ ϕ= ∑ 〉〈pˆ | |i i i i1,2 with ⩾p 0i . Even if the global state

ψ 〉 t| ( )0 is pure, the reduced density operator ρ tˆ ( )A B
s
, ismixed.We are therefore dealingwith amixed bipartite

two spin-1/2 system.
Due to the X-matrix formof ρ tˆ ( )A B

s
, , the concurrence can be easily calculated [63] (see equation (7)):

ρ ϕ ϕ=( )C tˆ ( ) 2 ,A B
s

A B,
*

a result obtained earlier in [50, 51].
To obtain a better intuition for this outcome, we can restrict ourselves to sites with = −A B. In this case, the

two-site densitymatrix can bewritten as amixture of a Bell-state Ψ 〉 = ↑ ↓ 〉 + ↓ ↑ 〉+| (| , | , )1

2
and ↓ ↓ 〉| , :

ρ ϕ Ψ Ψ ϕ= + − ↓ ↓ ↓ ↓−
+ + ( )tˆ ( ) 2 1 2 , , .A A

s
A A,

2 2

Therefore, the concurrence amounts to the probability offinding the system in the Bell state.
We show ρC t( ˆ ( ))A B

s
, for various times and sitesA andB infigures 1(a) and (b), which illustrates how

entanglement is generated and spreads in awave-like fashion during the impurity dynamics.

3. Scheme for spin-1/2 systems

Experimentally, we are facing the problemof detecting the concurrence of an unknown two-site densitymatrix
ρ̂A B, thatmight be close to but not necessarily equal to ρ̂A B

s
, due to experimental imperfections. Detecting the

concurrence of an unknown state is possible using a full state tomography. For two spin-1/2 systems, a full state
tomography can be achieved bymeasuring all nine combinations of Pauli operators σ σ〈 〉α βˆ ˆA B withα β = x y, ,
and z [64].We assume that the finalmeasurement is always performed in the z-basis, for example, by reading out
the populations of two atomic energy levels that encode the spin-1/2 system.

Ameasurement in a different basis is possible by applying pulses that rotate the individual spins before the
measurement. A pulse on a single spin on site j can be representedwith a unitary operator

θ ϕ
θ θ

θ θ
=

ϕ

ϕ−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟R̂( , )

cos ( 2) ie sin ( 2)

ie sin ( 2) cos ( 2)
(6)j

i

i

written in the ↑ 〉 ↓ 〉| , | basis. For example, ameasurement in the x-basis can be realized by a

θ π ϕ π= = −2, 2 pulse becauseσ π π σ π π= − −R Rˆ ˆ ( 2, 2) ˆ ˆ ( 2, 2)j
x

j j
z

j
† .

For the following discussion, it is important to distinguish pulses on individual spins, which allow for the
measurement of σ σ〈 〉α βˆ ˆA B for all combinationsα β = x y, , and z, and global pulses on both spins, which restrict
themeasurements to equal axesα β= .

Pulses on individual spins arranged in a chain are commonly employed in ion trap implementations. For
example, in [34], the authors show the detection of the concurrence generated during spin impurity dynamics in
a long-range XXmodel using a full state tomography.

However, for optical-lattice implementations of spin-systems usingHubbardmodels, onlyθ π= pulses on
individual atoms have been demonstrated using a rapid adiabatic passage [48]. Pulses on individual atomswith
arbitraryθ ϕ, require improved experimental control and are yet to be implemented. This currently restricts the
detection to elements σ σ〈 〉α βˆ ˆA B withα β= . Therefore, we nowpresent a simplified scheme for the detection of a
lower bound for the concurrence using only global pulses.

3.1. Bound for global pulseswith controlledϕ
Thefirst step in deriving the bound is to split the unknown two-site densitymatrix into anX- andO-part
according to
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ρ = +X Oˆ ˆ ˆ
A B,

with

ρ
ρ

ρ

ρ

≑

↑ ↑ ↑↑

↑ ↓ ↑↓

↑↓ ↓ ↑

↑↑ ↓ ↓

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
X

P

P

P

P

ˆ

0 0

0 0

0 0

0 0

,

,

* ,

* ,

and ρ= −O Xˆ ˆ ˆ
A B, .

Knowledge of only the X-part is sufficient to detect a lower bound for the concurrence because [65, 66]:

ρ⩽ ( )( )C X Cˆ ˆ .A B,

The concurrence for densitymatrices inX-form is given by [63]

ρ ρ= − −↑↑ ↑ ↓ ↓ ↑ ↑↓ ↑ ↑ ↓ ↓( )( )C X P P P Pˆ 2 max 0, , . (7), , , ,

Because

ρ σ σ σ σ σ σ σ σ= + + +↑↓ ( )( )1

4
ˆ ˆ ˆ ˆ i ˆ ˆ ˆ ˆ ,A

x
B
x

A
y

B
y

A
x

B
y

A
y

B
x

wehave σ σ σ σ ρ〈 〉 + 〈 〉 ⩽ ↑↓| ˆ ˆ ˆ ˆ | | |A
x

B
x

A
y

B
y1

4
. Thus, wefind the lower bound

σ σ σ σ ρ+ − ⩽↑ ↑ ↓ ↓⎜ ⎟⎛
⎝

⎞
⎠ ( )P P C2

1

4
ˆ ˆ ˆ ˆ ˆ , (8)A

x
B
x

A
y

B
y

A B, , ,

which only requires global pulses for the detection of σ σ〈 〉ˆ ˆA
x

B
x and σ σ〈 〉ˆ ˆA

y
B
y . The probabilities for having both

spins up, ↑ ↑P , , and both spins down, ↓ ↓P , , can be detected in the z-basis without pulse before themeasurement.

3.2. Bound for global pulseswith undetermined phaseϕ
The phaseϕ of the applied pulse is difficult to control experimentally. For the case of the impurity dynamics
detailed above, controlling the phaseϕwould require having a defined phase of the applied field for the pulse
relative to the starting time of the dynamics. This is difficult to reach for the implementation in [25] because the
spin dynamics occurs in the tens of hertz regime, while the applied pulses are in the gigahertz regime.Wewill
assume that the pulses are not phase-locked to the starting point of the dynamics. In this case,ϕ is essentially
random.All observables after a global pulsewith θ are then effectively described by an equal statisticalmixture
over all anglesϕ described by a densitymatrix [57]

∫ρ θ
π

ϕ ρ θ ϕ=
π

ˆ ( )
1

2
d ˆ ( , ),A B A B,

0

2

,

where

ρ θ ϕ θ ϕ θ ϕ ρ θ ϕ θ ϕ= R R R Rˆ ( , ) ˆ( , ) ˆ( , ) ˆ ˆ( , ) ˆ( , )A B A B A B B A, ,
† †

is the two-site densitymatrix after a global pulsewith angles θ andϕ.
Let us denote the average value ofσ σˆ ˆA

z
B
z after a global pulsewithθ π= 2 and randomϕ by σ σ〈 〉πˆ ˆA

z
B
z

2. Then,
we have

σ σ ρ π σ σ

σ σ σ σ

≑

= +

π
⎡⎣ ⎤⎦

( )
Tr ˆ ( 2) ˆ ˆ

1

2
ˆ ˆ ˆ ˆ ,

A
z

B
z

A B A
z

B
z

A
x

B
x

A
y

B
y

2 ,

wherewe used the invariance of the trace under cyclic permutation in the second line. Therefore, ameasurement
after a globalπ 2 pulsewith randomϕ corresponds to ameasurement of themean of σ σ〈 〉ˆ ˆA

x
B
x and σ σ〈 〉ˆ ˆA

y
B
y .

The bound (8) can then be rewritten as

ρ σ σ ρ= − ⩽π ↑ ↑ ↓ ↓
⎛
⎝⎜

⎞
⎠⎟( ) ( )K P P Cˆ : 2

1

2
ˆ ˆ ˆ . (9)A B A

z
B
z

A B, 2 , , ,

Importantly, a detection ofKA B, only requiresmeasurements with andwithout a globalπ 2 pulse (with random
phaseϕ), which simplifies the experimental effort dramatically as compared to a full state reconstruction.
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3.3.Quality of the bound for the case of single-spin dynamics
An important question is how tight the bound (9) is for the case of single-impurity dynamics detailed in
section 2. Using equation (3), wefind that

ρ ρ= −

−

⎪

⎪

⎧
⎨
⎩( ) ( )K

C A B

A B
ˆ

ˆ if even,

0 if odd.
A B
s A B

s

,
,

The reason for this behavior is that spins at even distances have a parallel alignment in the x− y plane in the sense
that σ σ σ σ〈 〉 = 〈 〉 >| ˆ ˆ | | ˆ ˆ | 0A

x
B
x

A
y

B
y and σ σ σ σ〈 〉 = 〈 〉 =| ˆ ˆ | | ˆ ˆ | 0A

x
B
y

A
x

B
y . In contrast, for odd distances, the spins have a

perpendicular alignment, σ σ σ σ〈 〉 = 〈 〉 =| ˆ ˆ | | ˆ ˆ | 0A
x

B
x

A
y

B
y and σ σ σ σ〈 〉 = 〈 〉 >| ˆ ˆ | | ˆ ˆ | 0A

x
B
y

A
y

B
x .

This even–odd behavior leads to a peculiar checkerboard pattern if ρK ( ˆ )A B
s
, is plotted as a function ofA and

B (figure 1(c)).While the fact that ρ =K ( ˆ ) 0A B
s
, for odd distances is a disadvantage onfirst glance, this

checkerboard pattern can serve as an experimental signature on top of noisy experimental data.
Without going into detail, we note that by applying amagnetic field gradient before the detection, the off-

diagonal element ρ↑↓ acquires a time-dependent complex phase-factor. Tuning this phase toπ 2 changes the
parallel alignment of the spins into perpendicular alignment and vice versa. As a result, themeasured bound
would be tight for odd distances and zero for even distances. Using this technique, a tight bound can be achieved
for all pairs of spins.

4. Spin-entanglement in the presence of atomnumberfluctuations

Quantummagnetism experiments in optical lattices are typically performed usingmixtures of atoms in two
different hyperfine states [21–23, 25–28]. The local on-site states can bewritten as 〉+ −n n| ,l l , where +nl and −nl

are the number of atoms in the two hyperfine states on site l. The state of thewhole system can be expanded in
basis states∏ 〉+ −n n| ,

l l l .We also introduce a notation for the total atomnumber on site l as = ++ −n n nl l l .

The connection to spin systems is obtained using the Schwinger representation (see, e.g., [67]), whichmaps the
on-site states to a total spin jl systemwith spin-projectionml defined as

=
+

=
−+ − + −

j
n n

m
n n

2
,

2
.l

l l
l

l l

Wewill also use the notation 〉 = 〉+ −j m n n| , | ,l l l l .
In the large-interaction limit ofHubbardmodels, the dynamics in subsectors withfixed =j 1 2l is governed

byXXZmodels [21, 22]. However, due to the finite temperature of the samples [38, 40] and quantum
fluctuations [39], numberfluctuations are introduced into the system. This results in contributions of on-site
states thatmap to different ≠j 1 2l .

We are facing a situationwhere both spinfluctuations (i.e.,fluctuations ofml for afixed jl) and number
fluctuations (i.e., fluctuations of jl) are present in the system. It is both experimentally and conceptually
interesting to askwhether entanglement between the spin-projection degree of freedom is detectable in this
scenario.

Again, we consider a subsystem consisting of two sitesA andB, for which the reduced density operator now
also includes contributions fromdifferent occupation numbers:

∑

∑

ρ ρ

ρ

= ′ ′ ′ ′

=

′ …

…

+ − + − + − + −

′ ′ ′ ′

− +

+ − + −
+ − + −

j m j m j m j m

n n n n n n n n

ˆ , , , , , ,

¯ , ¯ , ¯ , ¯ , , , ,

A B
j j

A A B B A A B B

n n

A A B B A A B B

,
, ,

, ¯ ,

A A

j A mA jB mB
j A mA jB mB

A A

nA nA nB nB
nA nA nB nB

, , ,

, , ,

¯ , ¯ , ¯ , ¯

, , ,

wherewe used the Schwinger and occupation number notation in the first and second line, respectively.

4.1. Entanglement of particles
First, we are dealingwith the question of how to conceptually differentiate the entanglement in the spin degree of
freedom from entanglement that stems fromdifferent total local occupation numbers [45–47]. For example,
superpositions of states with different local atomnumbers, such as 〉 + 〉(|1, 0, 0, 0 |0, 0, 1, 0 )1

2
(corresponding to a single plus atom in a superposition between siteA andB), should not appear entangled.

An appropriate procedure to achieve this goal is tofirst project onto states withfixed local atomnumbers.
To this end, we define projected two-site operators [44, 46]

ρ Π Π ρ Π Π=ˆ ˆ ˆ ˆ ˆ ˆ , (10)A B
n n

A
n

B
n

A B A
n

B
n

,
,

,
A B A B A B
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where

∑Π = = =j n m j n mˆ 2, 2,l
n

m
l l l l l l

l

l

is the projection operator at site l onto local total atomnumber = ++ −n n nl l l , or, in the Schwinger notation,
onto local total spin =j n 2l l .

The entanglement in the spin degree of freedom can then be captured by the so-called entanglement of
particles [45, 46]

∑

∑

ρ ρ

ρ

=

=

( ) ( )

( )

E p C p

C

ˆ ˆ

ˆ , (11)

p A B
n n

n n
A B
n n n n

n n
A B
n n

,
,

,
,

, ,

,
,

,

A B

A B A B A B

A B

A B

wherewe used the concurrenceC as an entanglementmeasure, and

ρ≑ ⎡⎣ ⎤⎦p Tr ˆn n
A B
n n,

,
,A A A B

is the probability offinding the systemwith nA atoms onA and nB atoms onB.
In thefirst line of (11), the concurrence is evaluatedwith the normalized state ρ pˆ

A B
n n n n

,
, ,A B A B. The second line

follows from the definition (5) of the concurrence applied to the subnormalized operator ρ̂A B
n n

,
,A B.

A trivial lower bound for ρE ( ˆ )p A B, is

ρ ρ⩽( ) ( )C Eˆ ˆ . (12)A B p A B,
1,1

,

The projected operator ρ̂A B,
1,1 describes the subsector with unity filling on both sites, that is, with local total spin

=j 1 2l on both sites.Wewill refer to this as the spin-1/2 sector in the following.
Our goal is to formulate a detectable lower bound for the entanglement contained in the spin-1/2 sector

quantified by the concurrence ρC ( ˆ )A B,
1,1 , which can eventually be used to bound the entanglement of particles via

the previous inequality.

4.2. Simplified spin-1/2 notation
For the following sections, wewill introduce a shorthand notation for the densitymatrix elements in the spin-
1/2 sector based on the Schwinger notation:

ρ ρ=
′ ′ = =

′ = ′ ′ = ′

.m m
m m

j m j m

j m j m

,
,

1 2, , 1 2,

1 2, , 1 2,

1,1A B

A B
A A B B

A A B B

Instead of the cumbersome notationwith± 1

2
, wewill use↑ and↓ for spin up and spin down. For example
ρ ρ=↑↓ = =−

′ =− ′ =
m m
m m

1 2, 1 2
1 2, 1 2

A B

A B

and

↑ ↓ = = = = = −j m j m,
1

2
,

1

2
,

1

2
,

1

2
. (13)A A B B

5. Case study: entanglement during spin-impurity dynamics in the Bose–Hubbardmodel

To illustrate these concepts and to investigate the influence of numberfluctuations, we carried out a case study
by numerically simulating the dynamics of amobile spin impurity in the one-dimensional two-species Bose–
Hubbardmodel:

∑ ∑ δ= − + + −
σ

σ σ
σ σ

σ σ σ σ+
′

′ ′( ) ( )H J b b
U

n nˆ ˆ ˆ h.c.
2

ˆ ˆ . (14)
j

j j

j

j jBH

,

,
†

, 1

, ,

, , ,

Here σb̂ j,
(†)

is the operator that annihilates (creates) a boson of speciesσ = + −{ , } at site j, J is the hopping
amplitude andU the interaction strength. Note that for simplicity the inter- and intra-species interaction
parameters are taken to be equal, although in usual alkaline gases they assume slightly different values.

In the limit ≫U J at + =+ −N N L ( ±N is the total atomnumber of the respective species), the system is in
aMott phase with one particle per site, where charge degrees of freedom are frozen, but internal ones are not.
They can be describedwith anXXZHamiltonian via second-order perturbation theory [21, 22]:
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where =J J U4ex
2 . The local states ↑ 〉| and ↓ 〉| uponwhich the spin-1/2operators

±
Ŝ j act are identifiedwith the

states = = 〉+ −n n| 0, 1 and = = 〉+ −n n| 1, 0 , respectively, using the Schwinger representation (see section 4). For
the case of a single spin impurity in anotherwise polarized chain, the last termof
ĤXXZ is only a constant offset, and the dynamics are describedby theXXHamiltonian ĤXX as discussed in section 2.

Due to on-site numberfluctuations, thismapping can break down in experimentally relevant parameter
ranges.We consider two possibilities in the following. First, for stronger hopping J, significant quantum
fluctuations of the on-site particle number are introduced in the formof correlated particle-hole pairs [40] even
at zero temperature. One of the open questions here is up towhich dimensionless hopping strength J U the spin
description holds. Second, atfinite temperature, thermally excited defects can lead to a break down of the spin-
description even for values of J U where the XXZmodel would be a very good approximation at zero
temperature. In this case, a crucial question concerns the temperature range inwhich an observation of spin-
entanglement is experimentally feasible.

5.1. Influence of quantumfluctuations
To investigate the influence of quantum fluctuations, we studied the situation ≳U J , where the system is in a
Mott insulating phase but particle fluctuations are not negligible [40] using algorithms based onmatrix product
states [68]. A systemof size L=30 is initialized in the ground state ofHamiltonian (14) in the sectorwhere

=−N L and =+N 0. Sincewe consider the regime ⩾ ⩾U J20 3.5, this corresponds to aMott insulating phase
of theσ = −bosons in the thermodynamic limit [69].

We subsequently perform a spin flip for the central spin of the chain using the protocol:
= = 〉 → 〉+ −

= =n n| 0, 0 |0, 0l l0 0 and 〉 → − 〉−
=

−
=n n|0, |1, 1l l0 0.With this protocol, we need to consider a

localHilbert space that has to accommodate atmost oneσ =+ boson per site, simplifying the numerical
simulation. For theσ = − bosons, we truncate their localHilbert space to four occupancies, with the further
constraint that there can be atmost four particles per site (the state 〉 =|1, 4 l 0 is thus discarded).

The system is then evolved in timewithHamiltonian (14) using a time-evolving block decimation algorithm
(TEBD) [70]. During the time-evolution themaximal allowed bond link isD=3000.

Infigure 2, we show the concurrence ρC ( ˆ )A B,
1,1 for the subsector with a single particle per site for the sites

=+A 1and = −B 1as a function of time for several values ofU J . Oscillations have a clearU J 2 period, which is
the time-scale associatedwith the typical energy scale of spin dynamics Jex. A clear decrease of themaximum
concurrence for lowerU is visible.

One reason for this decrease is that for lowerU, the probability p1,1 tofind a single particle per site is reduced,

which corresponds to a reduced trace of ρ̂A B,
1,1 . To check for this effect, we compare the dynamics to the prediction

from equation (2) for the XXmodel rescaled by =p t( 0)1,1 . The curves for the rescaled XXdynamics are shown
infigure 2 as solid lines. For ≳U J 8, the dynamics appears to bewell described by the rescaled XXpredictions,
indicating that effective spin dynamics in the sector with one particle per site are undisturbed by the presence

Figure 2.Concurrence ρC ( ˆ )A B,
1,1 for the subsector with a single particle per site for the sitesA=1 and = −B 1 as a function of time for

several values ofU J computedwith TEBD (formarkers and colors, see the legend). The x-axis is rescaled by the typical spin exchange
coupling J U2 . The prediction for theXXmodel from equation (2) rescaled by =p t( 0)1,1 is shown as solid lines in the same colors as
the respective numerical data. Inset: the same data as themain plot with x-axis rescaled by the hopping J.
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of numberfluctuations. For lowerU J , the concurrence ρC ( ˆ )A B,
1,1 is smaller than predicted by the rescaled

solution.
Wenow inspect the reduced density operator ρ̂A B,

1,1 more closely by comparing the quantities ↑ ↓ ↓ ↑P P, , and

ρ↑↓| |, which are equal in the spin case (see equation (3)). The equality of both quantities signals fully coherent

dynamics. Infigure 3, we show the time evolution of both quantities for several values ofU J . Interestingly, the
two quantities take similar values down to ∼U J 6. The fact that we observe ρ <↑↓ ↑ ↓ ↓ ↑P P| | , , for lower values of

U J can be interpreted as effective decoherence dynamics.
Finally, we consider a globalmeasure of entanglement in the systemby investigating the sumof the squared

concurrences:

∑ ρ≑ ( )t C t( ) ˆ ( ) .
i j

i j
2

,

2
,
1,1

Themotivation for summing over the square of the concurrences stems from themonogamy inequality [71],
which holds for spin-1/2 systems. For the ideal spin dynamics in the XXHamiltonian,

ϕ= − ∑ → t t( ) 4(1 | ( )| ) 4A A
2 2 for long times.

Infigure 4, we show t( )2 for several values ofU J . For ≳U J 8, t( )2 increases with time, and the
prediction of the XX chainweightedwith the probability =p t( 0)1,1 (solid lines) captures the behavior. For
smallerU J , stronger deviations are visible, which indicates decoherence.

Figure 3.Time evolution of ↑ ↓ ↓ ↑P P, , (blue circles) and ρ↑↓| | (green squares) for different values ofU J computedwith TEBD. For
lowerU J , the two quantities start to deviate, signaling a decoherence process due to quantum fluctuations.

Figure 4.Globalmeasure of entanglement, t( )2 , for several values ofU J . Solid lines show the rescaled XXprediction.
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5.2. The influence of thermal fluctuations
Wenow turn to the effects of numberfluctuations introduced by afinite temperature and a chemical potential.
In order to single out these effects, the hopping strength is set to =J U20 , for which the dynamics at zero
temperature is well captured by theXXprediction as shown in the previous section. To this end, we performed
exact diagonalization of a systemof size L=6 and included only the lowest-energy part of theHilbert space. As
the hopping of particles is only a small perturbation, we consider only Fock states with an interaction energy
smaller than a given energy cutoff: δ〈∑ − 〉 <σ σ σ σ′ ′U n n E( 2) ˆ ( ˆ )j j c, , , . The system is initialized in the grand
canonical ensemble ofσ = −bosonswith temperatures in a range = −T U k0 0.1 B (kB, Boltzmann constant)
and chemical potentials in a range μ = −U U0.25 0.75 .We perform the sameflip protocol as in the previous

section and let the system evolve in timewithHamiltonian ĤBH (14). The simulation includes a total number of
particles = + ∈+ −N N N( ) [4, 8]tot and the cutoff energy is μ= + −E U N L3 ( )c tot . Convergence of the
simulations upon inclusion ofmore particle sectors andmore states has been verified and an error on the order
of a few percent is estimated, which is better than the expected experimental precision. In order to test the
influence of the relatively small size of L= 6on the time-evolution, we compared the zero-temperature
concurrence spreading at L=6with the spreading at L=30with the TEBD (see the previous section).Wefind
that until time ∼ t U J0.5 2, the two predictions agree within a few percent. Even iffinite-size corrections are
expected to bemore significant at higher temperatures (we compared the data with those at L=5, not shown),
the data infigure 5 should be sufficiently accurate to predict the behavior of typical experimental systemswith

≈ −L 15 20within a few percent.
Infigure 5, we show the concurrence ρ− +C ( ˆ )1, 1

1,1 for chemical potentials μ = U U U0.25 , 0.5 , 0.75 and several
values of the temperatureT. For increasing temperatures the signal drops. This reductionwith temperature is
relatively small at μ = U0.5 comparedwith the other two chemical potential values. This can be attributed to the
fact that the gap to excited states is largest, and thermal excitations are thus suppressed, at μ = U0.5 in the limit

=J U 0 [39]. This statement holds in approximate form also for =J U 1 20. Additionally, the effect of an
increase of the chemical potential from the optimal value μ ≈ U0.5 to μ = U0.75 ismore damaging to the
entanglement than a decrease to μ = U0.25 (compare left and right plot infigure 5). This dependence on the
chemical potential highlights the importance of tuning the chemical potential at the center of a trapped system to
μ ≈ U0.5 .

Similar to the case of quantumfluctuations, we checkwhether decreased concurrence can be ascribed to the
reduced population of the single-occupancy sector. The solid lines infigure 5 represent the prediction of theXX
model rescaled by =p t( 0)1,1 .Whereas the XXmodel captures the features of the entanglement dynamics for
low temperatures and for μ = U0.5 , it fails at the highest temperatures considered.

Concluding, we provided evidence that the entanglement propagation scheme previously described can be
carried out in a realistic parameter range for experiments. For current temperatures of ≈T U k0.1 B [25, 39], a
drop of the concurrence signal bymaximally a factor of two compared to the zero temperature situation is to be
expected due to number fluctuations introduced byfinite temperature in the grand canonical ensemble.
Therefore, the signal should be strong enough to be experimentally detectable.

6. Scheme in the presence of numberfluctuations assuming full spin-resolution

Wenow turn to the description of an entanglement detection scheme for a lower bound of the concurrence
ρC ( ˆ )A B,

1,1 . In this section, we assume that themeasurement can be performedwith full spin-resolution, that is, the

individual populations ±n of both species can be detected in a single experimental run.

Figure 5.Concurrence ρC ( ˆ )A B,
1,1 for the subsector with a single particle per site for the sites =+A 1and = −B 1 as a function of time for

several values of temperatureT (formarkers and colors, see the legend) and chemical potentials μ = U 4,U 2 and U3 4 (from left to
right panels). The thin solid lines represent the prediction of theXX spinmodel rescaled by =p t( 0)1,1 .
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6.1.Observable with full spin-resolution
Restricting ourselves to global pulses, themost general observable, in this case, is the joint probability offinding

±nA atoms of species ± on siteA, and ±nB atoms of species ± on siteB after a global pulse with angles θ andϕ. This
probability can bewritten in terms of the diagonals

θ ϕ ρ θ ϕ≑+ − + − + − + −

+ − + −
P ( , ) ( , )n n n n n n n n

n n n n
, , , , , ,

, , ,
A A B B A A B B

A A B B

of the reduced density operator

ρ θ ϕ θ ϕ θ ϕ ρ θ ϕ θ ϕ≑ R R R Rˆ ( , ) ˆ( , ) ˆ( , ) ˆ ˆ( , ) ˆ( , ) ,A B A B A B B A, ,
† †

after the global pulse with angles θ andϕ.
The rotation operator θ ϕR̂( , )l is a generalization of the spin-1/2 rotation (6) to arbitrary local total spins jl. It

can be obtained using the transformation of the creation operators ±âl,
† for species ± on site l

θ ϕ θ θ

θ ϕ θ θ

= +

= +

ϕ

ϕ

+ +
−

−

− + −

a a a

a a a

ˆ( , ) cos ( 2) ˆ ie sin ( 2) ˆ

ˆ( , ) ie sin ( 2) ˆ cos ( 2) ˆ ,

l l l

l l l

,
†

,
† i

,
†

,
† i

,
†

,
†

which yields themapping

θ ϕ
θ ϕ θ ϕ

=
+ −
+

+
−

−( ) ( )
R j m

a a

j m j m
ˆ( , ) ,

ˆ( , ) ˆ( , )

( )! ( )!
0 (16)l l l

l
j m

l
j m

l

,
†

,
†l l l l

for the basis states 〉j m| ,l l [67].

6.2.Observable for randomphaseϕ
As discussed in section 3.2, the phaseϕ of the global pulse is assumed to be random. Therefore, we consider an
averaged density operator

∫ρ θ
π

ϕ ρ θ ϕ≑
π

ˆ ( )
1

2
d ˆ ( , ),A B A B,

0

2

,

and the experimentally observed probabilities are

∫θ
π

ϕ θ ϕ≑
π

+ − + − + − + −P P( )
1

2
d ( , ).n n n n n n n n, , ,

0

2

, , ,A A B B A A B B

Additionally, we are interested in the probabilities pn n,A B for observing the total atomnumbers nA and nB. They
can be detected by summing over + − + −P (0)n n n n, , ,A A B B

with the constraint that + =+ −n n nA A A and + =+ −n n nB B B:

∑=

+ = + =

+ − + −

+ − + −

+ − + −p P (0). (17)n n

n n n n

n n n n n n

n n n n
,

, , ,

,

, , ,
A B

A A B B

A A A B B B

A A B B

6.3. Lower bound
Wewill nowderive a lower bound for the concurrence of ρ̂1,1using the probability

θ θ=↑ ↑ = = = =+ − + −P P( ) : ( ) (18)n n n n, 1, 0, 1, 0A A B B

offinding a spin-up atomon each of the sitesA andB. The reason for focusing on θ↑ ↑P ( ), will become apparent in
section 7.2. Using the rotation formula, wefind the important result

π ρ= +↑ ↑ ↑↓RP
p

( 2)
4

1

2
[ ], (19),

1,1

whereR denotes the real part. The key point is that one can still detect ρ↑↓R[ ] in the presence of number

fluctuations using

ρ π= −↑↓ ↑ ↑R
⎛
⎝⎜

⎞
⎠⎟P

p
[ ] 2 ( 2)

4
.,

1,1
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With the same reasoning as in section 3, we find the lower bound for the concurrence in the spin-1/2 sector

ρ ρ

ρ π π

⩽

≑ − −↑ ↑ ↑ ↑ ↑ ↑⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )

( )

G C

G P
p

P P

ˆ ,

ˆ 4
2 4

2 (0) ( ) . (20)

A B A B

A B

, ,
1,1

, ,

1,1

, ,

7. The scheme in the presence of numberfluctuationswithout full spin-resolution

7.1.Observable
Current implementations of single-site resolved imaging in optical lattices do not resolve the individual atom
numbers of both species [25]. Instead, the procedure is to push out one of the species using a resonant pulse and
to detect the remaining atoms. For concreteness, we assume that theminus component is pushed out. The
observed probability for the atomnumbers + +n n,A B of the remaining plus-atoms is then

∑θ θ≑+ +

− −

+ − + −P P¯ ( ) ( ). (21)n n

n n

n n n n,

,

, , ,A B

A B

A A B B

The detected signal thereforemixes contributions fromdifferentminus-atomnumbers.
In addition to the probabilities after push-out, one can also simply imagewithout push-out pulse. The

observed probability thus corresponds tomeasuring the probability pn n,A B for the total atomnumbersn n,A B

according to equation (17).

7.2. Analysis of the problem
Akey obstacle for formulating a lower boundwithout spin-resolution is to extract ρ↑↓R[ ]from the detected

signal θ+ +P̄ ( )n n,A B
. For deriving bounds for the concurrence, wewill use θP̄ ( )1,1 , which does not contain a signal

from empty lattice sites.Writing out equation (21), wefind

∑ ∑

∑

π ρ

π π

π

= +

+ +

+

↑↓

> >

> >

−

−

−

−

− −

− −

RP
p

P P

P

¯ ( 2)
1

2
[ ]

4

( 2) ( 2)

( 2). (22)

n

n

n

n

n n

n n

1,1

1,1

0

1, ,1,0

0

1,0,1,

0, 0

1, ,1,

A

A

B

B

A B

A B

Using the rotation formula (16), we can express the unwanted contributions in the second and third line in
terms of probabilities before the rotation pulse, + − + −P (0)n n n n, , ,A A B B

.We obtain that they involve only states with at
least one of the sites occupied by two ormore atoms of the same species.

Consequently, these terms vanish for fermionic atoms in a single-bandHubbardmodel [52]. A suppression
of doubly occupied sites for bosons is possible if the local chemical potential μ in optical-lattice experiments is
tuned to lower values ( μ≲ ≲ U0 0.5 ) at the expense of increasing the probability for holes [39]. Further, for
experiments with Rydberg atoms in optical tweezers [53–57], thefilling of the traps is typically only zero or one.

In these situations, the terms in the second and third line of equation (22) vanish and the bound (20) can still
be usedwithout full spin resolution. For situations when doubly occupied sites of the same species cannot be
neglected,modified bounds can be found bymaking certain assumptions on ρ̂A B, .We outline twomethods in
the following sections.

7.3. Lower bound based on subtraction of 1/4
Amodified version of the bound (20) can be derived, using the following assumptions:

• A1The probability offinding sites occupied by three ormore atoms before applying the pulse is negligible:
≈+ − + −P (0) 0n n n n, , ,A A B B

if + ⩾+ −n n 3A A or + ⩾+ −n n 3B B .

• A2There is no probability for a state with twominus-atoms onA and two plus-atoms onB and for a statewith
two plus-atoms onA and twominus-atoms onB: ≈= = = =+ − + −P 0n n n n0, 2, 2, 0A A B B

; ≈= = = =+ − + −P 0n n n n2, 0, 0, 2A A B B
.

AssumptionA1 is well fulfilled in the deepMott-insulating regime of the Bose–Hubbardmodel at unity
average filling for realistic experimental temperatures ≈T U0.1 [25, 39]. A close inspection of this quantity for
the setups considered in the simulations offigure 5 shows that the probability of havingmore than two atoms per
sites is lower than 10−3 for all the temperatures and chemical-potentials considered (not shown). Concerning
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A2: for the data infigure 5, at chemical potential μ = U0.5 for all considered temperatures, the joint probability
of having both sites doubly occupied (independent of the spin) is of order 10−3 for all times. The number rises to
10−2 for a chemical potential of μ = U0.75 and the largest temperature =T U0.1 , which can be still safely
neglected.Hence, assumptionA2 is typically valid.

Let us now show that assumptionsA1 andA2 imply the following bound:

π ρ− ⩽ ↑↓R⎜ ⎟⎛
⎝

⎞
⎠P2 ¯ ( 2)

1

4
[ ]. (23)1,1

UsingA1, one can approximate

π π π π π≈ + + +↑ ↑P P P P P¯ ( 2) ( 2) ( 2) ( 2) ( 2),1,1 , 1,1,1,0 1,0,1,1 1,1,1,1

which can be further bound using that π ⩽P p( 2) 41,1,1,0
1,2 and similarly for πP ( 2)1,0,1,1 and πP ( 2)1,1,1,1 . Note

that for the bound on πP ( 2)1,1,1,1 one needs to applyA2. Bound (23) follows from

+ + + ⩽p p p p 1.1,1 1,2 2,1 2,2 Using the fact that ⩾ ↑ ↑P P¯ (0) (0)1,1 , and π ⩾ ↓ ↓P P¯ ( ) (0)1,1 , , we arrive at a
corresponding bound

ρ ρ

ρ π π

⩽

≑ − −⎜ ⎟⎛
⎝

⎞
⎠

( ) ( )

( )

G C

G P P P

¯ ˆ ˆ ,

¯ ˆ 4 ¯ ( 2)
1

4
2 ¯ (0) ¯ ( ) . (24)

b A B A B

b A B

, ,
1,1

, 1,1 1,1 1,1

The bound (24)workswith rather weak assumptions but is not particularly tight. The reason is that the
subtraction of 1

4
instead of the appropriate quantity leads to the definition of a quantity whichmay even

take negative values.

7.4. Lower bound based on correlations
Therefore, we derive an improved bound compared to equation (24) based on evaluating the quantity

θ θ θ θ= −P P P P¯ ( ) : ¯ ( ) ¯ ( ) ¯ ( ),c
A B1,1 1,1 1, 1,

where θP̄ ( )j1, are the single-site probabilities for observing a single up-spin atomon site j=A orB after push-out

of theminus-component. They are related to the joint probability θ+ +P̄ ( )n n,A B
via

∑

∑

θ θ

θ θ

=

=

P P

P P

¯ ( ) ¯ ( ),

¯ ( ) ¯ ( ). (25)

A

n

n

B

n

n

1, 1,

1, ,1

B

B

A

A

The subscript c for θP ( )c
1,1 stands for connected because θP ( )c

1,1 resembles the formof a connected correlation
function.

Using equation (19), wefind

∑

∑

∑

π ρ π π π

π π π

π π π

= +
−

+ −

+ −

+ −

↑↓
>

>

> >

−

− −

−

− −

− −

− − − −

R ( )

( )

( )

P
p p p

P P P

P P P

P P P

¯ ( 2)
1

2
[ ]

4
( 2) ( 2) ( 2)

( 2) ( 2) ( 2)

( 2) ( 2) ( 2) , (26)

c
A B

n

n n

n

n n

n n

n n n n

1,1

1,1 1, 1,

0

1, ,1,0 1, 1,0

0

1,0,1, 1,0 1,

0, 0

1, ,1, 1, 1,

A

A A

B

B B

A B

A B A B

where, for j=A orB, p j1, is the single-site probability offinding the total atomnumber =n 1j and θ−P ( )n1, j
is the

probability offinding a single plus-atom and −n j minus-atoms after a θ-pulse. The connection to the
corresponding joint probabilities is analogous to equation (25).

The signal πP ( 2)c
1,1 yields ρ↑↓R[ ]via

π ρ≈ ↑↓RP2 ¯ ( 2) [ ] (27)c
1,1

if the following two assumptions hold:

• B1The probability offinding a single atomon siteA is independent of the probability offinding a single atom
on siteB: ≈p p pA B1,1 1, 1, .

• B2There are no correlations in the sectors with local occupation number higher than one:
ρ ρ ρ≈ ⊗ˆ ˆ ˆ

A B
n n

A
n

B
n

,
,A B A B for > ∧ ⩾n n1 1A B or ⩾ ∧ >n n1 1A B .
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With ρ j
n j we refer to the single-site reduced density operator for site j projected onto local atomnumber nj (see

equation (10)).
We verified that assumptionB1 is justified for the systems considered in the simulations offigure 5: the

absolute error −p p pA B1,1 1, 1, is smaller than 10−2 and the relative error −p p p p( )A B1,1 1, 1, 1,1 is always lower than
2% for all the considered times (not shown). Theworst situation appears for μ ≠ U 2 and =k T U 10B . Similar
checks can be performed in other number sectors of the densitymatrix to verify assumptionB2. The explicit
computation of −p p pn n n n,A B A B, for instance, performed for themost relevant number sectors,

=n n( , ) (2, 1)A B ,(1, 2) and(2, 2), yields absolute values smaller than −2 · 10 2.
Amechanism that would violate these assumptions is the introduction of density–density correlations via

quantumfluctuations in the formof particle-hole pairs [40].However, these correlations are extremely small
beyond nearest-neighbor distances. A potential danger arises if the system is brought out of equilibrium, for
example, via a fast quench, which can induce longer-range density–density correlations [72]. This can be
avoided by a careful adjustment of the temporal changes to the lattice potential applied during the preparation of
the initial quantum state.

Additionally, there are experimental checks for the validity of equation (27), such as an observation of the
checkerboard pattern described in section 3.3 on a zero background signal, that is, π ≈P̄ ( 2) 0c

1,1 for even
distances. Further, the absence of density–density correlations can be checked using imagingwithout a push-out
pulse.

Based on equation (27)we can formulate a lower bound

ρ ρ

ρ π π

⩽

≑ −

( ) ( )
( )

G C

G P P P

¯ ˆ ,

¯ ˆ 4 ¯ ( 2) 2 ¯ (0) ¯ ( ) , (28)

c A B A B

c A B
c

, ,
1,1

, 1,1 1,1 1,1

which holds if the assumptionsB1 andB2 are fulfilled.

7.5. Influence of parity-projection
In the current experiments with single-site resolution, only the parity of the on-site occupation number can be
observed due to a pair-wise loss from light-assisted collisions [38, 39]. The parity-projection only occurs during
the actual detection of the remaining species but not during the push-out [25]. The observed probabilities after
push-out and subsequent parity projection are thus

∑θ θ=

= =

+ +

+ − + −

+ + + +

+ − + −P P˜ ( ) : ( ),n n

n n n n

n n n n

n n n n,

¯ , ¯ , ¯ , ¯

¯ mod , ¯ mod

¯ , ¯ , ¯ , ¯A B

A A B B

A A B B

A A B B

2 2

where <+ +n n, 2A B .
The additional terms that enter θP̃ ( )1,1 all stem from triply or higher occupied sites. These terms vanish ifA1

is fulfilled. Consequently, the bound (24) can still be usedwith parity-projection.
Similarly, parity-projection adds several terms to equation (26)which all vanish ifB2 holds. Therefore,

bound (28) also remains unaffected.

8. Conclusion and outlook

In conclusion, we proposed a scheme for detecting lower bounds for the concurrence of two sites of a lattice
many-body system, which could be used formeasuring spin-entanglement in quantummagnetism experiments
with coexisting spin and numberfluctuations.

Our analysis showed that a detection of the lower bounds should be possible in current high-resolution
imaging setups for quantumgases in optical lattices [24–26, 37–40] despite several technical limitations.
However, the schemewould simplify if full spin-resolutionwas achieved experimentally, and the bound (20)
could be used.

A possible solution for one-dimensional systems is to prepare a single chain of atoms and let the atoms
tunnel orthogonally to the chain before the detection. If amagnetic field gradient is applied during the
orthogonal dynamics, atomswith positive and negativemagneticmoment would spatially separate. The spatial
separation could allow a detection of the local occupation numbers of both spin states in a single experimental
run. In this sense, an in situ Stern–Gerlach experiment could be realizedwith full spatial resolution along the
one-dimensional chain. Such a scheme could also be useful to detect the correlations induced by impurities in
strongly interacting superfluids, enabling the direct imaging of a polaron cloud [25].

Concerning the actual influence of on-site number fluctuations on spin-entanglement, we performed
numerical simulations of spin impurity dynamics in the one-dimensional Bose–Hubbardmodel. The effect of
quantumfluctuations within large parts of theMott insulating phase could be captured by a renormalized
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XX-spin dynamics normally only valid in the very deepMott insulating regime. A similar behavior results from
thermally activated numberfluctuations. Importantly, our simulations showed that the entanglement
generation and spreading survives for the temperatures and parameters of current experiments [25, 26]. Thus,
the application of the proposed detection technique for this type of experiment should be immediately possible.
More generally, the experimental detection of spin-entanglement inHubbardmodels realizedwith optical
lattices [21–28, 44] is nowwithin reach.
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