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Abstract. We consider computations by a distributed team of autonomous
mobile agents that move on an unoriented dynamic ring network. In par-
ticular, we consider 1-interval connected dynamic rings (i.e. at any time,
at most one of the edges might be missing). The agents move accord-
ing to a Look-Compute-Move life cycle, under a synchronous scheduler.
The agents may be homogenous (thus identical and monochromatic) or
they may be heterogenous (distinct agents have distinct colors from a
set of ¢ > 1 colors). For monochromatic agents starting from any dis-
persed configuration we want the agents to form a compact segment,
where agents occupy a continuous part of the ring and no two agents are
on the same node — we call this the Compact Configuration Problem. In
the case of multiple colors (¢ > 1), agents of the same color are required
to occupy continuous segments, such that agents having the same color
are all grouped together, while agents of distinct colors are separated.
These formation problems are different from the classical and well stud-
ied problem of Gathering all agents at a node, since unlike the gathering
problem, we do not allow collisions (each node may host at most one
agent of a color).

We study these two problems and determine the necessary conditions
for solving the problems. For all solvable cases, we provide algorithms
for both the monochromatic and the colored version of the compact
configuration problem, allowing for at most one intersection between
the colored segments (which cannot be avoided in a dynamic ring). All
our algorithms work even for the simplest model where agents have no
persistent memory, no communication capabilities and do not agree on a
common orientation. To the best of our knowledge this is the first work
on the compaction problem in any type of dynamic network.

1 Introduction

Research in the field of distributed computing has always considered fault tol-
erance as an important aspect of algorithm design and there are many studies
on algorithms tolerating e.g. failures of nodes or links in a network. However,
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in recent years researchers started to investigate so called dynamic graphs, that
is graphs where the topological changes are not localized and sporadic; on the
contrary, the topology changes continuously and at unpredictable locations, and
these changes are not anomalies (e.g., faults) but rather an integral part of the na-
ture of the system [4,/910/17]. The study of distributed computations in such dy-
namic graphs has concentrated on problems of information diffusion, reachability,
agreement, and other communication problems (see e.g., |1}3,(6}/11L{14-16,20]).
These studies are on message passing networks under various different models of
dynamic changes of topology. A general theoretical model for dynamic networks
is the evolving graph model, where the network is modelled as a sequence of
graphs each of which is a subgraph of the so-called footprint graph which rep-
resents the underlying topology. In order to allow useful tasks to be performed
on such a network, we need to make some assumptions on the connectivity of
the network. One natural way of modelling this is the k-interval connected dy-
namic graph model (See e.g. [17]). The most restricted of these models is the
1-interval connected dynamic graph model where the only assumption is that at
each round, the instance of the graph is connected.

One of the ways of dealing with a highly dynamic environment is the use of
mobile code, allowing processes to migrate from node to node on a network dur-
ing the process of computation. This initiated research in algorithms for mobile
agents, where an agent is an autonomous process that moves along the edges of
the a network and can perform computations at the nodes of the network, using
its own memory and state information, as well as the information stored in the
nodes. Mobile agents can also represent agents moving in a dynamic environ-
ment. In this case, the agents may have some vision allowing them to see parts
of the network and take decisions based on this knowledge. There are many dif-
ferent models for mobile agents depending on their capabilities of remembering
(memory), visualizing (vision range), communication and computation abilities.

There has been a lot of research on mobile agents moving in static graphs.
The fundamental problems studied are exploration and patrolling, where a team
of agents has to visit all nodes of the graph, either once or periodically. A re-
lated problem is information dissemination or data collection from the nodes.
Several coordination problems for teams of agents have been studied where the
agents need to form a particular configuration. One of the most studied problem
is rendezvous or gathering where all agents need to meet at a single node of the
graph. This requires mechanisms for symmetry breaking as in the leader elec-
tion problem in distributed computing. The problem has been studied both for
agents with identities or anonymous (and thus identical) agents. For homony-
mous agents (where multiple agents share the same name or color), the problem
of grouping the agents into teams with specific colors, is called the team as-
sembling problem, and has been proposed and studied in [18] for agents moving
freely in a plane. In the above problems, all agents of the same team must be at
the same point or at the same node of the graph. However, it may not always be
possible for a single node to host many agents at the same time. In this paper, we
avoid multiple agents in the same node, but we want the agents in a team to be



Compacting and Grouping Mobile Agents on Dynamic Rings 3

close to each other (e.g. to be able to exchange information and coordinate with
each other). Motivated by this requirement, we define and study the Compact
Configuration Problem (CCP) problem: starting from any configuration of mobile
agents scattered in a graph G, the objective is to reach a configuration where
each node contains at most one agent and the nodes occupied by agents of the
same color induce a connected subgraph of G. To the best of our knowledge, this
is the first time compaction problems have been studied at least for distributed
teams of autonomous agents. As a preliminary investigation in this paper we
consider one of the simplest topology - the ring network. In a ring, solving the
CCP problem requires agents of the same team to occupy the nodes of a con-
tinuous segment of the ring, without any multiplicities. Although conceptually
simple, a ring is highly symmetrical, and it is challenging to solve problems in
the ring that require symmetry breaking. We assume that neither the nodes or
the agents possess any unique identifiers, which makes the problem much harder.
Moreover we consider the network to be dynamic where at any stage of the algo-
rithm, some edges may be unavailable. In this paper the network is a 1-interval
ring network, at most one edge of the ring may be missing at any round of the
algorithm.

Previous studies of mobile agents in dynamic graphs has focussed on the
fundamental problems of exploration, patrolling and gathering [5}(7}18,/12}[13].
All these results consider t-interval connected graphs. Under weaker models of
dynamicity, only weaker versions of gathering may be solved [2]. The problem
of compaction is loosely related to the problem of near-gathering that has been
studied recently in [19].

Our Contribution. In this paper we investigate the problem of compacting
groups of mobile agents initially scattered on dynamic rings. We study the prob-
lem in two different scenarios: the agents either have all the same color (¢ = 1)
or, there are ¢ > 1 colors. We show that only local visibility is not sufficient for
solving the problem even if the agents have unbounded memory. On the other
hand, under global visibility, even oblivious agents (agents with no persistent
memory) can solve the problem in all solvable instances. However, due to the
dynamicity of the graph, we cannot always avoid intersections between the com-
pacted segments. Our algorithms solve the CCP problem for many colors, with
at most one intersection between two colored compact segments, while all other
segments are separated. The results of this paper provide the full characteri-
zation of solvable instances for the above problems. Due the space limitations,
some of the proofs have been omitted.

2 Preliminaries

Interval Connected Ring. A dynamic graph G is an infinite sequence of static
graphs (G, Gy, . . .). For each round r € N we have a graph G, : (V, E(r)) where
V i {vo,...,vn_1} is a set of nodes and F : N = V x V is a function mapping
a round 7 to a set of undirected edges. Given a dynamic graph G, its footprint
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G is the graph obtained by the union of all graph instances G = (V, Ey) =
(V,U5E(i)). A dynamic graph G is a l-interval connected ring if its footprint
is a ring and G, is connected, for each round r. In this paper, we assume 1-
interval connected ring such that at most one edge of the ring can be missing
at any time; such an edge is arbitrarily chosen by an adversary. Throughout the
paper we use the term dynamic ring to always mean such a network. The graph
G is anonymous, i.e. all nodes are identical to the agents, the endpoints of each
edge are unlabelled, and we do not assume any common orientation (i.e the ring
is not oriented).

The agents. We consider a set of oblivious agents, A = {ai,...,ar} that
are initially located on distinct nodes of a dynamic ring. The agents have no
persistent memory, and each agent has an initial color in [1,¢] (when ¢ = 1, all
agents have the same color). When ¢ > 1, we assume that the sets of agents
having the same color all have the same size h, with h > 2. Also, we assume that
the size of the ring is at least 2hc + ¢. Also, we assume a total ordering on the
colors; we call max_color the first color in this ordering. Note that the color of
the agents is fixed at the beginning and it cannot be changed.

Agents follow the same algorithm executing a sequence of Look, Compute,
Move cycles. In the Look phase of each cycle, the agent gets a snapshot of the
environment. In the Compute phase the agent uses the information from the
snapshot and the contents to compute the next destination, which may be the
current node or one of its neighbours. During the Move phase an agent traverses
an edge to reach the destination node. Given a direction of movement, we say
that an agent a is blocked by the missing edge, if the edge adjacent to a, in
the chosen direction of movement, is missing. We say that two agents collide if
they occupy the same node at the same round. When two (or more) agents with
distinct colors occupy the same node, we say that the collision is admissible.

The visibility of the agents may be either global or local:

— Global Snapshot: The snapshot obtained by an agent in round r contains
the graph G, (with the current location of the agent marked), and Vv € G,
the colors of the agents (if any) that are located in node v.

— Local Snapshot: The snapshot obtained by an agent at a node v in round r
contains the same information as in the Global snapshot, but restricted to a
distance of R hops from node v.

Synchronous system. The system is synchronous, agents perform each (Look,
Compute, Move) cycle in a discrete time unit called round. Rounds are univocally
mapped to numbers in N, starting from 0. All agents start the execution at round
0. In each round, each agent in A executes exactly one entire (Look,Compute,
Move) cycle.

Configurations and other definitions. The configuration of the set of agents
A at round r, is a function C,. : A — V that maps agents in A to nodes of V where
agents are located. The term initial configuration indicates the configuration of
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(a) |S1] = |S2] (b) [S1] <[]

Fig. 1: (a) Impossibility with no overlap. (b) A Solution for ColoredCCP problem.

agents at round 0, when it is clear from the context we omit the round and
we use C to indicate the current configuration. We use the notation C,(A) to
indicate the set of nodes where agents in A are located at round r, and we use
G[C,(A)] to indicate the subgraph induced by the locations of agents in A in
graph G.

A segment indicates a set of nodes of G that have connected footprint and
that do not form a cycle. Given a node v € G we say that the node is empty at
round r, if in C,. there is no agent on v. Similarly, we say that a segment of nodes
is empty at round r if all nodes of the segment are empty. We say that a segment
is full if each node of the segment contain agents of the same color. Given two
full segments S7 and Ss, let a be any agent in S; and b any agent in Ss; we
define the distance between S and Sy as the smallest number of consecutive
empty nodes between a and b. We say that a full segment S is blocked by the
missing edge if the first agent in S is blocked according to the chosen direction
of movement. Also, the ”full segment” is said to move when all agents in the
segment do a move in a given direction. Given two disjoint segments the distance
between them is the minimum number of nodes between two endpoints of the
segments.

Any given configuration at a round r can be represented by a sequence of n
sets, representing the contents of the n nodes of the ring, starting from any given
node. The configuration is said to be: (1) periodic if this sequence is periodic,
(2) Palindrome if some cyclic rotation of this sequence is a palindrome, and
(3) Asymmetric if it is neither Periodic nor Palindrome.

The Compact Configuration Problem. We introduce the problems we will inves-
tigate in the following. The first definition is for monochromatic agents.

Definition 1 (Compact Configuration Problem). Given a dynamic graph G with
footprint G and a set of agents A, we say that an algorithm solves the distributed
Compact Configuration Problem (CCP) if and only if there exists a round r, when
G[C,(A)] is connected and each agent occupies a distinct node.
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For multi-colored agents, we want agents of the same color to occupy contin-
uous segments, while agents of distinct colors should be separated. Consider the
example configuration in Figure where agents of two colors are interleaved.
Suppose the adversary blocks the edge marked with a dash, forever. In this case
the only way to solve the problem would require two pairs of agents of two dis-
tinct colors to cross each other along the other continuous segment of the ring.
Now during this process the agents would form an interleaved configuration in
another part of the ring and now the adversary can block a new edge (releasing
the previously blocked edge) in such a way that a similar configuration as in
Figure is created again.Thus it is not possible to completely segregate the
agents of different colors under such an adversary. We therefore allow at most
one overlap between two segments of different colors as in Figure [IH

Definition 2 (Colored Compact Configuration Problem). Given a dynamic graph
G with footprint G and set of agents A; having colori € [1,c|, where ¢ > 2, we say
that an algorithm solves the distributed Colored Compact Configuration Problem
(ColoredCCP) if and only if there exists a round r where, for each i € [1,(]
except two colors j,p, each agent in A; occupies a different node and G[Cy(S;)]
is connected. Moreover, if p # j it holds that G[C,(Sp)] and G[C..(S;)] intersect.

Intuitively, in the CCP problem we ask all agents, initially arbitrarily placed,
to move so to form one full segment (i.e., with no empty nodes). While in the
ColoredCCP problem, we require that all agents having the same color form
one full segment, and that at most two of these full segments intersect. All the
algorithms presented here allow only admissible collisions: i.e., at any point in
time no two agents having the same color occupy the same node of the ring.

c =1, Global|c = 2, Global| ¢ > 2, Global Local

Asymmetric| v'(Sec. [3.1 v (Sec.5) [v'(Sec. 4.1} 4.2)[x (Th.[2

Palindrome | v (Sec.[3.2)) | v'(Sec. v (Sec.[4.3) [x (Th.[]2
Table 1: Results for the CCP and ColoredCCP problems.

A summary of the results that we show in this paper is reported in Table
The first thing to notice is that solving CCP is impossible when the initial con-
figuration is periodic as shown below (Theorem [1)).

Theorem 1. Given a dynamic ring G, and a set of agents A initially placed on
Gy in a configuration that is periodic and disconnected, it is impossible to solve
the CCP or the ColoredCCP problem, even if the agents have global visibility.

Proof. In a periodic configuration, the ring can be partitioned into identical
segments and none of these are full segments. In case no edge is ever missing, the
symmetry between the agents in the two consecutive segments cannot be broken
deterministically, thus agents in equivalent positions take the same action in
each step and the resulting configuration remains periodic. Since any compacted
configuration (with k < n) is not periodic, the theorem follows.
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Therefore, in the following we assume that the initial configuration is either
asymmetric or palindrome. These two cases are handled separately. However
even for aperiodic configurations, the compaction problem cannot be solved in
the local visibility model. In the following, the visibility graph of a configuration
C' is the defined as the graph G,;s = (A, E), where A is the set of agents and
there is an edge (a,b) € FE whenever agent b is within distance R from a

Theorem 2. In the local snapshot model, starting from a configuration C' such
that C' is asymmetric and has a connected visibility graph, there is no correct
algorithm that solves CCP, avoiding collisions. The result holds even if the agents
have unbounded memory.

Thus, in the following, we will consider the global snapshot model. We as-
sume that the initial configuration is aperiodic (i.e. it is either asymmetric or
palindrome). We will also assume that there are more than two agents in total
(the special case of exactly k = 2 agents is handled separately in Section @

3 CCP with Global Snapshot

3.1 The Asymmetric Case

First, let us consider the case when the initial configuration is asymmetric. We
denote by &, the empty segment of maximum size in the configuration at round
r. If initially there is only one empty segment of maximum size, we call this
segment D. Otherwise, if there is more than one empty segment of maximum
size, we can deterministically select one of these as segment D (since the initial
configuration is asymmetric). Let S; and Sy be the full segments of length at
least 1 on the two sides of segment D (see Figure2a]). In case | S| # |Sa|, without
loss of generality let |S;| < |Sa; we define the augmented Si, denoted by S,
as the block of nodes constituted by the nodes in S; (all non empty), plus the
empty node v close to S; and not in D, plus, if any, all agents between v and
the next empty node (moving away from S, see Figure .

The algorithm for solving CCP tries to increase the length of the empty
segment D in each step, while preserving the asymmetric configuration. This is
done by moving either S; or S, or both. The details are explained in Algorithm I}

Lemma 1. Starting from an asymmetric configuration, by executing Algorithm
ONE COLOR CONNECTED FORMATION, at any round r > 0:

(Z) |87"| > ‘57«-1|, and

(i) The configuration is either asymmetric or solves CCP.

By previous lemma, since the size of &, strictly increases at each round, we can
state the following:

Theorem 3. If the initial configuration is asymmetric, the agents executing Al-
gorithm ONE COLOR CONNECTED FORMATION, solve CCP within at most n
rounds.
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Fig.3: (a) Definition of S (b) Movement of S;” (The arrows denotes the direc-
tion of movement)

3.2 The Palindrome Case

Let us now consider the case where the initial configuration C' is palindrome i.e.,
there exists an axis of symmetry.

(a) Impossibility in (b) Possibility in the
the palindrome case. palindrome case.

Fig. 5: Example configurations for CCP in the palindrome case.



Compacting and Grouping Mobile Agents on Dynamic Rings 9

Algorithm 1 ONE COLOR CONNECTED FORMATION
Pre-condition: Initial configuration is asymmetric.

Let S1 and S2 be the non-empty segments adjacent to the chosen empty segment D.
Let a; and az be the agents closest to S1 and Sa respectively (going away from D).

1. If the smallest distance between S; and S2 is strictly greater than one:
(a) If |S1| =|S2|,
— If neither S; nor Ss is blocked, they both move away from D.
— Otherwise, let d; be the distance between S; and ag,
o If di = d2, the segment that is not blocked moves away from D.
e Otherwise, without loss of generality, let di < da.
x If S7 is not blocked, then S; moves away from D.
x If S1 is blocked, then all agents not in S; move towards S; (pre-
serving the distance dz).
(b) If |S1| # |S2|, without loss of generality, let |S1| < |S2| (refer to Figure [2b)).
Sf“ and S2 move away from D.
2. Else: let v the only empty node separating S; and Sa. If the largest among the
segments S and S2 is not blocked, this segment moves towards empty node v.
Otherwise the other segment moves towards node v.

S

€2

S
D

Fig.4: Case 2 of Algorithm [1f the distance between S; and S is 1.

Theorem 4. Let the initial configuration be palindrome, aperiodic, and not com-
pact. Then, if the azis of symmetry passes through two empty nodes, then CCP
is not solvable.

Proof. Let us assume that the problem is solvable, and that, by contradiction, the
axis of symmetry of the initial configuration passes through two empty nodes (see
Figure[f] (a)). If no edge is missing during the algorithm, the agents in both sides
of the axis perform symmetric actions and the configuration stays palindrome
with the same axis of symmetry. Since the agents avoid collision, no agent can
move to the nodes on the axis; therefore, CCP cannot be solved in this case.

In Algorithm 2] we present a solution for CCP with more than 2 agents, when
the initial configuration is aperiodic and palindrome, and the axis of symmetry
either (a) passes through at least one edge, or (b) passes through at least one
non empty node.
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By Algorithm [2] and by Theorem [3 it follows that:

Theorem 5. If the initial configuration is aperiodic and palindrome with more
than two agents, and the azis of symmetry either (a) passes through at least one
edge, or (b) passes through at least one non empty node, then CCP is solvable.

Algorithm 2 ONE COLOR PALINDROME

Pre-condition: Initial configuration is aperiodic and palindrome, with more than two
agents. The axis of symmetry does not pass through two empty nodes.

(a) If the axis of symmetry passes through at least one edge. Since the con-
figuration is aperiodic, we can elect a unique edge e that is crossed by the axis of
symmetry ax. Once e has been elected, the two agents nearest to e that do not
belong to a full segment containing e, are selected to move towards e. If none of
these agents are blocked by a missing edge, the symmetry axis is preserved after
the moves of the agents. Otherwise, if an agent cannot move because of a missing
edge, the next configuration becomes asymmetric, and Algorithm [I]can be applied.

(b) If the axis of symmetry passes through at least one non empty node. In
aperiodic configurations, it is always possible to elect one of the agents (agent a)
among those that occupy the nodes crossed by the unique axis of symmetry.

1. If the neighbors nodes of a are empty, a moves to one of the neighbors (cho-
sen arbitrarily when both incident edges are available); After the move, the
configuration becomes asymmetric and Algorithm [I| can be applied.

2. If the two neighbors nodes of a are both occupied, and the axis of symmetry
passes through another node occupied by agent b, and the two neighbors nodes
of b are both empty, then a moves to one of the neighbors (chosen arbitrarily
when both incident edges are available); After the move, the configuration
becomes asymmetric.

3. If no agent on the symmetry axis can move, since the configuration is palin-
drome, there must be two (full) segments of equal size to both the left and the
right of a. These two segments move away from a by one position. Now, ei-
ther the configuration becomes asymmetric (if one of the two segments cannot
completely move because of a missing edge), or previous Case b.1 applies.

4 CoLOREDCCP with Global Snapshot and ¢ > 2.

In this section, we investigate the compaction problem for heterogenous agents
having ¢ > 2 distinct colors. Recall that h = k/c is the number of agents of each
color. Obviously there is nothing to solve when h = 1.

4.1 Asymmetric initial configuration and h > 3

The algorithm for this case builds segments around some specific points of the
ring, called rally points. These points are identified during the execution of the
algorithm, and to each color is assigned a specific rally point.
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Definition 3. We say that agents are forming a compact line if they are forming
a full segment of size h around the rally point of their color. We say that agents
are forming an almost compact line if they are forming a full segment of size
h — 1 around the rally point of their color; the only agent that is not part of the
almost compact line is called a dangling agent.

FC denotes the set of agents colored with max_color. We say that the current
configuration is correctly placed if and only if both the following conditions hold:

(i) There are at least ¢ — 2 compact lines that do not overlap;
(ii) There is at most one almost compact line.

Algorithm 3 MurLTi COLOR CONNECTED SEGMENT (First Step)

Pre-condition: Current configuration is not correctly placed and F'C is symmetric.
Let a be the first agent in F'C, according to the total ordering; a will move of one step

to make F'C asymmetric.

The algorithm is split into three main steps, described in Algorithms [3 [] and
[0l respectively. Let us first describe the intuition behind each step.

— First Step (Algorithm. The main idea of the first step is to make an agent
with color F'C' move in such a way that all agents with color F'C' become
asymmetrically placed (this step is skipped if FC is already asymmetric).
Once F'C is asymmetric, we keep still the agents in F'C' until the last phase of
the algorithm: these agents are used as reference points to univocally identify
both the rally points and a unique orientation of the ring.

— Second Step (Algorithm . In the second step, the algorithm proceeds by
making each color but F'C' to form a full segment around the respective rally
point. This step lasts until the configuration becomes correctly placed. Note
that it is not possible to wait until all agents not in F'C' form compact lines
(i.e., with no dangling agents): in fact, one of the agents not in FC might
become blocked by a missing edge, and the whole system become blocked
forever.

— Third Step (Algorithm @ Once the configuration is correctly placed, the
only agents still to fix in order to solve the problem, are the agents in F'C
(that are still asymmetrically placed), and the only dangling agent (that has
a color different from F'C'), if any. Note that, if there is no dangling agents,
then there are ¢ — 1 compact lines, and no almost compact line.

The idea is to use the compact lines formed so far to establish a global
chirality of the ring, and a rally point for F'C. In particular, the already
formed compact lines do not move, hence the computed chirality can be
kept; the other agents (i.e., those in F'C and the dangling agent) move as
done in the second step. The movements go on until either ColoredCCP is
solved, or there are ¢ — 1 compact lines and one almost compact line. In
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this second case, the only dangling agent and the almost compact line (by
construction, all these agents have the same color) move one towards each
other until they form a compact line.

Correctness: Since the initial configuration is asymmetric, we have the fol-
lowing;:

Lemma 2. If in the initial configuration FC is not asymmetric, by executing
Algom'thm@ (Step One), within finite time agents in FC are placed asymmetri-
cally on the ring.

Once the agents in F'C' occupy asymmetric positions on the ring, it is possible
to elect one of them as a leader, which provides a global orientation to the ring.
Once a global orientation has been computed, the positions of agents in F'C' allow
also to compute the rally points where all other agents will form their respective
compact lines (Algorithms. Let us denote these points by rp;, 0 < i < c—1. To
each rally point rp;, 0 <14 < ¢— 1, is assigned a color, ¢; (color ¢q is mazx_color,
and is assigned to F'C): all agents of color ¢; will gather around rp;, as described
in Routine RALLY POINTS CONNECTED FORMATION, reported in Algorithm
Given a rally point rp;, let us call the rally line of color ¢; a full segment of color
¢; that is formed around rp;. Extending Definition [3] we will call dangling any
agent that is not part of a rally line.

Algorithm 4 MuLti COLOR CONNECTED SEGMENT (Second Step)
Precondition: Current configuration is not correctly placed, and F'C' is asymmetric.

During this step, F'C never moves until current configuration is correctly placed. Since
FC is asymmetric, it can be used to establish an orientation of the ring; also let vy the
first node in F'C' according to this orientation.

1. Rally Points Computation. F'C is now used to compute ¢ — 1 rally points, as
follows: vy is the first rally point, rpg. The ¢ — th rally point rp; is the node of the
ring at distance i % (2 - h + 1) from rpo (in the clockwise direction; we assume the
ring size is at least 2- h - ¢+ ¢).

2. Formation using Rally Points. The rally points are now used by the other
colored classes to form a line, by executing routine RALLY POINTS CONNECTED
FORMATION in Algorithm [5]

Lemma 3. Within finite time, by executing Routine RALLY POINTS CONNECTED
FORMATION in Algorithm[3], the system reaches a configuration with c—1 almost
compact rally lines.

Proof. If ¢ —1 rally lines are almost compact, the lemma trivially follows. Thus,
let us assume that there exists at least one rally line, rl;, that has at least two
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Algorithm 5 MurLTi COLOR CONNECTED SEGMENT (Auxiliary routine)

There are c rally points, sorted according to the ring orientation.

Case:(Pattern 1) There exists a rally line 7l; of color different from maz_color that
is being formed around rally point rp; that has at least two dangling agents. Given
a dangling agent a, let p be the counter-clockwise path that connects a with its
own rally line.
Movement (see Figure @:

— If a is not the farthest agent from its rally line (according to the counter-
clockwise direction), and on p there is a missing edge, then a does not move.

— If on p there is no missing edge, then a moves counterclockwise.

— If on p there is a missing edge, and a is the farthest agent from it rally line
(according to the counter-clockwise direction), then a moves clockwise.

Case:(Pattern 2) For all rally lines of color different from max_color, there is at most
one dangling agent; let m be the number of rally lines with exactly h—1 agents (i.e.,
only one dangling agent). Given a dangling agent a, let p be the counter-clockwise
path that connects a with its own rally line.

Movement (see Figure [7)):

— If a does not have the shortest distance to its own rally line among all distances
of all other dangling agents from their own rally lines (according to clockwise
direction), then a does not move.

— If the first edge on p is not missing, then a moves counter-clockwise.

— If there are m — 1 dangling agents that are blocked by a missing edge, and a
has the shortest distance to its own rally line among all distances of all other
dangling agents from their own rally lines, then a moves clockwise.

(a) The dangling agents are (b) The dangling agents
not blocked. They move are blocked. The last agent
counter-clockwise towards changes direction and move
their rally line. clockwise towards its rally line.

Fig. 6: Pattern 1 of Algorithm
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(a) The black agent switches (b) The vertical striped agent
direction. switches direction.

Fig. 7: Pattern 2 of Algorithm

dangling agents. By construction, only Pattern 1 of RALLY POINTS CONNECTED
FORMATION can be executed. Let us consider only agents having color ¢;. Let
a be the closest agent in the counter-clockwise direction to rp; that has not
reached rl; yet. We will show that, within finite time, the size of rl; increases.
Note that, as long as a is not blocked, it will always move towards its own rally
line, even if other agents are blocked.

Therefore, if a is never blocked by the missing edge, the statement triv-
ially follows. Otherwise, let r be the furthest agent from rl;: by Pattern 1, r
switches direction, and starts moving towards rl;. As long as a is blocked, r
keeps approaching rl;. If » becomes blocked, a does at least one step towards rl;
decreasing its distance from rl;. Thus, within finite time, either a or r will join
Tli.

In conclusion, within finite time, rl; becomes almost compact, and the lemma
follows.

Lemma 4. Let us assume that in the current configuration there exist m > 2
rally lines with exactly one dangling agent each, and ¢ — 1 — m compact lines.
Within finite time, by executing Routine RALLY POINTS CONNECTED FORMA-
TION in Algorithm[5, m decreases.

Thus, by previous Lemmas [3] and [4] the following holds:

Lemma 5. Within finite time, by executing Algorithm [, the configuration be-
comes correctly placed.

Finally, by executing Algorithm [6] agents are able to solve the problem. In
particular, at the beginning of this step, there are at least ¢ — 2 compact lines,
at most one line with just one dangling agent, and finally the agents in FC,
that still needs to be compacted. Thus, the agents that still need to be placed
to correctly solve the problem, are those in F'C' and the dangling agent.
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Algorithm 6 MurLTI COLOR CONNECTED SEGMENT (Third Step)

Precondition: Current configuration is correctly placed.

— Since agents in F'C have to move, it is possible that the orientation of the ring that
FC is establishing gets lost. Therefore, before moving any agent in F'C, the other
¢ — 1 classes (one class per color) are used to establish a new orientation of the
ring: in particular, let Ly and L3 be the set of agents colored with the second and
third color. The agents in L2 and L3 are either both already compacted, or one
of them (at most) forms an almost compact line. Without loss of generality, let us
assume that Lo forms a compact line. The new orientation of the ring follows the
smallest distance from Ly to L3 (note that, by the definition of rally points, this
distance is unique).

Now, the rally point for F'C, call it rp*, is computed by taking the middle point
of the largest segment between the lines that are not colored FC.

— The agents in F'C' and the dangling agent starts compacting, using rules described
in RALLY POINTS CONNECTED FORMATION, as follows: agents in F'C' use rp* as
rally point, and the dangling agent uses as rally point the middle point of the
almost compact line having its own color.

— If all lines are formed, and at most one has a dangling agent, the two portion of
the last line to be compacted move towards each other.

Lemma 6. If there are 3 or more colors, then, within finite time, by executing
Algorithm@ (Third Step), the ColoredCCP is solved.

Combining all the results from this section, we have the following result:

Theorem 6. Starting from an asymmetric initial configuration, with ¢ > 3 and
h > 3, algorithm MuLTl COLOR CONNECTED SEGMENT correctly solves the
ColoredCCP problem.

4.2 Asymmetric initial configuration and h = 2

In this section we focus on the case of agents with many colors (¢ > 2) but
only two agents of each color (h = 2). In this case, agents execute again the
three steps of previous section with a slight modification; The agents of the two
maximum colors act as a single team having just one color. Thus, FC is the
union of the agents having these two colors. This ensures that there are at least
3 agents in I'C), such that the previous algorithm can still be executed.

At the end of the algorithm, agents of ¢ — 2 colors have formed compact lines
and only the agents in F'C form a segment where two colors are interleaved.
More specifically, Configuration A in Figure [ is, up to symmetries, the only
possible interleaved configuration. At this point we run a simple separation pro-
cedure that separates the agents of distinct colors and forms the remaining two
compact lines. As shown in Figure [8| from the configuration A, we can reach
either configuration B or configuration C by swapping the agents on either edge
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ey or edge es (at least one of these edges must be available). Thus we reach a
configuration where ¢ — 1 compact lines are already formed. For the two agents
of the last color that is not compacted yet, these two agents can simply move to-
wards each-other. Since there are at least 2 compact lines of other colors already
formed, the configuration remains asymmetric after any movement of these two
agents. Thus, eventually these two agents will reach adjacent nodes and thus,
the ColoredCCP problem would be solved.

Fig. 8: Separating an interleaved line with h = 2 and two colors.

Theorem 7. Starting from an asymmetric initial configuration, with ¢ > 3 and
h = 2, the modified algorithm MuLTlT COLOR CONNECTED SEGMENT in this
section correctly solves the ColoredCCP problem.

4.3 Palindrome initial configuration for ¢ > 2 colors
We now consider the only remaining case for ColoredCCP with ¢ > 2 colors.

Theorem 8. Starting from an initial configuration that is palindrome, aperi-
odic, and not compact, the ColoredCCP problem for ¢ > 2 is not solvable if

1. the axis of symmetry passes through two empty nodes, or,
2. the azis of symmetry passes through one edge and one empty node, or,
3. the axis of symmetry passes through two edges and ¢ > 3.

Proof. We prove each of the statements independently.

1. The proof comes directly from Theorem [4]

2. By hypothesis, the configuration is palindrome; moreover, the symmetry axis
intersects the ring on a node v and an edge e. Therefore, the agents can form
the compact lines either around v or around e. If the lines are formed around
v, since the ring not oriented, two agents with the same color would move
to v, thus violating the no collision requirement of the problem. If the line
would be formed around e, then there would be three compact lines of three
different colors around e, intersecting, and thus violating the ColoredCCP
specification.

3. Since the configuration is palindrome, then compact lines formable by agents
have to be centred around the symmetry axis. By construction, it is only
possible to form two disjoint compact lines. Since there are more than 3
colors, by the pigeonhole principle, these three compact lines will intersect,
thus violating the specification of ColoredCCP.



Compacting and Grouping Mobile Agents on Dynamic Rings 17

Algorithm |Z| solves the remaining cases when (a) the axis of symmetry passes

through at least one occupied node, or, (b) there is an axis of symmetry passing
through two edges, and ¢ = 3. We can thus conclude that:

Theorem 9. If the initial configuration is aperiodic and palindrome and either
(a) the axis of symmetry passes through at least one occupied node, or (b) there
18 an axis of symmetry passing through two edges, and ¢ = 3, then ColoredCCP
1s solvable.

Algorithm 7 Algorithm MuLTI COLOR PALINDROME

Pre-condition: Initial configuration is aperiodic and palindrome.

(a)

If the axis of symmetry passes through at least one occupied node.

We follow the statements of Case (b) in Algorithm In particular, since the
configuration is not periodic, it is always possible to elect one among the agents
that are on the axis of symmetry, let this agent be a. We distinguish the three
possible cases:

1. If the neighbors nodes of a are empty, a moves of one position, and the con-
figuration becomes asymmetric. Now, Algorithm of Section [4.1] can be run.

2. If the neighbors nodes of a are occupied, and the axis of symmetry passes
through another node b, and the neighbors nodes of b are empty, then b moves
of one position, and the configuration becomes asymmetric. Now, Algorithm
of Section 1] can be run.

3. Finally, no node on the symmetry axis can move. In this case, since the con-
figuration is palindrome, there must be two block of nodes of equal size to the
left and to the right of a. These two block of nodes move away from a of one
position. Now, either the configuration becomes asymmetric (one of the two
block does not move because of a missing edge), or previous Case a.l applies.

If the axis of symmetry passes through two edges, and ¢ = 3.

Let e be one of the edges intersected by the symmetry axis, elected as in Case (a)
of Algorithm The agents proceed as follows: at each round, only agents with
maximum color are allowed to move. In particular, the two agents nearest to e that
do not belong to a full segment containing e, move towards e. If no agent is blocked
by an edge removal, the symmetry axis is preserved and eventually all agents with
maximum color form a full segment around e. Otherwise, if an agent is blocked,
the next configuration becomes asymmetric; thus we can apply the algorithm of
Section Bl

Once we have a compact segment of the first color, following the same strategy,
the second color in the order will form a full segment around the antipodal edge
e’ of e. Finally, the agents of the third color form a full segment around edge e,
solving ColoredCCP.
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5 CoLORED CCP with Global Snapshot and ¢ = 2

5.1 Asymmetric Initial configuration

If h = 2, the agents act like they have the same a color, and form one full segment
using the algorithm presented in Section [3.1] Once this full segment is formed,
they separate using the technique described in Section [1.2]

If h > 3, algorithm Two CoOLOR CONNECTED SEGMENT (Algorithm
solves the problem. The algorithm is based on a modification of the strategy in
Section eventually two compact lines are formed, with possible overlap.

Algorithm 8 Two COLOR CONNECTED SEGMENT

1. First Step is the same as in Algorithm [3]

2. Second Step is the same as in Algorithm [d] Please note that, at the end of this
step, agents in F'C are not forming a full segment, while the agents with the other
color form an almost compact line.

3. Third Step: at this point the dangling agent and the almost compact line will
form a unique line by moving towards each other. Once this is done, the agents in
FC form a compact line, by executing Algorithm [I]

By the discussion presented in previous Section [{.1] we have:

Theorem 10. Ifc = 2, and the initial configuration is asymmetric, within finite
time, Algorithm[§ solves ColoredCCP.

5.2 Palindrome Initial configuration
First of all, by Theorem [4] we can state that:

Theorem 11. Let the initial configuration be palindrome, aperiodic, and not
compact. If the axis of symmetry passes through two empty nodes, then Colored-
CCP is not solvable.

Finally, following the lines of previous Algorithm [7] it is easy to show that
(a) if the axis of symmetry passes through at least one occupied node, or (b) if
h > 2, ¢ = 2 and there is an axis of symmetry passing through at least one edge,
then ColoredCCP is solvable.

6 Special Case: Compaction of k = 2 agents

For the CCP problem, we assumed that there are k > 2 agents throughout this
paper and we now consider the remaining case. For the case of k = 2 agents of the
same color, the CCP cannot be solved in dynamic rings using oblivious agents.
Any configuration with two agents is a palindrome configuration. Thus, if the
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axis of symmetry passes through two nodes (i.e the distance between the agents is
even on both sides), then the problem in not solvable due to previous results. On
the other hand if the symmetry axis passes through an edge, when the agents try
to approach this edge, one agent may be blocked, so the resulting configuration
would have the axis of symmetry passing through a node and the agents would
not be able to solve the problem. Thus, some form of persistent memory is needed
to solve the problem. If the agents have some persistent memory of at least one
bit, then during the execution of the algorithm when one of the agents is blocked,
then this agent can be elected, by setting a flag in the memory of this agent;
during the rest of the algorithm, the agent can simply approach each-other until
they are compacted or there is exactly one empty node between them. If there
is only one empty node between the agents and none of the agents are blocked
then the leader agent can move to the empty node to solve the problem. On
the other hand, if none of the agents are blocked during the execution of the
algorithm, then both agents can move in synchronous steps (maintaining the
same symmetry axis) and eventually reaching the two end-points of the edge
through which the axis passes. Thus we can state the following result:

Theorem 12. For ezactly two agents, ColoredCCP is solvable if and only if (i)
the initial configuration has the axis of symmetry passing through at least one
edge and (ii) the agents have persistent memory.

7 Conclusions

In this paper we introduced and studied the Compact Configuration Problem and
the Colored Compact Configuration Problem for a set of autonomous mobile agents
on a dynamic ring networks. We showed that both the problems can be solved
only if the initial configuration is aperiodic. The results of this paper provides
the exact characterization of the solvable initial configurations for the CCP and
ColoredCCP problems. We also showed that having persistent memory is not
necessary for solving the problem (except in the special case of two agents).
It would be interesting to determine what additional capabilities of the agents
would allow them to the solve the ColoredCCP problem without any overlaps.
Future investigations on this problem could also consider other graph topologies
under either the same or a more relaxed model for dynamicity. Another interest-
ing issue is to consider less synchronous models where all agents may not start
at the same time and they may not be active at the same time.
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