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Abstract

We derive experimentally measurable lower bounds for the two-site entanglement of the spin-degrees
of freedom of many-body systems with local particle-number fluctuations. Our method aims at
enabling the spatially resolved detection of spin-entanglement in Hubbard systems using high-resolu-
tion imaging in optical lattices. A possible application is the observation of entanglement generation
and spreading during spin impurity dynamics, for which we provide numerical simulations. More
generally, the scheme can simplify the entanglement detection in ion chains, Rydberg atoms, or simi-
lar atomic systems.

1. Introduction

The role of entanglement for the quantitative understanding of quantum many-body systems has been the topic
ofalarge number of theoretical studies [1-3]. In contrast, the experimental detection of entanglement in
quantum many-body systems is less developed, which currently hinders the establishment of more direct links
between experiments and theory. So far, entanglement witnesses have been extracted from macroscopic
properties or diffractive probes, such as magnetic susceptibilities [1, 4, 5], spin- or atom-number squeezing
parameters [6—9], or time-of-flight imaging [10, 11]. Further, experiments using controlled collisions in optical
lattices indicated the generation of entangled cluster states [12, 13]. However, these experiments did not access
the spatial dependence of entanglement measures which is crucial for observing some of the elementary
properties of entanglement in many-body systems, such as area laws [3] or the dynamical generation and
spreading of entanglement [1, 14, 15].

A candidate for establishing a direct experiment—theory connection are quantum spin systems [1-3, 16].
Such spin Hamiltonians can effectively describe the low-energy physics of certain materials [ 17-20], for which a
local detection of entanglement seems challenging. However, recent atomic physics realizations of quantum
spin systems, such as neutral atoms in optical lattices [21-28] and trapped ions [29-35], offer the possibility of a
local read-out of spin correlations.

Inion traps, such local detection of spin correlations and entanglement has been the standard for many years
but was mostly used in the context of quantum computing [36]. Only recently, these techniques were employed
to detect entanglement in a simulation of a spin system showing the first spatially resolved detection of
entanglement spreading after alocal quantum quench [34].

For quantum many-body systems in optical lattices, local detection of individual particles and their
correlations has only been demonstrated in the past few years using high-resolution microscopy [24-26, 37-40].
Proposals have been made to detect the Rényi entropy [15, 41-43] or the concurrence [44] with this technique
but no experiment has shown the spatially resolved detection of entanglement in such systems to date.

A key difference between quantum magnetism experiments in ion traps and optical lattices is that in the
latter, on-site number fluctuations coexist with spin fluctuations. The reason is that spin interactions in optical

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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lattices are typically generated via superexchange as a second-order process in the large interaction limit of
Hubbard models [21-23], where number fluctuations are suppressed but not absent.

Particularly in low dimensions, local number fluctuations can be sizable even at zero temperature [38, 40],
and additionally the currently achievable temperatures lead to thermal activation of defects [39]. In solids,
number fluctuations naturally arise through hole-doping of Mott insulators, leading to an effective description
in terms of t-] models [18].

For such systems, a detection of spin-entanglement must take the presence of occupation number
fluctuations into account. On the theoretical level, the distinction between entanglement in internal and number
degrees of freedom has been clarified in [45—47]. However, concrete experimental proposals for detecting the
entanglement between spins in quantum many-body systems of atoms with local particle-number fluctuations
are lacking (with the exception of [44]).

Here we propose an experimentally feasible scheme to detect spin-entanglement between two sites in the
presence of number fluctuations in Hubbard systems using single-atom- and single-site-resolved imaging of
atoms in optical lattices [37—39]. To this end, the key challenges are the current limitations in these setups,
namely the lack of arbitrary local spin rotations [48], the lack of full spin resolution [25], and the parity-
projection problem [38, 39]. Fully accounting for these restrictions, we derive detectable lower bounds for the
concurrence [49], an entanglement measure, of the spin-degree of subsystems consisting of two lattice sites. Our
method can be readily implemented in current high-resolution imaging setups for optical lattices without
technical modifications [24, 25, 37-40].

The scheme is immediately applicable to studying the entanglement generation and spreading during single
spin-impurity dynamics in one-dimensional Bose—Hubbard chains [25, 50, 51]. For this scenario, we provide
numerical simulations identifying a parameter range where such experiments could be performed.

While our focus is on spin-impurity dynamics, the method can be used in a broader context. For example, it
could be an important diagnostic tool in the current experimental search for antiferromagnetic order in the
fermionic Hubbard model realized with cold gases [52]. For ion trap implementations of quantum magnetism,
the bounds derived in section 3 could lead to a simplified detection of entanglement in impurity dynamics [34]
or global quantum quenches [35] without the need for a full state reconstruction. Further, our results also apply
to experiments with Rydberg atoms in optical tweezers [53—57], where atom number fluctuations can result
from trap loss. Finally, our method could be used to detect the entanglement in spatially ordered structures of
Rydberg excitations in optical lattices [58].

The outline of the paper is as follows. In section 2, we give an introduction to entanglement generation and
spreading during single impurity dynamics in the nearest neighbor spin-1/2 XX-chain [50, 51]. The derivation
of lower bounds for the concurrence then follows in several steps taking into account the known experimental
limitations for high-resolution imaging of quantum gases in optical lattices. In section 3, we derive a lower
bound neglecting number fluctuations based only on global pulses in order to circumvent the lack of arbitrary
local spin rotations [48]. We then give a conceptual introduction to the detection of spin-entanglement in the
presence of number fluctuations in section 4, followed by a case study of spin impurity dynamics in the one-
dimensional Bose~Hubbard model in section 5. We extend the detection scheme to include number
fluctuations in section 6 assuming fully spin-resolved detection. In section 7, we account for the current inability
to detect two different spin states at once [25] and also treat the restriction to local parity imaging [38, 39]. We
finish with a conclusion and outlook section.

2. Entanglement during impurity dynamics in the XX-chain

To provide a concrete example and target application, we review the entanglement generation and spreading
during spin impurity dynamics in a spin-1/2 XX-chain [50, 51] with Hamiltonian
o= =2 (875704 $7087), 1)
i
where J,, is the exchange coupling and § ji = % (6] + i6]) are spin-1/2 raising (lowering) operators. With 6}
(a=x, y, z) we denote the Pauli operators applied to site j.

Hamiltonians of this type are important for describing recent experiments realizing spin-impurity dynamics
in one-dimensional Bose—Hubbard systems [25] and ion chains [34]. In the case of Hubbard systems, the spin-
description is precise only for a single spin impurity in the deep Mott insulating limit at zero temperature, where
on-site number fluctuations are strongly suppressed. We will come back to this point in more detail in section 5
and first neglect on-site number fluctuations. For the ion trap implementation, the correct description would be
along-range XX model instead of the nearest-neighbor Hamiltonian (1). Nonetheless, the following discussion
still applies to this case with a simple substitution as detailed below.
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Figure 1. (a) Density plot of the concurrence C (5  (t)) for the single spin impurity dynamics as a function of lattice sites A and B for
thx/ 7t = 0.2, 1, 3 (left, middle, right). (b) Concurrence C (p ;x,— 4 () for the single spin impurity dynamics evaluated at sites A, —A for
thu/72 = 3, 4, 5 (open circles, filled circles, open rectangles). Lines are shown as a guide for the eye. (c) Density plot of the lower bound
for the concurrence K (4 5 (t)) (see equation (9)) for the single spin impurity dynamics as a function of lattice sites A and B for
tJex/77 = 3. Note thatK (p ;’B (t)) = 0 for odd distances A—B, which results in a checkerboard pattern.

In the following, we will write a state with a single up-spin impurity on site j as
i) = | Vet bjmts 15 djart oo b2t >,

where L is the total number of sites, and| 1 ) (| | }) refers to up-spin (down-spin) states in the z-basis. As an
initial state, we choose a single up-spin impurity at the center of the chain|y;) = |j = 0). For an infinite chain
(L - o0), the time-evolution under Hamiltonian (1) leads to a spreading of this impurity according to

|wo) () = Yo 1ids 2)
j

with¢; = i']; (Jex t/72), where Jj(x) is the Bessel function of the first kind, s the evolution time, and 72 is the
reduced Planck constant. For the long-range XX model, which is relevant for ion chains, ¢; must be substituted
by a different function that can be calculated numerically [34].

For the experimental observation in a Hubbard system [25], the probability of finding the spin impurity on
site j after various evolution times was observed to be in quantitative agreement with equation (2). However, this
experiment did not quantify the correlations and entanglement between spins on different sites A and B. This
information is encoded in the two-site reduced density operator p jx,B (t) = Treapl|wy) (1) (wpy | (t) ], where the
trace runs over all sites but A and B. The superscript s stands for single spin-impurity. We find

0 0 0 0
0 |bs]” dats 0
Pas =10 gigy b’ 0 ©

2 2
0 0 0 1-|p] —|a
writing the two-site density matrix using basis states| 1, 1), | 1,1 ), | 4, 1), | |, | )forthe Aand Bsites.
For any state with a single impurity in an otherwise polarized background, the reduced two-site density matrix
has the structural form of p /i) 5 ().
The entanglement between sites A and B can be quantified with the concurrence C [49], a commonly used

bi-partite entanglement measure [59, 60]. The concurrence for a general bipartite pure state|y; , ) ina tensor
product H; ® H, of two finite-dimensional Hilbert spaces H;, H, can be defined as [61, 62]
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c(jma)) = 2 {malms) - 1¢(22)). @

where p; = Tr,(|y; ,) (¥ ,|) is the reduced density operator of subsystem 1. The concurrence defined in this way
can also be applied to subnormalized states.

The concurrence C (p, ,) of a bipartite mixed state j, , is defined via a convex roof construction [62] using
the infimum

C(ﬁl,z) = inf Zpic(‘¢i>) (5)

over all decompositions of j, , into pure states|¢; ): p, , = X, p; |;) (¢;| with p; > 0. Even if the global state
o) (¢) is pure, the reduced density operator p; , () is mixed. We are therefore dealing with a mixed bipartite
two spin-1/2 system.

Due to the X-matrix form of p 2, 5 (1), the concurrence can be easily calculated [63] (see equation (7)):

C(pis®) =2dats

>

aresult obtained earlier in [50, 51].
To obtain a better intuition for this outcome, we can restrict ourselves to sites with A = —B. In this case, the
two-site density matrix can be written as a mixture of a Bell-state| ¥ *) = % (1,4y+4,1yand| |, )

pioa® =2 ) (] (121010 L

Therefore, the concurrence amounts to the probability of finding the system in the Bell state.
WeshowC (p, 5(1)) for various times and sites A and B in figures 1(a) and (b), which illustrates how
entanglement is generated and spreads in a wave-like fashion during the impurity dynamics.

3. Scheme for spin-1/2 systems

Experimentally, we are facing the problem of detecting the concurrence of an unknown two-site density matrix
P a5 that might be close to but not necessarily equal to p; ; due to experimental imperfections. Detecting the
concurrence of an unknown state is possible using a full state tomography. For two spin-1/2 systems, a full state
tomography can be achieved by measuring all nine combinations of Pauli operators (6$ 6/ Y witha, f = x, y
and z [64]. We assume that the final measurement is always performed in the z-basis, for example, by reading out
the populations of two atomic energy levels that encode the spin-1/2 system.

A measurement in a different basis is possible by applying pulses that rotate the individual spins before the
measurement. A pulse on a single spin on site j can be represented with a unitary operator

. cos (8/2) ie'? sin (0/2)
RO, ¢); = ) 6
© 9); ie7% sin (8/2)  cos (6/2) (®)

writteninthe| 1 ), | J )basis. For example, a measurement in the x-basis can be realized by a
0 = n/2, ¢ = —n/2 pulse because &j" = R(x/2, —ﬂ/z);éjzl@ (=/2, —7/2);.

For the following discussion, it is important to distinguish pulses on individual spins, which allow for the
measurement of (6§ 6/ ) for all combinations @, # = x, y and z, and global pulses on both spins, which restrict
the measurements to equal axesa = f5.

Pulses on individual spins arranged in a chain are commonly employed in ion trap implementations. For
example, in [34], the authors show the detection of the concurrence generated during spin impurity dynamics in
along-range XX model using a full state tomography.

However, for optical-lattice implementations of spin-systems using Hubbard models, only§ = z pulses on
individual atoms have been demonstrated using a rapid adiabatic passage [48]. Pulses on individual atoms with
arbitrary 6, ¢ require improved experimental control and are yet to be implemented. This currently restricts the
detection to elements (6 %6/ ) witha = f8. Therefore, we now present a simplified scheme for the detection ofa
lower bound for the concurrence using only global pulses.

3.1. Bound for global pulses with controlled ¢
The first step in deriving the bound is to split the unknown two-site density matrix into an X- and O-part
according to
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/3A,B=X+O
with

By 0 0 py

0 Ay py O

0 py By O

piy 0 0 By

A

andO = Pap — X.
Knowledge of only the X-part is sufficient to detect a lower bound for the concurrence because [65, 66]:
C(X) <C(pas)-

The concurrence for density matrices in X-form is given by [63]

/’M| - VPR |/’N‘ ‘\/W)' (7)

C(X) = 2 max (0,

Because

Py = i(<0AB> + (eta) +i((ex68) + (6267)))s

wehaveﬂ(&jf&g) +(6164)| < |p;, | Thus, we find the lower bound
Ly e A ya R
2( [(6365) + @3] - JFET ) < C(pas) ®)

which only requires global pulses for the detection of (6} 63 ) and (6} 64 ). The probabilities for having both
spins up, B, and both spins down, P |, can be detected in the z-basis without pulse before the measurement.

3.2. Bound for global pulses with undetermined phase ¢

The phase ¢ of the applied pulse is difficult to control experimentally. For the case of the impurity dynamics
detailed above, controlling the phase ¢ would require having a defined phase of the applied field for the pulse
relative to the starting time of the dynamics. This is difficult to reach for the implementation in [25] because the
spin dynamics occurs in the tens of hertz regime, while the applied pulses are in the gigahertz regime. We will
assume that the pulses are not phase-locked to the starting point of the dynamics. In this case, ¢ is essentially
random. All observables after a global pulse with # are then effectively described by an equal statistical mixture
over all angles ¢ described by a density matrix [57]

. 1 2z .
Pap(0) = P A dep p 456, @),
where
Pap(0, §) = RO, $)aR©O, §)sp 4RO, P)ERO, $))y

is the two-site density matrix after a global pulse with angles # and ¢.
Let us denote the average value of 6 ; 65 after a global pulse with @ = /2 and random ¢ by (6% 65 ) /2. Then,
we have

(0F08)en = Tr|pap(n/2)656%

Lyaxn Ay a
= 5 ((x65) + (s267))
2
where we used the invariance of the trace under cyclic permutation in the second line. Therefore, a measurement

after a global 7/2 pulse with random ¢ corresponds to a measurement of the mean of (6 67 ) and (6, 6} ).
The bound (8) can then be rewritten as

K(ﬁA,B) = 2(% - m) < C(ﬁA,B)- (9)

Importantly, a detection of K 4 5 only requires measurements with and without a global 7/2 pulse (with random
phase ¢), which simplifies the experimental effort dramatically as compared to a full state reconstruction.

(6468 sy
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3.3. Quality of the bound for the case of single-spin dynamics
An important question is how tight the bound (9) is for the case of single-impurity dynamics detailed in
section 2. Using equation (3), we find that

. Clp; if A — B even,
(o) 00

0 if A— B odd.
The reason for this behavior is that spins at even distances have a parallel alignment in the x — y plane in the sense
that|(6165 )| = |(6164)| > 0and|(616%)| = [(646L)| = 0.In contrast, for odd distances, the spins have a
perpendicular alignment,|[(6165 )| = |(616})| = 0and|[(616% )| = [(6)65)| > 0.

This even—odd behavior leads to a peculiar checkerboard patternif K (4 ;) is plotted as a function of A and
B (figure 1(c)). While the fact that K (5 j‘, 3) = 0 for odd distances is a disadvantage on first glance, this
checkerboard pattern can serve as an experimental signature on top of noisy experimental data.

Without going into detail, we note that by applying a magnetic field gradient before the detection, the off-
diagonal element p; | acquires a time-dependent complex phase-factor. Tuning this phase to 7/2 changes the
parallel alignment of the spins into perpendicular alignment and vice versa. As a result, the measured bound
would be tight for odd distances and zero for even distances. Using this technique, a tight bound can be achieved
for all pairs of spins.

4. Spin-entanglement in the presence of atom number fluctuations

Quantum magnetism experiments in optical lattices are typically performed using mixtures of atoms in two
different hyperfine states [21-23, 25-28]. The local on-site states can be written as|n;*, n,”), wheren;" and n;”
are the number of atoms in the two hyperfine states on site I. The state of the whole system can be expanded in
basis states Hl |n;", n;7). Wealso introduce a notation for the total atom number on site lasn; = n;" + n;".
The connection to spin systems is obtained using the Schwinger representation (see, e.g., [67]), which maps the
on-site states to a total spin j; system with spin-projection m; defined as

. _nl++nl_ _nl+—nl

U 5 > M= 5
We will also use the notation|j;, m;) = |n;", n7).

In the large-interaction limit of Hubbard models, the dynamics in subsectors with fixed j, = 1/2 is governed
by XXZ models [21, 22]. However, due to the finite temperature of the samples [38, 40] and quantum
fluctuations [39], number fluctuations are introduced into the system. This results in contributions of on-site
states that map to different j, # 1/2.

We are facing a situation where both spin fluctuations (i.e., fluctuations of m; for a fixed j;) and number
fluctuations (i.e., fluctuations of j;) are present in the system. It is both experimentally and conceptually
interesting to ask whether entanglement between the spin-projection degree of freedom is detectable in this
scenario.

Again, we consider a subsystem consisting of two sites A and B, for which the reduced density operator now
also includes contributions from different occupation numbers:

A P .7 /ANy ’ . .
pA,B = Z plamnlpms ]A’ mA’]B’ mB> <]A’ mA)]B) mB‘

|- ja-mA,jg.mB
Jasinse--
— I B R + o= =
= Z priazpagag |y, Ny, g, Np > <”A’ N, g, Np |:
neat nfingngng
it

where we used the Schwinger and occupation number notation in the first and second line, respectively.

4.1. Entanglement of particles
First, we are dealing with the question of how to conceptually differentiate the entanglement in the spin degree of
freedom from entanglement that stems from different total local occupation numbers [45-47]. For example,
superpositions of states with different local atom numbers, such as % (|1, 0,0,0) + 0,0, 1, 0))
(corresponding to a single plus atom in a superposition between site A and B), should not appear entangled.

An appropriate procedure to achieve this goal is to first project onto states with fixed local atom numbers.
To this end, we define projected two-site operators [44, 46]

ANA ATNB A ANA A TNB

ﬁ::gnb’ ZHA HB pA,BHA HB N (10)
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where

ﬁlm = Z‘]l =mn/2, ml><jl = nl/z, ml|

mi

is the projection operator at site  onto local total atom number n; = n;* + n;”, or, in the Schwinger notation,
onto local total spin j, = /2.

The entanglement in the spin degree of freedom can then be captured by the so-called entanglement of
particles [45, 46]

Ep(pap)= 2 p"mC(pay Ip"am)
nanp

= > c(piy”), (11)

nanp

where we used the concurrence Cas an entanglement measure, and
nanA =~ A ANB
p = Tr [/’ AL ]

is the probability of finding the system with 7,4 atoms on A and ngatoms on B.

In the first line of (11), the concurrence is evaluated with the normalized state p )4 /p"+"#. The second line

A 1aNB

follows from the definition (5) of the concurrence applied to the subnormalized operator p )

Atrivial lower bound for E, (5, ) is
C(#1) < Ep(hasn) (12)

The projected operator P}a}a describes the subsector with unity filling on both sites, that is, with local total spin
j; = 1/2 onboth sites. We will refer to this as the spin-1/2 sector in the following.

Our goal is to formulate a detectable lower bound for the entanglement contained in the spin-1/2 sector
quantified by the concurrence C (p /1;’,}3 ), which can eventually be used to bound the entanglement of particles via
the previous inequality.

4.2. Simplified spin-1/2 notation
For the following sections, we will introduce a shorthand notation for the density matrix elements in the spin-
1/2 sector based on the Schwinger notation:

ma,mp —
prioTE

[ !’1——1 2,ma,jp=1/2,mp
A > 5 > *
N A J / JB /

jA:l/Z,mA,jA:l/Z,mg

Instead of the cumbersome notation with i%, we will use 1 and | for spin up and spin down. For example
pTl« = pmA=1/2,mB=—1/2

my=—1/2,mp=1/2

and

. 1 . 1 1
|T’l>:]A:E’mA= )]Bzz)mBz__>- (13)

5. Case study: entanglement during spin-impurity dynamics in the Bose-Hubbard model

To illustrate these concepts and to investigate the influence of number fluctuations, we carried out a case study
by numerically simulating the dynamics of a mobile spin impurity in the one-dimensional two-species Bose—
Hubbard model:

HBH = _]Z(l;zj,jl;ﬁ,j+l + hC) + % Z I’Al,;’]'(ﬂa',j - 50,5'). (14)

0,j 6,0',j

Hereb ;E) is the operator that annihilates (creates) aboson of species 6 = {+,—} atsitej, J is the hopping
amplitude and U the interaction strength. Note that for simplicity the inter- and intra-species interaction
parameters are taken to be equal, although in usual alkaline gases they assume slightly different values.

InthelimitU > Jat Nt + N~ = L (N is the total atom number of the respective species), the system is in
a Mott phase with one particle per site, where charge degrees of freedom are frozen, but internal ones are not.
They can be described with an XXZ Hamiltonian via second-order perturbation theory [21, 22]:

7
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time (i U/J?)

Figure 2. Concurrence C (ﬁj\: }3) for the subsector with a single particle per site for the sites A= 1 and B = —1as a function of time for

several values of U/J computed with TEBD (for markers and colors, see the legend). The x-axis is rescaled by the typical spin exchange
coupling J2/U . The prediction for the XX model from equation (2) rescaled by p"! (+ = 0) is shown as solid lines in the same colors as
the respective numerical data. Inset: the same data as the main plot with x-axis rescaled by the hopping J.

where J., = 4/%/U. Thelocalstates| 1 Yand| | ) upon which the spin-1/2 operators S ]-i actare identified with the
states|nt = 0, n~ = 1)and|n* = 1, n~ = 0), respectively, using the Schwinger representation (see section 4). For
the case of a single spin impurity in an otherwise polarized chain, the last term of
Hyxy is onlya constant offset, and the dynamics are described by the XX Hamiltonian Hyy as discussed in section 2.
Due to on-site number fluctuations, this mapping can break down in experimentally relevant parameter
ranges. We consider two possibilities in the following. First, for stronger hopping J, significant quantum
fluctuations of the on-site particle number are introduced in the form of correlated particle-hole pairs [40] even
at zero temperature. One of the open questions here is up to which dimensionless hopping strength J/U the spin
description holds. Second, at finite temperature, thermally excited defects can lead to a break down of the spin-
description even for values of J/U where the XXZ model would be a very good approximation at zero
temperature. In this case, a crucial question concerns the temperature range in which an observation of spin-
entanglement is experimentally feasible.

5.1. Influence of quantum fluctuations

To investigate the influence of quantum fluctuations, we studied the situationU 2> ], where the systemisina
Mott insulating phase but particle fluctuations are not negligible [40] using algorithms based on matrix product
states [68]. A system of size L = 30 is initialized in the ground state of Hamiltonian (14) in the sector where

N~ = Land N* = 0. Since we consider the regime 20 > U/J > 3.5, this corresponds to a Mott insulating phase
ofthec = —bosons in the thermodynamic limit [69].

We subsequently perform a spin flip for the central spin of the chain using the protocol:

[nt =0, n = 0)=9 — |0, 0)=9 and|0, n )9 = |1, n~ — 1);—o. With this protocol, we need to consider a
local Hilbert space that has to accommodate at most one o =+ boson per site, simplifying the numerical
simulation. For thec = — bosons, we truncate their local Hilbert space to four occupancies, with the further
constraint that there can be at most four particles per site (the state|1, 4);—, is thus discarded).

The system is then evolved in time with Hamiltonian (14) using a time-evolving block decimation algorithm
(TEBD) [70]. During the time-evolution the maximal allowed bond link is D = 3000.

In figure 2, we show the concurrence C (ﬁj{,g ) for the subsector with a single particle per site for the sites
A=+ and B = —1asafunction of time for several values of U/J . Oscillations have a clear U/J? period, which is
the time-scale associated with the typical energy scale of spin dynamics J. A clear decrease of the maximum
concurrence for lower Uis visible.

One reason for this decrease is that for lower U, the probability p"! to find a single particle per site is reduced,
which corresponds to a reduced trace of pig To check for this effect, we compare the dynamics to the prediction
from equation (2) for the XX model rescaled by p"! (t = 0). The curves for the rescaled XX dynamics are shown
in figure 2 as solid lines. For U/J 2 8, the dynamics appears to be well described by the rescaled XX predictions,
indicating that effective spin dynamics in the sector with one particle per site are undisturbed by the presence
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Figure 3. Time evolution of \/R | B, ; (blue circles) and |p,, | (green squares) for different values of U /] computed with TEBD. For
lower U/J, the two quantities start to deviate, signaling a decoherence process due to quantum fluctuations.
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Figure 4. Global measure of entanglement, C2 (¢), for several values of U/]J . Solid lines show the rescaled XX prediction.

of number fluctuations. For lower U/J, the concurrence C (p j‘”; ) is smaller than predicted by the rescaled
solution.

We now inspect the reduced density operator pi}s more closely by comparing the quantities m and
|p;, |, which are equal in the spin case (see equation (3)). The equality of both quantities signals fully coherent
dynamics. In figure 3, we show the time evolution of both quantities for several values of U/J . Interestingly, the
two quantities take similar values down toU/J ~ 6. The fact that we observe|p; | < /B, P, 1 for lower values of
U/J canbe interpreted as effective decoherence dynamics.

Finally, we consider a global measure of entanglement in the system by investigating the sum of the squared
concurrences:

() = Y (p o).

ij

The motivation for summing over the square of the concurrences stems from the monogamy inequality [71],
which holds for spin-1/2 systems. For the ideal spin dynamics in the XX Hamiltonian,
C2(t) = 4(1 = X,|p4(t)*) — 4 forlongtimes.

In figure 4, we show C? (¢) for several values of U/J. ForU/] 2 8,C?(t) increases with time, and the
prediction of the XX chain weighted with the probability p"! (£ = 0) (solid lines) captures the behavior. For
smaller U/J, stronger deviations are visible, which indicates decoherence.
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Figure 5. Concurrence C (ﬁi:g) for the subsector with a single particle per site for the sites A =+ 1and B = —1 as a function of time for

several values of temperature T (for markers and colors, see the legend) and chemical potentials 4 = U/4,U/2 and3U/4 (from leftto
right panels). The thin solid lines represent the prediction of the XX spin model rescaled by p>! (t = 0).

5.2. The influence of thermal fluctuations

We now turn to the effects of number fluctuations introduced by a finite temperature and a chemical potential.
In order to single out these effects, the hopping strength is set to ] = 20U, for which the dynamics at zero
temperature is well captured by the XX prediction as shown in the previous section. To this end, we performed
exact diagonalization of a system of size L = 6 and included only the lowest-energy part of the Hilbert space. As
the hopping of particles is only a small perturbation, we consider only Fock states with an interaction energy
smaller than a given energy cutoff: (U/2)(} 7, (fisj — 84,6')) < E.. The system is initialized in the grand
canonical ensemble of 6 = —bosons with temperatures inarange T = 0—0.1U/kg (kp, Boltzmann constant)
and chemical potentials in arange y = 0.25U—0.75U. We perform the same flip protocol as in the previous
section and let the system evolve in time with Hamiltonian Hgyy (14). The simulation includes a total number of
particles N,o = (Nt + N7) € [4, 8]and the cutoffenergyis E. = 3U + pu (Nt — L). Convergence of the
simulations upon inclusion of more particle sectors and more states has been verified and an error on the order
of a few percent is estimated, which is better than the expected experimental precision. In order to test the
influence of the relatively small size of L = 6 on the time-evolution, we compared the zero-temperature
concurrence spreading at L = 6 with the spreading at L = 30 with the TEBD (see the previous section). We find
thatuntil timet ~ 0.5%4U/J?, the two predictions agree within a few percent. Even if finite-size corrections are
expected to be more significant at higher temperatures (we compared the data with those at L = 5, not shown),
the data in figure 5 should be sufficiently accurate to predict the behavior of typical experimental systems with
L = 15-20 within a few percent.

In figure 5, we show the concurrence C (/3_1’11, 1 ) for chemical potentials u = 0.25U, 0.5U, 0.75U and several
values of the temperature T. For increasing temperatures the signal drops. This reduction with temperature is
relatively small at 4 = 0.5U compared with the other two chemical potential values. This can be attributed to the
fact that the gap to excited states is largest, and thermal excitations are thus suppressed, at 4 = 0.5U in the limit
J/U = 0 [39]. This statement holds in approximate form also for /U = 1/20. Additionally, the effect of an
increase of the chemical potential from the optimal value y ~ 0.5U to u = 0.75U is more damaging to the
entanglement than a decrease to y = 0.25U (compare left and right plot in figure 5). This dependence on the
chemical potential highlights the importance of tuning the chemical potential at the center of a trapped system to
u = 0.5U.

Similar to the case of quantum fluctuations, we check whether decreased concurrence can be ascribed to the
reduced population of the single-occupancy sector. The solid lines in figure 5 represent the prediction of the XX
model rescaled by p">! (t = 0). Whereas the XX model captures the features of the entanglement dynamics for
low temperatures and for y = 0.5U, it fails at the highest temperatures considered.

Concluding, we provided evidence that the entanglement propagation scheme previously described can be
carried out in a realistic parameter range for experiments. For current temperatures of T = 0.1U/kg [25, 39],a
drop of the concurrence signal by maximally a factor of two compared to the zero temperature situation is to be
expected due to number fluctuations introduced by finite temperature in the grand canonical ensemble.
Therefore, the signal should be strong enough to be experimentally detectable.

6. Scheme in the presence of number fluctuations assuming full spin-resolution

We now turn to the description of an entanglement detection scheme for alower bound of the concurrence

C (p)}). In this section, we assume that the measurement can be performed with full spin-resolution, that is, the

individual populations #* of both species can be detected in a single experimental run.
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6.1. Observable with full spin-resolution

Restricting ourselves to global pulses, the most general observable, in this case, is the joint probability of finding
nz atoms of species + on site A, and nj atoms of species + on site B after a global pulse with angles 6 and ¢. This
probability can be written in terms of the diagonals

Putnining 0, ¢) = putinining (0, @)

n},ng,ng,ng
of the reduced density operator
Pas (O 9) = RO, $)aRO, s, 5RO, PERO, P,

after the global pulse with angles @ and ¢.
The rotation operator R(6, ¢); is a generalization of the spin-1/2 rotation (6) to arbitrary local total spins ji. It
can be obtained using the transformation of the creation operators 4;', for species + onsite /

a0, ¢), = cos (0/2)a)), + ie ™ sin (0/2)a,_
a(o, ¢)Z_ = iel® sin (H/Z)élljﬁr + cos (6/2)&;_,
which yields the mapping
" ji+mi (o 1=
(a0, )L4)" " (a0, ) )"

RO O JG+miyG = m!

|0y, (16)

jz’ ml> =

for the basis states|j;, #1;) [67].

6.2. Observable for random phase ¢
As discussed in section 3.2, the phase ¢ of the global pulse is assumed to be random. Therefore, we consider an
averaged density operator

. R Y
pas(®) = — [T dhpus0. ),
2z Jo
and the experimentally observed probabilities are
. 1 2
Putnining (0) = — f dep Put nzning (6, @).
2 Jo

Additionally, we are interested in the probabilities p”+" for observing the total atom numbers 14 and ng. They
can be detected by summing over P+ .~ ,+ ,— (0) with the constraint that ni+n; =nyandng + ny = ng:

A>

P"A’nB = z Pn,}',n;,ng,ng (0). (17)

+ o=t =
NN ,NE,NE

ni+ny=nanp+ng=ng

6.3. Lower bound
We will now derive a lower bound for the concurrence of p*! using the probability

B2 (0) := Pyt ni=0np=1,n5=0(0) (18)

of finding a spin-up atom on each of the sites A and B. The reason for focusing on B ; (6) will become apparent in
section 7.2. Using the rotation formula, we find the important result

VLN
PT)T(IZ'/Z)— 1 +2m[pﬂ], (19)

where R denotes the real part. The key point is that one can still detect R [p, ] in the presence of number
fluctuations using

pl,l
iﬁ[pm] = Z(PT’T(II/Z) - T]

11
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With the same reasoning as in section 3, we find the lower bound for the concurrence in the spin-1/2 sector

G(pan) < Cokh),

1,1

T p>
P - ==
o(5)-2

7. The scheme in the presence of number fluctuations without full spin-resolution

-2./P1(0)B 1 (). (20)

G(has) = 4

7.1. Observable

Current implementations of single-site resolved imaging in optical lattices do not resolve the individual atom
numbers of both species [25]. Instead, the procedure is to push out one of the species using a resonant pulse and
to detect the remaining atoms. For concreteness, we assume that the minus component is pushed out. The
observed probability for the atom numbersn, nj of the remaining plus-atoms is then

pnx,ng (9) = z an,nx,ng,ng (9) (21)

ny,ng

The detected signal therefore mixes contributions from different minus-atom numbers.

In addition to the probabilities after push-out, one can also simply image without push-out pulse. The
observed probability thus corresponds to measuring the probability p”+"s for the total atom numbersny, np
according to equation (17).

7.2. Analysis of the problem
Akey obstacle for formulating alower bound without spin-resolution is to extract R [p; | ] from the detected
signal P, .+ (0). For deriving bounds for the concurrence, we will use B ; (8), which does not contain a signal
from empty lattice sites. Writing out equation (21), we find

pi!

_ 1
R, (m/2)= Em[ﬂu] T

+ Z BRouzi0(m/2) + Z Bo,1,n; (7/2)
nx>0 ng>0

+ D Bupie (n/2). (22)

ny>0,ng>0

Using the rotation formula (16), we can express the unwanted contributions in the second and third line in
terms of probabilities before the rotation pulse, P, .7, n,n; (0). We obtain that they involve only states with at
least one of the sites occupied by two or more atoms of the same species.

Consequently, these terms vanish for fermionic atoms in a single-band Hubbard model [52]. A suppression
of doubly occupied sites for bosons is possible if the local chemical potential i in optical-lattice experiments is
tuned to lower values (0 < p S 0.5U) at the expense of increasing the probability for holes [39]. Further, for
experiments with Rydberg atoms in optical tweezers [53—57], the filling of the traps is typically only zero or one.

In these situations, the terms in the second and third line of equation (22) vanish and the bound (20) can still
be used without full spin resolution. For situations when doubly occupied sites of the same species cannot be
neglected, modified bounds can be found by making certain assumptions on p, 5. We outline two methods in
the following sections.

7.3.Lower bound based on subtraction of 1/4
A modified version of the bound (20) can be derived, using the following assumptions:

e Al The probability of finding sites occupied by three or more atoms before applying the pulse is negligible:
Puinzataz(0) = 0ifny + ny = 3orng + ng = 3.

o A2 There is no probability for a state with two minus-atoms on A and two plus-atoms on B and for a state with
two plus-atoms on A and two minus-atoms on B: Py, +—o, u1=2,nt=2,n5=0 ~® 05 Put=2.n7=0,nf=0,n;=2 = 0.

Assumption A1 is well fulfilled in the deep Mott-insulating regime of the Bose~Hubbard model at unity
average filling for realistic experimental temperatures T = 0.1U [25, 39]. A close inspection of this quantity for
the setups considered in the simulations of figure 5 shows that the probability of having more than two atoms per
sites is lower than 107 for all the temperatures and chemical-potentials considered (not shown). Concerning
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A2: for the data in figure 5, at chemical potential 4 = 0.5U for all considered temperatures, the joint probability
of having both sites doubly occupied (independent of the spin) is of order 10~ for all times. The number rises to
10~ for a chemical potential of 4 = 0.75U and the largest temperature T = 0.1U, which can be still safely
neglected. Hence, assumption A2 is typically valid.

Let us now show that assumptions A1 and A2 imply the following bound:

2 Raar2) - 1) < Ripy . (23)

Using A1, one can approximate
R (7/2) = By(x/2) + R1,1,0(7/2) + Bo1,1(7/2) + B1,1,1(7/2),

which can be further bound using thatR | | o (7/2) < p"“?/4 and similarlyforR o, ,(z/2)and R , ; 1 (x/2). Note
that for thebound on B ; ; ; (#/2) one needs to apply A2. Bound (23) follows from

pbt+ ph? + p®! + p*? < 1. Usingthe factthat R ; (0) > P ; (0)and B 1 (z) > B (0), wearriveata
corresponding bound

Gy (ﬁA,B) <C (ﬁ:{,}a)’
Gy (Pas) = 4(1?,1(::/2) E i) — 2 JB1(0)R, (7). (24)

The bound (24) works with rather weak assumptions but is not particularly tight. The reason is that the
subtraction of i instead of the appropriate quantity leads to the definition of a quantity which may even
take negative values.

7.4. Lower bound based on correlations
Therefore, we derive an improved bound compared to equation (24) based on evaluating the quantity

Pf,l(a) = 3,1(9) - H,A (9)131,3 ),

where B ; (0) are the single-site probabilities for observing a single up-spin atom on site j = A or Bafter push-out
of the minus-component. They are related to the joint probability P,,+ .+ (6) via

BA(0)=) R, (0),

ngp

Rp(0)= Y P, (0). (25)

na

The subscript ¢ for P{| (0) stands for connected because Py, (§) resembles the form of a connected correlation
function.
Using equation (19), we find

) 1 L1 _ 1,AnLB
Py (x/2)= SR lpy ] + % + Y (Runo(@/2) = Rz (x/2)Ro(x/2))

nx>0

+ 3 (Roms (7/2) = Bo(2/2) R (2/2))

ng>0
+ Y (Rupins (2/2) = Rz (2/2)R 5 (/2)), (26)
nx>0,n5>0

where, for j= A or B, p"/ is the single-site probability of finding the total atom numbern; = 1and R,u; (0)isthe
probability of finding a single plus-atom and n;” minus-atoms after a 0-pulse. The connection to the
corresponding joint probabilities is analogous to equation (25).

Thesignal P, (z/2) yields R [p; ] via

2Plc,l(ﬂ'/z) ~ m[ﬂm] (27)
if the following two assumptions hold:
o B1 The probability of finding a single atom on site A is independent of the probability of finding a single atom
onsite B: pb! ~ ptAphB,

e B2 There are no correlations in the sectors with local occupation number higher than one:

ﬁ;ﬁ;"f‘ R Pt @ pyiforny > 1 Ang>lorny > 1Ang> 1.
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With p j"j we refer to the single-site reduced density operator for site j projected onto local atom number #; (see
equation (10)).

We verified that assumption B1 is justified for the systems considered in the simulations of figure 5: the
absolute error p! — p"Ap"B is smaller than 10> and the relative error (p>! — p"Ap"B)/pb1is always lower than
2% for all the considered times (not shown). The worst situation appears for u # U/2 andky T = U/10. Similar
checks can be performed in other number sectors of the density matrix to verify assumption B2. The explicit
computation of p"#"s — p"4p"s, for instance, performed for the most relevant number sectors,

(na, ng) = (2, 1),(1, 2) and(2, 2), yields absolute values smaller than2 - 1072,

A mechanism that would violate these assumptions is the introduction of density—density correlations via
quantum fluctuations in the form of particle-hole pairs [40]. However, these correlations are extremely small
beyond nearest-neighbor distances. A potential danger arises if the system is brought out of equilibrium, for
example, via a fast quench, which can induce longer-range density—density correlations [72]. This can be
avoided by a careful adjustment of the temporal changes to the lattice potential applied during the preparation of
the initial quantum state.

Additionally, there are experimental checks for the validity of equation (27), such as an observation of the
checkerboard pattern described in section 3.3 on a zero background signal, that s, P, (z/2) ~ 0 for even
distances. Further, the absence of density—density correlations can be checked using imaging without a push-out
pulse.

Based on equation (27) we can formulate a lower bound

Ge(has)<C(p4h):
Ge(pan) % 4| P51 (a2)| = 2B (O R (a), (28)

which holds if the assumptions B1 and B2 are fulfilled.

7.5. Influence of parity-projection
In the current experiments with single-site resolution, only the parity of the on-site occupation number can be
observed due to a pair-wise loss from light-assisted collisions [38, 39]. The parity-projection only occurs during
the actual detection of the remaining species but not during the push-out [25]. The observed probabilities after
push-out and subsequent parity projection are thus
Puzni @)= X Pupapata; (©),
g, igafy
iijmod,=n}, igmod,=nj

wheren?, nf < 2.

The additional terms that enter B ; (6) all stem from triply or higher occupied sites. These terms vanish if A1
is fulfilled. Consequently, the bound (24) can still be used with parity-projection.

Similarly, parity-projection adds several terms to equation (26) which all vanish if B2 holds. Therefore,
bound (28) also remains unaffected.

8. Conclusion and outlook

In conclusion, we proposed a scheme for detecting lower bounds for the concurrence of two sites of a lattice
many-body system, which could be used for measuring spin-entanglement in quantum magnetism experiments
with coexisting spin and number fluctuations.

Our analysis showed that a detection of the lower bounds should be possible in current high-resolution
imaging setups for quantum gases in optical lattices [24-26, 37-40] despite several technical limitations.
However, the scheme would simplify if full spin-resolution was achieved experimentally, and the bound (20)
could be used.

A possible solution for one-dimensional systems is to prepare a single chain of atoms and let the atoms
tunnel orthogonally to the chain before the detection. If a magnetic field gradient is applied during the
orthogonal dynamics, atoms with positive and negative magnetic moment would spatially separate. The spatial
separation could allow a detection of the local occupation numbers of both spin states in a single experimental
run. In this sense, an in situ Stern—Gerlach experiment could be realized with full spatial resolution along the
one-dimensional chain. Such a scheme could also be useful to detect the correlations induced by impurities in
strongly interacting superfluids, enabling the direct imaging of a polaron cloud [25].

Concerning the actual influence of on-site number fluctuations on spin-entanglement, we performed
numerical simulations of spin impurity dynamics in the one-dimensional Bose-Hubbard model. The effect of
quantum fluctuations within large parts of the Mott insulating phase could be captured by a renormalized
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XX-spin dynamics normally only valid in the very deep Mott insulating regime. A similar behavior results from
thermally activated number fluctuations. Importantly, our simulations showed that the entanglement
generation and spreading survives for the temperatures and parameters of current experiments [25, 26]. Thus,
the application of the proposed detection technique for this type of experiment should be immediately possible.
More generally, the experimental detection of spin-entanglement in Hubbard models realized with optical
lattices [21-28, 44] is now within reach.
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