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Abstract.
A high-sensitivity high-speed second-harmonic interferometer is used to monitor the particle

number density inside a pulsed flow gas cell designed for laser wakefield acceleration. The
interferometer can precisely follow the particle density temporal evolution therefore offering a
practical way to control in real-time the target density during laser-plasma interaction. The
presented results are relevant for the evaluation of density diagnostic tools for flow gas cells used
as laser-plasma acceleration stages.

1. Introduction
The demonstration of laser wakefield acceleration (LWFA) of electrons to the GeV level [1, 2]
opens the way for the application of LWFA-based accelerators and high photon energy radiation
sources [3] within user oriented facilities with superior beam quality and reliability necessary for
actual high-level applications, as envisaged within the EuPRAXIA project [4]. The transition
from fundamental research to actual implementation must go along with a full control and
tailoring of the laser-plasma based accelerator, and specifically of the plasma free-electron
density. In LWFA the plasma in the gas target is created either by the laser pulse itself or
pre-generated by an electric discharge or by a second laser pulse.
Gaseous targets used in LWFA are: i) supersonic gas jets that are easy to implement, allow
for a good control over the peak particle number density [5], but produce density profiles that
can vary shot-to-shot due to reproducibility of valve operation over time and turbulent flow,
and prevent high repetition rate operation due to pulsing capability. ii) Capillary discharges
that provides guiding of the laser up to centimeters, thus increasing the acceleration length [1],
but can get damaged during usage and may require somehow sophisticated density diagnostics
methods [6] which pose technical challenges; iii) flow gas cells that are very good candidates
to avoid the above mentioned limitations, allowing for a stable and controllable laser-plasma
interaction even at high repetition rate along with easily tunable accelerator length [7–14].
Flow gas cells are also suitable to be implemented in multi-stage accelerators [15, 16], which
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Figure 1. Schematic of the experimental
apparatus.

Figure 2. Schematic of the second-harmonic
interferometer.

is important in the perspective of designing and implementing LWFA-based facilities. In
this context the reliable and robust measurement and control of the free-electron density is
a crucial aspect, and interferometry plays a major role as diagnostic tool being non-invasive and
versatile. Typical two-arm interferometers [17] suffer from a high sensitivity to environmental
conditions which limits their use outside the laboratory environment. Nomarski and folded two-
arm interferometers provide better stability compared to standard two-arm interferometers, are
widely used in research laboratories [18–21], and provide an interferogram from which the phase
is retrieved applying image analysis software and phase-unwrapping algorithms. The lengthy
data analysis limit their use in real-time measurements, while they may be suitable for off-line
measurements during alignment and tuning of the laser-plasma accelerator stages.
When stability and ease of implementation matters, an alternative robust interferometric method
is the second-harmonic interferometer (SHI), also called dispersion interferometer [22]. The
SHI is a single-arm, two-color interferometer, which is sensitive to the change of refractive
index between the fundamental and second-harmonic wavelength, measured phase shift given
by ∆ϕ = 4π

λ

∫
L∆n(λ)dl = 4π

λ L∆n(λ), where ∆n(λ) = n(λ) − n(λ/2), n(λ) is the refractive
index, λ is the wavelength, and L the optical path in the sample. Being a fully common-
path interferometer the SHI is insensitive to vibration when compared with typical two-arm
interferometers, which allows long term stable operation even in a harsh environment [23].
In this work, the latest results on the use of a high-speed (∼ µs) and high-sensitivity (∼ mrad)
SHI based on a CW Nd:YAG laser to measure the particle number density inside a pulsed flow
gas cell in vacuum are presented.

2. Experiment
Fig.1 shows a schematic block diagram of the experimental apparatus. The cell (model SL-ALC,
SourceLAB) is placed in a cylindrical vacuum chamber, evacuated by a turbo-molecular pump
to 10−5 mbar. The gas cell comprises two 600 µm-diameter apertures to allow the gas to flow
in the vacuum chamber, two lateral glass windows at L = 35 mm to enable transverse interfer-
ometry. When the gas pulse flows out of the cell the pressure in the chamber increases shortly,
not exceeding however values of the order of 10−2 mbar. The vacuum chamber is equipped with
three KF50 vacuum flanges on the lateral surface. Two lie opposite along a diameter and are
used to mount BK7 optical precision windows, anti-reflection coated for 1064 nm and 532 nm
wavelengths, providing entrance and exit of the interferometer beams. The third flange hosts
the gas and electrical feedthroughs between the cell and the controller. The argon gas at 2
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bar enters the control unit which then sends a gas puff to the cell at a pre-set pressure and
duration. It is noted that if the cell would be continuously feed with gas or long gas pulses were
used, the effect from back-ground density build up in the chamber would become visible during
the interferometric measurement. Such effect was not revealed for the gas pressure and pulse
length used. In case longer pulses and/or higher pressures would be needed the vacuum system
(chamber plus pump) would have to be adequately scaled in order to avoid density build up in
the interaction chamber.
Fig. 2 shows a detailed sketch of the fully fiber-coupled SHI interferometer used in the exper-
iment [24–26], which is here briefly described. The radiation of a CW DPSS Nd-YAG laser is
sent to the first interferometer head using a single mode polarization maintaining optical fiber.
The laser light emerging from the fiber is collimated to a diameter of 1 mm. A half-wave plate
is used to adjusts the polarization, in order to ensure an optimal harmonic generation in the
first type-I SHG crystal. Both the 1064 nm and 532 nm beams leave the first head and are
sent collinearly thought the cell. In the cell the two components suffer a de-phasing due to the
gas dispersion and proportional to the gas number density. The transmitted beams enter the
second head where a half-wave plate rotates the second-harmonic polarization by an angle of
90◦ leaving the fundamental beam polarization unchanged. A tilted glass slab adds a controlled
de-phasing acting as a compensator, in order to tune the phase difference to an optimal working
point. In a second type-I SHG crystal the 1064 nm beam is duplicated again. Following the
filtering out of the residual 1064 nm beam, the two 532 nm beams with crossed polarizations
enters a polarizing cube oriented by an angle of 45◦, where the two beams are mixed giving rise
to two complementary interference patterns. The beams emerging from the beam-splitter cube
are finally collected by two fiber optic cables and sent to photodiodes, directly connected to
ultra low-noise transimpedance amplifiers. The output signals are acquired by a 15 MHz USB
digitizing oscilloscope controlled by a labview software which calculates in real-time the ratio
between the difference and the sum of the digitalized signals. The recorded quantity is equal to
V sin(∆ϕ+ ϕ0) + α [24], where ϕ0 ≪ 1 is the off-set phase that can be controlled acting on the
phase compensator, V is the fringe visibility, and α ≪ 1 is related to the detector responsivities.
The visibility is directly obtained by scanning the phase compensator over half-fringe [25, 27]
and it is V = 0.9.

3. Results
The Gladstone-Dale relation between the refractive index n and the number density N , i.e.,
(n − 1) ∝ N , is used to obtain the particle number density from the measured phase by the
equation N = λ

4πL
N0
∆n0

∆ϕ = 1.63∆ϕ×1019 cm−3, where N0 = 2.69×1019 cm−3 is the Loschmidt

constant and ∆n0 = 4× 10−6 the difference of the refractive index of argon at 1064 nm and 532
nm [28].
The results of the systematic measurements for a 100 ms gas pulse at various values of the
pre-set backing pressure are reported in Fig. 3. The zero point represent the time when the
trigger is sent to the cell’s controller. In less then 100 ms from the trigger the filling up of the
cell starts and lasts for about 100 ms. Then the gas density in the cell drops exponentially with
a decay time of ∼0.9 s.
In Fig. 4 a comparison between 100 ms and 500 ms long gas pulses is shown for two values of
the backing pressure. As expected the filling up of the cell lasts longer for the longer gas pulse
and the achieved peak density value is larger by a factor ∼1.5.
Fig. 5 shows the values of the peak density value obtained in the experimental conditions
investigated, while the dashed-line indicate the density estimated from the ideal gas law at the
preset backing pressure and ambient temperature, reported as reference.
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Figure 3. Time evolution of the average
particle number density for a 100 ms gas pulse
at various backing pressure settings.
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Figure 4. Time evolution of the average
particle number density for a 100 ms and 500
ms gas pulse at two backing pressure settings.
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Figure 5. Peak value of the particle number
density for 100 ms and 500 ms gas pulse at
various backing pressure settings.

4. Conclusions
A second-harmonic interferometer is used to monitor in real-time the particle number density
in a commercial pulsed flow gas cell designed for LWFA. It is found that diagnostic method
is successful in measuring the density temporal evolution inside the cell from the filling up
to the evacuation in the range up to 1019 cm−3. The achieved peak value is less then what
estimated from the ideal gas law especially for the shortest gas pulse, therefore characterization
and continuous monitoring of the gas density is necessary in order to tune and control the laser-
plasma interaction process inside the cell. The experiment performed and the results obtained
are important towards the implementation of gas cells as laser-plasma based acceleration stages
in a fully controlled and user oriented particle accelerator facility, as that envisaged within the
EuPRAXIA design study project.
It is noted that the SHI presented can be used also to measure the particle density for other gases
typically used in LWFA, like H2 and He. The difference between the refractive indices at 1064
nm and 532 nm in hydrogen and helium at STP are 2.8× 10−6 and 2.2× 10−7 respectively [28].
Therefore, the measurement can be performed with hydrogen instead of argon. In case of helium,
the expected phase shift at STP is ∼90 mrad, therefore the SHI with a noise level down to less
the 1 mrad [24] is capable of measuring He number density within the cell in the order of 1017

cm−3.
In perspective, the development of a 2D imaging version of the SHI would allow to monitor
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samples with non-uniform and/or non-cylindrically symmetric spatial density distribution, like
gas jets from square nozzles and/or with shock fronts. There are reports in the literature about
2D second-harmonic interferometry [29–31] however more research and development activity is
necessary to validate the imaging SHI methodology as viable diagnostics for LWFA gas target.
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