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Understanding how patterns and processes relate across spatial scales is one of the major goals in 16 

ecology. 1/f models have been applied mostly to time series of environmental and ecological 17 

variables, but they can also be used to analyse spatial patterns. Since 1/f noise may display scale-18 

invariant behaviour, ecological phenomena whose spatial variability shows 1/f type scaling are 19 

susceptible to further characterization using fractals or multifractals. Here we use spectral analysis 20 

and multifractal techniques (generalized dimension spectrum) to investigate the spatial distribution 21 

of epilithic microphytobenthos (EMPB) on rocky intertidal surfaces. EMPB biomass was estimated 22 

from calibrated colour-infrared images that provided indirect measures of rock surface chlorophyll 23 

a concentration, along two 8m and one 4m long transects sampled in January and November 2012. 24 

Results highlighted a pattern of spectral coefficient close to or greater than one for EMPB biomass 25 

distribution and multifractal structures, that were consistent among transects, implying scale-26 

invariance in the spatial distribution of EMPB. These outcomes can be interpreted as a result of the 27 

superimposition of several biotic and abiotic processes acting at multiple spatial scales. However, 28 

the scale-invariant nature of EMPB spatial patterns can also be considered a hallmark of self-29 

organization, underlying the possible role of scale-dependent feedback in shaping EMPB biomass 30 

distribution.  31 
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The measurement of variability in population abundance and distribution followed by the 32 

identification of the underlying causes are major goals in ecology (Denny et al. 2004). Hierarchical 33 

sampling designs, combined with variance components estimates, have been extensively employed 34 

to examine spatial patterns in abundance of animal and plant populations, showing how most of the 35 

variation is concentrated at small scales (Fraschetti et al. 2005, Meyer 2006). These methods focus 36 

on discrete spatial scales and require decisions to be made about the number, extent and spacing of 37 

the scales investigated. A possible limitation of this approach is that important scales of variation 38 

may be omitted from the study. The major strength of hierarchical sampling designs is that they 39 

enable the simultaneous analysis of a broad range of scales and they are the only possible approach 40 

to compare biogeographic or continental scales or when the habitat of interest (e.g., rocky shores) is 41 

interspersed among unfavourable habitats (e.g., sandy beaches). The alternative approach of 42 

sampling continuously in space is simply impractical in these circumstances. 43 

Examining spatial variation in ecological variables continuously in space may, however, 44 

capture patterns of variability that could go undetected otherwise. For example, Denny et al. (2004) 45 

quantified spatial variation of physical and biological variables sampling continuously along three 46 

intertidal transects tens to hundreds of meters in length, on a wave-swept rocky shore at Hopkins 47 

Marine Station (CA). Results contradicted the expectation that variability is concentrated mostly at 48 

small spatial scales and the existence of a characteristic scale of variability. In contrast, using 49 

spectral analysis, these authors found a continuous increase of variance with the scale of 50 

observation, a pattern that was well described by 1/f-noise models. One of the key findings of this 51 

work was that, for several of the variables analyzed, patterns of distribution were adequately 52 

described by a power law with a spectral coefficient close to one. These patterns are usually 53 

referred to as ‘pink noise’ and underscore variability at all the scales analyzed, suggesting that 54 

multiple processes affect the response variable of concern. 55 

Pink noise patterns of variability can be further characterized using fractals (Halley and 56 

Incausti 2004). Mandelbrot (1983) coined the term “fractal” to designate objects with fractional or a 57 
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non integer number of dimensions, that display self-similarity across a range of spatial scales of 58 

observations. Fractal methods have been applied to various natural phenomena, including patterns 59 

in surface topography (Commito and Rusignuolo 2000), blood networks (Yang and Wang 2013), 60 

climatic variation (Bodai and Tel 2012), earthquakes (Malamud and Turcotte 1999) and fires 61 

(Abaimov et al. 2007). All these phenomena are usually described by one estimated fractal 62 

dimension D, which measures the object’s capacity to fill the space. In some cases, however, the 63 

description of particular natural events requires not one, but a set of fractal dimensions. These 64 

phenomena are better characterized by multifractals, which can be seen as sets of interweaved 65 

fractals with different dimensions (Stanley and Meakin 1988). Multifractals are useful for the 66 

description of the spatial (or temporal) organization of population abundance or biomass for which 67 

complex patterns are expected (Halley et al. 2004). Multifractality is attributed to long-range 68 

correlations and thus should be expected in the presence of 1/f noise spatial (or temporal) patterns 69 

(Stanley and Meakin 1988). Moreover, multifractal analysis provides a complementary approach to 70 

spectral analysis. While spectral analysis examines the relative contribution of different spatial or 71 

temporal scales to total variance and may detect scale-invariant patterns, multifractals evaluate 72 

whether scaling relations change according to the spatial or temporal resolution of observations. 73 

Overall, 1/f noise and multifractality are related to the extent that both patterns may reflect the 74 

juxtaposition of multiple independent processes (Kendal 2013). However, the combined action of 75 

multiple processes is not the only mechanism involved in the formation of power law distributions. 76 

Borda-de-Água and co-authors (2007), simulating the spatial distribution of model tree species, 77 

found that multifractals may also originate from Lévy flight dispersal patterns, with long distance 78 

events being frequent enough to generate a fat tail in the frequency distribution of dispersal 79 

distances. 80 

Epilithic microphytobenthos (EMPB) forming biofilms on rocky shores are ubiquitous 81 

worldwide and consist primarily of photosynthetic organisms, such as diatoms, cyanobacteria and 82 

macroalgal spores and germlings (Hill and Hawkins 1991). Biofilms play important functional roles 83 
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on rocky intertidal shores, facilitating the attachment of algal propagules and the settlement of 84 

larvae of many sessile invertebrates (Rodriguez et al. 1993) and providing food for grazing 85 

gastropods (Underwood 1984). EMPB constitutes the major fraction of biomass produced and 86 

directly consumed on a rocky shore (Thompson et al. 2000). 87 

EMPB offer unique opportunities to investigate the spatial ecology of rocky shore populations. 88 

The microscopic size of constituting organisms enables the analysis of a broad range of tractable 89 

scales, from very small (mm) to very large (tens to hundreds of meters) for the organisms of 90 

concern. Recent advances in field-based remote sensing, in particular colour-infrared imagery 91 

(CIR), have significantly improved our ability to obtain in situ quantitative measures of chlorophyll 92 

a (a proxy for EMPB biomass) enabling the collection of large amount of data at a fine spatial 93 

resolution and over a range of several, continuous spatial scales (Murphy et al. 2006). Hence data 94 

can be analyzed across the entire range of spatial scales within the boundary of an image or a set of 95 

consecutive images and the relative positions of observations are implicitly stored within the images 96 

(Murphy et al. 2009). 97 

Notwithstanding rapid technological progress enabling efficient sampling of intertidal biofilms, 98 

to date only one study has examined variability of EMPB at multiple spatial scales (Murphy et al. 99 

2008). Using a hierarchical sampling design and block mean square analysis, Murphy et al. (2008) 100 

showed how variability in EMPB biomass was low at small spatial scales (block sizes from 0.002 to 101 

2.26 cm2), but increased with increasing block-size up to the largest scale examined (36.19 cm2). 102 

Because variation increased with the scale of observation and different processes were invoked to 103 

explain these patterns, the results of Murphy et al. (2008) may indeed underscore 1/f noise process 104 

and, possibly, multifractal structure in EMPB distribution. Indeed, multifractals have been detected 105 

in a study on the spatial distribution of soft bottom microphytobenthos (Seuront and Spilmont 2002) 106 

and in a periphyton community at different stages of succession in experimental tanks (Saravia et al. 107 

2012). In particular, Saravia and co-authors, found that scale invariance arose at each stage of 108 

succession, thus highlighting a temporally consistent scale-invariant behaviour that was ascribed to 109 
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self-organization. In this paper we examine spatial variation in EMPB biomass on rocky intertidal 110 

shores in the Northwest Mediterranean by means of colour-infrared imagery. From the results of 111 

previous studies on the spatial distribution of microphytobenthos (Seuront and Spilmont 2002, 112 

Murphy et al. 2008, Saravia et al. 2012) we test the following hypotheses: (1) the spectral 113 

decomposition of spatial variance in EMPB abundance follows a power law; (2) the distribution of 114 

EMPB in 2-dimensional space is multifractal. We test these hypotheses applying spectral analysis 115 

and multifractal geometry to nearly-continuous spatial EMPB data under natural field conditions. 116 

Methods 117 

Study system 118 

The study was done along the coast of Calafuria (Livorno, 43°30′ N, 10°19′ E) between January and 119 

November 2012. The coast is composed of gently sloping sandstone platforms with high-shore 120 

levels (0.3-0.5 m above mean low-level water) characterized by assemblages of barnacles 121 

interspersed among areas of seemingly bare rock, where EMPB develops. Calafuria’s EMPB 122 

assemblages prevalently comprise cyanobacteria and diatoms. At this height on the shore, the main 123 

grazers are the littorinid snails Melarhaphe neritoides (L.), which aggregate in pits and crevices 124 

when the substratum is dry and forage during sea storms and rain events (Skov et al. 2010 and 125 

references therein). The only other grazer that can occasionally forage at these heights of the shore 126 

is the limpet Patella rustica (L.). 127 

In situ estimates of chlorophyll a 128 

Following the image-based method proposed by Murphy et al. (2006), chlorophyll a, which is used 129 

as a proxy for biofilm biomass, was estimated from a ratio of reflectance at near-infrared (NIR) and 130 

red bands (Jordan 1969). The NIR:red ratio (Ratio Vegetational Index - RVI) detects the absorption 131 

of chlorophyll a using the reflectance at NIR wavelengths, where chlorophyll a does not absorb, 132 

normalized by the reflectance at red wavelengths (corresponding to the peak of chlorophyll a 133 

absorbance) (Murphy et al. 2006).  134 
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Here we used a particular IR-sensible camera (ADC, Tetracam Inc.), commonly employed in 135 

agricultural and vegetational studies, to obtain chlorophyll a estimates. The ADC is a single sensor 136 

digital camera designed and optimized to capture visible light wavelengths longer than 520 nm and 137 

near-infrared wavelengths up to 920 nm. This camera uses a Bayern-pattern filter to produce a 3-138 

layered photo comprising green, red and NIR layers which are analogous to the red, green and blue 139 

layers produced by conventional digital cameras. The ADC system writes a greyscale RAW file for 140 

every photo; hence every photo has been colour-processed and recorded in TIFF format, using the 141 

program PixelWrench 2, prior to further use (Agricultural Camera User’s Guide 2010). Photos are 142 

2560 by 1926 pixels in size and cover an area of ground of about 52 x 35 cm. The approximate 143 

spatial resolution of each pixel is 0.2 mm. 144 

In order to get the best focus, photos were acquired using a stable platform 60 cm above and 145 

normal to the rock surface. Different exposure times for each photo were selected depending on 146 

ambient light conditions, in order to produce bright but not saturated photos. To calibrate pixel 147 

values to the varying light conditions and different camera settings, a reflectance standard of 30% 148 

reflective Spectralon®, representing the range of brightness of Calafuria rock surfaces with 149 

microalgae, was always placed within the field of view of the camera. The calibration of data to 150 

reflectance is obtained normalizing pixel values of each band to the brightness of pixels over the 151 

standard (see Supplementary material Appendix 1).  152 

All methods of collecting remotely sensed data require calibration/validation by comparison 153 

with direct measurements (Murphy et al. 2005). In order to calibrate/validate estimates of 154 

chlorophyll a derived from the ADC data, 100 rock chips ~2 cm in diameter were removed by 155 

cutting the rock with a diamond corer powered by a petrol driller and then photographed using the 156 

ADC camera. Rock chips were then taken to the laboratory for the determination of the amount of 157 

chlorophyll a, which was extracted in methanol as in Thompson et al. 1999. Laboratory 158 

measurements of chlorophyll a were related to ADC estimates (RVI index) using least squares 159 

linear regression. 160 
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Sampling and data analysis 161 

Spatial patterns of EMPB abundance were investigated along two 8m transects and one 4m transect 162 

about 50m from each other, yielding 18 and 9 ADC photos per transect, respectively. Sampling was 163 

repeated in January and November 2012. 164 

The photographs obtained from each individual transect were stitched to form a composite 165 

image using a photogrammetric software (Kolor Autopano Giga 2.6). The area of the rock included 166 

in each individual photo was delimited with white chalk at its corners before sampling. Adjacent 167 

photos overlapped at their margins and the region of overlap was indicated by the white chalk 168 

marks. This procedure facilitated the alignment of photos in the composite image, but resulted in 169 

non-continuous spatial series of data because spurious chlorophyll a values can originate from the 170 

interpolation method (nearest neighbour) used by the photogrammetric software to merge pixels in 171 

the regions of overlap. Three series of observations were extracted from each composite image, 172 

where a series consisted of a set of points one pixel in height and arranged along a common ‘y’ 173 

coordinate (Fig. 1B). Each series had gaps corresponding to the areas in which adjacent photos 174 

overlapped; for each series, the size of gaps was determined by measuring the distance in pixels 175 

between each set of continuous points in the composite image (grey lines in Fig. 1B). The extracted 176 

data were then processed with a java-routine in the ImageJ program in order to quantify NIR/red 177 

ratios (the RVI index) that were then transformed into estimates of chlorophyll a concentration at 178 

the pixel scale. Pixel per pixel calibration to reflectance is part of this routine (Supplementary 179 

materials Appendix 1).  180 

We used spectral analysis on linearly detrended data for each spatial series of chlorophyll a 181 

estimates to characterize the spatial patterns of variation in EMPB biomass along each series of data 182 

within each transect. Although our series were unevenly spaced, knowing the size of gaps enabled 183 

us to use the Lomb-Scargle algorithm (Lomb 1976, Scargle 1982) modified by Press et al. (1992) 184 

for spectral analysis. Spectral densities were estimated between the fundamental and the Nyquist 185 

frequency. The fundamental frequency is defined as 1/xmax, where xmax is the maximum spatial 186 
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extent of the data, corresponding to transects of either 4 or 8 m in our study. The Nyquist frequency 187 

is defined as 1/2Dx, where Dx is the average distance between the irregularly spaced sampling 188 

points. We smoothed the periodogram with Hamming window = 10, thus minimizing the loss of 189 

information at higher frequencies (Chatfield 2004). The spectral density estimate for each series, 190 

!(#), was then plotted against frequency of observation on a natural log-log scale and the spectral 191 

coefficient ( ) was determined as the slope of the regression changed of sign (e.g., Denny et al. 192 

2004). βs were estimated within the range of frequencies that displayed a 1/f noise pattern: the 193 

Nyquist and -7 (on the natural logarithm scale). We truncated the series at -7 because at larger 194 

spatial scales (lower frequencies) the spectral densities deviated from a 1/f noise pattern, becoming 195 

more similar to an autoregressive process. This behaviour possibly reflected the decreasing number 196 

of observations available to estimate spectral densities with increasing scale of observation. 197 

The previous analysis used EMPB biomass values at the resolution of the pixel that were 198 

calibrated against laboratory measurements of chlorophyll concentration obtained from sandstone 199 

cores with areas corresponding to approximately 6400 pixels. This mismatch between the resolution 200 

at which the RVI and chlorophyll measurements were obtained might lead to biased estimates of 201 

spectral coefficients due to error propagation and the noise generated by the camera. To asses this 202 

potential bias we performed a further spectral analysis on nearly continuous spatial series of EMPB 203 

biomass data obtained from non-overlapping quadrats of 80 x 80 pixels (6400 pixels) extracted 204 

from the stitched image of each transect along a common y coordinate. The average spectral 205 

coefficients obtained for each transect with the two methods were then compared with a paired t-206 

test. 207 

To test the hypothesis that the spatial distribution of EMPB was multifractal, a total of 39 plots 208 

of 1024 by 1024 pixels each (approximately 400 cm2) were selected from all the transects and 209 

processed with the java-routine on ImageJ program to obtain EMPB biomass estimates for each 210 

pixel. This plot size was chosen to match as closely as possible the range of scales employed in the 211 

b
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spectral analysis, where the largest scale of -7 corresponded to about 1096 pixels in length. 212 

Multifractal geometry was determined following the method proposed by Saravia et al. (2012) to 213 

estimate the generalized dimensions spectrum Dq of each plot (see Supplementary material 214 

Appendix 2 for formulae and details of calculation). Dq is related to the spatial arrangement of 215 

biomass, computed in the algorithm as the partition function Zq, and reflects the patterns of change 216 

that occur when zooming in or out from each plot by steps of size ε. The exponent q in the 217 

algorithm (chosen by the investigators) captures spatial variation in high or low values of biomass 218 

depending on its value (here, we used q values from -20 to +20). When q is a relatively large 219 

positive number, Dq reflects the spatial patterns of large biomass values (chlorophyll a > 1 µg/cm2), 220 

whereas when q is a large negative number, Dq describes the spatial pattern of small biomasses 221 

(chlorophyll a estimates between 0 and 1 µg/cm2). 222 

 For multifractal objects, the spectrum of generalized dimensions Dq (not to be confounded 223 

with the power spectrum) takes the shape of a sigmoid curve and it is a decreasing function of q 224 

(Grassberger 1983). For mono- or non-fractal objects the spectrum is a non decreasing function of 225 

q. The other assumption that must be met for the biomass distribution to be multifractal is that the 226 

relationship log(Zq) versus log(ε) should be linear for all the q used in the calculation of Dq (see 227 

Supplementary material Appendix 2).  228 

Deviations from spatially homogeneous biomass distributions are quantified as positive and 229 

negative deviations from 2 (the expected value of the exponent of a non-fractal 2D space), for low 230 

and high biomass values respectively. A plot with high peaks of biomass will have increasingly 231 

lower Dq for positive q and a plot with sharp collapses of biomass will have increasingly larger Dq 232 

for negative q. A plot with both peaks and falls will show large deviations from 2 (Saravia et al. 233 

2012). 234 

To further characterize spatial patterns of EMPB distribution we examined how D1 varied 235 

along transects, sampling dates and potentially important environmental drivers. D1 is directly 236 

related to Shannon entropy and can be thought as the decrease in information content when 237 
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increasing box size in the box counting method (Mendoza et al. 2010). Large values of D1 indicate 238 

greater homogeneity with increasing box size, while low values indicate the opposite. To obtain 239 

reasonably long spatial series of D1 values along transects, we repeated the multifractal geometry 240 

analysis described above using plots of 128 x 128 (instead of 1024 x 1024) pixels from the two 8m 241 

transects. These plots were aligned along a common ‘y’ coordinate along composite images and the 242 

size of gaps was recorded as the number of missing 128 x 128 plots in the regions of overlap 243 

between adjacent photos (Fig. 1C). This yielded a series of 64 D1 values for each 8m transect and 244 

sampling date. We analysed these data in two ways. First, we used a mixed-effect model including 245 

the main effects and interactions among densities of grazers (the littorinid Melaraphe neritoides), 246 

and average rainfall in the week before sampling in the fixed part of the model, and transects as a 247 

grouping factor with a random intercept. Densities of grazers were calculated within each individual 248 

image of the composite transects, whereas daily precipitation data were obtained from Lamma 249 

Toscana (http://www.lamma.rete.toscana.it/). Rainfall and aerial temperature were the two of most 250 

obvious environmental variables discriminating between sampling dates. The daily values of these 251 

variables were highly correlated in the week before sampling (r=0.9, n=7), so we used only rainfall 252 

in the analysis because this variable has been related to the activity of grazers in previous studies 253 

(Bates and Hicks 2005, Skov et al. 2010). 254 

Following the results of the mixed effect model, which highlighted a significant grazer x 255 

rainfall interaction (see Results), we examined the cross-correlation between D1 and density of 256 

grazers along each transect at each date of sampling. We used the function spline.correlog in the R 257 

package ‘ncf’ for this analysis (Bjornstad and Falck 2001). 258 

All analyses were performed in R 2.15.2. (R Development core team 2012).   259 

Results 260 



12 
 

There was a strong linear relation between chlorophyll a estimates obtained with laboratory 261 

extraction methods and the RVI index (Fig. 2; R2= 0.80, SE=0.12, p<0.001, n=100), indicating that 262 

ADC images can be used to predict EMPB abundance. 263 

Variance of chlorophyll a concentration was inversely related to the frequency of observation 264 

for all the spatial series investigated, (see Appendix 3 Fig. A3.1 and A3.2). Spectral coefficients 265 

ranged from 0.95 to 1.64 (mean 1.34), indicating a predominance of “red-noise” spectra (Table 1). 266 

The analysis based on quadrats of 80 x 80 pixels yielded very similar results to those obtained from 267 

the analysis of series of individual pixels, with spectral coefficients in the range 0.86 -1.7 that were 268 

still indicative of ‘red-noise’ spatial patterns (Table A4.1, Supplementary material Appendix 4). 269 

The paired t-test did not highlight statistically significant differences in mean spectral coefficients 270 

between scales calculated at the transect level (t=-1.36, P>0.23, with five degrees of freedom). 271 

EMPB biomass displayed multifractal spatial distribution in all plots of 1024 x 1024. The 272 

theoretical prediction that Dq should be a monotonically decreasing function of q was supported in 273 

all cases (Fig. 3) and the linear relation necessary for the biomass distribution to be multifractal was 274 

achieved for all the plots sampled and all the values for q used to calculate the spectrum of 275 

generalized dimensions (R2 were larger than 0.99 in all cases) (see Supplementary material 276 

Appendix 2, Fig. A2.1). 277 

Multifractal spatial distribution of EMPB biomass also emerged from the analysis of the plots 278 

of 128 x 128 pixels (data not shown). The analysis of the resulting D1 values highlighted a 279 

statistically significant interactive effect of the density of snails and the average rainfall in the week 280 

before sampling (Table 2). D1 decreased with increasing density of grazers under dry 281 

meteorological conditions, whereas the opposite was observed under wet conditions (Fig. 4). 282 

The spatial correlograms showed a positive relation between D1 and littorinid density at small 283 

spatial scales for all combinations of transects and sampling dates (Fig. 5). Positive cross-284 
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correlation was also evident at the largest spatial scale in one of the two transects sampled in 285 

November 2012 (Fig. 5). 286 

Discussion 287 

We found a strong linear relation between laboratory chlorophyll a estimates and the RVI index. 288 

The regression model explains 80% of variability in the data. Microscopic variations in colour and 289 

topography of the surface of sandstone rock cores, together with occasional small areas of specular 290 

reflectance likely  accounted for some of the remaining 20% of unexplained variability (Murphy et 291 

al. 2009). 292 

Our results support the hypothesis that EMPB biomass is distributed according to a power law 293 

and that multifractal organization characterizes EMPB spatial distribution. Spectral coefficients for 294 

all the series of observations taken along linear transects were close to or greater than one. 295 

Expanding the analysis in a two-dimensional space through multifractal geometry produced an 296 

analogous outcome. Multifractal analysis, indeed, indicated that the spatial distribution of EMPB 297 

was characterized by a combination of several fractal sets with different fractal dimensions. The 298 

scale-invariant nature of EMPB biomass distribution suggests the superimposition of several abiotic 299 

and biotic processes operating at different spatial scales (Hausdorff and Peng 1996). Positive and 300 

negative biotic interactions are likely to be responsible for the variability observed at the smallest 301 

spatial scales (from millimetres to centimetres). For example, the production of extracellular 302 

polymeric substances (EPS) has been described as a mechanism of facilitation between microalgal 303 

cells that may promote the development of EMPB patches, through reducing desiccation, favouring 304 

nutrient retention and providing protection from UV radiations (Potts 1999). However, within 305 

EMPB patches mechanisms of facilitation could be counterbalanced by competitive interactions for 306 

resources such as light, nutrients and space among microalgae. These mechanisms of facilitation 307 

and competition may further interact with the microtopography of substratum, which may also have 308 

a multifractal structure (Commito and Rusignuolo 2000) and can promote variation in important 309 
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variables for EMPB growth, such as solar radiation, ground temperature and moisture (Murphy et 310 

al. 2008). For example, the presence of small pits and crevices on the rock favours water retention, 311 

providing a surrounding halo of favourable conditions for the development of EMPB (Jackson et al. 312 

2013). 313 

Superimposed to these processes there is the effect of grazers (Thompson et al. 2004), whose 314 

foraging activity is known to influence either positively or negatively EMPB biomass distribution. 315 

The most important grazer at the study site was Melarhaphe neritoides, which actively forage on 316 

EMPB, leaving characteristic halos deprived of microalgae. Generally the exclusion of littorinid 317 

grazers from plots of rocky substratum resulted in short-term increases of EMPB growth (Stafford 318 

and Davies 2005). However, once EMPB biomass is monitored for longer periods, as in Skov et al. 319 

2010, the initial positive effect of excluding snails turns out to be negative. A history of grazing by 320 

M. neritoides can boost EMPB growth by continuously removing detritus and dead cells and, thus, 321 

favouring light penetration and nutrient access.  322 

Our results support the view that grazing activity is mediated by physical processes linked to 323 

fresh water supply. Littorinids are more active in moist conditions, so that their impact on EMPB 324 

biomass may be larger during wet days, regardless of their density (Bates and Hicks 2005). We 325 

found a general positive association between grazers and D1 at small spatial scales, suggesting that 326 

grazers may generate homogenous areas of low biomass in their neighbourhoods under different 327 

environmental conditions (larger D1 values correspond to lower disorder). This positive association 328 

may occasionally extend at larger scales, as observed in one transect in November 2012. However, 329 

the mixed-effect model also suggested that grazing activity may result in more heterogeneous 330 

spatial patterns of distribution of EMPB biomass in wet compared to dry conditions and that the 331 

relation between D1 and density of grazers is negative in the dry sampling date (January 2012) and 332 

slightly positive in the wet sampling date (November 2012). Although we cannot exclude that 333 

factors other than rainfall differed between sampling dates, our results strongly suggest that rainfall 334 

mediates not only the effect of grazers on mean EMPB biomass, as described in other studies (Bates 335 
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and Hicks 2005, Stafford and Davies 2005, Skov et al. 2010), but also the spatial organization of 336 

EMPB distribution. 337 

Yet, spatial self-organization may provide an alternative way to interpret our results. Spatial 338 

self-organization embraces a set of dynamical processes for which large-scale ordered spatial 339 

patterns and power law clustering distributions arise from local interactions between the 340 

components of a system (Solé and Bascompte 2006). The unifying ecological principle invoked to 341 

explain these patterns is the presence of scale-depended feedback, which emerges mainly from 342 

short-range facilitation through habitat modification and long-range competition for resources. The 343 

way this feedback acts follows Turing's scale-dependent activator-inhibitor principle (Rietkerk and 344 

van de Koppel 2008). Evidences of spatial patterns linked to scale-dependent feedback have been 345 

found in a variety of ecosystems, ranging from arid habitats (Rietkerk et al. 2002) to intertidal 346 

mudflats (Weerman et al. 2010) and mussel beds (van de Koppel et al. 2005). The power law 347 

clustering distribution of EMPB biomass that resulted in our study may underscore self-348 

organization (Pascual et al. 2002). In EMPB communities, biofilm formation through EPS 349 

production by microalgae could be able to trigger the scale-dependent feedback required for the 350 

formation of a self-organizing pattern. Specifically, the short distance interactions of mutual 351 

benefits between microalgal cells and the large distance competitive processes for resources 352 

described before could be seen as, respectively, the activators and inhibitors of Turing’s principle. 353 

In the perspective of self-organization, the strength of positive and negative feedbacks is able to 354 

mediate the action of environmental processes through mechanisms of resource concentration that 355 

take place in the activator-inhibitor systems mentioned before (Rietkerk and van de Koppel 2008). 356 

For example, across intertidal mudflats, erosive losses of microalgae by tidal flows are dampened 357 

by EPS. In a similar manner, in EMPB systems, the negative effects of adverse environmental 358 

conditions (temperature, insolation, dryness) could be mediated by EPS, which act both locally and 359 

at larger scales concentrating resources and alleviating desiccation and insolation stress. 360 
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Positive feedbacks associated with EPS were also suggested by the change in scaling regime 361 

that was evident in some of the power spectra, where the negative relation between variance and 362 

scale of observation became steeper at frequencies greater than -2.5 (on the logarithm scale). This 363 

indicated a change in autocorrelation at very small spatial scales, possibly reflecting the presence of 364 

small patches of EMPB biomass maintained by positive species interactions. The exact mechanisms 365 

underlying the observed change in scaling regime remain open to further scrutiny. 366 

Our results have important methodological implications, emphasizing the importance of high-367 

frequency sampling to fully capture the patterns of variability and organization of ecological 368 

variables. In situ remote sensing techniques facilitate this task, resulting in a large amount of data 369 

that can be analysed using multiple statistical techniques. The possibility of integrating different 370 

analytical approaches enabled us to support the hypothesis that 1/f noise spatial patterns are also 371 

multifractal.  These results can be interpreted from two different, but not mutually exclusive 372 

perspectives. Both interpretations stress the importance of local biotic interactions, either positive or 373 

negative, in shaping spatial pattern of distribution of EMPB biomass, while differing in the way 374 

environmental processes are supposed to affect microalgal abundance. One interpretation is that 375 

environmental processes associated with temperature, insolation and moisture exert a direct effect 376 

on EMPB, determining relatively large scale variation in its biomass. In contrast, under self-377 

organization, the influence of these abiotic variables is indirect, being mediated by the presence of 378 

the EPS matrix in which microalgal cells are embedded. 379 

Although we did not analyze this fact, the combined use of spectral and multifractal techniques 380 

suggests, in some cases, the existence of two scaling regimes in the spatial distribution of EMPB 381 

biomass along transects. Visual inspection of a number of power spectra, indeed, could highlight 382 

that high frequencies (i.e., small spatial scales) have a higher spectral coefficient and low 383 

frequencies (i.e., large spatial scales) a lower one. Temporal tracking of changes in patch size could 384 

help discriminating between contrasting exogenous and endogenous processes influencing EMPB 385 
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distribution (Manor and Shnerb 2008). If, in a time series of patch size variation the probability that 386 

patches shrink within a fixed time span decays exponentially with their size, the observed spatial 387 

structure can be ascribed mostly to the action of physical processes, such as the topographic 388 

complexity of the substratum (Vandermeer et al. 2008). If patch shrinking scales logarithmically 389 

with patch size, grazing could play a major role in the clustering process (as in Kefy et al. 2007). 390 

Conversely, if endogenous positive feedbacks are responsible for power law cluster distribution, 391 

large clusters should disappear with a rate that depends linearly on patch size (Vandermeer et al. 392 

2008).  Ultimately, manipulative experiments will be required to evaluate the importance of self-393 

organization and the influence of external physical and biological processes in determining spatial 394 

patterns in EMPB distribution. 395 
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Table 1. β coefficients and R2 from linear regressions of the power spectrum of EMPB biomass 510 

against frequency of observation for the two sampling dates. βs were estimated within the range of 511 

frequencies defined by the Nyquist and -7 (on the natural logarithm scale). All the coefficients were 512 

significantly different from zero (p<0.001). 513 

Transect Series 
January 2012 November 2012 

β (SE) R2 β (SE) R2 

1(8 m) 

1 1.22 (0.010) 0.79 1.02 (0.006) 0.80 

2 1.24 (0.008) 0.80 1.08 (0.005) 0.79 

3 1.33 (0.010) 0.78 0.95 (0.005) 0.79 

2 (8 m) 

1 1.17 (0.007) 0.82 1.61 (0.006) 0.83 

2 1.25 (0.007) 0.82 1.43 (0.006) 0.83 

3 1.24 (0.007) 0.79 1.59  (0.007) 0.81 

3 (4 m) 

1 1.55 (0.009) 0.77 1.39 (0.008) 0.81 

2 1.56 (0.011) 0.74 1.45 (0.009) 0.78 

3 1.64 (0.009) 0.80 1.45 (0.009) 0.80 

  514 
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Table 2. Mixed effect model on D1 spatial series calculated for128 by 128 pixels plots extracted 515 

from the two 8 m transects at each sampling date.  516 

*, p<0.05 517 

Fixed effects   

  Coefficient (SE)  

Intercept: γ00 1.923 (1.081·10-2) *** 

Snail number γ01 3.037·10-4 (1.811·10-4)  

Rainfall γ02 -2.093·10-4 (1.275·10-4)  

Snail number x Rainfall γ03 -4.767·10-6 (2.311·10-6) * 

    

Random Effects  
  

Variances  

Transect σ21 5.310·10-3  

Date σ22 3.843·10-4  

Quadrats apart σ23 9.649·10-8  

Residual σ2e 3.194·10-3  

    

  518 
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LEGEND TO FIGURES 519 

Figure 1. Sampling within transects. A, a section of a transect obtained from the merging of 520 

individual photos. The white chalk marks at the corners of each plot and the reflectance standard are 521 

visible in all the photos. B and C, spatial arrangement of sampled pixels. Crosses show the position 522 

of chalk marks that were used to align overlapping photos. Vertical black and grey dotted lines 523 

delimit the margins of the right-hand and left-hand photos in each pair of adjacent photos and define 524 

the region of overlap. Circles represent the reflectance standard. B, horizontal black lines represent 525 

the three series of observations used in 1/f  noise analysis that were aligned along a common y 526 

coordinate; data from pixels in the overlapping regions (horizontal grey lines) were not used in the 527 

analysis; size of gaps in the region of overlap is measured in pixels. C, spatial arrangement along a 528 

common y coordinate of the five adjacent plots (128 by 128 pixels each) used in the multifractal 529 

analysis (black quadrates). Grey quadrates within regions of overlap have not been used in the 530 

analysis.  531 

Figure 2. Calibration curve: chlorophyll a concentration determined from laboratory analysis 532 

(µg·cm-2) versus image estimates of chlorophyll from sandstone cores (Ratio Vegetational Index, 533 

RVI), R2= 0.80, SE=0.12, p<0.001, n=100.  534 

Figure 3. Spectrum of generalized dimensions Dq versus q obtained for  the 1024 by 1024 sampled 535 

plots separately for transect 1, 8 m long, n= 11 (A), transect 2, 8 m long, n= 18 (B) and transect 3, 4 536 

m long, n= 10 (C). 537 

Figure 4. Interactive effect of the snails density and average rainfall in the week before the sampling  538 

on mean D1 (n=64, means ± standard errors). White, average rainfall: 0 mm; gray, average rainfall: 539 

110 mm.  540 

Figure 5. Spatial cross-correlation between littorinid density and D1 in each of two 8m transects 541 

sampled in January 2012 (A, B) and November 2012 (C, D). D1 values have been obtained from 64 542 
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quadrats of 128 x 128 pixels aligned along a common y coordinate, but unevenly spaced along each 543 

transect. Note that these quadrats did not span the entire length of a transect as a consequence of 544 

avoiding portions of substratum that would have resulted in non-sense measures of EMPB biomass 545 

(e.g., shaded areas due to crevices).  546 
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 548 

Dal Bello et al. Figure 1.  549 
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 550 

Dal Bello et al. Figure 2.551 

552 

  553 
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 554 

Dal Bello et al. Figure 3. 555 
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Dal Bello et al. Figure 4. 558 
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Dal Bello et al. Figure 5.  562 
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Appendix 1. 563 

Calibration of data to reflectance 564 

Pixel values (Digital Number, DN) over the calibration standard are averaged and the reflectance (ρ) 565 

for each band in each photo is calculated as  566 

!(#ℎ%&%) = 	
*+(#ℎ%&%)!(#,-./)

*+(#,-./)
 567 

where !(#ℎ%&%) is the reflectance at each pixel in the photo; !(#,-./) is the reflectance of the 568 

calibration standard, which is a known constant; *+(#ℎ%&%) is DN at each pixel in the photo and 569 

*+(#,-./) is the average DN of the pixels over the calibration standard (Murphy et al. 2006). 570 

Calibration is part of a java-routine on ImageJ program with which each ADC-photo is processed. 571 

Calibration of data to reflectance is of fundamental importance when one wants to compare 572 

chlorophyll amounts estimated from photos acquired at different times and places. 573 

References 574 

Murphy, R. J. et al. 2006. Quantitative imaging to measure photosynthetic biomass on an intertidal 575 

rock platform. – Mar. Ecol. Prog. Ser. 312: 45–55. 576 
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Appendix 2 578 

Calculation of the generalized dimension spectrum Dq 579 

Generalized dimensions are exponents estimated by the box counting method: the plot is covered 580 

with a grid of N(ε) squares of side ε and for each square a value of standardized biomass is 581 

calculated as 582 

01(2, 4) =
(56(7))

8

∑ (5:(7))8
;(<)
:

.                                                                                                        (1) 583 

where µ is the measured biomass and q is called the moment order and can be considered an 584 

arbitrary exponent. An adjustment corresponding to +(minimum observed biomass)/100 has been 585 

applied to all biomass values before the standardization in order to avoid zeros. 586 

Then the partition function is computed as: 587 

>?(4) = ∑ (01(2, 4))
@(7)
1 .                                                                                                       (2) 588 

The operation is performed for different values of ε and q. In order to exactly divide the plots, a 589 

grid size range of ε in power of two with a minimum of 22=4 and a maximum of 27=128 or 590 

210=1024 pixels was chosen; the q exponent ranged between -20 and +20.  591 

The generalized dimension is calculated as:  592 

*? =
A

?BA
	 lim
7→G

HIJ	(K8(7))

HIJ	 7
.                                                                                                       (3) 593 

This limit cannot be determined. Hence the second term in Dq is calculated as the slope of the 594 

regression of log(Zq) versus log(ε). A linear relation is assumed, which is estimated using the least 595 

squares method.  596 

For q=1, the denominator of the first term in Dq is undefined, so Eq. 3 is replaced by: 597 

lim
7→G

∑ 56(7)HIJ	(56(7))
;(<)
6

LMN7
.                                                                                                          (4) 598 

To see that Dq is actually an exponent, Eq. 3 can be rearranged to obtain:  599 

>? ≈ 	 4P8(?BA)	.                                                                                                                          (5) 600 
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Eq. 5 determines how Zq varies with the scale ε and it is evident that it is a power law.  601 

Details of results 602 

We found a linear relation between log(Zq) and log(ε) for all plots sampled and all q used. As a 603 

measure of goodness of fit, we calculated the coefficient of determination R2, which was always 604 

larger than 0.99. 605 

 606 

Figure A2.1. Example of a typical graph for the determination of the generalized dimension Dq for 607 

one subplot 1024 by 1024 pixels. It shows all the regression lines for ten values of q.   608 
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Appendix 3 609 

 610 

Figure A3.1. Power spectra of EMPB biomass separately for each transect. The spectral density is 611 

plotted against frequency of observation (pixel-1) on a natural log-log scale. Data are from the first 612 

date of sampling (26.01.2012). 613 
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 614 

Figure A3.2. Power spectra of EMPB biomass separately for each transect. The spectral density is 615 

plotted against frequency of observation (pixel-1) on a natural log-log scale. Data are from the 616 

second date of sampling (16.11.2012). 617 

  618 



37 
 

Appendix 4 619 

Table A4.1. β coefficients and R2 from linear regressions of the power spectrum of EMPB biomass 620 

data obtained from quadrats of 80 x 80 pixels against frequency of observation for the two sampling 621 

dates. All the coefficients were significantly different from zero (p<0.001). 622 

  623 

Transect Series 
January 2012 November 2012 

β (SE) R2 β (SE) R2 

1 
1 1.71 (0.050) 0.92 0.88 (0.036) 0.80 

2 1.29 (0.058) 0.82 0.97 (0.033) 0.88 

2 
1 1.11 (0.034) 0.90 0.76 (0.045) 0.66 

2 1.35 (0.039) 0.91 0.86 (0.045) 0.71 

3 
1 1.17 (0.070) 0.72 1.36 (0.052) 0.86 

2 1.27 (0.050) 0.77 1.16 (0.054) 0.81 

 624 


