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SEMICLASSICAL STATES FOR A STATIC SUPERCRITICAL
KLEIN-GORDON-MAXWELL-PROCA SYSTEM ON A CLOSED
RIEMANNIAN MANIFOLD

MONICA CLAPP, MARCO GHIMENTI, AND ANNA MARIA MICHELETTI

ABSTRACT. We establish the existence of semiclassical states for a nonlinear
Klein-Gordon-Maxwell-Proca system in static form, with Proca mass 1, on a
closed Riemannian manifold.

Our results include manifolds of arbitrary dimension and allow supercrit-
ical nonlinearities. In particular, we exhibit a large class of 3-dimensional
manifolds on which the system has semiclassical solutions for every exponent
p € (2,00). The solutions we obtain concentrate at closed submanifolds of
positive dimension as the singular perturbation parameter goes to cero.

1. INTRODUCTION

Let (91, g) be a closed (i.e. compact and without boundary) smooth Riemannian
manifold of dimension m > 2. Given real numbers ¢ > 0, ¢ > 0, w € R and
p € (2,00), and a real-valued C!-function a such that a(z) > w? on 9, we consider
the system

—e2Agu+ a(z)u = uP~! + w?(go — 1)%u  on M,
(1.1) —Agv + (1 + ¢*u?)o = qu? on M,
woe Hy (M), u,0>0.

The space H, é (M) is the completion of C*°(9M) with respect to the norm defined by
0112 = g (IVg0l? + v?)dpg.

Solutions to this system correspond to standing waves of a Klein-Gordon-Maxwell-
Proca (KGMP) system in static form (i.e. one in which the external Proca field is
time-independent) with Proca mass 1.

KGMP-systems are massive versions of the more classical electrostatic Klein-
Gordon-Maxwell (KGM) systems: KGM-systems are KGMP-systems with Proca
mass 0, i.e. the second equation in (1) is replaced by

—Ag0 + ¢*u’o = qu?.

Note that v = 1/¢ solves this last equation and reduces the KGM-system to a
single Schrodinger equation in u. So for the system on a closed manifold the Proca
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formalism is more interesting and more appropriate. We refer to [I1] for a detailed
discussion on KGMP-systems and their physical meaning.

For ¢ = 1 existence of solutions to system (LI]), which are stable with respect
to the phase w, was established by Druet and Hebey [7] and Hebey and Truong

[10] for manifolds of dimension m = 3 and 4, and subcritical (2 < p < -22%) or

critical (p = %) nonlinearities, under certain assumptions. For critical systems

in dimension 3 Hebey and Wei [I1] showed the existence of standing waves with
multispike amplitudes, which are unstable with respect to the phase, i.e. they blow
up with k singularities as the phase w aproaches some phase wy.

Here we are interested in semiclassical states, i.e. in solutions to system (LII) for
¢ small. The existence of semiclassical states for similar systems in flat domains 2
in R™ has been investigated e.g. in [4], B [15]. On closed 3-dimensional manifolds,
the existence of semiclassical states to system (I[LI]), which concentrate at a single
point as € — 0, was established in [8] and [J] for subcritical exponents p € (2,6).

The results we present in this paper apply to manifolds of arbitrary dimension
and include supercritical nonlinearities p > 27 , where 27 := % is the critical
Sobolev exponent in dimension m > 3 and 25 := oco. In particular, we shall exhibit
a large class of 3-dimensional manifolds on which the system (IZ1]) has semiclassical
solutions for every exponent p € (2,00). The solutions u we obtain concentrate at
closed submanifolds of 91 of positive dimension. Moreover, for fixed e, they are
stable with respect to the phase in the sense of [7].

Our approach consists in reducing system () to a system of a similar type
on a manifold M of lower dimension but with the same exponent p. This way, if
n:=dimM < dim9M =: m and p € [2},,2F), then p is subcritical for the new
system but it is critical or supercritical for the original one. Moreover, solutions
of the new system which concentrate at a point in M as e — 0 will give rise
to solutions of the original system concentrating at a closed submanifold of 9t of
dimension m —n as € — 0.

This approach was introduced by Ruf and Srikanth in [I3], where a Hopf map
is used to obtain the reduction. Reductions may also be performed by means of
other maps which preserve the Laplace-Beltrami operator, or by considering warped
products, or by a combination of both, see [3| [I[4] and the references therein. We
describe these reductions in the following two subsections.

1.1. Warped products. If (M, g) and (IV, h) are closed smooth Riemannian man-
ifolds of dimensions n and k respectively, and f : M — (0,00) is a C'-map, the
warped product M x 4> N is the cartesian product M x N equipped with the Rie-
mannian metric g := g 4+ f2h.

For example, if M is a closed Riemannian submanifold of R x (0,00), then

M= {(y,2) € R* x R*: (y, |2]) € M},

with the induced euclidian metric, is isometric to the warped product M X ¢» Sk,
where SF is the standard k-sphere and flx1, .. @eg1) = Togr.

Let mar : M X g2 N — M be the projection. A straightforward computation gives
the following result, cf. [6].

Proposition 1.1. Let 3: M — R and a = fomp. Then ue,v. : M — R solve
(1.2)
—e2divy (f¥(2)Vgu) + fF(@)B(x)u = fF(@)uP™! + w? f¥(x)(qv — 1)%u  on M,
—divy (f¥(2)Vgv) + fH(z) (14 qu?) v = ¢f*(2)u? on M,
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iff ue :=uc omr, Ve ;= v 0wt M X2 N — R solve

I B e A

—Agb+ (14 qu?) v = qu? on M X2 N.

Note that the exponent p is the same for both systems. So if p € (27 ,,,2})
then p is subcritical for (I2)) but supercritical for (I3). Moreover, if the functions
ue concentrate at a point &g € M as € — 0, then the functions u. := wu. o mps
concentrate at the submanifold 73, (&) = (N, f2(&)h) as € — 0.

1.2. Harmonic morphisms. Let (9, g) and (M, g) be closed Riemannian mani-
folds of dimensions m and n respectively. A harmonic morphism is a horizontally
conformal submersion 7 : 9t — M with dilation A : 9t — [0, co) which satisfies

(1.4) (n—2)H(VgIn\) + (m —n)sY =0,

where kY is the mean curvature of the fibers of 7 and # is the projection of the
tangent space of 9 onto the space orthogonal to the fibers, see [1].
So for n = 2 a harmonic morphism is just a horizontally conformal submersion
7 : 9 — M with minimal fibers. Typical examples are the Hopf fibration S — S?
whose fiber is S!, and the induced fibration RP3 — S? with fiber RP!, see [IL
Example 2.4.15]. They are, in fact, Riemannian submersions (i.e. A = 1).
Harmonic morphisms preserve the Laplace-Beltrami operator, i.e.

Agluom) = N [(Agu) o]
for every C2-function u : M — R. This fact yields the following result.
Proposition 1.2. Assume there exist : M — R and p: M — (0,00) such that

Bor=a and pon =M\ Then uc,v. : M — R solve the system

w( p(x)

—Agv—l—ﬁ(l—kquz)v: 4_q,2 on M,

(1.5)

T _ w?
{ —2Agu+ &wgu = Logpml 4 m(qv —1)2%u on M,
e

iff ue ;= ucompr, Ve i = v 0myr - M — R solve the system

(1.6) —2Agu+ a(z)u =uP~t +w?(go — 1)*u  on M,

' —Agb+ (1+ qu?) o = qu? on M.

Again, if p € (2},,2}), the system (3] is subcritical and the system (L)) is
supercritical and, if the functions u. concentrate at a point § € M as ¢ — 0,
the functions u. := u. o mps concentrate at the (m — n)-dimensional submanifold
7t (o) of M as e — 0.

1.3. The main result for the general system. Propositions[.T] and [[.2]suggest
studying a more general KGMP-system.

Let (M, g) be a closed Riemannian manifold of dimension n = 2 or 3, a,b,c €
C'(M,R) be strictly positive functions, €,q € (0,00), p € (2,2}), and w € R be
such that a(x) > w?b(x) on M. We consider the subcritical system

—e2divy (c(z)Vgu) + a(@)u = b(x)uP~! + b(z)w?(qv — 1)?u  in M,

(1.7) —divy (c(x)V4v) 4+ b(x)(1 + ¢*u?)v = b(x)qu? in M,
U, v € H;(M), u,v > 0.
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Theorem 1.3. Let K be a Cl-stable critical set of the function T : M — R given
by
c(a:)%a(a:)ﬁ_%
> .
b(x)»—2
Then, for € small enough, the system (1) has a solution (ue,v:) such that ue
concentrates at a point §g € K as € — 0.

Recall that K is a Cl-stable critical set of a function f € C1(M,R) if K C
{r e M :V,f(x) =0} and for any g > 0 there exists ¢ > 0 such that, if h €
CYM,R) with

[(z) :=

max z) — h(x)| + |Vof(x) — Voh(x)| <9,
L |F(@) = h(@)| + [V () = Vh(a)
then h has a critical point z¢ with d4(zo, K) < u. Here d, denotes the geodesic
distance associated to the Riemannian metric g.

1.4. The main results for the KGMP-system. Theorem [[.3 together with
Propositions [T and [[.2] yields the following results.

Theorem 1.4. Let M be the warped product M X g2 N of two closed Riemannian
manifolds (M, g) and (N,h) with n := dim M = 2 or 3. Set k := dim N, and let
p € (2,00) if n =2 and p € (2,6) if n = 3. Assume there exists 3 € C1(M,R) such

n

that o = Bomys and let K be a C*-stable critical set for the function T’ := f’“ﬁﬁ 2
on M. Then, for ¢ small enough, the KGMP-system (1)) has a solution (ue,v.)
such that u. concentrates at the submanifold 7, (&) = (N, f2(&)h) for some
e K ase — 0.

Theorem 1.5. Assume there exist a closed Riemannian manifold M with n :=
dim M = 2 or 3 and a harmonic morphism w : M — M whose dilation \ is such
that o = A\2. Assume further that o = Bom with 3 € C*(M,R). Let p € (2,0)
ifn=2andp € (2,6) if n = 3, and let K be a C'-stable critical set for the function
[:=B52 251 on M. Then, for e small enough, the KGMP-system (T has
a solution (uc,v:) such that u. concentrates at the submanifold w1 (&) of M for
some & € K ase — 0.

This last result applies, in particular, to the standard 3-sphere 9t = S® and the
real projective space 9t = RP? for all p € (2,00) with u = X\ = 1, see subsection
L2

The rest of the paper is devoted to the proof of Theorem [[3l In section
we reduce the system to a single equation and give the outline of the proof of
Theorem[I.3] which follows the well-known Lyapunov-Schmidt reduction procedure.
In section 3 we establish the Lyapunov-Schmidt reduction and in section[d we derive
the expansion of the reduced energy functional. Section [Blis devoted to the proof
of some technical results.

2. OUTLINE OF THE PROOF OF THEOREM [[3]

2.1. Reduction to a single equation. First, we reduce the system to a single
equation. To overcome the problems caused by the competition between u and v,
using an idea of Benci and Fortunato [2], we consider the map ¥ : H} (M) — H,} (M)
defined by the equation

(2.1) —divy (e(x) V¥ (u)) + b(z) (1 + ¢*u?) ¥ (u) = b(z)qu.
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It follows from standard variational arguments that ¥ is well-defined in Hj(M).
Using the maximum principle and regularity theory it is not hard to prove that
(2.2) 0<¥(u) <1l/q for all u € H)(M).
For the proofs of the following two lemmas we refer to [7].

Lemma 2.1. The map V : H) (M) — H}(M) is of class C*, and its differential
Vi := W' (u) at u is defined by

(2.3) —divy (c(x)VgVulh]) + b(z) (1 + q2u2) Vulh] = 2b(z)qu(l — q¥(u))h
for every h € H)(M). Moreover,

0 <0 (u)u] < Jor allu e H)(M).

1l =i

Lemma 2.2. The map © : H)(M) — R given by

O(u) := = /M b(x)(1 — q¥(u))udug
is of class C* and
O'(u)[h] = /M b(x)(1 — q¥(u))*uhdu, for all u,h € Hgl(M)

Next, we introduce the functionals I, J,, G, : Hg1 (M) — R given by

w2

(2.4) I (u) := Je(u) + 7G5(u),

where

— 55 [ @IVl + dw)e?] duy — = [ bla) (a")" du
M M
with d(r) := a(z) — w?b(x), and

Ge(u) = 4 /M b(x) U (u)u?dp,.

)
From Lemma we deduce that

FCAle = 5 [ bo20%(0) = PVl dy

2

IL(u)p = 5_12/1\/[ azc(x)vguvgso—l—a(x)ugo—b(x)(u+)pflgo—b(x)oﬂ(l—q\l!(u))zucp dpg.

Therefore, if u is a critical point of the functional I, then u solves the problem
(2.5)

—e?divg (c(2)Vgu) + (a(2) — w?b(z))u + w?eb(z) ¥ (u)(2 — q¥(u))u = b(z)(u*)P~,
{ ue Hj(M).
If w # 0 by the maximum principle and regularity theory we have that u > 0.
Thus the pair (u, U(u)) is a solution of the system (7). This reduces the existence

problem for the system (7)) to showing that the functional I. has a nontrivial
critical point.
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2.2. The limit problems. Theorem concerns manifolds of dimensions 2 and
3. To simplify the exposition we shall treat in full detail only the case n = 2.
Everything can be extended in a straightforward way to the case n = 3, except
for the estimates in section These estimates, however, were computed in the
appendix of [9] for n = 3.

Henceforth, we assume that dim M = 2. We fix > 0 smaller than the injectivity
radius of M. We identify the tangent space of M at ¢ with R? and denote by B(z,r)
the ball in R? centered at z of radius 7 and by B,(&,r) the ball in M centered at
¢ of radius r, with respect to the distance induced by the Riemannian metric g.
The exponential map exp, : B(0,7) — By(§,r) provides local coordenates on M,
which are called normal coordinates. We denote by g¢ the Riemannian metric at &
given in normal coordinates by the matrix (g;;) . We denote the inverse matrix by

(9" (2)) := (gi;(2)) " and write |ge(2)| := det (gi;(2)) . Then, we have that

n 62 ij
(2.6) g (sz = 0i; + kzl 9:.07 0)zr2k + O(a3|z|3) =0;; + o(e),
en el =1-5 3 W”(@ L OE ) = 14 ofe).
) g(ez)]2 = 1 Py 9500 2r 2k z o(e

Here §;; denotes the Kronecker symbol.
For p € (2,00) and & € M, set

_ al©) _ b ()7
ao=5g mo=gg 0=(5)"
We consider the problem
—c(6)AV + a(E)V = b(e)VPL, V € H'(R?),

and denote by V¢ its unique positive spherically symmetric solution. This problem
is equivalent to

~AV + A(E)V = B(&VP, V € H'(R?).

The function V¢ and its derivatives decay exponentially at infinity. V¢ can be
written as

VE(z) =1 (OU(VA(©)2),

where U is the unique positive spherically symmetric solution to

~AU+U=UP"1, U c H'(R?).
For ¢ € M and & > 0 we define W, ¢ € H) (M) by
¢ -1 :
W e(a) = \% ( expe Yz )) X (expE (:v)) if x € By(&,r),

0 otherwise,

where x € C*°(R") is a radial cut-off function such that x(z) =1 if |z| < r/2 and

x(z) = 0if |z| > r. Setting Vo(z) :=V (£) and y := expg1 x we have that

Weelexpe(y)) = V< () xy) = VE)x().

so the function W ¢ is simply the function V¢ rescaled, cut off and read in normal
coordinates at £ in M.
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Similarly, for ¢ = 1,2 we define
. -1 1
2 (o) = wg (Lexps' @) x (expg (@) if @€ By(,),
’ otherwise,

where
Ui = 5VE ) = HOVAD 5 (VA

The functions wé are solutions of the linearized equation
2 .
~AY+AEY = (p-DBE) (V)" v in R
Proposition 2.3. There is a positive constant C' such that

(Zle, ZEe) = Conp +0(1),

as € — 0.

Proof. From the Taylor expansions of g%/ (¢2), |g(ez)|2, a(expg(e2)) and c(expg (e2))
we obtain

1
(Zhe 780, = % [ eIV, 2@V, ZE ) + (@) 2L () 2w

= [ el (€25 e G- e lcleo)

ij

: /Bm,r/a) d(expe (e2))0E (2)8¢ (20 (e2)lg¢(=2)] =

= c(g)/ Ve Vigdz + d(§)/ Pepgdz + o(1) = Cdpy + o(1),
R2 : : R2
as claimed. O

Next, we compute the derivatives of W, ¢ with respect to £ in normal coordinates.
Fix o € M. We write the points { € By(&,r) as

§=E(y) =expg,(y)  withy € B(0,7).
We define
E(y,w) = expgy (2) = expey, () (@),
where z € By(£(y),r) and y € B(0,7). Then we can write

We () (@) = (1) Ue( A(&(y))expg(y)( x))x(expg ) (%))

— 50 ( AW)E (Y D)NEW, )

where A(y) = Alexpg, (y)) and (y) = y(expg, (y)) Thus we have

5 o _ n| ) U (é%g(o,@) X(£(0,z))

a_ySWE,f(y) ayS”Y(

00 (2/A0)£0.0)) -x i)
U(g\/@g(y,x))

y=0

Ql

y=0

+7(0)x(£(0,2))

y=0
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If © = expg, €2, § = £(0), then £(0,r) = £z and we have

(el Joo

Yy
i X
(2.8) F(0)U < A0 >6— €z —88 k(y, expg, €2)

0
ay We 5(9)

y=0

0
- 377k (\/ 0)z ) a—ysgk(yaexpgo £z)

We also recall the following Taylor expansions:

y=0

0
(2.9) 8—%5k(0, expg, £2) = —0nk + O(e2|2]%).

2.3. Outline of the proof of Theorem [I1.3l Let H. denote the Hilbert space
H ; (M) equipped with the inner product

1
(w,v), = = <52/ c(x)VuVgvdug —|—/ d(x)uv dug> ,
€ M M

which induces the norm

1
ull? := = (62/ C(w)IVgUIzdung/ d(:v)uzdu.q),
€ M M

with d(z) := a(x) —w?b(x) > 0. Similarly, let L? be the Banach space L(M) with

the norm
1 1/‘1
ol i= (5 [ luldy
& JmMm

Since we are assuming that dim M = 2, for each ¢ > 2 the embedding H, — L
is continuous. In fact, there is a positive constant C, independent of &, such that

(2.10) [u|g,e < C|lull, Yu € He,
Moreover, this embedding is compact.
Fix p € (2, 00). The adjoint operator ¥ : L?c.’/ —H., p = to the embedding

p— 1’
e : Ho — LP is defined by

- 1
u=1:(v) & (u, @), = —2/ vp Yy € H,
€ JM
& —eldivy (e(x)Vyu) +d(z)u =v, ué€ H; (M).
One has that
(2.11) liZ@)ll. < Cloly,e  Yoe L,

where the constant C does not depend on ¢.
Using the adjoint operator we can rewrite problem (2.3 as

(2.12) u =14 [b(z)f(u) +w?b(z)g(u)], u € He,
where
flu) == (u+)p_1 and  g(u) = (°V*(u) — 2q¥(u)) u.
Let
K. ¢ := Span {Zslyg, Zfﬁg}
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and
Kt = {¢ €H.: ($,ZL). =0, i= 1,2}.
We denote the projections onto these subspaces by
Meg: He — K¢ and I, : H. — K.
We look for a solution of [2.5) of the form
us:=Wee+¢  with ¢ € K.

This is equivalent to solving the pair of equations
(213) T {Wee+ ¢ — il [b(2)f (Wee + ¢) +w?b(x)g (Wee +¢)]} =0,
(2.14)  Teg {Wee+0¢ =il [b(@)f (Weg +¢) +wb(x)g (Wee +¢)] } = 0.

The first step of the proof of Theorem is to solve equation ([ZI3). More

precisely, for any fixed £ € M and e small enough, we will show that there is a
function ¢ € K, j)g such that (ZI3) holds. To do this we consider the linear operator

Lcg: Kj)-g — ijg given by
Leg(9) =Tz {¢ —iZ [b(x) f" (Wee) 1} -

For the proof of the following statement we refer to Lemma 4.1 of [3] (see also
Proposition 3.1 of [12]).

Proposition 2.4. There exist ¢g > 0 and C > 0 such that, for every e € (0,&),
EeM anquEKj)-g,
[Lee(@)l. = Cllo]le-

This result allows to use a contraction mapping argument to solve equation
[2I3). The following statement is proved in section [3

Proposition 2.5. There exist ¢g > 0 and C' > 0 such that, for each £ € M and
each ¢ € (0,eq), there exists a unique ¢.¢ € Kj)‘g which solves equation (2.13).
Moreover,

[¢ecll. < Ce.

The map & v+ ¢ ¢ is a Ct-map.
The second step is to solve equation (ZI4]). More precisely, for € small enough

we will find a point £ in M such that equation (2I4) is satisfied. To this end we
introduce the reduced energy function I. : M — R defined by

Ia(&) =1 (W€,£ + ¢€,£) )
where I, is the variational functional defined in (Z4) whose critical points are the
solutions to problem (Z3)). It is easy to verify that & is a critical point of I, if and
only if the function ue = W, ¢, + ¢c ¢, is a critical point of I..

In Lemmas [.1] and we compute the asymptotic expansion of the reduced
functional I. with respect to the parameter e. We prove the following result.

Proposition 2.6. The expansion
~ c %a ﬁ_%
i () = oS0
b(§)72
holds true C*-uniformly with respect to & as € — 0, where C = (% — %) fRn UPdz.

+0(1) =CT(&) + o(1),

i~
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Using the previous propositions we now prove Theorem

Proof of Theorem [1.3. Since K is a C'-stable critical set for I', by Proposition

I. has a critical point & € M such that dy(§.,K) — 0 as ¢ — 0. Hence,

Ue = Wee. + Pee. is a solution of [2.H), and the pair (ue, ¥(u.)) is a solution to

the system (1) such that u. concentrates at a point &y € K as ¢ — 0. O
3. THE FINITE DIMENSIONAL REDUCTION

This section is devoted to the proof of Proposition 2.5l We denote by
GOl [ (TP dny and g [,
the standard norms in the spaces H, (M) and L9(M).
Equation ([2I3)) is equivalent to
(3'2) LE,E(¢) = Ns,§(¢) + SE,E(¢) + RE,E;
where
Ne () = Uz {2 [b(z) (f (Weg + 0) — fF (Weg) = f' (Weg)) 0]}
See(6) = w T {i2 [b(x) (¢°* (Wee + 6) = 2q¥ (Wee +0)) (Weie + )]}

Reg =TIz {iZ [b(2) f (Weg)] = Wee} -
In order to solve equation (B.2) we will show that the operator T ¢ : K ;jg — K ;:ﬁ
defined by 7

T.6(¢) = LZ¢ (Nee(9) + See(9) + Ree)

has a fixed point. To this end we prove that 7. ¢ is a contraction mapping on
suitable ball in H.. We start with an estimate for R, ¢.

Lemma 3.1. There exist €9 > 0 and C > 0 such that, for any & € M and any
€ € (0,e9), the inequality

[Reell, < Ce
holds true.

Proof. See Lemma 4.2 in [3]. O
Next, we give an estimate for N, ¢(¢).

Lemma 3.2. There exist eg >0, C >0 and C € (0,1) such that, for any £ € M,
e € (0,e0) and R > 0, the inequalities

(3-3) INz¢ (@)l < CUIDNZ + llollZ™),
(3.4) IN-e(é1) = Neg(2)ll < Cllgr — o2,
hold true for ¢, ¢1,¢2 € {¢ € He : ||¢[|c < Re}.

Proof. By direct computation we obtain

CW |v| 2<p<3
. ! € —f € < E 7
(35)  |f'(Wee +0) — f'(Wee)] —{ COVFE3 o] + uP2) p>3.

From the mean value theorem and inequality (ZI1]) we derive

INeig(61) = Neg(@2)lle < O (Weg + b2 + (61 = 62) = f'(Wee)l 2, . ll61— 2]
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Using ([3.3]) we conclude that
CU' (Weg + b2 +t(d1 = 62)) = f'(Wee)l o, . <1
provided ||¢1]|c and ||@2]|. are small enough. The same estimates yield 33). O
Now we estimate Se ¢(¢).

Lemma 3.3. There exists ¢g > 0 and C > 0 such that, for any £ € M, € € (0,&p)
and R > 0, the inequalities

(3.6) [Sc.(d)lle < Ce,

(3.7) [[52.6(61) = See(P2)lle < Lellgr = d2lle,

hold true for ¢, 1,02 € {¢ € He : ||9||c < Re}, where £ — 0 as e — 0.

Proof. Let us prove (3.6]). From the definition of i* and inequality (2I1]) we derive

1S6(@)le < C (|92 (Weg + ) Weg + ), + |9 (Weg +6) (Weg + )l
::Il+12.

For any ¢ € (2,00), setting s := p};/ and ¥ := = € (1,2) and applying Lemma [53]
and Remark [5.2] we obtain

) : R
nsCa(f |w<wa,g+¢>|tdug) ( J Wt
€ M M
1 s\
Oy 19 (Wee + 6, ( (5 [ 1wt an ) +|¢|g,s>

1 2
< O (7 + 1912) (<2 + 1191l
<C (51”%_5 +519+1_%) =C (519‘% +gﬂ+1‘§>
< Ce

for all ||¢||c < Re. From this estimate we deduce that I; < Ce and, hence, (3.6)
follows.

Next, we prove [B7)). From inequality ([2-T1]) we obtain that
||S€,£(¢1) ,£(¢2)||8 <C|[¥ (W. et o1) — v (W, eet $2)] W€,£|p/,5
+C| (U2 (Wee + ¢1) — U2 (Wee + 62)] Wa,&}p/)s
+ O (Wee + 1) 1 — W (Wee + d2) g2, .

+ O |02 (Weg + 1) 61 — U2 (Weg + ¢2) 2 ,
:-Il+12+13+14.

By Remark and Lemma [5.4] with s := 2, for some 6 € (0,1) we have that

’

B S ([ 1 Vet 001+ (1= 0)00) (01 - ) ( /|ng|w) S5

2(p—p’)

<c=

4 ' ’
(% +lo1llg + 02lly) llen — ally
< Cle||gr — ¢212',
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p'(p—2)

for ||é1le, [|d2lle < Re, with I, ;= » — 0 as e — 0. From the estimate of Iy,
recalling that 0 < U(u) < %, we derive

/ 1 / / !
I3 = 5_2/ O (Wee + 1) + 0 (Wee + @) [P [W (Wee 4+ ¢1) = (We e + ¢2)[" [Weel”
M
<cr.

On the other hand, choosing 9 € (1,2) in LemmalE.3lsuch that 9p’ > 2 and applying
Lemma 5.4l with s := %, we obtain

’ 1 , ,
B< 5 [ W0 +060+ 0= 0)62) (01 = ) 1]
M
1 / /
5 [ 1Vt )l 01 =l

<o (/ W (Weg + 061 + (1 0)62) (61 — o) )_( 617

+C€—12</M|¢1—¢2|p) </ U (Wee + o) >p

1 / /
<OL (et ouls + loally)” 6 = el I
9p’

g /
+ C?(l + llg2l)llpr — p2l®

)"

—p’

217/ 19/ ’ ’
<C —+— o1 — @2l = lc||p1 — P22,

for [|p1]le, [|P2]le < Re, where I — 0 as € — 0.

Finally, from the estimate of I we derive Iff, < Clg, Collecting the previous
estimates we obtain (B7)). O

Proof of Proposition [2.5. From Proposition 2.4 we deduce
ITee(@)l. < C (IN=e (@) + 1S (D). + 1R=e]l.)

and

I Tee(01) = Tee(d2)ll, < CllNee(1) = Nee(@2)ll, + Cl|See(¢1) = See(@2)l]. -

Lemmas Bl B2 and B3l imply that T ¢ is a contraction in the ball centered at 0 of
radius Re in K j:gv for a suitable constant R. Hence, T; ¢ has a unique fixed point.

In order to prove that the map & — ¢ ¢ is C! we apply the implicit function
theorem to the C'-function G : M x H. — H_. defined by

G u) = Hal,g {Wee+ Hégu — i [b(x)f Wee + Hégu) + w?b(x)g (We,e + Hégu)} }
+ Hgyé'u.
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Note that G (£, ¢e,¢) = 0. Next we show that the linearized operator % (&, pee)
H. — H. defined by

0G

oo (6:0:0) ()

=I5, T (u) — 2 [b(2) f' (Weg + o) T (0) + w?b(2)g’ (Weg + dee) e (w)] }
+ Hs,é(u)

is invertible, provided ¢ is small enough. For any ¢ with [|¢||. < Ce we have that

H— (6.60) ()|| = CIM.cw)],

+ O | {TE g (u) = 2 [ (Wee + bee) e () + w9’ (Wee + dee) T (w)] }].
> C e e(u)l, + C | Lee (Mg ()|
— O[T {32 [(f' (Weg + pee) — ' (W) e (w)] ).
— Oz {2 [w?g’ (Wee + dee) Hze(u)] }].
> O e g (u)ll, + C 2 (w)]| — o(1) T2 ()]
> Cull, .

Indeed, by (B.5) we have

M2 {2 [(F (Wee + be) = £ We) @]}, < € (191272 + 1911 ) [TEe(w)]),
Moreover,

[T {2 [P’ (Wee + 6-e) T e (u)] 1]

<C|w. §+¢’s§)(2q—2q2‘1/( W+ ¢ee)) W (Wee + ee) [T (u)]]

=1 + 5.

p’.e

p'se

From Lemma [5.4] we derive

2q —2¢°V (Weg + ¢6)],

71)

B S Weg + el [V (Weg + 02,0 T8 U\,;%

1 9_ 2
< Oelet 4 k], <<
8/

m

Q

I cull, = o(1) [T cull, -
and, since 0 < ¥(u) < 1/q, from Lemma 5.3 with 9p" > 2 we get
I < _’H Eu’ 875+¢875)|91 »'p
P

<os (1+ nmni) eul], = o(1) 11cul,
EP

This concludes the proof. ([
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4. THE REDUCED ENERGY

This section is devoted to the proof of Proposition 2.6l

Lemma 4.1. The following estimate
(4'1) L(f) = Ia (Wa,g + ¢a,§)
2

= 1. (Wee) +0(1) = J. (Wee) + %GE (Wee) +0(1)

holds true C°-uniformly with respect to € as € goes to zero. Moreover, setting &(y) 1=
expg (y), y € B(0,7), we have that

0 ~ 0
(a—tha(g(y))) - = (a—thE (WE,E(y) + ¢5,E(y))) o

= <5%hfs (Wa,ay))) +o(1)

‘yZO

0 w2 (0
= <8_thE (Wa,ay))) - +5 (a—ths (Wg,g(y))> +o(1),

‘yZO

CY-uniformly with respect to & as £ goes to zero.

Proof. In Lemma 5.1 of [3] we have proved the following two estimates:
Je (Weg) + Gecw) = Je Wegwy) = o(1),

P
(2 (Wegty) + b)) — L (Weerw))) l(a—thsf(y)) 1 = o(1).

To complete the proof we shall prove the the following three estimates:

(4.2) Ge (WE,E + ¢€,E) - G. (Wsyé) =o(1),

|y:0

(43) [G/s (WS,EO + ¢8750) - Gls (WS,EO)] l(ai%ws,i(y))| ‘| = 0(1)=

w? 0
(4.4) <Jé (Wee) + Seew) + 5 G (Wegw) + ¢a,£<y>)> {a—yh%ay)] = o(1).

We start with [@2]). For some 6 € [0,1] we have
Ge (Wee + ¢ee) — Ge (Wee)

1
= o5 [ B [ Weg +00e) W+ 006)* = 0 (Weg) (Wee)?]
M
1
=5 U)W (Weg +06.0) 6.0 (7. o)
M
1 2
b [ 6 Ve 60) (200 Wee + 2]

M
Since ||¢e ¢||. < Ce, from Lemma [5.4] we obtain (4.2).
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Next, we prove [@3]). For some 0 € [0, 1] we have

0
[Gi: (W&ﬁo + ¢€,50) - Gla (W&ﬁo)] [(a—%W51f(y)>
y=0

/M b(I) {[2\IJ(W€7§0 + ¢67§o) - \I/(WE,EO)] - [quz(W&éo + ¢5150) - q\IJQ(W&Eo )} }

0
We g (a—%Ws,E(y)>

0
/ 2b(x) [U(We g, + beeo) — U (Weg, + Gee0)] B2t <6—W€,£(y)>
M Yh

— 2¢2

‘yzo

a4
2e2

‘yZO

0
_/ 2b(x)\1}/(W€,Eo + 9¢5150)(¢67§0)W5150 <5 WE,E(?/))
M Yn

‘yZO

0
by b(z)¥(We e, + 9@56,50)‘1’/(W€,Eo + 00c,£0) (De,e0 ) We o We e
&€ M 6yh

‘yZO

+ | = b(I)\IJ(WE7§0)¢57§O <
M

o0
a_thaf(y)>

‘yZO

0
+ | = b,T\I//WgO'i‘eaO e,€0 €o<_W5 >
2 /., (@)U (Wego + 0,60 ) (D260 ) D=, an V=W -

49 2 9
oo | MWW, + 00 0m) (e Wecin)

=L+ L+1Is+1,+1I;

+

|y:0

From Lemma 5.4} Remark 5.2 and equations (Z.8), (Z9), 2.8), 1), recalling that
||¢67£(y)||€ < Ce, we get

4 , 51
I < 02—2 (/M [V (We g, + ¢a,£o)(¢a,so)]3> (5—2 /M Wssg,&)) -

ol
w| =

In a similar way, using Lemma [5.4] and embedding the first and the second term in
LS and the third one in L3/2, we get

1 2 4_ 4
Iy < C;[E“/?’ pecll. + 10eell] degll. €37 = O(e®).
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For I3 by Lemma we have

)

3 2
e3
< OS1MWesaloecale | [ lz

|
7 N
mm|,_.
=
oW
Bl

1 3
5 (1 0
) =/, Ka—thfw)yo]

4
€s 5 1
<O e3e==0
< Cgeie-=0(e)
and, from the estimate for I3, since 0 < W(W ¢, + deg,) < 1/¢, we obtain

I5 < OIg = 0(5)

Finally, we prove ([@4). Following the proof of Lemma 5.1 in [3], we need only
to prove that

’Gé (Weet) + beety)) [Z gy = 0(1),

that is

1
22 / " [W(We gy + Peciw) = 0Y° We ) + beew)] Weew) + beew)Zh ey

We have

1
/M [O(Wee) + Peciw) = 49 Wegy) + D=60)] Weey) + b260) ZL ey

2

c
<> /M |V (Wee) + 0260) Werst + G260 Zh ey

= Il + IQ.

C
+t3 /M |92 (Weg) + deen) Weet + Se.c0) 2Ly

By Proposition 2.3 we have that ||Zé,g(y) le = O(1). So, by Lemma [5.3 and Remark
B2 we have

3 S\ /1 s 3/ l s 3
L < C? / [\IJ(W&&) + ¢€,50)] 2 / (WS,EO + ¢8750) _2/ |Zs,§(y)|
M € Jm & Jm

4

£3
< C?H\P(Wa,ﬁo + (158750)”9 (||W€,£o||3,a + ||¢€,50||€) ||Zé,5(y)||a = O(E)-

Again, as 0 < (W, ¢, + bee,) < 1/q, we obtain
IQ S OIl = O(E)
This concludes the proof. (I

Lemma 4.2. The expansion

L. (Wee) = (% _ l) M

holds true C*-uniformly with respect to € € M.

=o(1).

ol



A STATIC SUPERCRITICAL KGMP SYSTEM ON A CLOSED MANIFOLD 17

Proof. In Lemma 5.2 of [3] we proved that

Hence, it suffices to show now that |Go(Wy ¢)| = o(1), Ct-uniformly with respect to
EeM.

Regarding the C°-convergence, by Remark and Lemma [5.3] we have that

3

€ 2% 1 4 3
< (C— _
<05 (f, o) (= f,me)

1 €3 2
< OLuT ), < T = 0,

C
Ge(Wog) < S /M U(We o) W2edps,

o

Regarding the C'-convergence observe that

c 9 )
<= 8—%/M‘1’(Ws,£<y>)Ws,£<y>

dug
y=0

C 0
= /M‘I’(st(y))?Ws,a(y) (a—ths,a(y))

dug
y=0

] dpig
y=0

C B
= /M W2 ¥ Wee) [T%Wa,ay)

= Il + IQ.

_|_

Now, from Remark [5:2] Lemma 53] and the estimates (Z8) and (Z9), we derive

s 1 2 3
€5 s\° (1 5 5 (1 0
necs ([ vwne?) (5[ wha) (%) ((a—%m,g(y) .

2
5
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18
On the other hand, from Remark £.2] the proof of Lemma [5.4] and the estimates

1

i

23) and [29), for some t € (1,3/2) we obtain

2 1 t
et (1 ot ¢ 0
L<C <§ /M Wa,f(h)) /M (‘I’/(Wa,f(y)) la—%Wa,ﬁ(m U_OD
et 0
SO ||V (Weew) [T%WE*E(“ y_O]
g
2
Et a4 0
< (C—=e3 | —
=2 Oy &,&(h) y=ol, o
. . 5 6\ ©
Et a4 1
<O _g35¢3 | — i

This concludes the proof.
5. SOME ESTIMATES INVOLVING ¥

We start by pointing out the following facts.
Remark 5.1. There exists a constant C' > 0 such that, for every ¢ € H;(M) and

every 0 < e < 1, we have
Cllell = C [ (yel? +%) du
()
< [ (coTel + 2562 duy = ol

Remark 5.2. The following estimates
1 P
im — P
lm = [Weely, <CIUE,  p22
. 2 2
ig% |VgW5,E|g,2 < C|VUJ;
hold true uniformly with respect to £ € M.

Abusing notation we write
||u||§ = /M (c(;v)|Vgcp|2 + b(x)uz) dpg.

This norm is equivalent to the standard norm BI]) of Hj(M). From equations

@I), @2) and Z3)) we obtain
19 ()5 = /M b(w)qu ¥ (u)dpy — /M blx)q*u® (¥ (u))® dug

SC/ w? U (u)dpg,
M

(5.1)
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(5.2) 19 () (8] |2 = /M 2b(w)qu(l — qU(u)) A () (] dysy
- / D) (W () [1])? sy
M

<C [ ful 19 1]
for all u, h € H}(M).
Lemma 5.3. Given ¥ € (1,2) there is a constant C > 0 such that the inequality
1T (Wee +0)llg < Ce” + llell})
holds true for every o € H; (M), £ € M and small enough € > 0.

Proof. Let t € (2,00) be such that Z = ¢ where ¢’ is the exponent conjugate to ¢.
From inequality (51) we obtain

1/t 1/t
feve+ ol <o ([ woverartan) ([ oo )
SONOWee+@)lg Wee + 12 5,0
Thus, by Remark [5.2]

o/ 1 i 1/t o 1/t
v+l <c (2 (5 [ wa) ([ o)
9 M M

<CE +elly),
as claimed. g
Lemma 5.4. Given s € (1,2) there is a constant C > 0 such that the inequality
2
19 (We + Bl < Il (< + 1)
holds true for every k,h € Hy(M), & € M and small enough & > 0.

Proof. From inequality (5.2]) we obtain,

19" (Wee + )R] < O/M [Wee + kIR W' (We e + k) [h]| dpsg

<O ([ Wl O 1) il g+ [ 1070V 1) 0 s
=1 + I>.

Set t := 25’ € (4,00), where s’ is the conjugate exponent to s. Using Remark
we conclude that

L < O (Wee+ k), |Rlgr [Weel,

1/s
2 (1 s
= W+ B (5 [ W)

2
B

= C|| W' (Wee + K)[R]|lgl Rllge* -
Since

I S C W' (Wee + E)Dl, 5 lg.3 Kl 5 < CIIW (We e + F)[R][lglIRl| o[ %],
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the claim follows. O

Lemma 5.5. Consider the functions

Boe(2) = { U(Wee) (expg(sz)) for z € B(0,r/e),
s 0 for z € R2 . B(0,r/e).

Then, for any ¥ € (1,2), there exists a constant C' > 0, independent of ,&, such
that

|65:5(Z)|L2(R3) < 0519_17
Ve 6(2)] 2 sy < Ce”

Proof. After a change of variables we have that
[ TR + WPy
By (&)

1 Otee(z) Oteg(z)
_ 2 1/2 i & TYeg 3 2
—c /B(o,r/s) lge(e2)] izjggj(sz)€2 P e + 02 ¢(2) | dz.

Thus
-2 -2
||‘I/(W€E)||§ 2 O(|VU€,E|L2(R3) +&° |U€,E|L2(R3))-
This, combined with Lemma [5.3] gives

Ve e 2 sy + € [Te.6] 2 psy < Ce

as claimed. O
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