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We propose a new method to characterize the different phases observed in the nonperturbative numerical
approach to quantum gravity known as causal dynamical triangulations. The method is based on the
analysis of the eigenvalues and the eigenvectors of the Laplace-Beltrami operator computed on the
triangulations: it generalizes previous works based on the analysis of diffusive processes and proves
capable of providing more detailed information on the geometric properties of the triangulations. In
particular, we apply the method to the analysis of spatial slices, showing that the different phases can be
characterized by a new order parameter related to the presence or absence of a gap in the spectrum of the
Laplace-Beltrami operator, and deriving an effective dimensionality of the slices at the different scales. We
also propose quantities derived from the spectrum that could be used to monitor the running to the
continuum limit around a suitable critical point in the phase diagram, if any is found.
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I. INTRODUCTION

Causal dynamical triangulations (CDT) [1] is a numeri-
cal Monte Carlo approach to quantum gravity based on the
Regge formalism, where the path integral is performed over
geometries represented by simplicial manifolds called
“triangulations.” The action employed is a discretized
version of the Einstein-Hilbert one, and the causal con-
dition of global hyperbolicity is enforced on triangulations
by means of a space-time foliation.
One of the main goals of CDT is to find a critical point in

the phase diagram where the continuum limit can be
performed in the form of a second-order phase transition.
The phase diagram shows the presence of four different
phases [2–7], and the hope is that the transition lines
separating some of these phases could contain such a
second-order critical point. Presently, such phases are
identified by order parameters which are typically based
on the counting of the total number of simplexes of given
types or on other similar quantities (e.g., the coordination
number of the vertices of the triangulation). The main
motivation of the present study is to enlarge the set of
observables available for CDT, trying in particular to find

new order parameters and to better characterize the geo-
metrical properties of the various phases at different scales.
One successful attempt to characterize the geometries of

CDT has been obtained by implementing diffusion proc-
esses on the triangulations [8,9]. In practice, one analyzes
the behavior of random walkers moving around the
triangulations: from their properties (e.g., the return prob-
ability) one can derive relevant information, such as the
effective dimension felt at different stages of the diffusion
(hence at different length scales). In this way, estimates of
the spectral dimension of the triangulations have been
obtained.
In this paper, we propose and investigate a novel set of

observables for CDT configurations, based on spectral
methods, namely, the analysis of the properties of the
eigenvalues and the eigenvectors of the Laplace–Beltrami
(LB) operator. This can be viewed as a generalization of the
analysis of the spectral dimension, since the Laplace–
Beltrami operator completely specifies the behavior of
diffusion processes (see the Appendix for a closer com-
parison). Still, as we will show in the following, the
Laplace–Beltrami operator contains more geometric infor-
mation than just the spectral dimension.
Nowadays, spectral methods find application in a huge

variety of different fields. To remember just a few of them,
we mention shape analysis in computer aided design and
medical physics [10,11], dimensionality reduction and
spectral clustering for feature selection/extraction in machine
learning [12], optimal ordering in the PageRank algorithm of
the Google Search engine [13], connectivity and robustness
analysis of random networks [14]. Therefore, the application

*giuseppe.clemente@pi.infn.it
†massimo.delia@unipi.it

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 97, 124022 (2018)

2470-0010=2018=97(12)=124022(21) 124022-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.124022&domain=pdf&date_stamp=2018-06-12
https://doi.org/10.1103/PhysRevD.97.124022
https://doi.org/10.1103/PhysRevD.97.124022
https://doi.org/10.1103/PhysRevD.97.124022
https://doi.org/10.1103/PhysRevD.97.124022
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


to CDT is just one more application of a well-known analysis
tool. On the other hand, some well-known results which
have been established in other fields will turn out to be useful
in our investigation of CDT.
In the present paper, we limit our study to the LB

spectrum of spatial slices. Among the various results, we
will show that the different phases can be characterized by
the presence or absence of a gap in the spectrum of the
LB operator, as it happens for the spectrum of the Dirac
operator in strong interactions, and we will give an
interpretation of this fact in terms of the geometrical
properties of the slices. The presence/absence of a gap
will also serve to better characterize the two different
classes of spatial slices which are found in the recently
discovered bifurcation phase [3–6]. Moreover, we will
show how the spectrum can be used to derive an effective
dimensionality of the triangulations at different length
scales, and to investigate quantities useful to characterize
the critical behavior expected around a possible second-
order transition point.
The paper is organized as follows. In Sec. II, we discuss

our numerical setup together with a short review of the
CDT approach, summarizing in particular the major fea-
tures of the phase diagram that will be useful for the
discussion of our results. In Sec. III, we describe some of
the most relevant properties of the Laplace-Beltrami
operator in general, then focusing on its implementation
for the spatial slices of CDT configurations and discussing
a toy model where the relation between the LB spectrum
and the effective dimensionality of the system emerges
more clearly. Numerical results are discussed in Sec. IV.
Finally, in Sec. V, we draw our conclusions and discuss
future perspectives. The Appendix is devoted to a dis-
cussion of the relation existing between the spectrum of the
LB operator and the spectral dimension, defined by
diffusion processes as in Ref. [9].

II. A BRIEF REVIEW ON CDT AND
NUMERICAL SETUP

It is well known that, perturbatively, general relativity
without matter is nonrenormalizable already at the two-
loop level [15]. Nevertheless, interpreted in the framework
of the Wilsonian renormalization group approach [16],
this really means that the Gaussian point in the space of
parameters of the theory is not an UV fixed point, as
happens, for example, in asymptotically free theories.
Indeed, the Weinberg conjecture of the asymptotic safety
of the gravitational interaction [17] states that the existence
of an UV non-Gaussian fixed point makes the theory well
defined in the UV (i.e., renormalizable) but in a region of
the phase diagram not accessible by perturbation theory.
Various nonperturbative methods have been developed
in the last decades to investigate this possibility, like
functional renormalization group techniques [18] or the
Monte Carlo simulations of standard Euclidean dynamical

triangulations (DT) [19–22] or causal dynamical triangu-
lations, the latter being the subject of this study.
Monte Carlo simulations of quantum field theories are

based on the path-integral formulation in Euclidean space,
where expectation values of any observableO are estimated
as averages over field configurations sampled with prob-
ability proportional to e−

S
ℏ, S being the action functional of

the theory. Regarding the Einstein–Hilbert theory of
gravity, the action is a functional of the metric field gμν,
given by1

S½gμν� ¼
1

16πG

Z
ddx

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ ð1Þ

where G and Λ are, respectively, the Newton and cosmo-
logical constants, while the path-integral expectation values
are formally written as averages over geometries (classes of
diffeomorphically equivalent metrics)

hOi ¼ 1

Z

Z
D½gμν�O½gμν�e−

S½gμν �
ℏ ; ð2Þ

where Z is the partition function.
The first step in setting up Monte Carlo simulations is the

choice of a specific regularization of the dynamical variables
into play. In the case of gravity without matter fields, the
only variable is the geometry itself, which can be conven-
iently regularized in terms of triangulations, namely a
collection of simplexes, elementary building blocks of flat
spacetime, glued together to form a space homeomorphic to
a topological manifold. The simplexes representing (space-
time) volumes in four-dimensional spaces are called penta-
chorons, analogous to tetrahedra in three-dimensional spaces
and triangles in two-dimensional spaces (i.e., surfaces).
Besides the general definition, and at variance with

standard DT, triangulations employed in CDT simulations
are required to satisfy also a causality condition of global
hyperbolicity.2 This is realized by assigning an integer time
label to each vertex of the triangulation in order to partition
them into distinct sets of constant time called spatial slices,
and constraining simplexes to fill the spacetime between
adjacent slices (i.e., slices with neighboring integer labels).
The resulting triangulation has therefore a foliated structure,3

and the simplexes can be classified by a (time-ordered) pair
specifying the number of vertices on the slices involved

1For simplicity, we are not including manifolds with bounda-
ries, so there is no Gibbons–Hawking–York term in the action.

2The global hyperbolicity condition is equivalent to the
existence of a Cauchy surface, the strongest causality condition
which can be imposed on a manifold [23].

3The main reason for restricting to foliated triangulations is
that it allows to define conveniently the analytical continuation
from Lorentzian to Euclidean space (see Ref. [1] for details).
However, simulations without preferred foliation in 2þ 1 di-
mensions have been built in Ref. [24], showing results similar to
the foliated case.
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(e.g., the pairs (4,1), (3,2), (2,3), and (1,4) classify all
spacetime pentachorons). In order to ensure both the
simplicial manifold property and the foliated structure at
the same time, spatial slices, considered as simplicial
submanifolds composed of glued spatial tetrahedra, need
to be topologically equivalent. This basically means that
triangulations are always geodetically complete manifolds,
and topological obstructions (e.g., singularities) can only be
realized in an approximate fashion, with increasing accuracy
in the thermodynamic limit (infinite number of simplexes).
The numerical results shown in Sec. IV refer to slices with S3

topology, but other topologies could be investigated as well
(e.g., the toroidal one [7,25]).
In practice, it is convenient, without loss of generality, to

impose a further condition, that is fixing the length–squared
of every spacelike link (i.e., connecting vertices on the
same slice) to a constant value a2, and the square–length of
every timelike link (i.e., connecting vertices on adjacent
slices) to a constant value −αa2. The constant a takes the
role of lattice spacing, while α represents a genuinely
regularization–dependent asymmetry in the choice of time
and space discretizations. With this prescription, simplexes
in the same class (according to the above definition) not
only are equivalent topologically, but also geometrically, so
that the expression of the discretized action greatly sim-
plifies. Indeed, at the end of the day,4 the standard four-
dimensional action employed in CDT simulations with S3

topology of the slices and periodic time conditions
becomes a functional of the triangulation T , and takes
the relatively simple form

SE ¼ −k0N0 þ k4N4 þ ΔðN4 þ N41 − 6N0Þ; ð3Þ
whereN0 counts the total number of vertices, N4 counts the
total number of pentachorons, and N41 is the sum of the
total numbers of type (4,1) and type (1,4) pentachorons,
while k4, k0 and Δ are free dimensionless parameters,
related to the Cosmological constant, the Newton constant,
and the freedom in the choice of the time/space asymmetry
parameter α (see Ref. [1] for more details).
We want to stress that, even if CDT configurations are

defined by means of triangulations, the ultimate goal of the
approach is to perform a continuum limit in order to obtain
results describing continuum physics of quantum gravity.
Therefore, the specific discretization used in CDT must be
meant as artificial, becoming irrelevant in the continuum
limit. For this reason, simplexes should not be considered
as forming the physical fabric of spacetime: eventually, one
would like to find a critical point in the parameter space
where the correlation length diverges and the memory
about the details of the fine structure is completely lost.

In standard CDT simulations, configurations are sampled
using a Metropolis-Hastings algorithm [26], where local
modifications of the triangulation at a given simulation time
(i.e., insertions or removals of simplexes) are accepted or
rejected according to the probability induced by the action in
Eq. (3) and complying with the constraints discussed above.
Unlike usual lattice simulations of quantum field theo-

ries, the total spacetime volume of CDT triangulations
changes after a Monte Carlo update. In order to take
advantage of finite-size scaling methods (i.e., extrapolation
of results to the infinite volume limit), it is convenient to
control the volume by performing a Legendre transforma-
tion from the parameter triple ðk4; k0;ΔÞ to the triple
ðV; k0;ΔÞ, where the parameter k4 is traded for a target
volume V. In practice, this is implemented by a fine tuning
of the parameter k4 to a value that makes the total spacetime
or spatial volumes5 fluctuate with mean around a chosen
target volume (respectively, N4 or N41), and adding to the
sample only configurations whose total volume lies in a
narrow range around the target one. Moreover, a (weak)
spacetime volume fixing to a target value N4 can be
enforced, for example, by adding a term to the action of
the form ΔS ¼ ϵðN4 − N4Þ2, where ϵ quantifies how much
large volume fluctuations are suppressed. A relation similar
to the latter holds for fixing the total spatial volume
(substituting N41 with N4). Fixing a target total spatial

volume VS;tot ¼ N41

2
, one can investigate the properties of

configurations sampled at different values of the remaining
free parameters k0 and Δ.
The general phase structure of CDTwhich is found in the

k0-Δ plane is thoroughly discussed in the literature
[1,5,6,27]. Here we will only recall some useful facts.
Four different phases have been identified, called A, B, CdS,
and Cb, as sketched in Fig. 1, where for the two C phase the
labels dS and b stand, respectively, for de Sitter and
bifurcation. At a qualitative level, configurations in the
different phases can be characterized by the distribution of
their spatial volume VSðtÞ, which counts the number of
spatial tetrahedra (spatial volume VS) in each slice as a
function of the slice time t. For configurations in the B
phase, the spatial volume is concentrated almost in a single
slice, leaving the other slices with a minimal volume.6 For
both the CdS and Cb phase, the spatial volume is peaked at
some slice–time but then, unlike the case of the B phase,
falls off more gently with t, so that the majority of the total
spatial volume is localized in a so-called “blob” with a
finite time extension; also in this case, slices out of this blob
have a minimal volume. Finally, configurations in phase A

4A series of steps is needed in order to obtain the CDTaction in
Eq. (3): Regge discretization of the continuous action, compu-
tation of volumes and dihedral angles, Wick rotation and the use
of topological relations between simplex types.

5The total spatial volume of a configuration is the number of
spatial tetrahedra, which equals N41

2
by elementary geometrical

arguments.
6Triangulations with S3 topology, like spatial slices in 3þ 1

standard CDT simulations, must have at least five tetrahedra.
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are characterized by multiple and uncorrelated peaks in the
spatial volume distribution.
From these observations, it is apparent that CdS and Cb

are the only physically relevant phases. Indeed, the average
spatial volume distribution in the CdS phase is in good
agreement with the prediction for a de Sitter Universe,
having a S4 geometry after analytical continuation to the
Euclidean space [28]. The bifurcation phase, instead, is
characterized by the presence of two different classes of
slices which alternate each other in the slice time t [5,6].
The transition lines between the different phases (dashed

lines in Fig. 1) have been investigated by means of con-
venient observables. Regarding the B-Cb and A-CdS tran-
sition lines, the definitions employed are based on the
observation that changes in the qualitative behavior of the
spatial volume distribution function VSðtÞ occur for almost
constant values of Δ or k0, respectively, suggesting quan-
tities conjugated to them in the action (3) as candidate order
parameters: namely, conjðΔÞ≡ ðN4 þ N41 − 6N0Þ=N4 for
the B-Cb transition and conjðk0Þ≡ N0=N41 for the A-CdS
transition. Finite-size scaling computations using these
observables as order parameters suggest a first-order nature
for the A-CdS transition, while the B-Cb transition appears
to be of second order [27]. The definition of observables
employed as order parameters for the Cb-CdS transition is
more involved [5,6]: in the Cb phase, one of the two classes
of spatial slices is characterized by the presence of vertices
with very high coordination number; also in this case there
are hints for a second-order transition, even if results might
depend on the topology chosen for the spatial slices [7].
Global counts of simplexes, like those entering the

definitions of conjðΔÞ and conjðk0Þ, are not sufficient to
clearly distinguish the different geometrical properties of

the various phases. From this point of view, the spectral
dimension DSðτÞ (see the Appendix for more details) is
probably one of the few useful probes available up to now
to probe the geometrical structure of CDT configurations. It
is basically a measure of the effective dimension of the
geometry at different stages of the diffusion process, it has
permitted to demonstrate that, in the bulk of configurations
in the de Sitter phase, the spectral dimension tends to a
value DS ≃ 4 for large diffusion times [9]. In the following,
we will show how the analysis of the spectrum of the LB
operator, which is discussed in the following section,
permits to access new classes of observables, and how
some clear characteristic differences among the various
phases emerge in this way.
The code employed for this study is an home–made

implementation in C++ of the standard CDT algorithm
discussed in Ref. [1], which was checked against many of
the standard results which can be found in the CDT
literature. We performed simulations with parameters chosen
as shown in Fig. 1 by points marked with a star symbol and
reported also in Table I; for later convenience, four points,
each being deep into one of the 4 phases, have been labeled
by a letter: a, b, c and c̃. For most simulation points we have
performed simulations with two different total spatial
volumes, VS;tot ¼ 20k and VS;tot ¼ 40k, adopting a volume
fixing parameter ϵ ¼ 0.005; we have verified that our results
are independent of the actual prescription used.

III. THE LAPLACE-BELTRAMI OPERATOR

The LB operator, usually denoted by the symbol −Δ, is
the generalization of the standard Laplace operator. Its
specific definition depends on the underlying space and on
the algebra of functions on which it acts. For a generic
smooth Riemannian manifold ðM; gμνÞ the Laplace-
Beltrami operator acts on the algebra of smooth functions
f ∈ C∞ðMÞ in the form [29]:

FIG. 1. Sketch of the phase diagram CDT in four dimensions
and with spherical topology of spatial slices. The results shown in
the present paper have been obtained from simulations running at
the points marked by a star symbol �. The circled and labeled
points a,b,c, and c̃ refer to simulations running deeply inside the
respective phases (see Table I). The position of transition lines is
only qualitative.

TABLE I. Coordinates (k0 and Δ) for the simulation points
chosen, as shown in Fig. 1, and the phases in which they are
contained. Some of the points are labeled also by a letter for later
convenience. The assignment of simulation points to the different
phases refers to the total volumes fixed in our runs (N41 ¼ 40k
and 80k).

k0 Δ Phase

b 2.2 −0.2 B
2.2 −0.05 B
2.2 0.022 B
2.2 0.05 Cb

c̃ 2.2 0.1 Cb
2.2 0.15 Cb
2.2 0.3 CdS
2.2 0.45 CdS

c 2.2 0.6 CdS
a 5 0.6 A
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−Δf ¼ −
1ffiffiffiffiffijgjp ∂μð

ffiffiffiffiffi
jgj

p
gμν∂νfÞ

¼ −gμνð∂μ∂ν − Γα
μν∂αÞf; ð4Þ

where g is the metric determinant, gμν is the inverse metric
and Γα

μν are the Christoffel symbols.
It is easily shown that −Δ is invariant with respect to

isometries. Furthermore, since it is positive semi-definite, a
set of eigenvectors BM solving the eigenvalue problem
−Δf ¼ λf is an orthogonal basis for the algebra C∞ðM;RÞ;
in the following we will refer to such sets as spectral bases,
which, for convenience and without loss of generality, we
will always consider orthonormal. A spectral basis can then
be used to define the Fourier transform as basis change
from real to momentum space (e.g., sines and cosines in
Rn, or spherical harmonics in S2), while the eigenvalues
associated to each eigenspace contain information about
the characteristic scales of the manifold.
We will now elaborate further on the interpretation of the

spectrum of eigenvalues, considering a diffusion process on
a generic manifold M described by the heat equation

∂tuðx; x0; tÞ − Δuðx; x0; tÞ ¼ 0: ð5Þ
We can expand the solution in a spectral basis BM ¼
fenjλn ∈ σM; λnþ1 ≥ λng associated to the spectrum of
(increasingly ordered) eigenvalues σM ¼ fλng

uðx; tÞ ¼
XjσM j−1
n¼0

unðtÞenðxÞ; ð6Þ

so that Eq. (5) is transformed (by orthogonality) in a set of
decoupled equations

∂tunðtÞ ¼ −λnunðtÞ ∀n; ð7Þ

⇒ uðx; tÞ ¼
XjσM j−1
n¼0

e−λntunð0ÞenðxÞ: ð8Þ

In the form of Eq. (8) the geometric role of eigenvectors in
the diffusion process is evident: λn represents the diffusion
rate of the mode enðxÞ, so that the smallest eigenvalues
are associated to eigenvectors along the slowest diffusion
directions and vice versa. In this specific sense, the
spectrum σM encodes information about the characteristic
scales of the manifold, while the set of eigenstates BM
identifies all the possible diffusion modes, and forms a
basis for the algebra of functions on the manifold. Similar
considerations can be applied to the problem of wave
propagation on the manifold, where the heat equation is
replaced by the wave equation; this is the reason behind
the famous idea of “hearing the shape of a drum” [30].
The definition of the Laplace–Beltrami operator can be

extended easily to more general algebras, like the graded
algebra of differential forms or the algebra of functions on a

graph [31,32], the latter being of particular importance in
our discussion, since, as discussed below, it allows us to
implement straightforwardly the spectral analysis on CDT
spatial slices, by means of their associated dual graphs. A
undirected graph G [33] is formally a pair of sets (V,E),
where V contains vertices, which assume the role of lattice
sites, whereas the set of edges, E ⊂ V × V, is a symmetric
binary relation on V encoding the connectivity between
vertices in the form of ordered pairs of vertices fðvi; vjÞg.
The reason why, in this first study, we choose to apply
spectral methods to analyze the geometry of spatial slices
only is that spatial tetrahedra have all link lengths equal to
the spatial lattice size a, so that the distance between their
centers is equal for any adjacent tetrahedra; therefore, it is
possible to represent faithfully spatial slices by dual
undirected and unweighted graphs, where the vertex set
is the set of tetrahedra, and the edge set is the adjacency
relation between tetrahedra. The algebra on which the
Laplace-Beltrami operator acts can be taken as that of the
real-valued functions f∶ V → R, which can be represented
as the vector space RN (where N ¼ jVj), once an ordering
of the vertices i ↦ vi ∈ V ∀i ∈ f0; 1;…; N − 1g has been
arbitrarily chosen, without loss of generality.7 In this
representation the Laplace-Beltrami operator becomes
formally a matrix, called the Laplace matrix and defined as

L ¼ D − A; ð9Þ
where D is the (diagonal) degree matrix such that the
element Dii ≡ jfe ∈ Ejvi ∈ egj counts the number of
vertices connected to the vertex vi, while A is the
symmetric adjacency matrix such that the element Aij ¼
χEðfvi; vjgÞ is 1 only if the vertices vi and vj are connected
(i.e., fvi; vjg ∈ E) and zero otherwise.
For instance, the graph associated with a one-

dimensional hypercubic lattice with N sites and periodic
boundary conditions corresponds to D ¼ 2 · 1N×N , and
Aij ¼ δi;ðjþ1Þ mod N þ δi;ðj−1Þ mod N , while the Laplace
matrix can be read off as the lowest-order approximation
to the Laplace-Beltrami operator estimated by evaluating
functions on lattices sites:

−ΔfðxiÞ ¼ −
d2f
dx2

ðxiÞ ¼
2fi − fiþ1 − fi−1

a2
þOðaÞ; ð10Þ

where a is the lattice spacing and fn ≡ fðxðn mod NÞÞ.
Notice that, since any tetrahedron of CDT spatial slices is

adjacent to exactly four neighboring tetrahedra, the dual
graphs are 4-regular (i.e., each vertex has degree 4), so that
the adjacency matrix suffices to compute eigenvalues and
eigenvectors (L ¼ 4 · 1 − A), and furthermore it is sparse.
In practice, we build and save the graphs associated to each
slice in the adjacency list representation. Being already a

7Every ordering can be obtained as a permutation of the
canonical basis vectors.
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memory-efficient storage for the adjacency matrix of the
graph, these structures can be directly fed to any numerical
solver optimized for the computation of eigenvalues and
eigenvectors of sparse, real and symmetric matrices. The
spectra and eigenvectors analyzed in the present paper have
been obtained using the ‘Armadillo’ C++ library [34] with
Lapack, Arpack and SuperLU support for sparse matrix
computation.
By solving the eigensystem for the LB spectrum, we can

easily obtain eigenvectors as a side product. Even if the
spectrum of a graph does contain much geometric infor-
mation, still alone it is not capable to completely character-
ize geometries, but only classes of isospectral graphs.
Conversely, the joint combination of eigenvalues and
eigenvectors yields complete information on the graph8

but decomposed in a way that is useful for the analysis
of geometries.

A. General properties of the eigenvalues of
the Laplace matrix on graphs

Here we will describe some results from spectral graph
theory that allow us to extract the information mentioned
above. For convenience, we will always consider the basis
of eigenvectors BG ¼ fe⃗ng to be real and orthonormal,
since in this case the spectral theorem for real symmetric
matrices applies.
First of all we observe that, if no boundary is present, the

Laplace matrix always has the zero eigenvalue, with a
multiplicity equal to the number of connected compo-
nents.9 For graphs made of a single connected component,
any eigenfunction associated to the zero eigenvalue is
simply a multiple of the uniform function e⃗0 ¼ 1ffiffiffiffiffi

jVj
p 1⃗jVj,

where we indicate with 1⃗jVj the vector inRjVj with 1 on each
entry. Furthermore, the sum of the components of each
eigenvector e⃗n, with the exception of e⃗0, is zero, sinceP

v∈VenðvÞ ¼ ðe⃗n;
ffiffiffiffiffiffijVjp

e⃗0Þ ¼ 0 by orthogonality of the
chosen basis BG. In the following, we will only discuss
properties of graphs with a single connected component,10

like the ones occurring in CDT.

1. Spectral gap and connectivity

As argued above, geometric information about the large
scales comes from the smallest eigenvalues and associated
eigenvectors. The 0th eigenvalue has a topological char-
acter, and in the general case its multiplicity tells us how
many connected components the graph is composed of, but
for connected graphs its role is trivial and uninteresting.
Arguably the most interesting eigenvalue is the first

(nonzero) λ1, which, depending on the context, is called the
spectral gap or algebraic connectivity. The latter name
comes from the observation that the larger the spectral gap
λ1, the more the graph is connected.
A measure of connectivity for a compact Riemannian

manifoldM is given by the Cheeger isoperimetric constant
hðMÞ defined as the minimal area of a hypersurface ∂A
dividing M into two disjoint pieces A and MnA

hðMÞ≡ inf
volð∂AÞ

volðAÞvolðMnAÞ ; ð11Þ

where the infimum is taken over all possible connected
submanifolds A.
For a graph G ¼ ðV; EÞ, the Cheeger constant is usually

defined by

hðGÞ≡min

�j∂Aj
jAj jA ⊂ V; jAj ≤ jVj

2

�
; ð12Þ

where ∂A is the set of edges connecting A with VnA. The
relation between the Cheeger constant and the spectral gap
for a graph G where all vertices have exactly d neighbors is
encoded in the Cheeger’s inequalities

1

2
λ1 ≤ hðGÞ ≤

ffiffiffiffiffiffiffiffiffiffi
2dλ1

p
: ð13Þ

This property of the spectral gap is interesting for the
analysis of geometries of slices in CDT, since, as we will se
in the next section, it highlights different behaviors for the
various phases.

B. Eigenvalue distribution and a toy model

When one considers the whole spectrum of the LB
operator, two particularly interesting quantities are the
density ρðλÞ, defined so that ρðλÞdλ gives the number of
eigenvalues found in the range ½λ; λþ dλ�, and its integral
nðλÞ, which gives the total number of eigenvalues below a
given value λ.
Both functions can be defined for single configurations

(spatial slices) or can be given as average quantities over
the Euclidean path-integral ensemble. As we shall see, the
latter quantity, nðλÞ, will prove particularly useful to
characterize the properties of triangulations at different
scales. It is an increasing function of λ and its inverse is
simply the n-th eigenvalue λn. We will usually show λn as a

8Recall that, by the spectral theorem, the LB matrix can be
decomposed as L ¼ UΛUt, where Λ is the diagonal matrix of
eigenvalues, and U is the matrix with corresponding eigenvectors
as columns. The adjacency matrix, which defines the graph, can
be simply obtained as minus the off-diagonal part of the LB
matrix.

9This observation is not restricted to Laplace matrices of
graphs, but applies to the spectra of the Laplace operator in a
general space.

10The more general case of graphs with multiple connected
components can be easily treated by studying its components
individually: the Laplace matrix can be put in block-diagonal
form, one block for each component, so that its spectrum is the
union of the individual spectra, and its eigenspaces are direct
sums of the individual eigenspaces.
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function of n since, when considering a sample of con-
figurations, taking the average of λ at fixed (integer) n is
easier.
There are various well-known results regarding the two

quantities above, most of them involving the LB operator
on smooth manifolds. In particular, Weyl law [35,36] gives
the asymptotic (large λ) behavior of nðλÞ:

nðλÞ ¼ ωd

ð2πÞd Vλ
d=2 ð14Þ

where V is the volume of the manifold (which is assumed to
be finite, with or without a boundary), d is its dimension-
ality, and ωd is the volume of the d-dimensional ball of unit
radius. As we shall better discuss below, Weyl law, even if
asymptotic, is generally expected to hold with a good
approximation in the range of λ for which one is not
sensitive to the specific infrared properties (i.e., shape,
boundaries, and/or topology) of the manifold. How viola-
tions to the Weyl law emerge and how they can be related to
a sort of effective dimension at a given scale will be one of
the main points of our discussion.
In the following we shall consider the LB spectrum

computed on discretized manifolds. It is therefore useful to
start by analyzing a simplified and familiar model, con-
sisting of a regular and finite three-dimensional cubic
lattice, with, respectively, Lx, Ly, and Lz sites along the
x, y, and z directions. All lattice sites are connected with six
nearest neighbors sites, with periodic boundary conditions
in all directions: this is therefore the discretized version of a
three-dimensional torus. The Laplacian operator can be
simply discretized on this lattice and its eigenvectors
coincide with the normal modes of a corresponding system
of coupled oscillators: they are plane waves having wave
number k⃗ ¼ ðkx; ky; kzÞ, with ki ¼ 2πmi=Li and mi inte-
gers such that −Li=2 < mi ≤ Li=2, so that

λm⃗ ¼ 4π2
�
m2

x

L2
x
þm2

y

L2
y
þm2

z

L2
z

�
: ð15Þ

Determining nðλ̄Þ for a given λ̄ now reduces to counting how
many vectors m⃗ exist such that λm⃗ ≤ λ̄. That corresponds to
finding the triplets of integer numbers, i.e., the cubes of unit
side, within the ellipsoid of semiaxes Ri ¼ λ̄1=2Li=ð2πÞ,
with the constraint that −L=2 < mi ≤ L=2 ∀i. The latter
constraint expresses the particular (cubic) discretization that
we have adopted for the three-dimensional torus, i.e., the
structure of the system at the UV scale: if λ̄ is low enough
so that Ri < Li ∀i, then we are not sensitive to such scale.
On the other hand, the discretized structure of the eigen-
values expresses the finiteness of the system, i.e., the
properties of the system at the IR scale: if we have also
Ri ≫ 1 ∀i then we are not sensitive to such scale either, and
the counting reduces approximately to estimate the volume
of the ellipsoid, so that

nðλ̄Þ ≃ 4π

3
RxRyRz ¼

4π

3

LxLyLz

ð2πÞ3 λ̄3=2; ð16Þ

which is nothing but Weyl law for d ¼ 3.
In Fig. 2, we show the exact distribution of λn as a

function of n=V, for various choices of Lx, Ly and Lz.
The tick line represents the Weyl law prediction, λ ¼
6π2ðn=VÞ2=3. When n=V → 1, all systems show similar
deviations from the law, which are related to the common
structure at the UV scale. The Weyl law is a very good
approximation for lower values of n=V, as expected, and
actually down to very small values of n=V for the
symmetric lattice where Lx ¼ Ly ¼ Lz ¼ 50.
For the asymmetric lattices, instead, some well-

structured deviations emerge at low n=V, where λ follows
a Weyl-like power law which is typical of lower-
dimensional models and can be easily interpreted as
follows. For the lattice with Lx ¼ Ly ¼ l ¼ 15 and
Lz ¼ 600, one does not find any eigenvalue with mx ≠ 0

andmy ≠ 0 as long as λ < 4π2=l2 ≃ 0.175, therefore in this
range the distribution of eigenvalues is identical to that of a
one-dimensional system, for which λ ∝ ðn=VÞ1=2; for λ >
4π2=l2 also eigenvalues for which mx and/or my are
nonzero appear, and their distribution goes back to the
standard three-dimensional Weyl law. Making a wave-
mechanics analogy, at low energy only longitudinal modes
are excited, while transverse modes are frozen until a high
enough energy threshold is reached. The point where one
crosses from one power law behavior to the other brings
information about the size of the shorter transverse scale.
Similar considerations apply to the lattice Lx ¼ 3, Ly ¼ 75

and Lz ¼ 600, which has three different and well-separated
IR scales: in this case one sees a one-dimensional power
law for small n=V, which first turns into a two-dimensional
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 = 600

FIG. 2. Plot of λn against its volume-normalized order n=V, for
a hypercubic lattice with periodic boundary conditions (i.e.,
toroidal) and different combinations of sizes Li for each direction.
The straight continuous line is the exact Weyl scaling, see
Eq. (14), predicted for d ¼ 3; the dashed straight lines correspond
to effective Weyl scalings for effective dimensions d ¼ 2 and 3.
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one as modes in the y direction start to be excited, and
finally ends up in a standard three-dimensional Weyl law
when also modes with mx ≠ 0 come into play.
The argument above can be rephrased at a more general

level. Suppose we have a D-dimensional manifold where d
“transverse” dimensions are significantly shorter than the
otherD − d “longitudinal” dimensions, with a typical trans-
verse scale l. As long as one considers small eigenvalues, the
modes in the transverse directions will not be excited, so that
the counting of eigenvalues will be given by the Weyl law
forD − d dimensions, i.e., nðλÞ ¼ ωD−dðV=ldÞλðD−dÞ=2. The
change from one regime to the other will take place when
the transverse directions get excited for the first time, i.e., at
λ ≃ π2=l2 (the actual prefactor depends on the details of the
shorter dimension), which corresponds to n ∝ Vl−D, with a
proportionality constantwhich depends only on the details of
the short transverse scales and is independent of the details of
the longer scales. Therefore, different manifolds, sharing the
same structure at short scales associated with an effective
dimensional reduction, lead to a distribution λn where the
change from one power law behavior to the other takes place
at the same point in the ðn=VÞ − λ plane, where V is the
global volume of the manifold. The value of n=V, being
proportional to l−D, brings information about the size of the
short scale.
To better illustrate the concepts above, in Fig. 3 we show

the distribution of λn as a function of n=V for three different
choices of Lx, Ly and Lz. The curves obtained for
ðLx; Ly; LzÞ ¼ ð3; 75; 600Þ and ðLx;Ly;LzÞ¼ð3;75;1200Þ
go exactly onto each other: their short scale structure is the
same and the function nðλÞ just differs for different number
of modes which are counted along the large direction Lz,
however this difference disappears when one considers
the scaling variable n=V, leading to a perfect collapse. The
collapse instead is not perfect when one considers the
lattice ðLx; Ly; LzÞ ¼ ð3; 15; 600Þ, which has a different
“intermediate” scale: moving from large to small n=V, the
turning point from dimension three to dimension two is

the same as for the two other lattices; however, the turning
point from dimension two to dimension one takes place
earlier, because Ly is shorter.
The possible examples which one can discuss within the

toy model are quite limited. For instance, one cannot
consider the case in which there are points where the
manifold branches into multiple connected ramifications,
something which in general can lead to an increase, instead
of a decrease, of the effective dimension. However,
extrapolating the arguments given above, we can conjecture
the following. D-dimensional manifolds having different
overall volumes and shape, but sharing a similarity in the
structures which are found at intermediate and short scales,
will lead to similar (i.e., collapsing onto each other) curves
when λn is plotted against n=V, V being the total volume of
the manifold. Moreover, the power law taking place at a
given value of n=V will give information about the effective
dimensionality dEFF of the manifold at a scale of the order
ðn=VÞ−1=D, with

2

dEFF
¼ d log λ

d logðn=VÞ : ð17Þ

This kind of information is similar to what is obtained by
implementing diffusive processes to measure the spectral
dimension.

IV. NUMERICAL RESULTS

In this section, we present results regarding mostly the
spectrum of the LB operator defined on spatial slices, while
a detailed discussion regarding the eigenvectors is post-
poned to a forthcoming study. We performed the analysis
on spatial slices of configurations in each phase; in
particular, almost all the results shown come from simu-
lations running deep into each phase, at the points circled
and labeled by a letter in Fig. 1 and in Table I.
While the total spatial volume has been fixed in each

simulation to a target value, the spatial volume of single
slices, VS, can vary greatly from one slice to the other (apart
from phase B). That will permit us to access the depend-
ence of the spectrum on VS, an information that will be very
important for many aspects. As discussed above, each
spatial slice will be associated with a 4-regular undirected
graph, with each vertex of the graph corresponding to a
spatial tetrahedron. For this reason, it will be frequent in the
following discussion to borrow concepts and terminology
from graph theory.
We will first look at the low lying part of the spectrum,

show how the transition from one phase to the other can be
associated to the emergence of a gap in the spectrum, and
discuss what that means in terms of the geometrical
properties of the triangulations. We will then turn to results
regarding the whole spectrum and show how one can obtain
information on the effective dimension of the geometry at

1e-05 1e-04 1e-03 1e-02 1e-01 1e+00
n / V

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

λ n

L
x
 =   3   L

y
 = 75   L

z
 = 600

L
x
 =   3   L

y
 = 75   L

z
 = 1200

L
x
 =   3   L

y
 = 15   L

z
 = 600

FIG. 3. Same as in Fig. 2, for different combinations of the
spatial sizes Li of the toroidal lattice.
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different scales. Finally, we will describe two methods to
visualize graphs and apply them to show the appearance of
spatial slices.

A. The low lying spectrum and the emergence of a gap

Apart from the zero eigenvalue, λ0 ¼ 0, the remaining
eigenvalues will fluctuate randomly from one configuration
to the other and, moreover, their distribution will depend on
VS in a well-defined way that we are going to discuss later
on. As an example, in Fig. 4, we show the distribution of λ1
and λ3 on a set of around 3 × 103 slices of approximately
equal volume VS ≃ 2300 and in CdS phase. Therefore,
while the spectrum of each spatial slice is intrinsically
discrete, because of the finite number of vertices making up
the associated graph, it makes sense to define a continuous
distribution ρðλÞ, assigned so that ρðλÞdλ gives back the
number of eigenvalues which are found on average in the
interval ½λ; λþ dλ�. In general ρðλÞ will be a function of
the bare parameters chosen to sample the triangulations
and, for fixed parameters, of the spatial volume VS of the
chosen slice.
In Figs. 5 and 6 we show the low lying part of the

distribution ρðλÞ obtained from simulations performed,
respectively, in the CdS and B phases, selecting in each
case three different ranges of spatial volumes.11 In order to
focus just on the low part of the spectrum, we have limited
the input for ρ to just the first few eigenvalues in each
case (n ≤ 100).
A striking difference between the two phases emerges. In

the B phase there is a gap Δλ ¼ λ1 ≃ 0.1 which does not

disappear and is practically constant as the spatial volume
VS grows, i.e., as one approaches the thermodynamical
limit. This gap is absent in the CdS phase, where the
distribution of the first 100 eigenvalues is instead more and
more squeezed towards λ ¼ 0 as VS grows. The presence or
absence of a gap in the spectrum is a characteristic which
distinguishes different phases in many different fields of
physics: think for instance of Quantum Chromodynamics,
where the absence/presence of a gap in the spectrum of the
Dirac operator distinguishes between the phases with
spontaneously broken/unbroken chiral symmetry. Let us
discuss what is the meaning of the gap in our context.
Graphs which maintain a finite gap as the number of

vertices goes to infinity are known as expander graphs [37]
and play a significant role in many fields, e.g., in computer
science. They are characterized by a high connectivity;
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FIG. 4. Probability distribution of λ1 and λ3 for slices with
VS ≃ 2300, taken from configurations sampled deep in the CdS
phase (simulation point c), and with total spatial volume VS;tot ¼
N41

2
¼ 40k.
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FIG. 5. Density ρðλÞ computed from the first 100 eigenvalues
for slices deep in the CdS phase (simulation point c) with total
spatial volume VS;tot ¼ 40k, and for different ranges of the spatial
slice volume VS.
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FIG. 6. Density ρðλÞ computed from the first 100 eigenvalues
for the maximal slices in the B phase (simulation point b) and
for different spatial volumes VS.

11For the B phase, different spatial volumes correspond
actually to different simulations with different constraint on
N41, since in this case most of the spatial volume is contained
in one single slice.
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i.e., the boundary of every subset of vertices is generically
large. Such a high connectivity is usually associated with a
degree of randomness, i.e., lack of order, in the connections
between vertices: for instance, random regular graphs are
expanders with high probability [38]. The strict relation
between the high connectivity and the presence of a finite
gap in the spectrum is also encoded in Cheeger’s inequal-
ities; see Eq. (13).
The property which is maybe most relevant to our

context is the fact that the diameter of an expander, defined
as the maximum distance12 between any pair of vertices,
does not grow larger than logarithmically with total number
of vertices [39,40]. Therefore, in this phase the spatial
slices do not develop a well-defined geometry, since the
size (diameter) of the Universe remains small as the volume
tends to infinity, a fact described also in previous CDT
studies in terms of a diverging Hausdorff dimension. This
fact can be easily interpreted in terms of diffusive proc-
esses: as argued above (see Sec. III), the value of the
spectral gap, λ1, can be interpreted as the inverse of the
diffusion time of the slowest mode; the fact that the time to
diffuse through the whole Universe stays finite means that
its size is not growing significantly.
On the contrary, according to the arguments discussed in

Sec. III B, for a graph representing a standard manifold
having a finite effective dimension on large scales, one
expects that the number of eigenvalues found below any
given λ should grow proportionally to the volume VS,
n ∝ VSλ

dEFF=2 ; see, for instance, Eq. (17). That means that
the gap must go to zero as VS → ∞ and, moreover, that a
finite normalized density13 of eigenvalues, ρðλÞ=VS, must
develop around λ ¼ 0. Instead, as it will be shown in more
detail below, the presence of a spectral gap for slices in the
B phase indicates that the effective dimension is indeed
diverging at large scales, in agreement with the high
connectivity property.
As an independent check, we computed the maximum

distance from a randomly chosen vertex to all other vertices
in the graph (a quantity usually called the eccentricity of the
vertex), iterating the procedure for 200 different starting
vertices and for each slice in the CdS and B phases. The
maximum eccentricity in a graph corresponds to its
diameter, so the eccentricity of a random vertex is actually
a lower bound to the diameter. Therefore the results, which
are shown in the form of a scatter plot in Fig. 7, are
consistent with a diameter which, for sufficiently large
volumes, grows as a power law of VS in phase CdS, while

on the contrary it seems to reach a constant or to grow at
most logarithmically in the B phase.
The properties of slices in phase A are quite similar to

those found in phase CdS; i.e., one has evidence for a finite
density of eigenvalues around λ ¼ 0 in the large VS limit,
even if the distribution of slice volumes is significantly
different from that found in phase CdS. An example of
the distribution of the first 30 eigenvalues in this phase is
reported in Fig. 8.
Instead, the spectra of slices in the bifurcation phase Cb

need a separate treatment. Indeed, it is well known that the
bulk of the configurations are made up of two separate
classes of slices, which alternate each other in slice-time
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FIG. 7. Scatter plot of the eccentricity of 200 randomly
selected vertices for each slice of about 400 configurations in
the CdS phase (simulation point c) with total spatial volume
VS;tot ¼ 20k, and for the maximal slices of about 200 configu-
rations in the B phase (simulation point b) with total volumes
VS;tot ¼ 8k; 16k; 32k; 40k. Results are reported against the slice
volume VS.
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FIG. 8. Density ρðλÞ computed from the first 30 eigenvalues for
slices deep in the A phase (simulation point a) with total spatial
volume VS;tot ¼ 8k, and for two different ranges of the spatial
slice volume VS.

12The distance between a pair of vertices is defined as the
length of the shortest path (i.e., the geodesic) connecting the two
vertices.

13A finite density of eigenvalues around λ ¼ 0 is a condition
stronger than the simple absence of a gap. Indeed, one might have
situations in which isolated quasizero eigenvalues develop, while
the continuous part of the spectrum maintains a gap: think for
instance of two expander graphs connected by a thin bottleneck.
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and have different properties [6]: it is reasonable to expect
that this is reflected also in their spectra. This is indeed the
case, as can be appreciated by looking at Fig. 9, where we
report the value of λ1 obtained on the different slices (i.e., at
different Euclidean times) for a typical configuration
sampled in the Cb phase, and compare it to a similar plot
obtained for the CdS phase. For an easier comparison, the
time coordinates of the slices have been relabeled in each
case so that the slice with the largest volume corresponds to
tslice ¼ 0; moreover, we restricted to the bulk of configu-
rations (i.e., we chose slices with VS > 200). Contrary to
the CdS phase, in the Cb phase λ1 changes abruptly from
one slice to the other, with small values alternated with
larger ones, differing by even two order of magnitudes.
This striking difference, which emerges even for single
configurations, is even more clear as one considers the
whole ensemble: Fig. 10 shows the average of λ1, λ20 and
λ100 for configurations in the Cb and CdS phases, with slice
times relabeled as before. In the CdS phase λ1 changes
smoothly with tslice, and this change is mostly induced by
the corresponding change of the slice volume, while in the
Cb phase the alternating structure is visible also for higher
eigenvalues, even if somewhat reduced and limited to the
central region as n grows.
Therefore, we conclude that the alternating structure of

spatial slices is apparent and well represented in the low-
lying spectra: slices in the bulk of Cb phase configurations
can be separated in two distinct classes by the value of their
spectral gap, while in the CdS phase there is no sharp
distinction apart from a volume-dependent behavior con-
nected to an observed Weyl-like scaling, which will be
discussed in more detail in Sec. IV B.
In order get a better perspective on these results, in

Fig. 11 we show the eigenvalues λn, with n ¼ 1, 20, 100,
plotted against the volume of the slice on which they are

computed, for the slices of all configurations sampled in the
Cb phase (in particular at the simulation point labeled c̃).
Slices with volumes larger than a given VS, which we call
bifurcation volume,14 divide in two distinct classes char-
acterized by λn taking values in well-separated ranges. It is
interesting that such bifurcation volume depends on n: that
also explains why in Fig. 10 the alternating behavior of
higher order eigenvalues (e.g., λ100) drops off earlier than
lower order ones, since spatial volumes get smaller far from
the slice with maximal volume and then their volume
becomes less than the bifurcation one at that order. That
actually means that the alternating slices found in the Cb
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FIG. 9. Spectral gap λ1 as a function of the slice-time for single
configurations in Cb and CdS phases with total spatial volume
VS;tot ¼ 40k and with the slice-time of maximal slice shifted to
zero. Only slices in the bulk (with volume VS ≥ 200) have been
shown.
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FIG. 10. Averages of λ1,λ20 and λ100 as a function of the slice-
time for configurations in Cb and CdS phases, where the slice-
time of maximal slices has been shifted to zero. Only slices in the
bulk (with volume VS ≥ 200) have been shown.
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FIG. 11. Scatter plot of the values of λ1, λ20 and λ100 versus the
volume of the slice on which they are computed, for slices of
configurations deep in the Cb phase (simulation point c̃) and with
volume fixing VS ¼ 40k.

14It is interesting to notice that the Cb phase can be called the
bifurcation phase for many different reasons.
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phase only differ for the low lying part of the LB spectrum,
while for high enough eigenvalues order they are not
distinguishable; high eigenvalues mean small scales, hence
we expect that the alternating slices have the same small
scale structures and only differ at large scales. We will
come back on this point later on.
In view of the close similarity with the properties of

slices found, respectively, in the CdS in the B phase, we
assign to the two classes of slices the names dS-type (low
spectral gap) and B-type (high spectral gap). Looking again
at Fig. 11, we notice that, for sufficiently large volumes, the
two classes populate only specific volume ranges.
Furthermore, the maximal slice in the Cb phase is typically
observed to be of B-type, with a volume ranging in a
narrow interval which is separated from the volumes of the
other slices. This alternating distribution of spatial volumes
has been indeed one of the first signals of the presence of
the new phase [3,4].
A summary of the characterization of the phase diagram

of CDT according to the (zero or nonzero) gap of the LB
operator as an order parameter is reported in Table II. To
conclude the discussion about the gap, it is interesting to
consider how the distribution of λ1 changes across the
different phases. To this purpose, in Fig. 12, we show a
scatter plot of λ1 for different values of Δ at fixed k0 ¼ 2.2:
darker points corresponds to more frequent values of λ1.

As Δ increases, the gap in the B or B-type slices
progressively reduces and approaches zero at the point
where one enters the CdS phase. A gap in the spectrum is a
quantity which has mass dimension two (as the LB
operator), i.e., an inverse length squared: if future studies
will show that the drop to zero takes place in a continuous
way, that will give evidence for a second order phase
transition with a diverging correlation length.

B. Scaling and spectral dimension

As one expects, and as it emerges from some of the
results that we have already shown, the typical values
obtained for the n-th eigenvalue of the LB operator on
spatial slices, λn, scale with the volume VS of the slice, and
in a different way for the different phases. As an example,
in Fig. 13, we show the average values obtained for λn (for a
few selected values of n), as a function of the volume, in the
CdS phase.
In order to better interpret this scaling, and inspired by

the discussion reported in Sec. III B, in the following we
will consider how λn depends on the variable n=VS. To
show that this may indeed be illuminating, in Fig. 14, we
report λn as a function of n=VS for four spatial slices, which
have been randomly picked from an ensemble produced in
the CdS phase and have quite different volumes, ranging
over almost one order of magnitude15 The collapse of the
four curves onto each other is impressive and, in view of
the discussion in Sec. III B, can be interpreted in this
way: despite the fact that the slices have quite different

TABLE II. Characterization of the phase diagram of CDT
according to the zero or nonzero gap of the LB operator as an
order parameter.

A B Cb CdS

no-gap gap gap no-gap no-gap

FIG. 12. Distribution of λ1 (in scatter plot format) for k0 ¼ 2.2
and variable Δ for configurations with total spatial volume
VS;tot ¼ N41

2
¼ 40k and considering only slices with spatial

volume VS > 2k.
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FIG. 13. Averages of eigenvalues λn for selected orders n and
computed in narrow bins of volumes (ΔVS ¼ 20), for slices
of configurations sampled deep into the CdS phase (simulation
point c), with total spatial volume VS;tot ¼ 40k.

15Notice that n=VS can take values in the range (0,1) (recall
that λ0 ¼ 0 is excluded from our discussion), while the maximum
eigenvalue λ is always bounded by 2k ¼ 8, that is twice the
degree of vertices in the k-regular graph.
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extensions, they show the same kind of structures at
intermediate common scales.
This kind of scaling is well visible in all phases, as one

can appreciate by looking at Fig. 15. For convenience, we
have divided all spatial slices in small volume bins, and
then averaged λn for each n over the slices of each bin: such
averages are reported in the figure against n=VS. average
eigenvalues are reported with error bars, which however are
too small to be visible.
Each phase has its own characteristic profile. The

profiles of phases A and CdS are quite similar and differ
by tiny deviations: in particular, in both cases one has that
λn → 0 as n=VS → 0, which is an equivalent way to state
the absence of a gap in the spectrum. Instead, the profile of

phase B is significantly different and characterized by the
fact that limn=VS→∞λn ≠ 0, in agreement with the presence
of a gap. In Fig. 15, we do not report any data regarding the
Cb phase, which is discussed separately because of the
particular features that we have already illustrated above.
Following the discussion in Sec. III B, each scaling profile

can be associated with a running effective dimensionality
dEFF of the spatial triangulations at a scale of the order
ðn=VSÞ−1=3: that can be done by taking the logarithmic
derivative of λn with respect to n=VS, see Eq. (17). For this
reason, in Fig. 16 we report dEFF ¼ 2d logðn=VSÞ=d log λn,
which has been computed numerically by taking the average
derivative of the profile over small bins of the variable n=VS.
At very small scales, both the A and the CdS phase are

effectively three dimensional. However, going to larger
scales (smaller n=VS), the effective dimension decreases,
going down to values around dEFF ∼ 1.5, which is approx-
imately the same large scale dimensionality observed by
diffusion processes [41]. The crossover between the two
regimes takes place for n=VS in the range 0.1–0.4, meaning
that typical structures of lower dimensionality develop,
with a transverse dimension of the order of just a few
tetrahedra.
Actually, the plot of dEFF shows a difference between

phase A and phase CdS, which was not clearly visible
before: contrary to phase A, in phase CdS the effective
dimensionality seems to slowly grow again as one
approaches larger and larger scales. This slow grow can
be interpreted as a progressive ramification of the lower-
dimensional structures, i.e., as a hint that it has a fractal-like
nature.
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FIG. 14. Plot of λn against its volume-normalized order n=VS,
for four randomly selected slices with volumes VS ≃ 500;
1000; 2000; 3000, taken from configurations sampled deep into
the CdS phase (simulation point c) with total spatial volume
VS;tot ¼ 40k.
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FIG. 15. Averages of λn versus n=VS computed in bins of n=VS
with size 2=VS;max for slices taken from configurations sampled
deep into the A, B and CdS phases (simulation points a,b and c).
The volume is fixed to VS;tot ¼ 40k for configurations in A and
CdS phase, and to VS;tot ¼ 8k for configurations in B phase.
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FIG. 16. Running dimension obtained from the logarithmic
slope m of the curves shown in Fig. 15 as 2=m [see Sec. III B and
Eq. (17)], computed over bins of different ranges of n=VS and for
configurations sampled in phases CdS, A and B. The curve
associated to the B phase is diverging for n=VS → 0 (it is around
30 for n=VS ∼ 10−4), but part of it has been omitted from the plot,
to improve the readability of the curves obtained for the other two
phases.
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The effective dimensionality has a completely different
behavior in phase B: it is smaller than 3 (dEFF ≃ 2.5) on
small scales, then starts growing and diverges at large scales.
This is due to the fact that d log λn=d logðn=VSÞ → 0 as
n=VS → 0, because of the presence of the gap, and, on the
other hand, the diverging dimensionality can be interpreted
in terms of the fact that the diameter of the slice grows at
most logarithmically with VS. Also the low dimensionality
observed at small scales can be interpreted in terms of the
large connectivity of the associated graphs: each tetrahedron
has four links to other tetrahedra, some of these links are, in
some sense, not “local”; i.e., they are a shortcut to reach
directly some otherwise “far” tetrahedron. Then, the prob-
ability that a couple of neighboring tetrahedra are adjacent to
a common tetrahedron gets smaller and leads to a lower
effective dimensionality at short scales.
Regarding the properties of the slices found in the

bifurcation phase Cb, on the basis of what we have shown
and discussed in Sec. IVA, we have decided to perform a
separate analysis for the different classes of spatial slices. In
Fig. 17, we report λn vs. n=VS for slices according to their
relative position with respect to the central largest B-type
slice (which corresponds to tslice ¼ 0). The differences
between the two classes is clearly visible also from the
scaling profiles, which resemble, especially for large scales,
those found in the B and in the CdS phase for B-type and
dS-type slices, respectively.
However, one striking feature emerges: at small scales, in

particular for n=VS ≳ 0.1, the scaling profiles coincide
almost perfectly. We conclude that, at such scales, the two
classes of slices present strong similarities, despite the
completely different large scale behavior. Hints of this fact
were already discussed in Sec. IVA. Such similarities are
likely induced by the causal structure connecting adjacent
spatial slices in CDT triangulations.

C. Running scales and the search for
a continuum limit

The analysis of the scaling profiles reported above
permits to identify well-defined scales, in terms of the
parameter n=VS, where something happens, like a change
in the effective dimensionality of the system. Such scales
are given in units of the elementary lattice spacing of the
system, i.e., the size of a tetrahedron.
On the other hand, the possible presence of a second

order critical point, where a continuum limit can be defined
for quantum gravity, implies that the lattice spacing should
run to zero as the bare parameters approach the critical
point. This running of the lattice spacing should be visible
by the corresponding growth of the value, determined in
lattice units, of some physical scale. This is a standard
approach in lattice field theories, where one usually
considers correlations lengths which are the inverse mass
of some physical state.
One of the major challenges in the CDT program is to

identify and determine physical scales which could provide
such kind of information and thus give evidence that the
lattice spacing is indeed running. Promising steps in this
direction have been already done by means of diffusive
processes, where the scale is fixed by the diffusion time,
both in CDT [8] and in DT [20]. Here we propose that LB
spectra and the observed scaling profiles may be helpful in
this direction, and that a careful study of how such profiles
change as a function of the bare parameters could provide
useful information.
A possible second order point is believed to separate the

Cb from the CdS phase, therefore it makes sense to analyze
how the profiles change in both phases when moving
towards the supposed phase transition, and if the observed
changes can be associated to any running scale. A growth in
the scale associated to some particular feature of the scaling
profile means that its location moves to smaller values
of n=VS.
As an example, in Fig. 18, we report the scaling profiles

obtained for slices in phase Cb and Δ ¼ 0.15, which is
closer to the phase boundary with respect to the case
Δ ¼ 0.10, which has been discussed previously and is
reported in Fig. 17. An appreciable difference between the
two cases is that the region where the profiles of B-type and
dS-type coincide is larger (i.e., extends to smaller n=VS) for
Δ ¼ 0.15. From a quantitative point of view, one finds that
the approximate value of n=VS where the profiles start
differing by more than 5% is around 0.13 for Δ ¼ 0.10 and
around 0.074 for Δ ¼ 0.15. In other words, there is a scale
up to which B-type and dS-type slices are similar to each
other, and such scale grows as one approaches the Cb-CdS
phase transition.
In a similar way, one can look at how the scaling profiles

found in the CdS phase change as one approaches the phase
transition from the other side. Such scaling profiles are
reported in Fig. 19. The short-scale region, and in particular
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FIG. 17. Averages of λn versus n=VS for slices taken from the
bulk (VS > 1000) of configurations sampled in the Cb phase
(k0 ¼ 2.2, Δ ¼ 0.10). The total spatial volume is fixed to
VS;tot ¼ 40k, and the slice times have been relabeled so that
the largest B-type slice has tslice ¼ 0.
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the point where the effective dimension starts changing,
seems not sensible to the change of Δ. However the small
n=VS (large-scale) region changes, with the profile under-
going an overall bending towards the left: notice that this
implies a change in the effective dimensionality observed at
the largest scales, which indeed, for Δ ¼ 0.3, is dEFF ≳ 2.
Finally, as we have already stressed above, the gap itself,

which for B-type slices seems to approach zero as one gets
closer to the Cb-CdS phase transition (see Fig. 12) could be
interpreted in terms of a diverging correlation length if the
behavior is proved to be continuous.
The reported examples are only illustrative of the fact that

the LB spectrum can provide useful scales which could give
information on the nature of a possible continuum limit.
Such program should be carried on more systematically by

future studies, in particular by approaching theCb-CdS phase
transition more closely.

D. Fine structure of the full spectrum

In this section, we will show some details regarding the
full distribution of eigenvalues (i.e., over the whole
spectrum) in the different phases. Figs. 20, 21 and 22
show the normalized distribution of eigenvalues for spatial
slices with volumes in selected ranges, and for simulations
performed deep into the phases CdS, A, and B, respectively.
The A and the CdS phase present a detailed nontrivial

fine structure which is very similar. Even if we are not
interested, at least in the present context, to provide a
detailed interpretation of the full spectrum, we notice that
such fine structure is mostly relative to eigenvalues which
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FIG. 18. Averages of λn versus n=VS for slices taken from the
bulk (VS > 1000) of configurations sampled in the Cb phase
(k0 ¼ 2.2, Δ ¼ 0.15). The total spatial volume is fixed to
VS;tot ¼ 40k, and the slice times have been relabeled so that
the largest B-type slice has tslice ¼ 0.
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FIG. 19. Averages of λn versus n=VS, computed in bins of n=VS
with size 2=VS;max, for slices taken from configurations sampled
in the CdS phase, with k0 ¼ 2.2 and different values of Δ. The
total spatial volume of each configuration is VS;tot ¼ 40k.
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FIG. 20. Normalized distribution of all the eigenvalues for
slices with volume in the range VS ∈ ½2000; 2500� for configu-
rations deep into the CdS phase (simulation point c), and with
total spatial volume VS;tot ¼ 40k.
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FIG. 21. Normalized distribution of all the eigenvalues for
slices with volume in the range VS ∈ ½200; 400� for configura-
tions deep into the A phase (simulation point a), and with total
spatial volume VS;tot ¼ 40k.
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are of order 1 or larger, hence associated to typically small
scales; this is confirmed by the fact that, contrary to the low
part of the spectrum, such fine structure is almost left
invariant by changing the volume of the slice. For instance,
it can be noticed that the distributions are sharply peaked
around the integer values λ ¼ 4, 5, 6; indeed, by inspecting
the spectra of single configurations and the associated
eigenvectors, we observed that these integer eigenvalues
often occur with high multiplicity and can be associated to
the presence of recurrent regular short-scale structures and
to very localized eigenvectors.
The normalized distribution in the case of configurations

in the B phase does not show particular features, other than
the already discussed presence of a spectral gap. The
distribution looks in general more regular in this phase,
even if some of the peaks around integer values are still
present, but much reduced in amplitude.

E. Visualization of spatial slices

We have seen how each spatial slice of the triangu-
lations can be associated to a graph with nontrivial
properties, i.e., what is usually called a complex network.
There are different methods to visualize a complex net-
work, some of them already considered in previous
studies (see, e.g., Ref. [20]), here we will briefly discuss
only two of them: Laplace embedding [42] and spring
embedding [43,44]. The former makes use of the eigen-
vectors associated to the smallest eigenvalues, which are
already computed by solving the eigenvalue problem,
while the latter is based on a mapping of the graph to a
system of points connected by springs: as we are going to
discuss, the two methods are strictly related, however
spring embedding proves more useful to give an intuitive
picture of the short-scale structures.
The underlying idea, common to both methods, is to

represent any graph G ¼ ðV; EÞ in a m-dimensional

Euclidean space by finding a set of m independent
functions fϕnðviÞgmn¼1 which act as coordinates for each
vertex vi ∈ V, in such a way that vertices with smaller
graph distance have coordinates with values as closer as
possible. The “closeness” can be defined in many ways,
consisting in solving different optimization problems, and
that makes the two methods different. We will use the

notation ϕ⃗n ≡ ðϕnðviÞÞjVji¼1 for each n ¼ 1;…; m.

1. Laplace embedding

The optimization problem for Laplace embedding [42]
consists in minimizing the following functional of the
coordinate functions fϕng:

ELB½ϕ�≡ 1

2

Xm
n¼1

X
ðvi;vjÞ∈E

ðϕnðviÞ − ϕnðvjÞÞ2

¼ 1

2

Xm
n¼1

ϕ⃗T
nLϕ⃗n: ð18Þ

subject to the constraints ϕ⃗n · ϕ⃗k ¼ δn;k and ϕ⃗n · 1⃗ ¼ 0 for

each n; p ¼ 1;…; m, where 1⃗ is the uniform vector with
unit coordinates and L is the matrix representation of the
LB operator. It is straightforward to prove that a solution to
this constrained optimization problem is given by the set of
the first m eigenvectors fe⃗ngmn¼1 of the Laplace-Beltrami

matrix, where we excluded the 0-th mode e⃗0 ¼ 1ffiffiffiffiffi
jVj

p 1⃗

(second constraint) and ordered eigenvectors without
multiplicity (i.e., e⃗n is associated to λn and λn ≤ λnþ1).
For example, the coordinates associated to each vertex

v ∈ V in a three-dimensional Laplace embedding are the
values of the first three eigenvectors on that vertex, that is
v ↦ ðe1ðvÞ; e2ðvÞ; e3ðvÞÞ ∈ R3. Figure 23 shows the
three-dimensional Laplace embedding of a typical slice
in the bulk of a configuration deep in the CdS phase
(simulation point c). The geometry seems to be made up of
filamentous structures, but that really means that the first 3
eigenvectors, describing the slowest modes of diffusion, are
not capable of describing short scale structures inside the
filaments. However, they efficiently describe the largest
scale geometry, which in the CdS case is nontrivial and
unexpected.

2. Spring embedding

The optimization problem that has to be solved for spring
embedding of an unweighted undirected graph G ¼ ðV; EÞ
consists in the energy minimization of a system of ideal
springs with fixed rest length l0 and embedded in Rm,
with extrema connected in the same way as the links of
the abstract graph G [44]. Having assigned coordinates
fϕnðviÞgmn¼1 to each abstract vertex of the graph vi ∈ V, the
potential energy of the system is defined as
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FIG. 22. Normalized distribution of all the eigenvalues of the
maximal slices for configurations deep into the B phase (sim-
ulation point b), and with spatial volume about VS ≃ 8k.
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ES½ϕ� ¼
1

2

X
ðvi;vjÞ∈E

 
l0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
n¼1

ðϕnðviÞ − ϕnðvjÞÞ2
s !

2

:

ð19Þ

In the limit l0 → 0, the functional ES becomes equal to ELB
but with no constraint, so that the solution would collapse
to the trivial solution, bringing all vertices to the same
point, in this limit. On the other hand, for l0 > 0, the
springs will push vertexes apart from each other and help
resolving even the shortest-scale structures, which are not
visible with Laplace embedding.
The simplest algorithm to find a (local) minimum is to

initialize the coordinates of each vertex to a random value,
and then relax the system of springs by performing a
gradient descent. Figure 24 we shows the spring embedding
of the same slice represented by Laplace embedding in
Fig. 23. The large scale structure is well represented by
both methods, but spring embedding permits to better
discern short-scale structures at the finest level.
Such representations of the spatial slices are illuminating

to understand the properties of the LB spectrum for CdS
slices. The slices are extended objects; i.e., one finds
vertexes which are far apart from each other, implying
the existence of slow diffusion modes and a continuum of
quasizero eigenvalues for large VS. On the other hand, the
large scale structure is made of lower-dimensional sub-
structures, which have a typical transverse size of the order
of a few vertexes, and which often branch, making the
overall spectral dimension (i.e., the diffusion rate) frac-
tional at large scales.

For comparison, Fig. 25 shows the spring embedding of
a typical slice in B phase. The high connectivity of the
graph, which is clearly visible from the figure, does not
permit the development of extended large scale structures,
so that diffusion modes maintain always fast and a finite
gap remains even in the VS → ∞ limit.

FIG. 24. Spring embedding in three dimensions for the graph
associated to a typical slice in the CdS phase; the slice is the same
as in Fig. 23. The rest length has been fixed to l0 ¼ 0.02. Also in
this the color identifies the values that the first eigenvector e⃗1
takes on each vertex; see Fig. 23. A projection of the three-
dimensional figure is shown on the xy plane.

FIG. 23. Laplace embedding in three dimensions for the graph
associated to a typical slice in the CdS phase (simulation point c)
and with volume VS ≃ 1500. Here the color identifies the values
that takes the first eigenvector e⃗1 on each vertex: blue is negative,
green is zero and red is positive. A projection of the three-
dimensional figure is shown on the xy plane.

FIG. 25. Spring embedding (l0 ¼ 0.015) in three dimensions
for the graph associated to a typical slice deep in the B phase
(simulation point b) and with volume VS ≃ 4000. Also in this the
color identifies the values that the first eigenvector e⃗1 takes on
each vertex, see Fig. 23.
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V. DISCUSSION AND CONCLUSIONS

In this work we have investigated the properties of the
different phases of CDT that can be inferred from an
analysis of the spectrum of the Laplace-Beltrami operator
computed on the triangulations. The present exploratory
study has been limited to the properties of spatial slices:
those can be associated to regular graphs where each vertex
is linked to 4 other vertices. Let us summarize our main
results and further discuss them:

(i) We have shown that the different phases can be
characterized according to the presence or absence
of a gap in the spectrum, which therefore can be
considered as new order parameter for the phase
diagram of CDT. In particular, a gap is found in the
B phase, while for the A and the CdS phases one
finds a nonzero density of eigenvalues around λ ¼ 0
in the thermodynamical (large spatial volume VS)
limit. The Cb phase, instead, shows the alternance of
spatial slices of both types (gapped and nongapped):
that better characterizes the nature of the alternating
structures already found in previous works [5,6],
which for this reason we have called B-type and
dS-type slices.
The presence or absence of a gap in the spectrum

is a characteristic which distinguishes different
phases in many different fields of physics: think
for instance of Quantum Chromodynamics, where
the absence/presence of a gap in the spectrum of the
Dirac operator characterizes the phases with sponta-
neously broken/unbroken chiral symmetry.
In this context, the presence of a gap tells us that

the spatial slices are associated to expander graphs,
characterized by a high connectivity. That can be
interpreted geometrically as a Universe with an
infinite dimensionality at large scales, with a diameter
which grows at most logarithmically in the thermo-
dynamical limit; a small diameter in the phases with a
gap is consistent with the findings of previous studies
and is supported by a direct computation (see Fig. 7).
On the contrary, the closing of the gap can be
interpreted as the emergence of a Universe with a
standard finite dimensionality at large scales. It is
interesting to notice that the value of the gap which is
found seems to change continuously as one moves
from the B to the Cb phase, and approaches zero as
the CdS phase is approached.

(ii) We have shown that the spectrum can be charac-
terized by a well-defined scaling profile: the n-th
eigenvalue, λn, is a function of just the scaling
variable n=VS. The profile is different for each
phase and characterizes it; moreover, from the
profile one can deduce information on the effective
dimensionality dEFF of the system at different
scales, which generalize a similar kind of informa-
tion gained by diffusion processes.

The CdS and the A phase share a similar profile,
corresponding to dEFF ≃ 3 at short scales, which
then drops to dEFF ≃ 1.5 for n=VS ≲ 0.1. At larger
scales, the two phases show a different behavior,
with dEFF which keeps decreasing as n=VS de-
creases in the A case, while in the CdS phase it starts
growing again at large scales. Slices in the B phase,
instead, show an effective dimensionality which, in
agreement with their high connectivity, seems to
diverge in the large scale limit.

An interesting feature has been found for the two
different and alternating (in Euclidean time) classes
of spatial slices in the Cb phase: despite the different
overall structure, they share an identical profile at
small length scales, which is likely induced by the
causality condition imposed on triangulations and is
therefore an essential property of CDT. The profiles
remain identical up to characteristic length scale
above which they start to diverge, as expected since
one class presents a gap and the other does not.

(iii) We have proposed that the scaling profiles might be
used to identify particular length scales which
change as a function of the bare parameters, and
thus could serve as possible probes of the running to
the continuum limit, if any. Among those, we have
found of particular interest the characteristic length
scale up to which the alternating slices found in the
Cb phase share the same profile: we have seen that
such length grows as one approaches the boundary
with the CdS phase. On the other side of the
boundary, also the profiles of the slices in CdS phase
show a modification at large scales as the Cb phase is
approached, leading in particular to a growing
effective dimensionality.

Along these lines, one could conjecture that, if a
second order critical point is really found between
the two phases, at such a point the different profiles
found in the Cb phase could merge at all scales and
coincide with the profile from the CdS phase. Such a
critical point would also been characterized by the
vanishing of the gap for the B-type slices of the Cb
phase. Moreover, it would be interesting to test what
the effective dimensionality found at large scales
would be at the critical point: is it possible that, just
on the critical point where a continuum limit can be
defined, the effective dimensionality of spatial slices
goes back to D ¼ 3 at all physical scales?

The present work can be continued along many direc-
tions. First of all, the region around the transition between
the Cb and the CdS phase should be studied in much more
detail than what done in the present exploratory work, to
see if some of the conjectures that we have made above can
be put on a more solid basis. In addition, a careful study of
the critical behavior around the transition of the spectral
gap, which is the new order parameter introduced in this
study, could provide information about the universality
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class to which the continuum limit, if any, belongs. Of
course, it could well be that one finds a first-order
transition, i.e., a sudden jump in the gap and in other
properties, but then one should perform simulations for
lines corresponding to different k0 to see if the first order
terminates at some critical endpoint.
We have not considered yet the information which can be

gained by inspecting the eigenvectors of the LB operator,
that will be done in a forthcoming study. In particular, it
will be interesting to consider and analyze their localiza-
tion/delocalization properties, in a way similar to what has
been done in similar studies for the spectrum of the Dirac
operator in QCD [45,46].
It will be interesting to extend the study of the spectrum to

the full triangulations, i.e., not just for spatial slices. That will
require some implementative effort: unlike spatial tetrahedra
(which are all identical), pentachorons can have edges with
different Euclidean lengths, and therefore a regular graph
representation does not describe the geometry faithfully.
Nevertheless, the Laplace-Beltrami operator for general
triangulated manifolds would have a well-defined represen-
tation in the formalism of the finite elements method, as
discussed and applied for example in Refs. [10,11].
Finally, it would be interesting to apply spectral

methods also to other implementations of dynamical
triangulations, like the standard Euclidean dynamical
triangulations (DT) where no causality condition is
imposed. The implementation in this case would be
straightforward, as for the spatial slices of CDT, i.e.,
given in terms of regular indirected graphs. We plan to
address the issues listed above in the next future.
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APPENDIX: HEAT-KERNEL EXPANSION AND
SPECTRAL DIMENSION

Here we describe how to compute the spectral dimension
of a graph G from the spectrum of its LB matrix using the
heat-kernel expansion. Later we will apply the definition to
slices in CdS phase, making a comparison between the
standard definition of spectral dimension (i.e., via diffusion
processes), and the one obtained by the spectrum.
Let us consider the fundamental solution to the diffusion

equation on a k-regular connected graphGwithLBmatrixL:

8<
:

∂tKv;v0ðtÞ ¼ − 1
k

P
v0∈V

Lv;v0Kv0;v0ðtÞ

Kv;v0ð0Þ ¼ δv;v0 :
ðA1Þ

Discretizing time with unit steps Δt ¼ 1 [9], Eq. (A1)
becomes the equation for random walk on the graph, where
Kv;v0ðτÞ is the probability that a randomwalker starting from
the vertex v0 at time t ¼ 0 is found at the vertex v at time
t ¼ τ. The return probability Zv0ðtÞ ¼ Kv0;v0ðtÞ is the prob-
ability that a randomwalker comes back to the starting vertex
v0 after t steps. Averaging over all starting vertices, the return
probability reduces to ZðtÞ ¼ TrKðtÞ, the heat-kernel trace.
In practice, the diffusion is performed only for a random
subset of startingvertices, fromwhich the return probability is
then estimated as an average over explicit diffusion processes.
However, ZðtÞ can also be computed using the spectrum

of the LB matrix using the heat-kernel expansion for the
solution to Eq. (A1):

Kv;wðtÞ ¼
1

jVj
XjVj−1
n¼0

enðvÞenðwÞe−λnt=k; ðA2Þ

where fλng and fe⃗ng are the eigenvalues and associated
eigenvectors of the LBmatrix of the graphG. Notice that the
terms in Eq. (A2) corresponding to larger eigenvalues are
more suppressed for increasing times than terms correspond-
ing to smaller ones. In particular, for times t ≫ k=λ1, the only
surviving term is given by the 0-th eigenvalue, and the
probability distribution tends to be uniformly distributed
amongst all vertices: limt→þ∞Kv;v0ðtÞ ¼ 1

jVj ∀v; v0 ∈ V

(assuming a single connected component).
The return probability, obtained from the spectrum, then

takes the form

ZðtÞ≡ TrKðtÞ ¼
X
v∈V

Kv;vðtÞ

¼ 1

jVj
XjVj−1
n¼0

e−λnt=k; ðA3Þ

where we used the decomposition in Eq. (A2) and the
orthonormality of eigenvectors.
The return probability ZðtÞ can be nicely interpreted as a

statistical partition function, for its formal analogy with the
concept in statistical physics: the diffusion time takes here
the role of the inverse temperature, while the eigenvectors
and their associated eigenvalues take the role of microstates
and their associated energies, respectively.
In the case of a compact smooth manifoldM, for which

the Laplace-Beltrami spectrum fλng∞n¼0 is countable but
unbounded, the averaged return probability density ZðtÞ
has the following asymptotic expansion for t → 0þ [30]:

ZðtÞ ¼ 1

volðMÞ
X∞
n¼0

e−λnt

¼ ð4πtÞ−dimðMÞ
2

1

volðMÞ
�Xl−1

i¼0

cit
i
2 þOðtl2Þ

�
: ðA4Þ
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The return probability for unidimensional random walks
is 1=

ffiffiffiffiffiffiffi
4πt

p
, so it is reasonable for a smooth manifold to

locally decompose the random motion along the dimðMÞ
directions and get the return probability as a product of
independent unidimensional return probabilities. In the
case of random walks on Rd the return probability density
equal to ZðtÞ ¼ ð4πtÞ−d

2, so one can infer the value of
coefficients: c0 ¼ volðMÞ and ci ¼ 0 ∀i ≥ 1.

Corrections to the t−
dimðMÞ

2 behavior must be due to the
geometric properties characterizing the manifold under
study. For example, the first three coefficient have a
geometrical interpretation, as discussed by McKean and
Singer [47]

c0 ¼ volðMÞ; ðA5Þ

c1 ¼ −
ffiffiffi
π

p
2

areað∂MÞ; ðA6Þ

c2 ¼
1

3

Z
M

R −
1

6

Z
∂M

J; ðA7Þ

where ∂M is the (possibly empty) boundary of the
manifold M, R is the scalar curvature of the manifold
and J is the mean curvature of the boundary.
We expect that similar results hold for graphs approxi-

mating manifolds, but a first difficulty can be easily
detected as shown by the following argument. At a time
t only eigenvalues λ≲ 1

t contribute to the sum in Eq. (A4),
but for t → 0þ the full unbounded spectrum of the smooth
manifold tends to contribute. The spectrum of a graph G,
however, is bounded by the largest eigenvalue, so that here
the expansion in Eq. (A4) is not numerically reliable for
times t≲ ðλjVj−1Þ−1. Nevertheless one can plot the return
probability as a function of time and get an estimate of the
dimension d by extrapolation to τ → 0þ using the defi-
nition of what is called spectral dimension [9]:

DSðτÞ≡ −2
d logZ
d log t

����
t¼τ

: ðA8Þ

Figure 26 shows the comparison between the estimates
of spectral dimension obtained employing explicit diffu-
sion processes (Eq. (A1) integrated with step size Δt ¼ 1)
and the spectrum of the Laplace-Beltrami matrix on graphs
associated to spatial slices in CdS phase: we applied
Eq. (A8) using the average of the return probability ZðtÞ
computed on each slice having volume in the range 2000–
2200, and, for the definition via diffusion, averaging the
return probability also over 200 iterations of diffusion
processes starting from randomly selected vertices in the
slice. Using the definition via diffusion, at small diffusion
times the return probability, and therefore also the spectral
dimension, is highly fluctuating due to the short scale
regularity of the tetrahedral tiling of the space (a phenome-
non already discussed in Refs. [1,9]); this is not present in
the definition via the spectrum, where a bump is observed
instead. For larger diffusion times (τ ≳ 100) the curves
obtained using both methods agree even using only the
lowest 5% part of the spectrum, which confirms that this
regime represents indeed the large scale behavior. Here we
observe a spectral dimension DS ≃ 1.5 for the spatial slices
of configurations in CdS phase. This fact, already observed
in literature using diffusion processes [41], seems compat-
ible also with the observations obtained from large scale
scaling relations for the eigenvalues discussed in Sec. IV B.
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