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Abstract 14 

Arbuscular mycorrhizal fungi (AMF) are beneficial microrganisms which establish mutualistic symbioses with the roots 15 

of most food crops, improving plant performance, nutrient uptake and tolerance to biotic and abiotic stresses. A better 16 

understanding of the factors affecting AMF occurrence and diversity is fundamental to implement sustainable 17 

agricultural managements effectively profiting from beneficial plant symbionts. Here, we investigated AMF occurrence, 18 

diversity and community composition in the roots of apple trees from 21 orchards in South Tyrol, as affected by 19 

location, management (organic vs integrated) and altitude, by PCR cloning and sequencing and PCR-DGGE of partial 20 

18S rRNA gene. The screening of 448 clones from 21 clone libraries allowed the identification of 6 native AMF at the 21 

species level: Glomus indicum, Sclerocystis sinuosa, Funneliformis mosseae, Rhizoglomus irregulare, Septoglomus 22 

constrictus and Claroideoglomus lamellosum. The most abundant genera were represented by Glomus (29.7 % of the 23 

sequences), Paraglomus (19.4 %), Claroideoglomus (17.2 %), Sclerocystis (16.1 %) and Rhizoglomus (12.3 %). 24 

Septoglomus, Diversispora and Funneliformis sequences corresponded to less than 4 % of total sequences. Although the 25 

degree of root colonization was unaffected by treatments, ANOSIM analysis of PCR-DGGE clusters revealed 26 

significant differences in apple root AMF diversity between sites and agricultural managements. Species richness was 27 

significantly higher in organically managed orchards than in integrated ones. Our findings provide insights into 28 

important factors affecting native AMF communities of apple trees, which could be exploited in sustainable fruit 29 

production systems, where beneficial soil biota boost biogeochemical cycles, energy fluxes and crop productivity. 30 

 31 
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 34 

1. Introduction 35 

Soil microorganisms are essential elements of soil health, fertility and productivity in sustainable and organic farming 36 

systems, playing key roles in the completion of biogeochemical cycles and availability of mineral nutrients, carbon 37 

sequestration and soil structure improvement, pest and disease control (Pimentel et al., 1997). Arbuscular mycorrhizal 38 

(AM) fungi (AMF, Phylum Glomeromycota) are beneficial microorganisms establishing mutualistic symbioses with the 39 

roots of most food crops, including cereals, legumes and fruit plants, and improving plant performance, nutrient uptake 40 

and tolerance to biotic and abiotic stresses (Smith and Read, 2008). AMF are obligate biotrophs, obtaining sugars from 41 

their host plants while providing soil mineral nutrients - such as P, N, S, K, Ca, Fe, Cu and Zn - absorbed and 42 

translocated by means of large and ramified extraradical hyphal networks that spread from plant roots into the 43 

surrounding soil (Giovannetti et al., 2015). Moreover, AMF deliver important agroecosystem services, such as soil 44 

aggregation and carbon sequestration (Gianinazzi et al., 2010), and are considered important soil biological indicators 45 

(Creamer et al., 2016; Stone et al., 2016). AMF enhance plant performance and fitness also through the synergistic 46 

action of beneficial mycorrhizosphere bacteria, i.e. strictly associated to mycorrhizal hyphae, colonised roots and 47 

spores, which display multifunctional activities, from antibiotic, siderophores and indole acetic acid production to P-48 

solubilisation, phytate mineralization and N-fixation (Barea et al., 2002; Philippott et al., 2013; Agnolucci et al., 2015). 49 

Thus, AMF represent environmentally-friendly biofertilisers and biostimulants, as they reduce the need of chemical 50 

fertilizers and pesticides in sustainable food production systems (Rouphael et al., 2015). In addition, they contribute to 51 

the production of safe and high-quality food, positively affecting the synthesis of health-promoting secondary 52 

metabolites in food crops (Battini et al., 2016a, b). 53 

In spite of all the potential benefits of the symbiosis, AMF role has been often marginalised in agriculture. In 54 

field crops, several agronomic practices, such as continuous monocultures, deep ploughing, intensive fertiliser and 55 

pesticide use can decrease AMF occurrence, activity and diversity, often leading to a reduction of AMF benefits to crop 56 

production and soil quality (Douds and Millner, 1999; Jansa et al., 2003; Oehl et al., 2004, 2005b; Brito et al., 2012; 57 

Avio et al., 2013). Moreover, in fruit production the soil is usually replanted with the same tree species short after the 58 

preceding trees are removed. In organic farming systems, thanks to the fact that synthetic fertilizers, herbicides and 59 

pesticides are not applied, AMF diversity, activity and abundance have been reported to be higher than in conventional 60 

systems, supporting the view that AMF play a fundamental functional role in the maintenance of soil fertility and crop 61 



3 

 

production in low-input agroecosystems, compensating for the reduced use of agrochemicals (Mäder et al., 2002; Oehl 62 

et al., 2003, 2004; Gosling et al., 2006; Ryan and Tibbet, 2008; Mazzoncini et al., 2010; Verbruggen et al., 2010). 63 

Different strategies have been devised to increase the mycorrhizal potential of soils in sustainable agriculture: 64 

among them, the inoculation with non-native AMF (Jeffries et al., 2003; Gianinazzi and Vosatka, 2004) has proved 65 

effective in improving root colonization, plant biomass production and P uptake (Lekberg and Koide, 2005). However, 66 

such an approach involves high costs of production and application when utilised on a large scale, and raises concerns 67 

about potential negative impacts of non-native invasive AMF inoculants on the composition and structure of native 68 

AMF communities, possibly leading to biodiversity losses (Schwartz et al., 2006). A different approach focuses on the 69 

enhancement of native AMF by means of mycotrophic crops able to maintain or increase native mycorrhizal potential 70 

of soils and root colonization and growth of the subsequent crops (Kabir and Koide, 2002; Karasawa and Takebe, 2012; 71 

Lehman et al., 2012; Njeru et al., 2015, 2014). 72 

Little information is available on the impact of cultural practices on AMF occurrence, species richness and 73 

composition in apple crop production systems. Different orchard floor managements create different levels of soil 74 

disturbance and may therefore promote or depress AMF occurrence. Organic farming guidelines, for example, 75 

differently from conventional or integrated fruit production techniques (Kelderer, 2004), do not allow the use of 76 

chemical herbicides, but recommend, instead, the use of alternative techniques to manage the orchard floor by either 77 

superficial soil tillage, grass mowing or mulching. Similarly, while conventional and integrated management techniques 78 

allow the use of synthetic mineral fertilisers, organic farming guidelines recommend increasing soil fertility by 79 

enhancing soil organic matter. The use of straw mulches and compost have been reported to increase apple root 80 

colonisation, which was positively linked with soil pH and availability of P, K, Zn, Mn and C, suggesting that the 81 

relevant organic orchard floor management practices promoted functional AMF associations more effectively than 82 

conventional practices (Meyer et al., 2015). A recent work carried out using molecular methods showed that soil 83 

characteristics and farming systems affect AMF diversity and community composition in the roots of cultivated apple 84 

trees. In particular, a low soil available P content was associated with a higher AMF diversity in organically managed 85 

orchards, as compared with conventionally managed ones (Van Geel et al., 2015). In such a study, the native AMF 86 

colonizing apple roots were identified by 454-pyrosequencing of small subunit rRNA gene amplicons, with a taxonomic 87 

resolution at the family level. So far, the characterization of apple AMF communities at the species level has been 88 

performed only by conventional morphological methods, which show several shortfalls, mainly due to the use of spores 89 

extracted from the soil, whose integrity and quality may induce species misidentification (Cavallazzi et al., 2007; Miller 90 

et al., 1985; Purin et al., 2006). 91 
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Here we used two molecular methods, PCR-cloning and sequencing and PCR denaturating gradient gel 92 

electrophoresis (PCR-DGGE) of partial 18S rRNA gene to characterize AMF communities of apple roots at genus and 93 

species levels. We investigated AMF occurrence and diversity in the root systems of apple trees cultivated under 94 

organic and integrated management from 21 orchards in the South Tyrol province (Italy), one of the most important 95 

apple production districts in Europe, with more than 18,000 ha acreage and approx. 1 million tons apples harvested 96 

yearly (Dalla Via and Mantinger, 2012). Our data provide knowledge of the factors which affect AMF colonization and 97 

shape the native AMF community composition in apple roots, allowing the implementation of effective sustainable 98 

management strategies that take advantage from beneficial plant symbionts. 99 

 100 

2. Materials and Methods 101 

2.1. Soil and orchard management parameters 102 

The research was carried out in South Tyrol (Northern Italy). In May 2013, 21 commercial apple (Malus domestica 103 

Borkh) orchards located either in the municipalities of Terlano (46°31' 59" N, 11°14' 47" E) or in that of Lagundo (46° 104 

41  0  N, 11° 8  0  E) were randomly selected from a list provided by the local advisory service (The South Tyrolean 105 

Advisory Service for Fruit and Grape growing, Lana, Italy). This list included drip-irrigated apple orchards planted 106 

between 2007 and 2009, managed since planting following either the integrated fruit production (hereafter referred to as 107 

“integrated”) or the organic farming (hereafter referred to as “organic”) guidelines.  108 

In the municipality of Lagundo 3 organic and 3 integrated orchards were selected at low (298-334 m a.s.l.) and 109 

at high altitude (591-660 m a.s.l.) while in the municipality of Terlano 6 organic and 3 integrated orchards were selected 110 

at a low altitude (ranging from 243 to 299 m a.s.l.). Orchards were classified according to the area (Te, Terano; La, 111 

Lagundo), management (O, Organic; I, Integrated) and altitude (L, Low altitude; H, High altitude) (Fig. 1). 112 

The climate in area is warm temperate according to the Koppen-Geiger classification (Kottek et al., 2006). 113 

Average (1993 to 2013) climatic parameters are reported in Table 1. Average annual and maximum temperatures at 114 

high elevation were approx. 2 °C lower than at low elevation, while average minimum temperature was approx. 1 °C 115 

lower. Soils in the area are mainly sandy loam or loamy sand and are classified as Calcaric Cambisol according to the 116 

FAO Soil Taxonomy (IUSS Working Group WRB 2015) (Table 2). 117 

The trees were always grafted on the same clonal rootstock (M9, T337 strain) and belonged to one of the 118 

following varieties: Gala, Golden Delicious, Pinova, Modì and Red Delicious. Orchards were uniform in terms of 119 

training systems (spindle bush) and planting distances (approx. 3 m between rows and 1 m between trees along the 120 

row). Orchard floor management always included the presence of grassed alleys between rows (2.0 to 2.3 m wide) that 121 

were mowed 3-4 times per year, while in the 0.7-1.0 m soil strip along the tree row, soil management differed between 122 
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organic and integrated orchards (see below).The organic and integrated orchards differed both for the type of protection 123 

against aboveground pests and for soil management. In particular, in the organic orchards weed control was carried out 124 

through mechanical removal of weeds (approximately five times per year) and soil fertility was maintained only by the 125 

addition of organic fertilisers. In the integrated orchards, weed control in the soil strip under the trees was performed by 126 

spring and autumn application of glyphosate; mineral fertilizer supply was carried out according to the nutrient budget, 127 

considering expected yields of approximately 60 t ha-1 and soil fertility, in the following ranges, 30-80 kg N, 19-28 kg 128 

P, 71-155 kg K. 129 

 130 

2.2. Root, leaf and soil sampling  131 

In each orchard, root and leaf were samples from 6 randomly chosen trees from different rows, all located in the central 132 

part of the plot. Sampling was carried out between May 15th and June 6th, 2013. Six soil cores were collected at a depth 133 

of 10-30 cm and at approx. 20 cm distance from the trunk, using a split tube sample of 5 cm-diameter (Eijkelkamp 134 

Agrisearch Equipment, BV). Roots were gently cleaned from the soil and approx. 20 g of fine roots (<2 mm diam) per 135 

tree were collected and stored at 4 °C in polyethylene bags, to be successively analysed for mycorrhizal colonization. A 136 

single root sample per orchard was prepared for molecular analyses (100-125 mg each) pooling together root 137 

subsamples from the individual trees. Samples were stored at -20 °C, until processed. Soil samples were oven-dried at 138 

65 °C until constant weight and stored at room temperature until analysed. Ten leaves per tree (without petiols) were 139 

sampled from the 6th or the 7th nodes of one year-old shoots, oven-dried at 65 °C until constant weight and stored until 140 

analysed. 141 

 142 

2.3. Mycorrhizal colonization 143 

Mycorrhizal colonization was determined on 10 g thoroughly washed root samples. Roots were cleared with 10% KOH 144 

in a 80 °C water bath for 15 min and stained with Trypan blue in lactic acid (0.05 %) after 10 min in 2 % aqueous HCl. 145 

The percentage of AMF colonization was calculated from root samples from individual trees from each orchard using a 146 

dissecting microscope at x25 or x40 magnification and the gridline intersect method (Giovannetti and Mosse, 1980). 147 

 148 

2.4. Soil and leaf analysis 149 

With the exception of soil N and C concentration (performed by an elemental analyzer, Thermo Scientific), soil 150 

parameters were determined according to the methods of the Verband Deutscher Landwirtschaftlicher Untersuchungs- 151 

und Forschungsanstalten (VDLUFA, 1991). Leaf N concentration was determined by Elemental Analyser (Flash 2000, 152 

Thermo Scientific), while leaf K, Ca, P and magnesium (Mg) concentrations were determined by inductive coupled 153 
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plasma-optical emission spectrometry (ICP-OES, Spectro Ametek, Arcos and Spectro Ciros CCD) after microwave 154 

digestion (Milestone UltraWAVE) with 69 % of ultrapure nitric acid.  155 

 156 

2.5. Statistical analyses of soil, leaves and mycorrhizal colonization 157 

Data of mycorrhizal colonization (after angular transformation) and leaf mineral nutrient concentrations were analysed 158 

by two-way-ANOVA. The sub-dataset from Lagundo was used to assess the interactive effects of orchard management 159 

(organic vs. integrated) and orchard altitude (low vs. high). The sub-dataset obtained at low altitude was used to assess 160 

the interactive effects of orchard management (organic vs. integrated) and site (Terlano vs. Lagundo). Mycorrhizal 161 

colonization data were linearly correlated with soil parameters using the entire dataset. The coefficient of mycorrhizal 162 

colonization data variation (CV) within each farm was also calculated. The statistical analyses were conducted using the 163 

dedicated software SigmaPlot Centurion XV (StatPoint Technologies, Inc). 164 

 165 

2.6. Molecular analyses 166 

2.6.1. DNA extraction from roots 167 

Genomic DNA was isolated from root material by grinding with mortar and pestle in liquid nitrogen and subsequently 168 

using DNeasy Plant Mini Kit (Qiagen Milan, Italy), before performing cloning and sequencing analyses. Moreover, in 169 

order to obtain DNA containing less inhibitors possibly interfering with the amplification procedure of the PCR-DGGE 170 

technique, we extracted DNA from roots using the PowerSoilTM DNA Isolation Kit (MO BIO Laboratories, Solana 171 

beach, CA, USA). The isolated DNA was stored at -20 °C for subsequent analyses.  172 

 173 

2.6.2. Cloning and sequencing 174 

DNA (10-20 ng) extracted from roots was used as template. Partial small subunit (SSU) ribosomal RNA gene fragments 175 

were amplified in volumes of 25 µl with 0.125 U of GoTaq Flexi DNA Polymerase (Promega, Milan, Italy), 0.4 µM of 176 

each primer (NS31 ⁄AML2, Simon et al., 1992; Lee et al., 2008), 0.2 mM of each dNTP, 1.5 mM of MgCl2 and 1× 177 

manufacturer's reaction buffer. The thermal cycler (Eppendorf Mastercycler personal, Eppendorf, Milan, Italy) was 178 

programmed as follows: a manual “hot start” at 94 °C for 3 min, 30 cycles at 94 °C for 30 sec, 58 °C for 40 sec, 72 °C 179 

for 55 sec and a final extension step at 72 °C for 10 min. Reactions yields were estimated using a 1 % (w/v) agarose I 180 

(Euroclone, Milan, Italy) in TBE 1X buffer (Euroclone) gels stained with ethidium bromide (0.5 µg ml-1). 181 

NS31⁄AML2 amplicons from apple root samples were purified using Wizard® SV Gel and PCR Clean-up 182 

system (Promega), then ligated into pGem-T Easy vector (Promega) to transform XL10-Gold Ultracompetent 183 

Escherichia coli cells (Stratagene, La Jolla, CA, USA).  184 
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The structure and composition of the AM fungal communities were determined using PCR-RFLP screening of 185 

clone libraries. Putative positive clones were amplified by using standard SP6/T7 amplifications, followed by a nested 186 

PCR using NS31/AML2 primers as described above. Twenty-five amplicons per clone library were digested by HinfI 187 

and Hsp92II restriction enzymes (Promega) and run on 2 % agarose at costant 50 V for 2 h. A 100 bp DNA ladder 188 

(Promega) was used as a molecular weight marker. DNA profiles were visualized under UV illumination and captured 189 

as TIFF format file by Liscap program for Image Master VDS System (Pharmacia Biotech). 190 

A total of 448 clones were examined. Recombinant plasmids of representative clones of each RFLP pattern 191 

were purified by Wizard® Plus SV Minipreps (Promega) and sequenced using T7 vector primers at BMR Genomics 192 

s.r.l. (University of Padova, Italy). 193 

Sixty-nine unique sequences of the clones generated in this study have been deposited in EMBL Nucleotide 194 

Sequence Database (www.ebi.ac.uk/embl/) under the accession numbers from LT600783 to LT600851. 195 

 196 

2.6.3. PCR-DGGE analysis 197 

To analyse AMF communities by PCR-DGGE, a semi-nested PCR approach was used. Initially a 550 bp fragment of 198 

the 18S rRNA gene was amplified using the primer NS31 (Simon et al., 1992) in combination with the primer AM1 199 

(Helgason et al., 1998). Amplification reactions were performed in a final volume of 50 μl, using 10-20 ng of DNA, 5 200 

μl of 10X Ex Taq Buffer (Takara Biotechnology, Milan, Italy), 1.25U of TaKaRa Ex Taq (Takara Biotechnology), 0.2 201 

mM of each dNTP (Takara Biotechnology), 0.5 µM of each primer (Eurofins genomics, Milan, Italy) and an aliquot of 202 

0.3 µg µl-1 acetylated bovine serum albumin (BSA, Promega). PCR amplifications were carried out using an iCycler-iQ 203 

Multicolor Real-Time PCR Detection System (Bio-Rad, Milan, Italy) with the following conditions: 94 °C initial 204 

denaturation for 1 min; 35 amplification cycles of 30 s at 94 °C, 30 s at 66 °C, 30 s at 72 °C; final extension at 72 °C for 205 

5 min. The presence of amplicons was confirmed by electrophoresis in 1.5 % (w/v) agarose gels in TBE 1X buffer 206 

(Tris-borate-EDTA, pH 8.0), stained with 0.5 µg mL-1 ethidium bromide.  207 

Amplification products from the first PCR reaction were then diluted 1:10 and 1 µl was used as template in a 208 

second PCR using the NS31 and the Glo1 (Cornejo et al., 2004) primers. A GC clamp (5’-209 

CGCCCGGGGCGCGCCCCGGGCGGGGCGGGGGCACGGGGG -3’) was added to the 5’ end of the forward primer 210 

NS31. PCR amplifications were performed as previously described except for the addition of BSA and the annealing 211 

temperature of 52 °C. 212 

For the DGGE analysis, 20 μl of the PCR products plus 20 μl of buffer 2X made with 70 % glycerol, 0.05 % 213 

xylene cyanol and 0.05 % bromophenol blue, were separated in a 8 % polyacrylamide-bisacrilamide (37.5:1) gel with a 214 

35-56 % urea-formamide gradient, using the DCode™ Universal Mutation Detection System (Bio-Rad). A composite 215 
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mix of AMF 18S rRNA gene fragments from Funneliformis mossae AZ225C, Funneliformis coronatum IMA3 and 216 

Rhizoglomus intraradices IMA5 was added in the middle and at both ends of each gel as DGGE marker (M). Gels were 217 

run and profiles were visualized as described in Agnolucci et al. (2013).  218 

DGGE bands were excised from polyacrylamide gels and DNA was extracted by eluting in 50 µ l ddH2O at 219 

4°C overnight. One µL of the supernatant diluted 1:100 was used to re-amplify the 230 bp DNA fragment of the 18S 220 

rRNA gene according to the PCR protocol described above, except that the primer NS31 was used without GC clamp. 221 

PCR products were then purified by UltraClean PCR CleanUp Kit (MO-BIO Laboratories) according to the 222 

manufacturers’ protocol, quantified and 5’ sequenced at the BMR Genomics (Padova, Italy).  223 

 224 

2.7. Bioinformatics 225 

Sequences from E. coli libraries and DGGE bands were edited in MEGA 6.0 and their similarities were determined 226 

using the Basic Local Alignment Search Tool (BLASTn) provided by NCBI. The detection of chimeric sequences was 227 

performed using USEARCH 6.0 (http://fungene.cme.msu.edu/FunGenePipeline/chimera_check/form.spr). Sequences 228 

were aligned with those corresponding to the closest matches from GenBank as well as with sequences from major 229 

clades of Glomeromycota using MUSCLE as implemented in MEGA6. Phylogenetic trees were inferred by Neighbour-230 

joining analysis. The evolutionary distances were computed using the Maximum Composite Likelihood method. The 231 

confidence of branching was assessed using 1000 bootstrap resamplings.  232 

Richness and composition of AMF communities obtained from clone libraries were evaluated for each 233 

treatment. We determined the rarefaction curves with Past software to estimate whether the number of screened 234 

sequenced were sufficient to capture AMF diversity of each host. Estimates of community diversity were determined as 235 

Richness (S), bias-corrected Chao1 richness, Shannon-Weaver (Hs) and dominance index of Simpson (D). The indices 236 

were calculated using PAST 3.0 and 1000 bootstraps were used to determine confidence intervals. Non parametric 237 

Kruskal Wallis test was used to determine differences in the diversity indices among AMF communities in the roots of 238 

apple plants cultivated in the two sites (Terlano vs Lagundo), under different managements (organic vs integrated) and 239 

at different altitudes (low and high). AMF communities were also evaluated by permutational multivariate analysis of 240 

variance (PERMANOVA), to test the effect of the management (organic vs integrated), site and altitude. Non 241 

parametric tests and PERMANOVA were performed in SPSS version 20 software (IBM Corp., Armon, NY Inc, USA) 242 

and PAST 3.0, respectively.  243 

DGGE profiles were digitally processed with BioNumerics software version 7.5 (Applied Maths, St-Martens-244 

Latem, Belgium) following the manufacturer’s instructions. The lanes were normalized to contain the same amount of 245 

total signal after background subtraction and the gel images were straightened and aligned to give a densitometric 246 

http://fungene.cme.msu.edu/FunGenePipeline/chimera_check/form.spr
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curve. DGGE markers were used for digital gel normalization to allow comparison between gels. Bands were assigned 247 

using the auto search bands option and then checked manually and their positions were converted to Rf % values. All 248 

profiles were compared using the band matching tool with a position tolerance and optimization of 0.5 and 0 % 249 

respectively.  250 

Similarities between DGGE patterns were calculated by determining Dice’s similarity coefficients for the total 251 

number of lane patterns from the DGGE gel. The similarity coefficients were then used to generate the dendrogram 252 

utilizing the clustering method UPGMA (Unweighted Pair Group Method Using Arithmetic Average). DGGE profiles 253 

were also analysed using non-metric multidimensional scaling analysis (NMDS) performed from a data matrix based on 254 

presence/absence of bands (Bray-Curtis coefficient). The significance of data was assessed by the two way ANOSIM 255 

method (analysis of similarities; 999 permutations) (PAST 3.0) with geographical site (Terlano vs Lagundo) and 256 

management (organic vs integrated) as variability factors. Note that the stability index R describes the extent of 257 

similarity between each pair in the ANOSIM, with values close to unity indicating that the two groups are entirely 258 

separate and a value of zero indicating that there is no difference between the groups. 259 

DGGE banding data were used to estimate four different indices treating each band as an individual 260 

operational taxonomic unit (OTU). Richness (S) indicates the number of OTUs present in a sample and was determined 261 

from the number of fragments. The overall diversity index of Shannon-Weaver (Hs) and the dominance index of 262 

Simpson (D) were calculated using the equations Hs = -∑(Pi x lnPi) and D = ∑Pi
2 respectively, where the relative 263 

importance of each OTU is Pi = niN-1, and ni is the peak intensity of a band and N is the sum of all peak intensities in a 264 

lane. Evenness index (E), which allows the identification of dominant OTUs, was calculated as E = H (lnS)-1. Two-way 265 

ANOVA was applied to diversity indices with site (Terlano vs Lagundo) and management (organic vs integrated) as 266 

variability factors, after checking the normal distribution of data. One-way ANOVA was used for Lagundo diversity 267 

indices with management as the variability factor. The means were compared by the Tukey's test (P < 0.05). Analyses 268 

were carried out with the SPSS version 20 software.  269 

 270 

3. Results 271 

3.1. Soil fertility and mycorrhizal colonization 272 

Soils texture in the Lagundo area had either a silty loam or a sandy loam texture, while those in the Terlano area were 273 

either loamy or sandy loam. In general, as indicated by the standard error values (Table 2), there was a relatively low 274 

variability of N concentration among soils belonging to different treatments as well as within each treatment. All soils 275 

were well endowed with P and Mg, while soil K availability ranged from moderate-low to normal values. In Lagundo 276 

only, soils managed according to organic guidelines had higher pH (P=0.02), organic matter (OM) (P=0.01) and C 277 
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concentration (P=0.03) than those managed according to the integrated guidelines (Table 2). Soils at higher elevation 278 

also had higher soil OM (P=0.05) and soil C (P=0.06) than those at lower elevation (Table 2). When only data 279 

belonging to low elevation were analyzed, no significant differences in soil characteristics between the two orchard 280 

managements were detected. 281 

No significant effect of altitude and management was recorded on leaf nutrient concentration (Table 3). Leaf P 282 

and K were significantly higher (P=0.01 and 0.001, respectively) and leaf Mg significantly lower (P=0.02) in orchards 283 

located in Terlano than in Lagundo (Table 3). 284 

In all sampled orchards, apple roots were well colonized by AMF (Table 3). The percentage of colonized root 285 

length, ranging from 41 to 60 %, was not significantly affected by site, management and altitude. We did not find 286 

significant effects of treatments on the degree of mycorrhizal colonization variation among and within orchards (Table 287 

S1). The level of mycorrhizal colonization was not significantly correlated with most measured soil parameters, but a 288 

negative linear correlation with soil organic matter (r=-0.49, P=0.03) was found. 289 

 290 

3.2. Identification of native AMF colonizing apple roots 291 

The DNA extracted from apple roots was successfully amplified using the primer pair NS31/AML2, obtaining a 292 

fragment of the expected size (~550 bp). A total of 448 clones from the 21 clone libraries were screened by PCR-RFLP 293 

analysis, obtaining 19 different RFLP patterns. For each RFLP group several clones originating from different libraries 294 

were sequenced, giving 17 Glomeromycota sequences. All non-redundant sequences from the 21 clone libraries (69 out 295 

of 212) and 27 references from GenBank were used for neighbour-joining phylogenetic analyses (Fig. 2). After RFLPs, 296 

BLASTn and phylogenetic analyses the sequences were grouped into 17 OTUs supported by a bootstrap value >87 %.  297 

Among the 17 OTUs, we retrieved sequences belonging to 8 out of the 19 Glomeromycota genera (Redecker et 298 

al., 2013). In particular all the genera of Glomeraceae were found (Glomus, Septoglomus, Rhizoglomus, Sclerocystis, 299 

Funneliformis) together with the genera Claroideoglomus, Diversispora and Paraglomus, belonging to 300 

Claroideoglomeraceae, Diversisporaceae and Paraglomeraceae, respectively. The most abundant genera were 301 

represented by Glomus, accounting for 29.7 % of the sequences, followed by Paraglomus (19.4 %), Claroideoglomus 302 

(17.2 %), Sclerocystis (16.1 %) and Rhizoglomus (12.3 %). Septoglomus, Diversispora and Funneliformis sequences 303 

corresponded to less than 4 % of total sequences. Twelve OTUs were ascribed to Glomeraceae family: within the genus 304 

Glomus we retrieved seven OTUs, of which only one (Glo7, 5.8 % of total sequences) was identified as Glomus 305 

indicum; the remaining six OTUs (Glo1 to Glo6) represented sequences of uncultured Glomus species (Table 4). In the 306 

genera Sclerocystis, Funneliformis and Rhizoglomus, OTUs named Scle, Fun and Rhi were identified as Sclerocystis 307 

sinuosa, Funneliformis mosseae and Rhizoglomus irregulare (synonym Rhizophagus irregularis, formerly known as 308 
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Glomus irregulare), respectively. OTUs Sept1 and Sept2 and Cl1, Cl2 and Cl3 assigned to Septoglomus and 309 

Claroideoglomus, respectively, matched to sequences of either known (Sept2, Septoglomus constrictus and Cl1, 310 

Claroideoglomus lamellosum), or unknown species (Septoglomus sp., Claroideoglomus sp.), while OTUs belonging to 311 

Paraglomus (Par) and Diversispora (Div) matched only unknown Glomeromycota. MaarjAM database 312 

(http://maarjam.botany.ut.ee/, accessed on March/2016) was used to confirm the assignment of our OTUs to sequences 313 

of Glomeromycota (Table 4). Rarefaction analyses indicated that the number of analysed sequences was generally 314 

sufficient to capture the AMF diversity in the roots of most orchards, since the curves almost reached the asymptote 315 

(Fig. S1). 316 

The bands of interest from the DGGE profiles, excised and sequenced to determine their affiliation, identified 317 

the same AMF species as those described above, except Claroideoglomeraceae and Paraglomeraceae (data not shown). 318 

 319 

3.3. AMF community diversity in apple roots as affected by site, management and altitude 320 

3.3.1. Analysis of clone libraries 321 

The cloning and sequencing method allowed the identification of 14 and 15 OTUs in Terlano and Lagundo orchards, 322 

respectively, 12 of which shared between the two sites (97.5 and 88.8 % of the total sequences of the two sites, 323 

respectively). Fun (F. mosseae) and Glo6 were found only in Terlano apple roots, while Sept2 (S. constrictus), Glo2 324 

and Cl3 were retrieved only in Lagundo. Two ways PERMANOVA analyses revealed differences in AMF community 325 

composition between the two sites (P=0.02) and between organic and integrated managements (P=0.02). Moreover, in 326 

Lagundo, where orchards were located at two different altitudes (300 m and 600 m) two ways PERMANOVA analysis 327 

showed differences among AMF communities in relation to management (P=0.003) and altitude (P=0.003). In total, 328 

orchards under organic management hosted 13 and 6 OTUs at low and high altitude, respectively. In organic orchards 329 

growing at higher elevation the most common species (Par, Glo7, Rhi, Scle) present at both sites and under different 330 

managements were detected together with Cl1 and Div (species found in all organic orchards at low altitude) (Fig. 3). 331 

By contrast, in integrated orchards 10 and 9 OTUs in total were found at low and high altitude, respectively. At high 332 

altitude, together with the most common species, a particular OTU (Cl3, 31 % of the sequences) was retrieved (Fig. 3). 333 

Among diversity indices, S and Chao-1, indicating observed and estimated AMF richness, were significantly 334 

higher in organic orchards (6.33 ± 0.55 and 7.14 ± 0.88, respectively) than in integrated ones (4.00 ± 0.01 and 4.00 ± 335 

0.01, respectively) in Terlano (P=0.027 and P=0.034, respectively). In Terlano 13 OTUs were retrieved in organic 336 

management, in contrast with only 6 OTUs found in integrated ones. No differences among diversity indices were 337 

detected among orchards in Lagundo. 338 

 339 
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3.3.2. Analysis of PCR-DGGE profiles 340 

AMF 18S rDNA fragments of approx. 230 bp were successfully amplified from all the samples, by the semi-nested 341 

PCR approach. DGGE analyses of PCR products showed profiles characterized by a high number of intense and clearly 342 

defined fragments.  343 

AMF community composition was assessed by cluster analysis of DGGE profiles (Fig. 4). The dendrogram 344 

showed two main subclusters with a low similarity, 20 %. In particular, the first subcluster included all Terlano samples 345 

(except one), while the other one included all Lagundo samples (except one). The latter was formed by two subclusters 346 

in which organic and integrated samples were separated with a similarity of 36 %. The analysis of DGGE profiles did 347 

not separate samples originating from orchards growing at different altitudes (Fig. 4). Terlano samples showed a more 348 

complex clustering, with no clearcut separation by management. 349 

These findings were confirmed by the NMDS analysis of the DGGE AMF community profiles (Fig. 5). 350 

ANOSIM revealed significant differences in AMF community composition of Lagundo samples compared with that of 351 

Terlano (R=0.786, P=0.0001) and between samples from organic and integrated sites (R=0.227, P=0.05). 352 

AMF DGGE profiles were also analysed to assess S, Hs, D and E diversity indices. Richness (S) and Hs 353 

indices were significantly different between the two geographical sites, while a significant interaction was observed for 354 

Hs and D (Table 5). The relevant one-way ANOVA revealed significant differences between organic and integrated 355 

samples in Lagundo, where S and Hs were significantly higher in the organic management (P=0.049 and P=0.029 356 

respectively) (Table 6). 357 

 358 

4. Discussion 359 

Our data showed that, in South Tyrol orchards, geographical area, altitude and management shaped AMF species 360 

community composition in apple roots, which however always maintained high levels of mycorrhizal colonization. 361 

Here, for the first time, we identified at the species and genus level native AMF colonizing apple roots and 362 

characterized their diversity and community composition utilizing two molecular methods - PCR cloning and 363 

sequencing and PCR-DGGE.  364 

 365 

4.1. Mycorrhizal colonization of apple roots 366 

The percentage of colonized root length of apple trees ranged from 41 to 60 %, comparing well with previous data on 367 

mycorrhizal colonization of apple seedlings, that ranged from 40 to 60 % after inoculation with F. mosseae and Glomus 368 

macrocarpum, respectively (Miller et al., 1989) and with findings obtained by Meyer et al. (2015) in conventionally and 369 

organically-managed apple orchards in South Africa. Other authors reported more variable values, ranging from 24 to 370 
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68 % in micropropagated apple trees, depending on soil pH and the identity of the inoculated AMF species (Cavallazzi 371 

et al., 2007). In our work, mycorrhizal colonization of apple roots was uncoupled from soil parameters, except for 372 

organic matter, confirming previous findings on the decrease of mycorrhizal colonization levels in an organic apple 373 

orchard after a straw mulch floor management treatment (Meyer et al., 2015). 374 

Overall, mycorrhizal root length was not significantly affected by site, altitude and management in the apple 375 

orchards investigated. As to site, Miller et al. (1985) in a survey of 18 apple rootstock plantings in USA found a high 376 

variability in mycorrhizal colonization, ranging from 5 to 75 %, with the lowest levels observed in California and 377 

Washington and the highest in Virginia, Pennsylvania, Georgia and Iowa. Such data are expected, given the different 378 

range of geographical distances of the apple orchards analysed, entailing the most divergent environmental conditions, 379 

at the subcontinental level.  380 

Most studies investigating the effects of altitude on mycorrhizal colonization have been carried out at very high 381 

elevation gradients (from 1,500 to 5,300 m), in alpine habitats of Tibet, Andes, Rocky Mountains, Alps and Mount Fuji 382 

(Read and Haselwandter, 1981; Wu et al., 2007; Lugo et al., 2008; Schmidt et al., 2008; Gai et al., 2012). Overall, these 383 

works reported an adverse effect of increasing altitude on AMF colonization across a large altitude gradient. In our 384 

study, we assessed the effects of elevation in a single site, Lagundo, from apple orchards cultivated at 300 and 600 m, 385 

an altitudinal range probably too low to produce significant effects on AMF ability to colonize apple roots, which, 386 

indeed, showed high percentages of mycorrhizal root length, 35-52 %. 387 

The type of farming practices has long been known to affect mycorrhizal colonization in different crops, such 388 

as wheat (Ryan et al., 1994; M̈der et al., 2000), vetch-rye and grass-clover (M̈der et al., 2000), onion (Galv́n et al., 389 

2009), maize (Douds et al., 1993; Bedini et al., 2013), soybean (Douds et al., 1993). Very few studies investigated the 390 

effects of organic vs. conventional management regimes on the establishment of mycorrhizal symbiosis in apple roots. 391 

The absence of differences in the percentage of mycorrhizal root length in our experimental apple orchards may be 392 

ascribed to the uniformity of the orchard floor managements, which included the presence of grassed alleys between 393 

rows. AMF-host weed species may have contributed to the maintenance of wide and infective extraradical mycelial 394 

networks establishing linkages among the roots of cover plants and apple trees (Atkinson, 1983; Giovannetti et al., 395 

2004; Njeru et al., 2014). The application of glyphosate in the small soil strip along the tree rows and that of mineral 396 

fertilizer supply in the integrated orchards did not have a significant impact on the ability of AMF to colonize apple 397 

roots. This finding is consistent with previous studies reporting variable and unpredictable effects of such chemicals on 398 

AMF symbioses in different environments and geographical locations (Gosling et al., 2006).  399 

 400 

4.2. Identification of native AMF colonizing apple roots 401 
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The screening of 448 clones from 21 clone libraries allowed us to affiliate DNA sequences with 8 out of the 19 402 

Glomeromycota genera, which encompassed all the genera of the family Glomeraceae described so far: Glomus, 403 

Septoglomus, Rhizophagus, Sclerocystis, Funneliformis. In addition, members of the families Claroideoglomeraceae, 404 

Diversisporaceae and Paraglomeraceae were found.  405 

Overall, the most common species belonged to the genus Glomus, in agreement with previous findings 406 

obtained by morphological description of AMF spores in a survey of 18 apple rootstock plantings in USA (Miller et al., 407 

1985). Some of the species retrieved in the quoted study occurred also in our apple roots, such as F. mosseae and S. 408 

constrictus (formerly Glomus mosseae and Glomus constrictum, respectively) and S. sinuosa, while no species of the 409 

genus Gigaspora, common in the USA apple plantings, were found. Our data differ from those obtained in a survey of 410 

apple orchards in Santa Catarina, south region of Brazil, where 15 species of the genus Acaulospora were retrieved and 411 

described after spore sievings from the soil, using morphological methods (Purin et al., 2006). Only few AMF species 412 

were in common, belonging to F. mosseae, Claroideoglomus spp. and S. sinuosa (formerly Glomus sinuosum). Another 413 

interesting work taxonomically characterized AMF species by morphological identification of spores retrieved from soil 414 

sieving and trap cultures in Brazil (Cavallazzi et al., 2007): the species with the highest number of spores was 415 

Acaulospora mellea, followed by Scutellospora heterogama, Gigaspora decipiens and Acaulospora spinosa, none of 416 

which occurred in apple roots of South Tyrol orchards. A molecular study, utilising 454-pyrosequencing of small 417 

subunit rRNA gene amplicons, identified, at the family level, the AMF colonizing roots of cultivated apple in central 418 

Belgium (Van Geel et al., 2015). In the work, 73 % and 19 % of OTUs were affiliated with the Glomeraceae and 419 

Claroideoglomeraceae, in agreement with our findings, 70 % and 18 %, respectively. In addition, the authors detected 420 

only a few OTUs belonging to the families Gigasporaceae, Diversisporaceae and Acaulosporaceae, while the 421 

percentage of OTUs affiliated with Paraglomeraceae was much lower in Belgian apple orchards, compared with South 422 

Tyrol ones, 1 % vs. 19 %. A recent work, carried out in an experimental apple orchard near Sint-Truiden, Belgium, 423 

confirmed the previous data, with 72 % of OTUs belonging to Glomeraceae, 26 % to Claroideoglomeraceae and 2 % to 424 

Paraglomeraceae (Van Geel et al., 2016). 425 

The absence or rarity of specific taxa, such as Acaulosporaceae and Gigasporaceae, from the three European 426 

apple orchards investigated so far, compared with the frequency of their retrieval from USA and Brazil, may be 427 

ascribed to a number of complex and interacting factors - soil, environment, climate, agronomic practices, history of the 428 

sites etc. - beyond geographical position. Although the number of experimental data on apple from the two continents is 429 

still too small to deduce general trends, recent studies at the global scale revealed that differences in AMF communities 430 

diversity do occur among different continents and climatic zones (Kivlin et al., 2011; Öpik et al., 2013; Davison et al., 431 

2015). It is interesting to note that a survey of AMF species distributed all over the world in protected areas reported a 432 
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general predominance of Acaulosporaceae and Gigasporaceae in tropical or subtropical forests in Brazil and Argentina 433 

(Turrini and Giovannetti, 2012). 434 

In our study we found sequences (uncultured Clareidoglomus-Cl2, Paraglomus-Par and Glomus-Glo1 435 

sequences, corresponding to 18 % of total OTUs), matching those retrieved in apple roots from German orchards 436 

(JN644447, unpublished), in roots of other fruit tree plants, such as Pyrus pyrifolia (AB695049) (Yoshimura et al., 437 

2013) and Citrus rootstocks (JQ350797) (Wang and Wang, 2014). It is tempting to speculate that fruit trees may show a 438 

preference for specific fungi, possibly recruiting AMF species in relation to their functional significance.  439 

 440 

4.3. AMF community diversity in apple roots as affected by site, altitude and management  441 

Present results show that root AMF community composition of apple trees cultivated in two production sites, Terlano 442 

and Lagundo, differed significantly and were affected by agricultural management, organic vs. integrated, and altitude. 443 

Such findings are supported by consistent data obtained by combining two molecular methods, cloning and sequencing 444 

and PCR-DGGE, and utilizing two different primer pairs to amplify the same region of the partial 18S rRNA gene. To 445 

the best of our knowledge, this is the first application of such a comprehensive approach for the characterization of root 446 

AMF diversity of fruit trees, allowing the differentiation of AMF communities colonizing apple roots in different 447 

agricultural conditions. 448 

The differences detected in root AMF community composition between the two apple production sites, as 449 

revealed by cloning and sequencing analysis, were ascribed to specific taxa occurring only in Terlano (Fun and Glo6) or 450 

Lagundo (Sept2, Glo2 and Cl3), to their relative abundance and to the different distribution of shared OTUs between 451 

the two sites. Such site differences were consistently detected by PCR-DGGE community profiles analysis, which 452 

separated the two relevant clusters with a very high dissimilarity (80 %), and confirmed by NMDS analysis. Our data 453 

are in agreement with a previous work, carried out at the regional scale, investigating the distribution of 6 AMF species 454 

in 154 agricultural soils across Switzerland, which showed that AMF communities were strongly affected by 455 

geographical distance (max. 294 km) (Jansa et al., 2014). Consistent findings were also reported by van der Gast et al. 456 

(2011), who investigated AMF community diversity across England (max. 250 km). Although the maximum distances 457 

among the sampled apple orchards were much lower than those described above (max. 27 km), our work identified 458 

different AMF species and genera in the two sites, Terlano and Lagundo. Such distribution patterns may be the result of 459 

biogeographic history, reflecting the dispersal of AMF taxa over time, and the variable climatic and environmental 460 

conditions (Morton et al., 1995). Recent molecular works (Hazard et al., 2013; De Beenhouwer et al., 2015; Van Geel et 461 

al., 2015) suggested a key role of soil environment in shaping AMF diversity and distribution patterns. Further in-depth 462 

and comprehensive studies should be performed in order to separate geographical distance effects from those due to the 463 
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characteristics of each sampling site, i.e. soil properties, use of pesticides and chemical fertilizers, environs, even when 464 

comparing sites at the regional and local scale. In addition, beyond geographical, soil and environmental variables, host 465 

plant identity should be taken into account, given its essential role played in the selection of AMF symbionts 466 

functionally established in the roots (Helgason et al., 2002; Gollotte et al., 2004; Śkorov́ et al., 2007). Actually, at 467 

local scale, a marked host preference has been recently found in maize plants, which hosted completely different AMF 468 

communities, as compared with those of the preceding cover crops (Turrini et al., 2016). 469 

No differences in AMF community composition were found by PCR-DGGE cluster analysis between orchards 470 

located at 300 m and 600 m altitude in Lagundo, in contrast with cloning and sequencing, that allowed the detection of 471 

a particular OTU (Cl3-Claroideoglomus sp., 31 % of the sequences) only in the 600 m high orchards. Such divergent 472 

data may be ascribed to the different primers utilized during DNA amplification by the two diverse molecular 473 

techniques: indeed, Glo1 primer, used in PCR-DGGE, did not allow the amplification of Claroideoglomeraceae, as 474 

shown by band sequencing. The OTU Cl3 is infrequent, probably fitting better to the colder environment and to the 475 

higher levels of organic matter and soil C found in the 600 m Lagundo orchards. Indeed, the occurrence of infrequent 476 

AMF species at high altitude was previously reported (Liu et al., 2011; Sýkorová et al., 2007), while several new 477 

species have been described in soils from Swiss Alps (Oehl and Sieverding, 2004; Oehl et al., 2005a, 2006, 2011). 478 

In this work, the relative abundance of single AMF species colonizing apple roots showed significant 479 

differences between organic and integrated management, as assessed by PERMANOVA, both in Terlano and in 480 

Lagundo orchards. Differences were found also by the analysis of PCR-DGGE AMF community profiles, carried out by 481 

NMDS and ANOSIM. Diversity indices showed higher AMF richness in organically managed apples compared with 482 

integrated ones, using both molecular approaches. Although scarce information is available on AMF diversity in apple 483 

orchards, as affected by management, our findings compare well with those obtained by Purin et al. (2006), who, by a 484 

morphological approach, found a higher AMF richness in organic compared with conventional orchards in Brazil. A 485 

few other studies, performed on plant species other than apple, reported the effects of organic farming on the 486 

composition of AMF communities. For example, Oehl et al. (2004), in the DOC field experiment in Switzerland found 487 

that organic management enhanced AMF spore diversity and abundance, while Bedini et al. (2013) showed a 488 

progressive increase of AMF richness and composition during the transition from conventional to organic agriculture. 489 

Other authors, using molecular techniques, showed that the diversity of AMF species composition in maize and potato 490 

roots was higher in organic sites, compared with conventional ones, in agricultural fields throughout the Netherlands 491 

(Verbruggen et al., 2010).  492 

The experimental data collected so far on the influence of organic and conventional managements on AMF 493 

diversity, either in the soil or in the roots, using either morphological or molecular approaches, are limited and do not 494 
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allow us to infer consistent response patterns. Indeed, the words “organic” and “conventional” may have different 495 

meanings in the different experimental studies, as the diverse farming systems often encompass heterogeneous local soil 496 

properties, environmental conditions and host plants. Thus, AMF diversity or community composition may be affected 497 

by a number of uncontrolled variables, such as the use of weed cover, soil tillage, cover crops, manure, quality and 498 

quantity of herbicides, pesticides and fertilizers. Whereas floor management in the orchard alleys was similar in organic 499 

and integrated orchards, the two management systems differed mainly by the weed control and fertilizer supply to the 500 

soil in the strip centres on the tree row: we speculate that the use of glyphosate and mineral fertilizers in integrated 501 

managed orchards may have selectively modulated the abundance and composition of AMF taxa able to tolerate such 502 

chemicals. 503 

 504 

5. Conclusions 505 

In this work, we utilized a multimodal approach to study AMF communities living in symbiosis with apple roots in 506 

South Tyrol orchards, under different geographical and environmental conditions. High levels of mycorrhizal 507 

colonization were detected across the different variables, while AMF diversity and community composition were 508 

affected by geographical area, altitude and farming system management, as detected by PCR cloning and sequencing 509 

and PCR-DGGE. In particular, species richness was significantly higher in organically managed orchards than in 510 

integrated ones. We identified, for the first time, the native AMF communities of apple roots at the species and genus 511 

level, detected infrequent taxa and retrieved some environmental sequences matching those obtained from other fruit 512 

plant species. Our findings provide insights into factors affecting native AMF communities of apple trees, which could 513 

be exploited to implement sustainable fruit production systems, where beneficial soil biota can boost biogeochemical 514 

processes fundamental for energy fluxes, ecosystem functioning and crop productivity. 515 
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Oehl, F., Śkorov́, Z., Redecker, D., Wiemken, A., Sieverding, E., 2006. Acaulospora alpina, a new arbuscular 670 

mycorrhizal fungal species characteristic for high mountainous and alpine regions of the Swiss Alps. Mycologia 671 

98, 286-294. 672 

Öpik, M., Zobel M., Cantero, J.J., Davison, J., Facelli, J.M., Hiiesalu, I., Jairus, T., Kalwij, J.M., Koorem, K., Leal, 673 

M.L., Liira, J., Metsis, M., Neshataeva, V., Paal, J., Phosri, C., Põlme, S., Reier, Ü., Saks, Ü., Schimann, H., 674 

Thiéry, O., Vasar, M., Moora, M., 2013. Global sampling of plant roots expands the described molecular 675 

diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23, 411-430. 676 



23 

 

Philippott, L., Raaijmakers, J.M., Lemanceau, P., van der Putten, W.H., 2013. Going back to the roots: the microbial 677 

ecology of the rhizosphere. Nat. Rev. Microbiol. 11, 789-799. 678 

Pimentel, D., Wilson, C., McCullum, C., Huang, R., Dwen, P., Flack, J., Tran, Q., Saltman, T., Cliff, B., 1997. 679 

Economic and environmental benefits of biodiversity. Biosci. 47, 747-757. 680 

Purin, S., Klauberg-Filho, O., Sturmer, S.L., 2006. Mycorrhizae activity and diversity in conventional and organic and 681 

apple orchards from Brazil. Soil Biol. Biochem. 38, 1831-1839. 682 

Read, D.J., Haselwandter, K., 1981. Observations on the mycorrhizal status of some alpine plant communities. New 683 

Phytol. 88, 341-352. 684 

Redecker, D., Schüßler, A., Stockinger, H., Stürmer, S.R., Morton, J.B., Walker, C., 2013. An evidence-based 685 

consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23, 515-531. 686 

Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., Agnolucci, M., De Pascale, S., Bonini, P., 687 

Colla, G., 2015. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci. Hort. 196, 91-108. 688 

Ryan, M.H., Chilvers, G.A., Dumaresq, D.C., 1994. Colonisation of wheat by VA-mycorrhizal fungi was found to be 689 

higher on a farm managed in an organic manner than on a conventional neighbour. Plant Soil 160, 33-40.  690 

Ryan, M.H., Tibbet, M., 2008. The role of arbuscular mycorrhizas in organic farming. In: Kirchmann. H., Bergstr̈m, L. 691 

(Eds), Organic crop production: ambition and limitations. Springer, Berlin, pp. 189-229. 692 

Schmidt, S.K., Sobieniak-Wiseman, L.C., Kageyama, S.A., Halloy, S.R.P., Schadt, C.W., 2008. Mycorrhizal and dark-693 

septate fungi in plant roots above 4270 meters elevation in the Andes and Rocky Mountains. Arct. Antarc. Alp. 694 

Res. 40, 576-583. 695 

Schwartz, M.W., Hoeksema, J.D., Gehring, C.A., Johnson, N.C., Klironomos, J.N., Abbott, L.K., Pringle, A., 2006. The 696 

promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol. Lett. 9, 697 

501-515. 698 

Simon, L., Lalonde, M., Bruns, T.D., 1992. Specific amplification of 18S fungal ribosomal genes from vesicular 699 

arbuscular endomycorrhizal fungi colonizing roots. Appl. Environ. Microbiol. 58, 291-295. 700 

Smith, S.E., Read, D.J., 2008. Mycorrhizal Symbiosis, third ed. Academic Press, London. 701 

Stone, D., Ritz, K., Griffiths, B.G., Orgiazzi, A. and Creamer, R.E., 2016. Selection of biological indicators appropriate 702 

for European soil monitoring. Appl. Soil Ecol. 97, 12-22. 703 
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Table 1  733 

Main climatic parameters of the studied sites 734 

    Altitude 

Parameter Unit Low High 

    
average annual temperature °C 11.7 10.3 

average minimum temperature (January) °C -3.8  - 5.1  

average maximum temperature (July) °C 29.2  27.5  

annual rainfall mm 714 522 
Data are from the meteorological stations (average 1971-2013) of the Province of Bolzano-Bozen 735 

 736 

  737 
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Table 2  738 

Main soil characteristics in the selected orchards according to their geographical site, management and altitude 739 

Area Management Altitude Organic matter (g kg-1) pH (H2O) C (g kg-1) N (g kg-1) P (mg kg-1) K (mg kg-1) Mg (mg kg-1) 

Lagundo 

Organic 
Low 58.7 ± 8.7 7.3 ± 0.1 34.1 ± 1.6 3.2 ± 0.1 57 ± 24 43 ± 21 380 ± 45 

High 81.7 ± 10.7 7.2 ± 0.1 34.1 ± 1.0 3.2 ± 0.1 108 ± 19 56 ± 23 293 ± 18 

Integrated 
Low 38.7 ± 4.1 6.9 ± 0.2 25.1 ± 1.1 2.8 ± 0.3 79 ± 5 44 ± 13 360 ± 105 

High 48.7 ± 1.8 6.2 ± 0.5 31.1 ± 1.8 3.2 ± 0.1 61 ± 8 103 ± 37 187 ± 26 

Terlano 
Organic Low 40.0 ± 6.7 7.3 ± 0.1 32.1 ± 4.7 2.6 ± 0.3 88 ± 16 86 ± 18 293 ± 14 

Integrated Low 36.0 ± 5.5 6.4 ± 1.0 28.7 ± 2.9 3.0 ± 0.2 43 ± 8 70 ± 17 283 ± 38 

Data are averages ± s.e. For clarity, statistics is reported only in the text. 740 

  741 
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Table 3  742 

Percentage of root mycorrhizal colonisation and leaf nutrient concentrations in the selected orchards according to their geographical site, management and altitude 743 

Area Management Altitude Mycorrhizal colonization (%) N (%) P (%) K (%) Mg (%) Ca (%) 

Lagundo 

Organic 
Low 41.44 ± 12.23 3.64 ± 0.70 0.22 ± 0.01 0.95 ± 0.05 0.34 ± 0.01 1.23 ± 0.16 

High 34.97 ± 15.69 2.94 ± 0.29 0.21 ± 0.01 0.97 ± 0.05 0.29 ± 0.01 1.07 ± 0.04 

Integrated 
Low 52.02 ± 14.33 3.21 ± 0.39 0.21 ± 0.01 1.02 ± 0.08 0.36 ± 0.05 1.17 ± 0.12 

High 48.19 ± 11.11 2.42 ± 0.09 0.21 ± 0.01 1.15 ± 0.06 0.25 ± 0.02 1.18 ± 0.10 

Terlano 
Organic Low 60.01 ± 13.76 2.82 ± 0.10 0.24 ± 0.01 1.26 ± 0.04 0.3 ± 0.01 1.12 ± 0.06 

Integrated Low 54.71 ± 23.41 3.01 ± 0.24 0.24 ± 0.01 1.2 ± 0.05 0.27 ± 0.03 0.9 ± 0.15 

Data are averages ± s.e. For clarity, statistics is reported only in the text. 744 

 745 

 746 

 747 

 748 

 749 

 750 
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Table4  752 

Sequence types of arbuscular mycorrhizal fungi, identified using NS31-AML2 primers pair, in the roots of apple plants 753 

grown in South Tyrol orchards 754 

OTU 
name 

Identity NCBI 
database (%)  

Identity Maarjam 
database (%)  

Maarjam 
database virtual 
taxa 

Taxonomic affiliation 

Cl1† AJ276087 (99) FN869808 (99) VTX00057 Claroideoglomus lamellosum 

Cl2 JN644447 (99) HE615004 (99) VTX00056 Claroideoglomus sp. 
Cl3 KF290671 (99) KF290671 (99) VTX00225 Claroideoglomus sp. 
Div FJ831643 (100) FJ831643 (100) VTX00062 Diversispora sp. 

Fun  AJ306438 (99) AY635833 (99) VTX00067 Funneliformis mosseae 

Glo1  JQ350797 (99)  KF386274 (99) VTX00214 Glomus sp. 
Glo2  KF467269 (99) KF467269 (99) VTX00135 Glomus sp. 
Glo3  H4380136 (99) HG004495 VTX00153 Glomus sp. 
Glo4 JX144121 (99) KC579423 VTX00304 Glomus sp. 
Glo5  JN009364 (99) JN009364 (99) VTX00151 Glomus sp. 
Glo6  JX144133 (99) HG004465 VTX00301 Glomus sp. 
Glo7 GU059539 (99) GU059539 (99) VTX00222 Glomus indicum 

Par AB695049 (100) - - Uncultured Glomeromycota sp. 
Scle AJ33706 (99) AJ33706 (98) VTX00069 Sclerocystis sinuosa 

Sept1 KF386332 (99) KF386332 (99) VTX00063 Septoglomus sp. 
Sept2 FR750212 (99) FJ831626 (99) VTX00064 Septoglomus constrictus 

Rhi FJ009618 (99) FJ009617 (99) VTX00114 Rhizoglomus irregulare 
†Names denote the most similar AM fungal species of sequenced clones: Cl1, Claroideoglomus sp.1; Cl2, 755 

Claroideoglomus sp.2; Cl3, Claroideoglomus sp.3; Div, Diversispora sp.; Fun, Funneliformis mosseae; Glo1, Glomus 756 

sp.1; Glo2, Glomus sp.2; Glo3, Glomus sp.3; Glo4, Glomus sp.4; Glo5, Glomus sp.5; Glo6, Glomus sp.6; Glo7, Glomus 757 

sp.7; Par, Paraglomus sp.; Scle, Sclerocystis sinuosa; Sept1, Speptoglomus sp.1; Sept2, Speptoglomus sp.2; Rhi, 758 

Rhizoglomus irregulare. 759 

†   760 

  761 
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Table 5  762 

Richness (S), Shannon-Weaver (Hs), Simpson (D) and Evenness (E) indices calculated from AMF DGGE profile 763 

associated with apple plant roots growing in orchards cultivated in two geographical sites (Terlano vs Lagundo) and 764 

under two managements (organic vs integrated) (mean ± standard error) 765 

Geographical area Management S Hs D E 

Lagundo Organic 9.83 ± 0.87 2.19 ± 0.08 0.12 ± 0.01 0.97 ± 0.00 

 Integrated 6.83 ± 1.01 1.72 ± 0.16 0.20 ± 0.03 0.93 ± 0.02 

Terlano Organic 10.5 ± 1.63 2.18 ± 0.17 0.13 ± 0.02 0.96 ± 0.01 

 Integrated 12.3 ± 1.33 2.38 ± 0.08 0.09 ± 0.01 0.95 ± 0.01 

Analysis of variance (P values)     

Geographical area 
 

0.033 0.049 0.069 0.734 

Management 
 

0.666 0.392 0.252 0.126 

Geographical area x Management 0.086 0.044 0.033 0.171 

 766 

 767 
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Table 6  769 

Richness (S), Shannon-Weaver (Hs), Simpson (D) and Evenness (E) indices calculated from AMF DGGE profile 770 

associated with apple plant roots growing in orchards cultivated in Lagundo under two managements (organic vs 771 

integrated) (mean ± standard error) 772 

 773 

Geographical area Management S Hs D E 

Lagundo Organic 9.83 ± 0.87 2.19 ± 0.08 0.12 ± 0.01 0.97 ± 0.00 

 Integrated 6.83 ± 1.01 1.72 ± 0.16 0.20 ± 0.03 0.93 ± 0.02 

Analysis of variance (P values)     

Management 0.029 0.028 0.049 0.069 

 774 

 775 

 776 
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Captions 778 

Fig. 1. a) Maps showing the location of apple orchards in South Tyrol, Italy.  Integrated managed orchards at high 779 

altitude,  Organically managed orchards at high altitude,  Integrated managed orchards at low altitude,  780 

Organically managed orchards at low altitude. Source of the air photo on the right: Google earth V 7.1.2.2041 image© 781 

2016 DigitalGlobe http://www.earth.google.com. Pictures of organically b) and integrated c) managed apple trees in the 782 

study site.  783 

 784 

Fig. 2. Neighbor-Joining phylogenetic tree of glomeromycotan sequences derived from apple roots of orchards growing 785 

in South Tyrol (Italy). Bootstrap values are shown when they exceed 75 % (1,000 replications). The analysis is based on 786 

partial nuclear small subunit ribosomal RNA gene sequences (SSU; ~ 550bp; NS31⁄AML2 fragment) and involved 96 787 

nucleotide sequences. Different sequence types are indicated in brackets and names are reported in Table 1. AMF 788 

family are also reported. Sequences obtained in the present study are shown in bold and their accession numbers are 789 

prefixed with site/management/altitude clone identifiers (Te, Terlano; La, Lagundo; O, Organic; I, Integrated; L, Low 790 

altitude; H, High altitude). The tree is rooted with a reference sequence of Corallochytrium lymacisporum (L42528).  791 

 792 

Fig. 3. Relative abundance (%) of AMF phylotypes detected in the roots of the different orchards cultivated in two 793 

geographical sites (Lagundo and Terlano), under two managements (organic and integrated) and at two altitudes (Low, 794 

300 m and High, 600m). 795 

 796 

Fig. 4. Dendrogram obtained by UPGMA (Unweighted Pair Group Method Using Arithmetic Average) based on AMF 797 

DGGE profiles obtained from apple plant roots growing in orchards cultivated in two geographical sites (Terlano and 798 

Lagundo) and under two managements (  Organic,  Integrated) (Te, Terlano; La, Lagundo; O, Organic; I, Integrated; 799 

L, Low altitude; H, High altitude). 800 

 801 

Fig. 5. Non-metric multidimentional scaling plot of DGGE analysis. Each point on the plot represents the AMF 802 

community composition associated with apple plant roots growing in orchards cultivated in Terlano area (blue symbols) 803 

or Lagundo area (orange symbols). The stress value is 0.2, the ANOSIM values (R) indicates significant differences 804 

between Lagundo and Terlano (0.786, P=0.0001) and between organic and integrated (0.227, P=0.05) (Te, Terlano; La, 805 

Lagundo; O, Organic; I, Integrated; L, Low altitude; H, High altitude). 806 

http://www.earth.google.com/
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