SEMICLASSICAL STATES FOR A STATIC SUPERCRITICAL KLEIN-GORDON-MAXWELL-PROCA SYSTEM ON A CLOSED RIEMANNIAN MANIFOLD

MÓNICA CLAPP, MARCO GHIMENTI, AND ANNA MARIA MICHELETTI

Abstract

We establish the existence of semiclassical states for a nonlinear Klein-Gordon-Maxwell-Proca system in static form, with Proca mass 1, on a closed Riemannian manifold.

Our results include manifolds of arbitrary dimension and allow supercritical nonlinearities. In particular, we exhibit a large class of 3-dimensional manifolds on which the system has semiclassical solutions for every exponent $p \in(2, \infty)$. The solutions we obtain concentrate at closed submanifolds of positive dimension as the singular perturbation parameter goes to cero.

1. Introduction

Let $(\mathfrak{M}, \mathfrak{g})$ be a closed (i.e. compact and without boundary) smooth Riemannian manifold of dimension $m \geq 2$. Given real numbers $\varepsilon>0, q>0, \omega \in \mathbb{R}$ and $p \in(2, \infty)$, and a real-valued \mathcal{C}^{1}-function α such that $\alpha(x)>\omega^{2}$ on \mathfrak{M}, we consider the system

$$
\left\{\begin{array}{cl}
-\varepsilon^{2} \Delta_{\mathfrak{g}} \mathfrak{u}+\alpha(x) \mathfrak{u}=\mathfrak{u}^{p-1}+\omega^{2}(q \mathfrak{v}-1)^{2} \mathfrak{u} & \text { on } \mathfrak{M}, \tag{1.1}\\
-\Delta_{\mathfrak{g}} \mathfrak{v}+\left(1+q^{2} \mathfrak{u}^{2}\right) \mathfrak{v}=q \mathfrak{u}^{2} & \text { on } \mathfrak{M}, \\
\mathfrak{u}, \mathfrak{v} \in H_{\mathfrak{g}}^{1}(\mathfrak{M}), \quad \mathfrak{u}, \mathfrak{v}>0 &
\end{array}\right.
$$

The space $H_{\mathfrak{g}}^{1}(\mathfrak{M})$ is the completion of $\mathcal{C}^{\infty}(\mathfrak{M})$ with respect to the norm defined by $\|v\|_{\mathfrak{g}}^{2}:=\int_{\mathfrak{M}}\left(\left|\nabla_{\mathfrak{g}} v\right|^{2}+v^{2}\right) d \mu_{\mathfrak{g}}$.

Solutions to this system correspond to standing waves of a Klein-Gordon-MaxwellProca (KGMP) system in static form (i.e. one in which the external Proca field is time-independent) with Proca mass 1.

KGMP-systems are massive versions of the more classical electrostatic Klein-Gordon-Maxwell (KGM) systems: KGM-systems are KGMP-systems with Proca mass 0 , i.e. the second equation in (1.1) is replaced by

$$
-\Delta_{\mathfrak{g}} \mathfrak{v}+q^{2} \mathfrak{u}^{2} \mathfrak{v}=q \mathfrak{u}^{2}
$$

Note that $\mathfrak{v}=1 / q$ solves this last equation and reduces the KGM-system to a single Schrödinger equation in \mathfrak{u}. So for the system on a closed manifold the Proca

[^0]formalism is more interesting and more appropriate. We refer to [11 for a detailed discussion on KGMP-systems and their physical meaning.

For $\varepsilon=1$ existence of solutions to system (1.1), which are stable with respect to the phase ω, was established by Druet and Hebey [7] and Hebey and Truong [10] for manifolds of dimension $m=3$ and 4 , and subcritical $\left(2<p<\frac{2 m}{m-2}\right)$ or critical ($p=\frac{2 m}{m-2}$) nonlinearities, under certain assumptions. For critical systems in dimension 3 Hebey and Wei [11] showed the existence of standing waves with multispike amplitudes, which are unstable with respect to the phase, i.e. they blow up with k singularities as the phase ω aproaches some phase ω_{0}.

Here we are interested in semiclassical states, i.e. in solutions to system (1.1) for ε small. The existence of semiclassical states for similar systems in flat domains Ω in \mathbb{R}^{m} has been investigated e.g. in [4, 5, 15]. On closed 3-dimensional manifolds, the existence of semiclassical states to system (1.1), which concentrate at a single point as $\varepsilon \rightarrow 0$, was established in [8] and [9] for subcritical exponents $p \in(2,6)$.

The results we present in this paper apply to manifolds of arbitrary dimension and include supercritical nonlinearities $p>2_{m}^{*}$, where $2_{m}^{*}:=\frac{2 m}{m-2}$ is the critical Sobolev exponent in dimension $m \geq 3$ and $2_{2}^{*}:=\infty$. In particular, we shall exhibit a large class of 3 -dimensional manifolds on which the system (1.1) has semiclassical solutions for every exponent $p \in(2, \infty)$. The solutions \mathfrak{u} we obtain concentrate at closed submanifolds of \mathfrak{M} of positive dimension. Moreover, for fixed ε, they are stable with respect to the phase in the sense of [7].

Our approach consists in reducing system (1.1) to a system of a similar type on a manifold M of lower dimension but with the same exponent p. This way, if $n:=\operatorname{dim} M<\operatorname{dim} \mathfrak{M}=: m$ and $p \in\left[2_{m}^{*}, 2_{n}^{*}\right)$, then p is subcritical for the new system but it is critical or supercritical for the original one. Moreover, solutions of the new system which concentrate at a point in M as $\varepsilon \rightarrow 0$ will give rise to solutions of the original system concentrating at a closed submanifold of \mathfrak{M} of dimension $m-n$ as $\varepsilon \rightarrow 0$.

This approach was introduced by Ruf and Srikanth in [13], where a Hopf map is used to obtain the reduction. Reductions may also be performed by means of other maps which preserve the Laplace-Beltrami operator, or by considering warped products, or by a combination of both, see [3, 14] and the references therein. We describe these reductions in the following two subsections.
1.1. Warped products. If (M, g) and (N, h) are closed smooth Riemannian manifolds of dimensions n and k respectively, and $f: M \rightarrow(0, \infty)$ is a \mathcal{C}^{1}-map, the warped product $M \times{ }_{f^{2}} N$ is the cartesian product $M \times N$ equipped with the Riemannian metric $\mathfrak{g}:=g+f^{2} h$.

For example, if M is a closed Riemannian submanifold of $\mathbb{R}^{\ell} \times(0, \infty)$, then

$$
\mathfrak{M}:=\left\{(y, z) \in \mathbb{R}^{\ell} \times \mathbb{R}^{k+1}:(y,|z|) \in M\right\}
$$

with the induced euclidian metric, is isometric to the warped product $M \times{ }_{f} \mathbb{S}^{k}$, where \mathbb{S}^{k} is the standard k-sphere and $f\left(x_{1}, \ldots, x_{\ell+1}\right)=x_{\ell+1}$.

Let $\pi_{M}: M \times{ }_{f^{2}} N \rightarrow M$ be the projection. A straightforward computation gives the following result, cf. [6].

Proposition 1.1. Let $\beta: M \rightarrow \mathbb{R}$ and $\alpha=\beta \circ \pi_{M}$. Then $u_{\varepsilon}, v_{\varepsilon}: M \rightarrow \mathbb{R}$ solve (1.2)

$$
\left\{\begin{array}{cl}
-\varepsilon^{2} \operatorname{div}_{g}\left(f^{k}(x) \nabla_{g} u\right)+f^{k}(x) \beta(x) u=f^{k}(x) u^{p-1}+\omega^{2} f^{k}(x)(q v-1)^{2} u & \text { on } M \\
-\operatorname{div}_{g}\left(f^{k}(x) \nabla_{g} v\right)+f^{k}(x)\left(1+q u^{2}\right) v=q f^{k}(x) u^{2} & \text { on } M
\end{array}\right.
$$

iff $\mathfrak{u}_{\varepsilon}:=u_{\varepsilon} \circ \pi_{M}, \mathfrak{v}_{\varepsilon}:=v_{\varepsilon} \circ \pi_{M}: M \times_{f^{2}} N \rightarrow \mathbb{R}$ solve

$$
\left\{\begin{array}{cl}
-\varepsilon^{2} \Delta_{\mathfrak{g}} \mathfrak{u}+\alpha(x) \mathfrak{u}=\mathfrak{u}^{p-1}+\omega^{2}(q \mathfrak{v}-1)^{2} \mathfrak{u} & \text { on } M \times_{f^{2}} N, \tag{1.3}\\
-\Delta_{\mathfrak{g}} \mathfrak{v}+\left(1+q \mathfrak{u}^{2}\right) \mathfrak{v}=q \mathfrak{u}^{2} & \text { on } M \times_{f^{2}} N .
\end{array}\right.
$$

Note that the exponent p is the same for both systems. So if $p \in\left(2_{n+k}^{*}, 2_{n}^{*}\right)$ then p is subcritical for (1.2) but supercritical for (1.3). Moreover, if the functions u_{ε} concentrate at a point $\xi_{0} \in M$ as $\varepsilon \rightarrow 0$, then the functions $\mathfrak{u}_{\varepsilon}:=u_{\varepsilon} \circ \pi_{M}$ concentrate at the submanifold $\pi_{M}^{-1}\left(\xi_{0}\right) \cong\left(N, f^{2}\left(\xi_{0}\right) h\right)$ as $\varepsilon \rightarrow 0$.
1.2. Harmonic morphisms. Let $(\mathfrak{M}, \mathfrak{g})$ and (M, g) be closed Riemannian manifolds of dimensions m and n respectively. A harmonic morphism is a horizontally conformal submersion $\pi: \mathfrak{M} \rightarrow M$ with dilation $\lambda: \mathfrak{M} \rightarrow[0, \infty)$ which satisfies

$$
\begin{equation*}
(n-2) \mathcal{H}\left(\nabla_{\mathfrak{g}} \ln \lambda\right)+(m-n) \kappa^{\mathcal{V}}=0 \tag{1.4}
\end{equation*}
$$

where $\kappa^{\mathcal{V}}$ is the mean curvature of the fibers of π and \mathcal{H} is the projection of the tangent space of \mathfrak{M} onto the space orthogonal to the fibers, see [1].

So for $n=2$ a harmonic morphism is just a horizontally conformal submersion $\pi: \mathfrak{M} \rightarrow M$ with minimal fibers. Typical examples are the Hopf fibration $\mathbb{S}^{3} \rightarrow \mathbb{S}^{2}$ whose fiber is \mathbb{S}^{1}, and the induced fibration $\mathbb{R} P^{3} \rightarrow \mathbb{S}^{2}$ with fiber $\mathbb{R} P^{1}$, see [1, Example 2.4.15]. They are, in fact, Riemannian submersions (i.e. $\lambda \equiv 1$).

Harmonic morphisms preserve the Laplace-Beltrami operator, i.e.

$$
\Delta_{\mathfrak{g}}(u \circ \pi)=\lambda^{2}\left[\left(\Delta_{g} u\right) \circ \pi\right]
$$

for every \mathcal{C}^{2}-function $u: M \rightarrow \mathbb{R}$. This fact yields the following result.
Proposition 1.2. Assume there exist $\beta: M \rightarrow \mathbb{R}$ and $\mu: M \rightarrow(0, \infty)$ such that $\beta \circ \pi=\alpha$ and $\mu \circ \pi=\lambda^{2}$. Then $u_{\varepsilon}, v_{\varepsilon}: M \rightarrow \mathbb{R}$ solve the system

$$
\left\{\begin{array}{cl}
-\varepsilon^{2} \Delta_{g} u+\frac{\beta(x)}{\mu(x)} u=\frac{1}{\mu(x)} u^{p-1}+\frac{\omega^{2}}{\mu(x)}(q v-1)^{2} u & \text { on } M \tag{1.5}\\
-\Delta_{g} v+\frac{1}{\mu(x)}\left(1+q u^{2}\right) v=\frac{q}{\mu(x)} u^{2} & \text { on } M
\end{array}\right.
$$

iff $\mathfrak{u}_{\varepsilon}:=u_{\varepsilon} \circ \pi_{M}, \mathfrak{v}_{\varepsilon}:=v_{\varepsilon} \circ \pi_{M}: \mathfrak{M} \rightarrow \mathbb{R}$ solve the system

$$
\left\{\begin{array}{cl}
-\varepsilon^{2} \Delta_{\mathfrak{g}} \mathfrak{u}+\alpha(x) \mathfrak{u}=\mathfrak{u}^{p-1}+\omega^{2}(q \mathfrak{v}-1)^{2} \mathfrak{u} & \text { on } \mathfrak{M}, \tag{1.6}\\
-\Delta_{\mathfrak{g}} \mathfrak{v}+\left(1+q \mathfrak{u}^{2}\right) \mathfrak{v}=q \mathfrak{u}^{2} & \text { on } \mathfrak{M} .
\end{array}\right.
$$

Again, if $p \in\left(2_{m}^{*}, 2_{n}^{*}\right)$, the system (1.5) is subcritical and the system (1.6) is supercritical and, if the functions u_{ε} concentrate at a point $\xi_{0} \in M$ as $\varepsilon \rightarrow 0$, the functions $\mathfrak{u}_{\varepsilon}:=u_{\varepsilon} \circ \pi_{M}$ concentrate at the $(m-n)$-dimensional submanifold $\pi_{M}^{-1}\left(\xi_{0}\right)$ of \mathfrak{M} as $\varepsilon \rightarrow 0$.
1.3. The main result for the general system. Propositions 1.1 and 1.2 suggest studying a more general KGMP-system.

Let (M, g) be a closed Riemannian manifold of dimension $n=2$ or $3, a, b, c \in$ $\mathcal{C}^{1}(M, \mathbb{R})$ be strictly positive functions, $\varepsilon, q \in(0, \infty), p \in\left(2,2_{n}^{*}\right)$, and $\omega \in \mathbb{R}$ be such that $a(x)>\omega^{2} b(x)$ on M. We consider the subcritical system

$$
\left\{\begin{array}{cl}
-\varepsilon^{2} \operatorname{div}_{g}\left(c(x) \nabla_{g} u\right)+a(x) u=b(x) u^{p-1}+b(x) \omega^{2}(q v-1)^{2} u & \text { in } M, \tag{1.7}\\
-\operatorname{div}_{g}\left(c(x) \nabla_{g} v\right)+b(x)\left(1+q^{2} u^{2}\right) v=b(x) q u^{2} & \text { in } M, \\
u, v \in H_{g}^{1}(M), \quad u, v>0 &
\end{array}\right.
$$

Theorem 1.3. Let K be a \mathcal{C}^{1}-stable critical set of the function $\Gamma: M \rightarrow \mathbb{R}$ given by

$$
\Gamma(x):=\frac{c(x)^{\frac{n}{2}} a(x)^{\frac{p}{p-2}-\frac{n}{2}}}{b(x)^{\frac{2}{p-2}}} .
$$

Then, for ε small enough, the system (1.7) has a solution $\left(u_{\varepsilon}, v_{\varepsilon}\right)$ such that u_{ε} concentrates at a point $\xi_{0} \in K$ as $\varepsilon \rightarrow 0$.

Recall that K is a \mathcal{C}^{1}-stable critical set of a function $f \in \mathcal{C}^{1}(M, \mathbb{R})$ if $K \subset$ $\left\{x \in M: \nabla_{g} f(x)=0\right\}$ and for any $\mu>0$ there exists $\delta>0$ such that, if $h \in$ $\mathcal{C}^{1}(M, \mathbb{R})$ with

$$
\max _{d_{g}(x, K) \leq \mu}|f(x)-h(x)|+\left|\nabla_{g} f(x)-\nabla_{g} h(x)\right| \leq \delta,
$$

then h has a critical point x_{0} with $d_{g}\left(x_{0}, K\right) \leq \mu$. Here d_{g} denotes the geodesic distance associated to the Riemannian metric g.
1.4. The main results for the KGMP-system. Theorem 1.3, together with Propositions 1.1 and 1.2, yields the following results.

Theorem 1.4. Let \mathfrak{M} be the warped product $M \times_{f^{2}} N$ of two closed Riemannian manifolds (M, g) and (N, h) with $n:=\operatorname{dim} M=2$ or 3 . Set $k:=\operatorname{dim} N$, and let $p \in(2, \infty)$ if $n=2$ and $p \in(2,6)$ if $n=3$. Assume there exists $\beta \in \mathcal{C}^{1}(M, \mathbb{R})$ such that $\alpha=\beta \circ \pi_{M}$ and let K be a \mathcal{C}^{1}-stable critical set for the function $\Gamma:=f^{k} \beta^{\frac{p}{p-2}-\frac{n}{2}}$ on M. Then, for ε small enough, the KGMP-system (1.1) has a solution $\left(\mathfrak{u}_{\varepsilon}, \mathfrak{v}_{\varepsilon}\right)$ such that $\mathfrak{u}_{\varepsilon}$ concentrates at the submanifold $\pi_{M}^{-1}\left(\xi_{0}\right) \cong\left(N, f^{2}\left(\xi_{0}\right) h\right)$ for some $\xi_{0} \in K$ as $\varepsilon \rightarrow 0$.

Theorem 1.5. Assume there exist a closed Riemannian manifold M with $n:=$ $\operatorname{dim} M=2$ or 3 and a harmonic morphism $\pi: \mathfrak{M} \rightarrow M$ whose dilation λ is such that $\mu \circ \pi=\lambda^{2}$. Assume further that $\alpha=\beta \circ \pi$ with $\beta \in \mathcal{C}^{1}(M, \mathbb{R})$. Let $p \in(2, \infty)$ if $n=2$ and $p \in(2,6)$ if $n=3$, and let K be a \mathcal{C}^{1}-stable critical set for the function $\Gamma:=\beta^{\frac{p}{p-2}-\frac{n}{2}} \mu^{\frac{n}{2}-1}$ on M. Then, for ε small enough, the KGMP-system (1.1) has a solution $\left(\mathfrak{u}_{\varepsilon}, \mathfrak{v}_{\varepsilon}\right)$ such that $\mathfrak{u}_{\varepsilon}$ concentrates at the submanifold $\pi^{-1}\left(\xi_{0}\right)$ of \mathfrak{M} for some $\xi_{0} \in K$ as $\varepsilon \rightarrow 0$.

This last result applies, in particular, to the standard 3-sphere $\mathfrak{M}=\mathbb{S}^{3}$ and the real projective space $\mathfrak{M}=\mathbb{R} P^{3}$ for all $p \in(2, \infty)$ with $\mu=\lambda \equiv 1$, see subsection 1.2 .

The rest of the paper is devoted to the proof of Theorem 1.3 . In section 2 we reduce the system to a single equation and give the outline of the proof of Theorem 1.3, which follows the well-known Lyapunov-Schmidt reduction procedure. In section 3 we establish the Lyapunov-Schmidt reduction and in section 4 we derive the expansion of the reduced energy functional. Section 5 is devoted to the proof of some technical results.

2. Outline of the proof of Theorem 1.3

2.1. Reduction to a single equation. First, we reduce the system to a single equation. To overcome the problems caused by the competition between u and v, using an idea of Benci and Fortunato [2], we consider the map $\Psi: H_{g}^{1}(M) \rightarrow H_{g}^{1}(M)$ defined by the equation

$$
\begin{equation*}
-\operatorname{div}_{g}\left(c(x) \nabla_{g} \Psi(u)\right)+b(x)\left(1+q^{2} u^{2}\right) \Psi(u)=b(x) q u^{2} \tag{2.1}
\end{equation*}
$$

It follows from standard variational arguments that Ψ is well-defined in $H_{g}^{1}(M)$.
Using the maximum principle and regularity theory it is not hard to prove that

$$
\begin{equation*}
0<\Psi(u)<1 / q \quad \text { for all } u \in H_{g}^{1}(M) \tag{2.2}
\end{equation*}
$$

For the proofs of the following two lemmas we refer to [7].
Lemma 2.1. The map $\Psi: H_{g}^{1}(M) \rightarrow H_{g}^{1}(M)$ is of class \mathcal{C}^{1}, and its differential $V_{u}:=\Psi^{\prime}(u)$ at u is defined by

$$
\begin{equation*}
-\operatorname{div}_{g}\left(c(x) \nabla_{g} V_{u}[h]\right)+b(x)\left(1+q^{2} u^{2}\right) V_{u}[h]=2 b(x) q u(1-q \Psi(u)) h \tag{2.3}
\end{equation*}
$$

for every $h \in H_{g}^{1}(M)$. Moreover,

$$
0 \leq \Psi^{\prime}(u)[u] \leq \frac{2}{q} \quad \text { for all } u \in H_{g}^{1}(M)
$$

Lemma 2.2. The map $\Theta: H_{g}^{1}(M) \rightarrow \mathbb{R}$ given by

$$
\Theta(u):=\frac{1}{2} \int_{M} b(x)(1-q \Psi(u)) u^{2} d \mu_{g}
$$

is of class \mathcal{C}^{1} and

$$
\Theta^{\prime}(u)[h]=\int_{M} b(x)(1-q \Psi(u))^{2} u h d \mu_{g} \quad \text { for all } u, h \in H_{g}^{1}(M)
$$

Next, we introduce the functionals $I_{\varepsilon}, J_{\varepsilon}, G_{\varepsilon}: H_{g}^{1}(M) \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
I_{\varepsilon}(u):=J_{\varepsilon}(u)+\frac{\omega^{2}}{2} G_{\varepsilon}(u) \tag{2.4}
\end{equation*}
$$

where

$$
J_{\varepsilon}(u):=\frac{1}{2 \varepsilon^{2}} \int_{M}\left[\varepsilon^{2} c(x)\left|\nabla_{g} u\right|^{2}+d(x) u^{2}\right] d \mu_{g}-\frac{1}{p \varepsilon^{2}} \int_{M} b(x)\left(u^{+}\right)^{p} d \mu_{g}
$$

with $d(x):=a(x)-\omega^{2} b(x)$, and

$$
G_{\varepsilon}(u):=\frac{q}{\varepsilon^{2}} \int_{M} b(x) \Psi(u) u^{2} d \mu_{g}
$$

From Lemma 2.2 we deduce that

$$
\frac{1}{2} G_{\varepsilon}^{\prime}(u)[\varphi]=\frac{1}{\varepsilon^{2}} \int_{M} b(x)\left[2 q \Psi(u)-q^{2} \Psi^{2}(u)\right] u \varphi d \mu_{g}
$$

Hence,
$I_{\varepsilon}^{\prime}(u) \varphi=\frac{1}{\varepsilon^{2}} \int_{M} \varepsilon^{2} c(x) \nabla_{g} u \nabla_{g} \varphi+a(x) u \varphi-b(x)\left(u^{+}\right)^{p-1} \varphi-b(x) \omega^{2}(1-q \Psi(u))^{2} u \varphi d \mu_{g}$.
Therefore, if u is a critical point of the functional I_{ε}, then u solves the problem (2.5)

$$
\left\{\begin{array}{l}
-\varepsilon^{2} \operatorname{div}_{g}\left(c(x) \nabla_{g} u\right)+\left(a(x)-\omega^{2} b(x)\right) u+\omega^{2} q b(x) \Psi(u)(2-q \Psi(u)) u=b(x)\left(u^{+}\right)^{p-1}, \\
u \in H_{g}^{1}(M)
\end{array}\right.
$$

If $u \neq 0$ by the maximum principle and regularity theory we have that $u>0$. Thus the pair $(u, \Psi(u))$ is a solution of the system (1.7). This reduces the existence problem for the system (1.7) to showing that the functional I_{ε} has a nontrivial critical point.
2.2. The limit problems. Theorem 1.3 concerns manifolds of dimensions 2 and 3. To simplify the exposition we shall treat in full detail only the case $n=2$. Everything can be extended in a straightforward way to the case $n=3$, except for the estimates in section 5. These estimates, however, were computed in the appendix of 9 for $n=3$.

Henceforth, we assume that $\operatorname{dim} M=2$. We fix $r>0$ smaller than the injectivity radius of M. We identify the tangent space of M at ξ with \mathbb{R}^{2} and denote by $B(x, r)$ the ball in \mathbb{R}^{2} centered at x of radius r and by $B_{g}(\xi, r)$ the ball in M centered at ξ of radius r, with respect to the distance induced by the Riemannian metric g. The exponential map $\exp _{\xi}: B(0, r) \rightarrow B_{g}(\xi, r)$ provides local coordenates on M, which are called normal coordinates. We denote by g_{ξ} the Riemannian metric at ξ given in normal coordinates by the matrix $\left(g_{i j}\right)$. We denote the inverse matrix by $\left(g^{i j}(z)\right):=\left(g_{i j}(z)\right)^{-1}$ and write $\left|g_{\xi}(z)\right|:=\operatorname{det}\left(g_{i j}(z)\right)$. Then, we have that

$$
\begin{align*}
g^{i j}(\varepsilon z) & =\delta_{i j}+\frac{\varepsilon^{2}}{2} \sum_{r, k=1}^{n} \frac{\partial^{2} g^{i j}}{\partial z_{r} \partial z_{k}}(0) z_{r} z_{k}+O\left(\varepsilon^{3}|z|^{3}\right)=\delta_{i j}+o(\varepsilon) \tag{2.6}\\
|g(\varepsilon z)|^{\frac{1}{2}} & =1-\frac{\varepsilon^{2}}{4} \sum_{i, r, k=1}^{n} \frac{\partial^{2} g^{i i}}{\partial z_{r} \partial z_{k}}(0) z_{r} z_{k}+O\left(\varepsilon^{3}|z|^{3}\right)=1+o(\varepsilon) \tag{2.7}
\end{align*}
$$

Here $\delta_{i j}$ denotes the Kronecker symbol.
For $p \in(2, \infty)$ and $\xi \in M$, set

$$
A(\xi):=\frac{a(\xi)}{c(\xi)}, \quad B(\xi):=\frac{b(\xi)}{c(\xi)}, \quad, \gamma(\xi):=\left(\frac{a(\xi)}{b(\xi)}\right)^{\frac{1}{p-2}}
$$

We consider the problem

$$
-c(\xi) \Delta V+a(\xi) V=b(\xi) V^{p-1}, \quad V \in H^{1}\left(\mathbb{R}^{2}\right)
$$

and denote by V^{ξ} its unique positive spherically symmetric solution. This problem is equivalent to

$$
-\Delta V+A(\xi) V=B(\xi) V^{p-1}, \quad V \in H^{1}\left(\mathbb{R}^{2}\right)
$$

The function V^{ξ} and its derivatives decay exponentially at infinity. V^{ξ} can be written as

$$
V^{\xi}(z)=\gamma(\xi) U(\sqrt{A(\xi)} z)
$$

where U is the unique positive spherically symmetric solution to

$$
-\Delta U+U=U^{p-1}, \quad U \in H^{1}\left(\mathbb{R}^{2}\right)
$$

For $\xi \in M$ and $\varepsilon>0$ we define $W_{\varepsilon, \xi} \in H_{g}^{1}(M)$ by

$$
W_{\varepsilon, \xi}(x):= \begin{cases}V^{\xi}\left(\frac{1}{\varepsilon} \exp _{\xi}^{-1}(x)\right) \chi\left(\exp _{\xi}^{-1}(x)\right) & \text { if } x \in B_{g}(\xi, r) \\ 0 & \text { otherwise }\end{cases}
$$

where $\chi \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right)$ is a radial cut-off function such that $\chi(z)=1$ if $|z| \leq r / 2$ and $\chi(z)=0$ if $|z| \geq r$. Setting $V_{\varepsilon}(z):=V\left(\frac{z}{\varepsilon}\right)$ and $y:=\exp _{\xi}^{-1} x$ we have that

$$
W_{\varepsilon, \xi}\left(\exp _{\xi}(y)\right)=V^{\xi}\left(\frac{y}{\varepsilon}\right) \chi(y)=V_{\varepsilon}^{\xi}(y) \chi(y),
$$

so the function $W_{\varepsilon, \xi}$ is simply the function V^{ξ} rescaled, cut off and read in normal coordinates at ξ in M.

Similarly, for $i=1,2$ we define

$$
Z_{\varepsilon, \xi}^{i}(x)= \begin{cases}\psi_{\xi}^{i}\left(\frac{1}{\varepsilon} \exp _{\xi}^{-1}(x)\right) \chi\left(\exp _{\xi}^{-1}(x)\right) & \text { if } x \in B_{g}(\xi, r) \\ 0 & \text { otherwise }\end{cases}
$$

where

$$
\psi_{\xi}^{i}(\eta)=\frac{\partial}{\partial \eta_{i}} V^{\xi}(\eta)=\gamma(\xi) \sqrt{A(\xi)} \frac{\partial U}{\partial \eta_{i}}(\sqrt{A(\xi)} \eta)
$$

The functions ψ_{ξ}^{i} are solutions of the linearized equation

$$
-\Delta \psi+A(\xi) \psi=(p-1) B(\xi)\left(V^{\xi}\right)^{p-2} \psi \quad \text { in } \mathbb{R}^{2}
$$

Proposition 2.3. There is a positive constant C such that

$$
\left\langle Z_{\varepsilon, \xi}^{h}, Z_{\varepsilon, \xi}^{k}\right\rangle_{\varepsilon}=C \delta_{h k}+o(1)
$$

as $\varepsilon \rightarrow 0$.
Proof. From the Taylor expansions of $g^{i j}(\varepsilon z),|g(\varepsilon z)|^{\frac{1}{2}}, a\left(\exp _{\xi}(\varepsilon z)\right)$ and $c\left(\exp _{\xi}(\varepsilon z)\right)$ we obtain

$$
\begin{aligned}
& \left\langle Z_{\varepsilon, \xi}^{h}, Z_{\varepsilon, \xi}^{k}\right\rangle_{\varepsilon}=\frac{1}{\varepsilon^{2}} \int_{M} \varepsilon^{2} c(x) \nabla_{g} Z_{\varepsilon, \xi}^{h}(x) \nabla_{g} Z_{\varepsilon, \xi}^{k}(x)+d(x) Z_{\varepsilon, \xi}^{h}(x) Z_{\varepsilon, \xi}^{k}(x) d \mu_{g} \\
& =\int_{B(0, r / \varepsilon)} \sum_{i j} c\left(\exp _{\xi}(\varepsilon z)\right) g_{\xi}^{i j}(\varepsilon z) \frac{\partial}{\partial z_{i}}\left(\psi_{\xi}^{h}(z) \chi(\varepsilon z)\right) \frac{\partial}{\partial z_{j}}\left(\psi_{\xi}^{h}(z) \chi(\varepsilon z)\right)\left|g_{\xi}(\varepsilon z)\right|^{\frac{1}{2}} d z \\
& \quad+\int_{B(0, r / \varepsilon)} d\left(\exp _{\xi}(\varepsilon z)\right) \psi_{\xi}^{h}(z) \psi_{\xi}^{h}(z) \chi^{2}(\varepsilon z)\left|g_{\xi}(\varepsilon z)\right|^{\frac{1}{2}} d z \\
& =c(\xi) \int_{\mathbb{R}^{2}} \nabla \psi_{\xi}^{h} \nabla \psi_{\xi}^{h} d z+d(\xi) \int_{\mathbb{R}^{2}} \psi_{\xi}^{h} \psi_{\xi}^{k} d z+o(1)=C \delta_{h k}+o(1)
\end{aligned}
$$

as claimed.
Next, we compute the derivatives of $W_{\varepsilon, \xi}$ with respect to ξ in normal coordinates. Fix $\xi_{0} \in M$. We write the points $\xi \in B_{g}\left(\xi_{0}, r\right)$ as

$$
\xi=\xi(y)=\exp _{\xi_{0}}(y) \quad \text { with } y \in B(0, r)
$$

We define

$$
\mathcal{E}(y, x)=\exp _{\xi(y)}^{-1}(x)=\exp _{\exp _{\xi_{0}}(y)}^{-1}(x)
$$

where $x \in B_{g}(\xi(y), r)$ and $y \in B(0, r)$. Then we can write

$$
\begin{aligned}
W_{\varepsilon, \xi(y)}(x) & =\gamma(\xi(y)) U_{\varepsilon}\left(\sqrt{A(\xi(y))} \exp _{\xi(y)}^{-1}(x)\right) \chi\left(\exp _{\xi(y)}^{-1}(x)\right) \\
& =\tilde{\gamma}(y) U_{\varepsilon}(\sqrt{\tilde{A}(y)} \mathcal{E}(y, x)) \chi(\mathcal{E}(y, x))
\end{aligned}
$$

where $\tilde{A}(y)=A\left(\exp _{\xi_{0}}(y)\right)$ and $\tilde{\gamma}(y)=\gamma\left(\exp _{\xi_{0}}(y)\right)$. Thus we have

$$
\begin{aligned}
\left.\frac{\partial}{\partial y_{s}} W_{\varepsilon, \xi(y)}\right|_{y=0} & =\left(\left.\frac{\partial}{\partial y_{s}} \tilde{\gamma}(y)\right|_{y=0}\right) U\left(\frac{1}{\varepsilon} \sqrt{\tilde{A}(0)} \mathcal{E}(0, x)\right) \chi(\mathcal{E}(0, x)) \\
& +\left.\tilde{\gamma}(0) U\left(\frac{1}{\varepsilon} \sqrt{\tilde{A}(0)} \mathcal{E}(0, x)\right) \frac{\partial}{\partial y_{s}} \chi\left(\mathcal{E}_{k}(y, x)\right)\right|_{y=0} \\
& +\left.\tilde{\gamma}(0) \chi(\mathcal{E}(0, x)) \frac{\partial}{\partial y_{s}} U\left(\frac{1}{\varepsilon} \sqrt{\tilde{A}(y)} \mathcal{E}(y, x)\right)\right|_{y=0}
\end{aligned}
$$

If $x=\exp _{\xi_{0}} \varepsilon z, \xi_{0}=\xi(0)$, then $\mathcal{E}(0, x)=\varepsilon z$ and we have

$$
\begin{align*}
\left.\frac{\partial}{\partial y_{s}} W_{\varepsilon, \xi(y)}\right|_{y=0} & =\left(\left.\frac{\partial}{\partial y_{s}} \tilde{\gamma}(y)\right|_{y=0}\right) U(\sqrt{\tilde{A}(0)} z) \chi(\varepsilon z) \\
& +\left.\tilde{\gamma}(0) U(\sqrt{\tilde{A}(0) z}) \frac{\partial \chi}{\partial \eta_{k}}(\varepsilon z) \frac{\partial}{\partial y_{s}} \mathcal{E}_{k}\left(y, \exp _{\xi_{0}} \varepsilon z\right)\right|_{y=0} \tag{2.8}\\
& +\left.\tilde{\gamma}(0) \chi(\varepsilon z) \frac{\sqrt{\tilde{A}(0)}}{\varepsilon} \frac{\partial U}{\partial \eta_{k}}(\sqrt{\tilde{A}(0)} z) \frac{\partial}{\partial y_{s}} \mathcal{E}_{k}\left(y, \exp _{\xi_{0}} \varepsilon z\right)\right|_{y=0}
\end{align*}
$$

We also recall the following Taylor expansions:

$$
\begin{equation*}
\frac{\partial}{\partial y_{h}} \mathcal{E}_{k}\left(0, \exp _{\xi_{0}} \varepsilon z\right)=-\delta_{h k}+O\left(\varepsilon^{2}|z|^{2}\right) \tag{2.9}
\end{equation*}
$$

2.3. Outline of the proof of Theorem 1.3, Let H_{ε} denote the Hilbert space $H_{g}^{1}(M)$ equipped with the inner product

$$
\langle u, v\rangle_{\varepsilon}:=\frac{1}{\varepsilon^{2}}\left(\varepsilon^{2} \int_{M} c(x) \nabla_{g} u \nabla_{g} v d \mu_{g}+\int_{M} d(x) u v d \mu_{g}\right)
$$

which induces the norm

$$
\|u\|_{\varepsilon}^{2}:=\frac{1}{\varepsilon^{2}}\left(\varepsilon^{2} \int_{M} c(x)\left|\nabla_{g} u\right|^{2} d \mu_{g}+\int_{M} d(x) u^{2} d \mu_{g}\right)
$$

with $d(x):=a(x)-\omega^{2} b(x)>0$. Similarly, let L_{ε}^{q} be the Banach space $L_{g}^{q}(M)$ with the norm

$$
|u|_{q, \varepsilon}:=\left(\frac{1}{\varepsilon^{2}} \int_{M}|u|^{q} d \mu_{g}\right)^{1 / q}
$$

Since we are assuming that $\operatorname{dim} M=2$, for each $q \geq 2$ the embedding $H_{\varepsilon} \hookrightarrow L_{\varepsilon}^{q}$ is continuous. In fact, there is a positive constant C, independent of ε, such that

$$
\begin{equation*}
|u|_{q, \varepsilon} \leq C\|u\|_{\varepsilon} \quad \forall u \in H_{\varepsilon} \tag{2.10}
\end{equation*}
$$

Moreover, this embedding is compact.
Fix $p \in(2, \infty)$. The adjoint operator $i_{\varepsilon}^{*}: L_{\varepsilon}^{p^{\prime}} \rightarrow H_{\varepsilon}, p^{\prime}:=\frac{p}{p-1}$, to the embedding $i_{\varepsilon}: H_{\varepsilon} \hookrightarrow L_{\varepsilon}^{p}$ is defined by

$$
\begin{aligned}
u=i_{\varepsilon}^{*}(v) & \Leftrightarrow\langle u, \varphi\rangle_{\varepsilon}=\frac{1}{\varepsilon^{2}} \int_{M} v \varphi \quad \forall \varphi \in H_{\varepsilon} \\
& \Leftrightarrow-\varepsilon^{2} \operatorname{div}_{g}\left(c(x) \nabla_{g} u\right)+d(x) u=v, \quad u \in H_{g}^{1}(M)
\end{aligned}
$$

One has that

$$
\begin{equation*}
\left\|i_{\varepsilon}^{*}(v)\right\|_{\varepsilon} \leq C|v|_{p^{\prime}, \varepsilon} \quad \forall v \in L_{\varepsilon}^{p^{\prime}} \tag{2.11}
\end{equation*}
$$

where the constant C does not depend on ε.
Using the adjoint operator we can rewrite problem (2.5) as

$$
\begin{equation*}
u=i_{\varepsilon}^{*}\left[b(x) f(u)+\omega^{2} b(x) g(u)\right], \quad u \in H_{\varepsilon} \tag{2.12}
\end{equation*}
$$

where

$$
f(u):=\left(u^{+}\right)^{p-1} \quad \text { and } \quad g(u):=\left(q^{2} \Psi^{2}(u)-2 q \Psi(u)\right) u
$$

Let

$$
K_{\varepsilon, \xi}:=\operatorname{Span}\left\{Z_{\varepsilon, \xi}^{1}, Z_{\varepsilon, \xi}^{2}\right\}
$$

and

$$
K_{\varepsilon, \xi}^{\perp}:=\left\{\phi \in H_{\varepsilon}:\left\langle\phi, Z_{\varepsilon, \xi}^{i}\right\rangle_{\varepsilon}=0, i=1,2\right\}
$$

We denote the projections onto these subspaces by

$$
\Pi_{\varepsilon, \xi}: H_{\varepsilon} \rightarrow K_{\varepsilon, \xi} \quad \text { and } \quad \Pi_{\varepsilon, \xi}^{\perp}: H_{\varepsilon} \rightarrow K_{\varepsilon, \xi}^{\perp}
$$

We look for a solution of (2.5) of the form

$$
u_{\varepsilon}:=W_{\varepsilon, \xi}+\phi \quad \text { with } \quad \phi \in K_{\varepsilon, \xi}^{\perp}
$$

This is equivalent to solving the pair of equations

$$
\begin{align*}
& \Pi_{\varepsilon, \xi}^{\perp}\left\{W_{\varepsilon, \xi}+\phi-i_{\varepsilon}^{*}\left[b(x) f\left(W_{\varepsilon, \xi}+\phi\right)+\omega^{2} b(x) g\left(W_{\varepsilon, \xi}+\phi\right)\right]\right\}=0 \tag{2.13}\\
& \Pi_{\varepsilon, \xi}\left\{W_{\varepsilon, \xi}+\phi-i_{\varepsilon}^{*}\left[b(x) f\left(W_{\varepsilon, \xi}+\phi\right)+\omega^{2} b(x) g\left(W_{\varepsilon, \xi}+\phi\right)\right]\right\}=0 \tag{2.14}
\end{align*}
$$

The first step of the proof of Theorem 1.3 is to solve equation (2.13). More precisely, for any fixed $\xi \in M$ and ε small enough, we will show that there is a function $\phi \in K_{\varepsilon, \xi}^{\perp}$ such that (2.13) holds. To do this we consider the linear operator $L_{\varepsilon, \xi}: K_{\varepsilon, \xi}^{\perp} \rightarrow K_{\varepsilon, \xi}^{\perp}$ given by

$$
L_{\varepsilon, \xi}(\phi):=\Pi_{\varepsilon, \xi}^{\perp}\left\{\phi-i_{\varepsilon}^{*}\left[b(x) f^{\prime}\left(W_{\varepsilon, \xi}\right) \phi\right]\right\}
$$

For the proof of the following statement we refer to Lemma 4.1 of [3] (see also Proposition 3.1 of [12]).

Proposition 2.4. There exist $\varepsilon_{0}>0$ and $C>0$ such that, for every $\varepsilon \in\left(0, \varepsilon_{0}\right)$, $\xi \in M$ and $\phi \in K_{\varepsilon, \xi}^{\perp}$,

$$
\left\|L_{\varepsilon, \xi}(\phi)\right\|_{\varepsilon} \geq C\|\phi\|_{\varepsilon}
$$

This result allows to use a contraction mapping argument to solve equation (2.13). The following statement is proved in section 3,

Proposition 2.5. There exist $\varepsilon_{0}>0$ and $C>0$ such that, for each $\xi \in M$ and each $\varepsilon \in\left(0, \varepsilon_{0}\right)$, there exists a unique $\phi_{\varepsilon, \xi} \in K_{\varepsilon, \xi}^{\perp}$ which solves equation (2.13). Moreover,

$$
\left\|\phi_{\varepsilon, \xi}\right\|_{\varepsilon} \leq C \varepsilon
$$

The map $\xi \mapsto \phi_{\varepsilon, \xi}$ is a \mathcal{C}^{1}-map.
The second step is to solve equation (2.14). More precisely, for ε small enough we will find a point ξ in M such that equation (2.14) is satisfied. To this end we introduce the reduced energy function $\widetilde{I}_{\varepsilon}: M \rightarrow \mathbb{R}$ defined by

$$
\widetilde{I}_{\varepsilon}(\xi):=I_{\varepsilon}\left(W_{\varepsilon, \xi}+\phi_{\varepsilon, \xi}\right),
$$

where I_{ε} is the variational functional defined in (2.4) whose critical points are the solutions to problem (2.5). It is easy to verify that ξ_{ε} is a critical point of $\widetilde{I}_{\varepsilon}$ if and only if the function $u_{\varepsilon}=W_{\varepsilon, \xi_{\varepsilon}}+\phi_{\varepsilon, \xi_{\varepsilon}}$ is a critical point of I_{ε}.

In Lemmas 4.1 and 4.2 we compute the asymptotic expansion of the reduced functional \tilde{I}_{ε} with respect to the parameter ε. We prove the following result.
Proposition 2.6. The expansion

$$
\tilde{I}_{\varepsilon}(\xi)=C \frac{c(\xi)^{\frac{n}{2}} a(\xi)^{\frac{p}{p-2}-\frac{n}{2}}}{b(\xi)^{\frac{2}{p-2}}}+o(1)=C \Gamma(\xi)+o(1)
$$

holds true \mathcal{C}^{1}-uniformly with respect to ξ as $\varepsilon \rightarrow 0$, where $C=\left(\frac{1}{2}-\frac{1}{p}\right) \int_{\mathbb{R}^{n}} U^{p} d z$.

Using the previous propositions we now prove Theorem 1.3 ,
Proof of Theorem 1.3. Since K is a \mathcal{C}^{1}-stable critical set for Γ, by Proposition 2.6 \tilde{I}_{ε} has a critical point $\xi_{\varepsilon} \in M$ such that $d_{g}\left(\xi_{\varepsilon}, K\right) \rightarrow 0$ as $\varepsilon \rightarrow 0$. Hence, $u_{\varepsilon}=W_{\varepsilon, \xi_{\varepsilon}}+\phi_{\varepsilon, \xi_{\varepsilon}}$ is a solution of (2.5), and the pair $\left(u_{\varepsilon}, \Psi\left(u_{\varepsilon}\right)\right)$ is a solution to the system (1.7) such that u_{ε} concentrates at a point $\xi_{0} \in K$ as $\varepsilon \rightarrow 0$.

3. The finite dimensional Reduction

This section is devoted to the proof of Proposition 2.5. We denote by

$$
\begin{equation*}
\|u\|_{g}^{2}:=\int_{M}\left(\left|\nabla_{g} u\right|^{2}+u^{2}\right) d \mu_{g} \quad \text { and } \quad|u|_{g, q}^{q}:=\int_{M}|u|^{q} d \mu_{g} \tag{3.1}
\end{equation*}
$$

the standard norms in the spaces $H_{g}^{1}(M)$ and $L^{q}(M)$.
Equation (2.13) is equivalent to

$$
\begin{equation*}
L_{\varepsilon, \xi}(\phi)=N_{\varepsilon, \xi}(\phi)+S_{\varepsilon, \xi}(\phi)+R_{\varepsilon, \xi} \tag{3.2}
\end{equation*}
$$

where

$$
\begin{gathered}
N_{\varepsilon, \xi}(\phi):=\Pi_{\varepsilon, \xi}^{\perp}\left\{i_{\varepsilon}^{*}\left[b(x)\left(f\left(W_{\varepsilon, \xi}+\phi\right)-f\left(W_{\varepsilon, \xi}\right)-f^{\prime}\left(W_{\varepsilon, \xi}\right)\right) \phi\right]\right\}, \\
S_{\varepsilon, \xi}(\phi):=\omega^{2} \Pi_{\varepsilon, \xi}^{\perp}\left\{i_{\varepsilon}^{*}\left[b(x)\left(q^{2} \Psi^{2}\left(W_{\varepsilon, \xi}+\phi\right)-2 q \Psi\left(W_{\varepsilon, \xi}+\phi\right)\right)\left(W_{\varepsilon, \xi}+\phi\right)\right]\right\}, \\
R_{\varepsilon, \xi}:=\Pi_{\varepsilon, \xi}^{\perp}\left\{i_{\varepsilon}^{*}\left[b(x) f\left(W_{\varepsilon, \xi}\right)\right]-W_{\varepsilon, \xi}\right\} .
\end{gathered}
$$

In order to solve equation (3.2) we will show that the operator $T_{\varepsilon, \xi}: K_{\varepsilon, \xi}^{\perp} \rightarrow K_{\varepsilon, \xi}^{\perp}$ defined by

$$
T_{\varepsilon, \xi}(\phi):=L_{\varepsilon, \xi}^{-1}\left(N_{\varepsilon, \xi}(\phi)+S_{\varepsilon, \xi}(\phi)+R_{\varepsilon, \xi}\right)
$$

has a fixed point. To this end we prove that $T_{\varepsilon, \xi}$ is a contraction mapping on suitable ball in H_{ε}. We start with an estimate for $R_{\varepsilon, \xi}$.
Lemma 3.1. There exist $\varepsilon_{0}>0$ and $C>0$ such that, for any $\xi \in M$ and any $\varepsilon \in\left(0, \varepsilon_{0}\right)$, the inequality

$$
\left\|R_{\varepsilon, \xi}\right\|_{\varepsilon} \leq C \varepsilon
$$

holds true.
Proof. See Lemma 4.2 in 3.
Next, we give an estimate for $N_{\varepsilon, \xi}(\phi)$.
Lemma 3.2. There exist $\varepsilon_{0}>0, C>0$ and $\widetilde{C} \in(0,1)$ such that, for any $\xi \in M$, $\varepsilon \in\left(0, \varepsilon_{0}\right)$ and $R>0$, the inequalities

$$
\begin{gather*}
\left\|N_{\varepsilon, \xi}(\phi)\right\|_{\varepsilon} \leq C\left(\|\phi\|_{\varepsilon}^{2}+\|\phi\|_{\varepsilon}^{p-1}\right) \tag{3.3}\\
\left\|N_{\varepsilon, \xi}\left(\phi_{1}\right)-N_{\varepsilon, \xi}\left(\phi_{2}\right)\right\|_{\varepsilon} \leq \widetilde{C}\left\|\phi_{1}-\phi_{2}\right\|_{\varepsilon} \tag{3.4}
\end{gather*}
$$

hold true for $\phi, \phi_{1}, \phi_{2} \in\left\{\phi \in H_{\varepsilon}:\|\phi\|_{\varepsilon} \leq R \varepsilon\right\}$.
Proof. By direct computation we obtain

$$
\left|f^{\prime}\left(W_{\varepsilon, \xi}+v\right)-f^{\prime}\left(W_{\varepsilon, \xi}\right)\right| \leq \begin{cases}C W_{\varepsilon, \xi}^{p-3}|v| & 2<p<3, \tag{3.5}\\ C\left(W_{\varepsilon, \xi}^{p-3}|v|+|v|^{p-2}\right) & p \geq 3 .\end{cases}
$$

From the mean value theorem and inequality (2.11) we derive

$$
\left\|N_{\varepsilon, \xi}\left(\phi_{1}\right)-N_{\varepsilon, \xi}\left(\phi_{2}\right)\right\|_{\varepsilon} \leq C\left|f^{\prime}\left(W_{\varepsilon, \xi}+\phi_{2}+t\left(\phi_{1}-\phi_{2}\right)\right)-f^{\prime}\left(W_{\varepsilon, \xi}\right)\right|_{\frac{p}{p-2}, \varepsilon}\left\|\phi_{1}-\phi_{2}\right\|_{\varepsilon}
$$

Using (3.5) we conclude that

$$
C\left|f^{\prime}\left(W_{\varepsilon, \xi}+\phi_{2}+t\left(\phi_{1}-\phi_{2}\right)\right)-f^{\prime}\left(W_{\varepsilon, \xi}\right)\right|_{\frac{p}{p-2}, \varepsilon}<1
$$

provided $\left\|\phi_{1}\right\|_{\varepsilon}$ and $\left\|\phi_{2}\right\|_{\varepsilon}$ are small enough. The same estimates yield (3.3).
Now we estimate $S_{\varepsilon, \xi}(\phi)$.
Lemma 3.3. There exists $\varepsilon_{0}>0$ and $C>0$ such that, for any $\xi \in M, \varepsilon \in\left(0, \varepsilon_{0}\right)$ and $R>0$, the inequalities

$$
\begin{gather*}
\left\|S_{\varepsilon, \xi}(\phi)\right\|_{\varepsilon} \leq C \varepsilon \tag{3.6}\\
\left\|S_{\varepsilon, \xi}\left(\phi_{1}\right)-S_{\varepsilon, \xi}\left(\phi_{2}\right)\right\|_{\varepsilon} \leq \ell_{\varepsilon}\left\|\phi_{1}-\phi_{2}\right\|_{\varepsilon} \tag{3.7}
\end{gather*}
$$

hold true for $\phi, \phi_{1}, \phi_{2} \in\left\{\phi \in H_{\varepsilon}:\|\phi\|_{\varepsilon} \leq R \varepsilon\right\}$, where $\ell_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$.
Proof. Let us prove (3.6). From the definition of i^{*} and inequality (2.11) we derive

$$
\begin{aligned}
\left\|S_{\varepsilon, \xi}(\phi)\right\|_{\varepsilon} & \leq C\left(\left|\Psi^{2}\left(W_{\varepsilon, \xi}+\phi\right)\left(W_{\varepsilon, \xi}+\phi\right)\right|_{p^{\prime}, \varepsilon}+\left|\Psi\left(W_{\varepsilon, \xi}+\phi\right)\left(W_{\varepsilon, \xi}+\phi\right)\right|_{p^{\prime}, \varepsilon}\right) \\
& =: I_{1}+I_{2}
\end{aligned}
$$

For any $t \in(2, \infty)$, setting $s:=\frac{t p^{\prime}}{t-p^{\prime}}$ and $\vartheta:=\frac{2}{t^{\prime}} \in(1,2)$ and applying Lemma 5.3 and Remark 5.2, we obtain

$$
\begin{aligned}
I_{2} & \leq C \frac{1}{\varepsilon^{2 / p^{\prime}}}\left(\int_{M}\left|\Psi\left(W_{\varepsilon, \xi}+\phi\right)\right|^{t} d \mu_{g}\right)^{\frac{1}{t}}\left(\int_{M}\left|W_{\varepsilon, \xi}+\phi\right|^{s} d \mu_{g}\right)^{\frac{1}{s}} \\
& \leq C \frac{1}{\varepsilon^{2 / p^{\prime}}}\left\|\Psi\left(W_{\varepsilon, \xi}+\phi\right)\right\|_{g}\left(\varepsilon^{\frac{2}{s}}\left(\frac{1}{\varepsilon^{2}} \int_{M}\left|W_{\varepsilon, \xi}\right|^{s} d \mu_{g}\right)^{\frac{1}{s}}+|\phi|_{g, s}\right) \\
& \leq C \frac{1}{\varepsilon^{2 / p^{\prime}}}\left(\varepsilon^{\vartheta}+\|\phi\|_{\varepsilon}^{2}\right)\left(\varepsilon^{\frac{2}{s}}+\|\phi\|_{\varepsilon}\right) \\
& \leq C\left(\varepsilon^{\vartheta+\frac{2}{s}-\frac{2}{p^{\prime}}}+\varepsilon^{\vartheta+1-\frac{2}{p^{\prime}}}\right)=C\left(\varepsilon^{\vartheta-\frac{2}{t}}+\varepsilon^{\vartheta+1-\frac{2}{p^{\prime}}}\right) \\
& \leq C \varepsilon
\end{aligned}
$$

for all $\|\phi\|_{\varepsilon} \leq R \varepsilon$. From this estimate we deduce that $I_{1} \leq C \varepsilon$ and, hence, (3.6) follows.

Next, we prove (3.7). From inequality (2.11) we obtain that

$$
\begin{aligned}
\left\|S_{\varepsilon, \xi}\left(\phi_{1}\right)-S_{\varepsilon, \xi}\left(\phi_{2}\right)\right\|_{\varepsilon} \leq & C\left|\left[\Psi\left(W_{\varepsilon, \xi}+\phi_{1}\right)-\Psi\left(W_{\varepsilon, \xi}+\phi_{2}\right)\right] W_{\varepsilon, \xi}\right|_{p^{\prime}, \varepsilon} \\
& +C\left|\left[\Psi^{2}\left(W_{\varepsilon, \xi}+\phi_{1}\right)-\Psi^{2}\left(W_{\varepsilon, \xi}+\phi_{2}\right)\right] W_{\varepsilon, \xi}\right|_{p^{\prime}, \varepsilon} \\
& +C\left|\Psi\left(W_{\varepsilon, \xi}+\phi_{1}\right) \phi_{1}-\Psi\left(W_{\varepsilon, \xi}+\phi_{2}\right) \phi_{2}\right|_{p^{\prime}, \varepsilon} \\
& +C\left|\Psi^{2}\left(W_{\varepsilon, \xi}+\phi_{1}\right) \phi_{1}-\Psi^{2}\left(W_{\varepsilon, \xi}+\phi_{2}\right) \phi_{2}\right|_{p^{\prime}, \varepsilon} \\
= & : I_{1}+I_{2}+I_{3}+I_{4}
\end{aligned}
$$

By Remark 5.2 and Lemma 5.4 with $s:=\frac{3}{2}$, for some $\theta \in(0,1)$ we have that

$$
\begin{aligned}
I_{1}^{p^{\prime}} & \leq \frac{C}{\varepsilon^{2}}\left(\int_{M}\left|\Psi^{\prime}\left(W_{\varepsilon, \xi}+\theta \phi_{1}+(1-\theta) \phi_{2}\right)\left(\phi_{1}-\phi_{2}\right)\right|^{p}\right)^{\frac{p^{\prime}}{p}}\left(\frac{1}{\varepsilon^{2}} \int_{M}\left|W_{\varepsilon, \xi}\right|^{\frac{p^{\prime} p}{p-p^{\prime}}}\right)^{\frac{p-p^{\prime}}{p}} \varepsilon^{\frac{2\left(p-p^{\prime}\right)}{p}} \\
& \leq C \frac{\varepsilon^{\frac{2\left(p-p^{\prime}\right)}{p}}}{\varepsilon^{2}}\left(\varepsilon^{\frac{4}{3}}+\left\|\phi_{1}\right\|_{g}+\left\|\phi_{2}\right\|_{g}\right)^{p^{\prime}}\left\|\phi_{1}-\phi_{2}\right\|_{g}^{p^{\prime}} \\
& \leq C l_{\varepsilon}\left\|\phi_{1}-\phi_{2}\right\|_{\varepsilon}^{p^{\prime}}
\end{aligned}
$$

for $\left\|\phi_{1}\right\|_{\varepsilon},\left\|\phi_{2}\right\|_{\varepsilon} \leq R \varepsilon$, with $l_{\varepsilon}:=\varepsilon^{\frac{p^{\prime}(p-2)}{p}} \rightarrow 0$ as $\varepsilon \rightarrow 0$. From the estimate of I_{1}, recalling that $0 \leq \Psi(u) \leq \frac{1}{q}$, we derive

$$
\begin{aligned}
I_{2}^{p^{\prime}} & =\frac{1}{\varepsilon^{2}} \int_{M}\left|\Psi\left(W_{\varepsilon, \xi}+\phi_{1}\right)+\Psi\left(W_{\varepsilon, \xi}+\phi_{2}\right)\right|^{p^{\prime}}\left|\Psi\left(W_{\varepsilon, \xi}+\phi_{1}\right)-\Psi\left(W_{\varepsilon, \xi}+\phi_{2}\right)\right|^{p^{\prime}}\left|W_{\varepsilon, \xi}\right|^{p^{\prime}} \\
& \leq C I_{1}^{p^{\prime}}
\end{aligned}
$$

On the other hand, choosing $\vartheta \in(1,2)$ in Lemma 5.3 such that $\vartheta p^{\prime}>2$ and applying Lemma 5.4 with $s:=\frac{3}{2}$, we obtain

$$
\begin{aligned}
I_{3}^{p^{\prime}} \leq & \frac{1}{\varepsilon^{2}} \int_{M}\left|\Psi^{\prime}\left(W_{\varepsilon, \xi}+\theta \phi_{1}+(1-\theta) \phi_{2}\right)\left(\phi_{1}-\phi_{2}\right)\right|^{p^{\prime}}\left|\phi_{1}\right|^{p^{\prime}} \\
& +\frac{1}{\varepsilon^{2}} \int_{M}\left|\Psi\left(W_{\varepsilon, \xi}+\phi_{2}\right)\right|^{p^{\prime}}\left|\phi_{1}-\phi_{2}\right|^{p^{\prime}} \\
\leq & C \frac{1}{\varepsilon^{2}}\left(\int_{M}\left|\Psi^{\prime}\left(W_{\varepsilon, \xi}+\theta \phi_{1}+(1-\theta) \phi_{2}\right)\left(\phi_{1}-\phi_{2}\right)\right|^{p}\right)^{\frac{p^{\prime}}{p}}\left(\int_{M}\left|\phi_{1}\right|^{\frac{p^{\prime} p}{p-p^{\prime}}}\right)^{\frac{p-p^{\prime}}{p}} \\
& +C \frac{1}{\varepsilon^{2}}\left(\int_{M}\left|\phi_{1}-\phi_{2}\right|^{p}\right)^{\frac{p^{\prime}}{p}}\left(\int_{M}\left|\Psi\left(W_{\varepsilon, \xi}+\phi_{2}\right)\right|^{\frac{p^{\prime} p}{p-p^{\prime}}}\right)^{\frac{p-p^{\prime}}{p}} \\
\leq C & \frac{1}{\varepsilon^{2}}\left(\varepsilon^{\frac{4}{3}}+\left\|\phi_{1}\right\|_{g}+\left\|\phi_{2}\right\|_{g}\right)^{p^{\prime}}\left\|\phi_{1}-\phi_{2}\right\|_{g}^{p^{\prime}}\left\|\phi_{1}\right\|_{g}^{p^{\prime}} \\
& +C \frac{\varepsilon^{\vartheta p^{\prime}}}{\varepsilon^{2}}\left(1+\left\|\phi_{2}\right\|_{\varepsilon}^{2}\right)\left\|\phi_{1}-\phi_{2}\right\|_{g}^{p^{\prime}} \\
\leq & C\left(\frac{\varepsilon^{2 p^{\prime}}}{\varepsilon^{2}}+\frac{\varepsilon^{\vartheta p^{\prime}}}{\varepsilon^{2}}\right)\left\|\phi_{1}-\phi_{2}\right\|_{\varepsilon}^{p^{\prime}}=l_{\varepsilon}\left\|\phi_{1}-\phi_{2}\right\|_{\varepsilon}^{p^{\prime}}
\end{aligned}
$$

for $\left\|\phi_{1}\right\|_{\varepsilon},\left\|\phi_{2}\right\|_{\varepsilon} \leq R \varepsilon$, where $l_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$.
Finally, from the estimate of I_{2} we derive $I_{4}^{p^{\prime}} \leq C I_{3}^{p^{\prime}}$ Collecting the previous estimates we obtain (3.7).

Proof of Proposition 2.5. From Proposition 2.4 we deduce

$$
\left\|T_{\varepsilon, \xi}(\phi)\right\|_{\varepsilon} \leq C\left(\left\|N_{\varepsilon, \xi}(\phi)\right\|_{\varepsilon}+\left\|S_{\varepsilon, \xi}(\phi)\right\|_{\varepsilon}+\left\|R_{\varepsilon, \xi}\right\|_{\varepsilon}\right)
$$

and

$$
\left\|T_{\varepsilon, \xi}\left(\phi_{1}\right)-T_{\varepsilon, \xi}\left(\phi_{2}\right)\right\|_{\varepsilon} \leq C\left\|N_{\varepsilon, \xi}\left(\phi_{1}\right)-N_{\varepsilon, \xi}\left(\phi_{2}\right)\right\|_{\varepsilon}+C\left\|S_{\varepsilon, \xi}\left(\phi_{1}\right)-S_{\varepsilon, \xi}\left(\phi_{2}\right)\right\|_{\varepsilon} .
$$

Lemmas 3.1, 3.2 and 3.3 imply that $T_{\varepsilon, \xi}$ is a contraction in the ball centered at 0 of radius $R \varepsilon$ in $K_{\varepsilon, \xi}^{\perp}$, for a suitable constant R. Hence, $T_{\varepsilon, \xi}$ has a unique fixed point.

In order to prove that the map $\xi \mapsto \phi_{\varepsilon, \xi}$ is \mathcal{C}^{1} we apply the implicit function theorem to the \mathcal{C}^{1}-function $G: M \times H_{\varepsilon} \rightarrow H_{\varepsilon}$ defined by

$$
\begin{aligned}
G(\xi, u):= & \Pi_{\varepsilon, \xi}^{\perp}\left\{W_{\varepsilon, \xi}+\Pi_{\varepsilon, \xi}^{\perp} u-i_{\varepsilon}^{*}\left[b(x) f\left(W_{\varepsilon, \xi}+\Pi_{\varepsilon, \xi}^{\perp} u\right)+\omega^{2} b(x) g\left(W_{\varepsilon, \xi}+\Pi_{\varepsilon, \xi}^{\perp} u\right)\right]\right\} \\
& +\Pi_{\varepsilon, \xi} u .
\end{aligned}
$$

Note that $G\left(\xi, \phi_{\varepsilon, \xi}\right)=0$. Next we show that the linearized operator $\frac{\partial G}{\partial u}\left(\xi, \phi_{\varepsilon, \xi}\right)$: $H_{\varepsilon} \rightarrow H_{\varepsilon}$ defined by

$$
\begin{aligned}
& \frac{\partial G}{\partial u}\left(\xi, \phi_{\varepsilon, \xi}\right)(u) \\
& =\Pi_{\varepsilon, \xi}^{\perp}\left\{\Pi_{\varepsilon, \xi}^{\perp}(u)-i_{\varepsilon}^{*}\left[b(x) f^{\prime}\left(W_{\varepsilon, \xi}+\phi_{\varepsilon, \xi}\right) \Pi_{\varepsilon, \xi}^{\perp}(u)+\omega^{2} b(x) g^{\prime}\left(W_{\varepsilon, \xi}+\phi_{\varepsilon, \xi}\right) \Pi_{\varepsilon, \xi}^{\perp}(u)\right]\right\} \\
& \quad+\Pi_{\varepsilon, \xi}(u)
\end{aligned}
$$

is invertible, provided ε is small enough. For any ϕ with $\|\phi\|_{\varepsilon} \leq C \varepsilon$ we have that

$$
\begin{aligned}
& \left\|\frac{\partial G}{\partial u}\left(\xi, \phi_{\varepsilon, \xi}\right)(u)\right\|_{\varepsilon} \geq C\left\|\Pi_{\varepsilon, \xi}(u)\right\|_{\varepsilon} \\
& \quad+C\left\|\Pi_{\varepsilon, \xi}^{\perp}\left\{\Pi_{\varepsilon, \xi}^{\perp}(u)-i_{\varepsilon}^{*}\left[f^{\prime}\left(W_{\varepsilon, \xi}+\phi_{\varepsilon, \xi}\right) \Pi_{\varepsilon, \xi}^{\perp}(u)+\omega^{2} g^{\prime}\left(W_{\varepsilon, \xi}+\phi_{\varepsilon, \xi}\right) \Pi_{\varepsilon, \xi}^{\perp}(u)\right]\right\}\right\|_{\varepsilon} \\
& \geq C\left\|\Pi_{\varepsilon, \xi}(u)\right\|_{\varepsilon}+C\left\|L_{\varepsilon, \xi}\left(\Pi_{\varepsilon, \xi}^{\perp}(u)\right)\right\|_{\varepsilon} \\
& \quad-C\left\|\Pi_{\varepsilon, \xi}^{\perp}\left\{i_{\varepsilon}^{*}\left[\left(f^{\prime}\left(W_{\varepsilon, \xi}+\phi_{\varepsilon, \xi}\right)-f^{\prime}\left(W_{\varepsilon, \xi}\right)\right) \Pi_{\varepsilon, \xi}^{\perp}(u)\right]\right\}\right\|_{\varepsilon} \\
& \quad-C\left\|\Pi_{\varepsilon, \xi}^{\perp}\left\{i_{\varepsilon}^{*}\left[\omega^{2} g^{\prime}\left(W_{\varepsilon, \xi}+\phi_{\varepsilon, \xi}\right) \Pi_{\varepsilon, \xi}^{\perp}(u)\right]\right\}\right\|_{\varepsilon} \\
& \geq C\left\|\Pi_{\varepsilon, \xi}(u)\right\|_{\varepsilon}+C\left\|\Pi_{\varepsilon, \xi}^{\perp}(u)\right\|_{\varepsilon}-o(1)\left\|\Pi_{\varepsilon, \xi}^{\perp}(u)\right\|_{\varepsilon} \\
& \geq C
\end{aligned} \quad\|u\|_{\varepsilon} .
$$

Indeed, by (3.5) we have

$$
\begin{aligned}
\left\|\Pi_{\varepsilon, \xi}^{\perp}\left\{i_{\varepsilon}^{*}\left[\left(f^{\prime}\left(W_{\varepsilon, \xi}+\phi_{\varepsilon, \xi}\right)-f^{\prime}\left(W_{\varepsilon, \xi}\right)\right) \Pi_{\varepsilon, \xi}^{\perp}(u)\right]\right\}\right\|_{\varepsilon} & \leq C\left(\|\phi\|_{\varepsilon}^{p-2}+\|\phi\|_{\varepsilon}\right)\left\|\Pi_{\varepsilon, \xi}^{\perp}(u)\right\|_{\varepsilon} \\
& =o(1)\left\|\Pi_{\varepsilon, \xi}^{\perp}(u)\right\|_{\varepsilon}
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& \left\|\Pi_{\varepsilon, \xi}^{\perp}\left\{i_{\varepsilon}^{*}\left[\omega^{2} g^{\prime}\left(W_{\varepsilon, \xi}+\phi_{\varepsilon, \xi}\right) \Pi_{\varepsilon, \xi}^{\perp}(u)\right]\right\}\right\|_{\varepsilon} \\
& \leq C\left|\left(W_{\varepsilon, \xi}+\phi_{\varepsilon, \xi}\right)\left(2 q-2 q^{2} \Psi\left(W_{\varepsilon, \xi}+\phi_{\varepsilon, \xi}\right)\right) \Psi^{\prime}\left(W_{\varepsilon, \xi}+\phi_{\varepsilon, \xi}\right)\left[\Pi_{\varepsilon, \xi}^{\perp}(u)\right]\right|_{p^{\prime}, \varepsilon} \\
& \quad+C\left|\left[2 q \Psi\left(W_{\varepsilon, \xi}+\phi_{\varepsilon, \xi}\right)-q^{2} \Psi^{2}\left(W_{\varepsilon, \xi}+\phi_{\varepsilon, \xi}\right)\right] \Pi_{\varepsilon, \xi}^{\perp}(u)\right|_{p^{\prime}, \varepsilon} \\
& :=I_{1}+I_{2} .
\end{aligned}
$$

From Lemma 5.4 we derive

$$
\begin{aligned}
I_{1} & \leq \frac{C}{\varepsilon^{\frac{2}{p^{\prime}}}}\left|W_{\varepsilon, \xi}+\phi_{\varepsilon, \xi}\right|_{g, 2}\left|\Psi^{\prime}\left(W_{\varepsilon, \xi}+\phi_{\varepsilon, \xi}\right) \Pi_{\varepsilon, \xi}^{\perp}(u)\right|_{g, \frac{4 p^{\prime}}{2-p^{\prime}}}\left|2 q-2 q^{2} \Psi\left(W_{\varepsilon, \xi}+\phi_{\varepsilon, \xi}\right)\right|_{g, \frac{4 p^{\prime}}{2-p^{\prime}}} \\
& \leq C \frac{1}{\varepsilon^{\frac{2}{p^{\prime}}}} \varepsilon\left(\varepsilon^{\frac{4}{3}}+\varepsilon\right)\left\|\Pi_{\varepsilon, \xi}^{\perp} u\right\|_{g} \leq \varepsilon^{2-\frac{2}{p^{\prime}}}\left\|\Pi_{\varepsilon, \xi}^{\perp} u\right\|_{g}=o(1)\left\|\Pi_{\varepsilon, \xi}^{\perp} u\right\|_{g},
\end{aligned}
$$

and, since $0 \leq \Psi(u) \leq 1 / q$, from Lemma 5.3 with $\vartheta p^{\prime}>2$ we get

$$
\begin{aligned}
I_{2} & \leq \frac{C}{\varepsilon^{\frac{2}{p^{\prime}}}}\left|\Pi_{\varepsilon, \xi}^{\perp} u\right|_{g, p}\left|\Psi\left(W_{\varepsilon, \xi}+\phi_{\varepsilon, \xi}\right)\right|_{g, \frac{p^{\prime} p}{p-p^{\prime}}} \\
& \leq C \frac{\varepsilon^{\vartheta}}{\varepsilon^{\frac{2}{p^{\prime}}}}\left(1+\left\|\phi_{\varepsilon, \xi}\right\|_{\varepsilon}^{2}\right)\left\|\Pi_{\varepsilon, \xi}^{\perp} u\right\|_{g}=o(1)\left\|\Pi_{\varepsilon, \xi}^{\perp} u\right\|_{g}
\end{aligned}
$$

This concludes the proof.

4. The reduced energy

This section is devoted to the proof of Proposition 2.6 .
Lemma 4.1. The following estimate

$$
\begin{align*}
\widetilde{I}_{\varepsilon}(\xi) & =I_{\varepsilon}\left(W_{\varepsilon, \xi}+\phi_{\varepsilon, \xi}\right) \tag{4.1}\\
& =I_{\varepsilon}\left(W_{\varepsilon, \xi}\right)+o(1)=J_{\varepsilon}\left(W_{\varepsilon, \xi}\right)+\frac{\omega^{2}}{2} G_{\varepsilon}\left(W_{\varepsilon, \xi}\right)+o(1)
\end{align*}
$$

holds true \mathcal{C}^{0}-uniformly with respect to ξ as ε goes to zero. Moreover, setting $\xi(y):=$ $\exp _{\xi}(y), y \in B(0, r)$, we have that

$$
\begin{aligned}
\left(\frac{\partial}{\partial y_{h}} \widetilde{I}_{\varepsilon}(\xi(y))\right)_{\left.\right|_{y=0}} & =\left(\frac{\partial}{\partial y_{h}} I_{\varepsilon}\left(W_{\varepsilon, \xi(y)}+\phi_{\varepsilon, \xi(y)}\right)\right)_{\left.\right|_{y=0}} \\
& =\left(\frac{\partial}{\partial y_{h}} I_{\varepsilon}\left(W_{\varepsilon, \xi(y)}\right)\right)_{\left.\right|_{y=0}}+o(1) \\
& =\left(\frac{\partial}{\partial y_{h}} J_{\varepsilon}\left(W_{\varepsilon, \xi(y)}\right)\right)_{\left.\right|_{y=0}}+\frac{\omega^{2}}{2}\left(\frac{\partial}{\partial y_{h}} G_{\varepsilon}\left(W_{\varepsilon, \xi(y)}\right)\right)_{\left.\right|_{y=0}}+o(1),
\end{aligned}
$$

\mathcal{C}^{0}-uniformly with respect to ξ as ε goes to zero.
Proof. In Lemma 5.1 of [3] we have proved the following two estimates:

$$
\begin{gathered}
J_{\varepsilon}\left(W_{\varepsilon, \xi(y)}+\phi_{\varepsilon, \xi(y)}\right)-J_{\varepsilon}\left(W_{\varepsilon, \xi(y)}\right)=o(1) \\
\left(J_{\varepsilon}^{\prime}\left(W_{\varepsilon, \xi(y)}+\phi_{\varepsilon, \xi(y)}\right)-J_{\varepsilon}^{\prime}\left(W_{\varepsilon, \xi(y)}\right)\right)\left[\left(\frac{\partial}{\partial y_{h}} W_{\varepsilon, \xi(y)}\right)_{\left.\right|_{y=0}}\right]=o(1) .
\end{gathered}
$$

To complete the proof we shall prove the the following three estimates:

$$
\begin{gather*}
G_{\varepsilon}\left(W_{\varepsilon, \xi}+\phi_{\varepsilon, \xi}\right)-G_{\varepsilon}\left(W_{\varepsilon, \xi}\right)=o(1) \tag{4.2}\\
{\left[G_{\varepsilon}^{\prime}\left(W_{\varepsilon, \xi_{0}}+\phi_{\varepsilon, \xi_{0}}\right)-G_{\varepsilon}^{\prime}\left(W_{\varepsilon, \xi_{0}}\right)\right]\left[\left(\frac{\partial}{\partial y_{h}} W_{\varepsilon, \xi(y)}\right)_{\left.\right|_{y=0}}\right]=o(1)} \tag{4.3}\\
\left(J_{\varepsilon}^{\prime}\left(W_{\varepsilon, \xi(y)}+\phi_{\varepsilon, \xi(y)}\right)+\frac{\omega^{2}}{2} G_{\varepsilon}^{\prime}\left(W_{\varepsilon, \xi(y)}+\phi_{\varepsilon, \xi(y)}\right)\right)\left[\frac{\partial}{\partial y_{h}} \phi_{\varepsilon, \xi(y)}\right]=o(1) . \tag{4.4}
\end{gather*}
$$

We start with (4.2). For some $\theta \in[0,1]$ we have

$$
\begin{aligned}
& G_{\varepsilon}\left(W_{\varepsilon, \xi}+\phi_{\varepsilon, \xi}\right)-G_{\varepsilon}\left(W_{\varepsilon, \xi}\right) \\
& =\frac{1}{\varepsilon^{2}} \int_{M} b(x)\left[\Psi\left(W_{\varepsilon, \xi}+\phi_{\varepsilon, \xi}\right)\left(W_{\varepsilon, \xi}+\phi_{\varepsilon, \xi}\right)^{2}-\Psi\left(W_{\varepsilon, \xi}\right)\left(W_{\varepsilon, \xi}\right)^{2}\right] \\
& =\frac{1}{\varepsilon^{2}} \int_{M} b(x) \Psi^{\prime}\left(W_{\varepsilon, \xi}+\theta \phi_{\varepsilon, \xi}\right)\left[\phi_{\varepsilon, \xi}\right]\left(W_{\varepsilon, \xi}\right)^{2} \\
& \quad+\frac{1}{\varepsilon^{2}} \int_{M} b(x) \Psi\left(W_{\varepsilon, \xi}+\phi_{\varepsilon, \xi}\right)\left[2 \phi_{\varepsilon, \xi} W_{\varepsilon, \xi}+\phi_{\varepsilon, \xi}^{2}\right]
\end{aligned}
$$

Since $\left\|\phi_{\varepsilon, \xi}\right\|_{\varepsilon} \leq C \varepsilon$, from Lemma 5.4 we obtain (4.2).

Next, we prove (4.3). For some $\theta \in[0,1]$ we have

$$
\begin{aligned}
& {\left[G_{\varepsilon}^{\prime}\left(W_{\varepsilon, \xi_{0}}+\phi_{\varepsilon, \xi_{0}}\right)-G_{\varepsilon}^{\prime}\left(W_{\left.\varepsilon, \xi_{0}\right)}\right)\left[\left(\frac{\partial}{\partial y_{h}} W_{\varepsilon, \xi(y)}\right)_{\left.\right|_{y=0}}\right]\right.} \\
& \leq \left.\frac{q}{2 \varepsilon^{2}} \right\rvert\, \int_{M} b(x)\left\{\left[2 \Psi\left(W_{\varepsilon, \xi_{0}}+\phi_{\varepsilon, \xi_{0}}\right)-\Psi\left(W_{\varepsilon, \xi_{0}}\right)\right]-\left[q \Psi^{2}\left(W_{\varepsilon, \xi_{0}}+\phi_{\varepsilon, \xi_{0}}\right)-q \Psi^{2}\left(W_{\varepsilon, \xi_{0}}\right)\right]\right\} \\
& \left.\cdot W_{\varepsilon, \xi_{0}}\left(\frac{\partial}{\partial y_{h}} W_{\varepsilon, \xi(y)}\right)_{\left.\right|_{y=0}} \right\rvert\, \\
&+\left\lvert\, \frac{q}{2 \varepsilon^{2}} \int_{M} 2 b(x)\left[\left.\Psi\left(W_{\varepsilon, \xi_{0}}+\phi_{\varepsilon, \xi_{0}}\right)-q \Psi^{2}\left(W_{\varepsilon, \xi_{0}}+\phi_{\left.\varepsilon, \xi_{0}\right)}\right] \phi_{\varepsilon, \xi_{0}}\left(\frac{\partial}{\partial y_{h}} W_{\varepsilon, \xi(y)}\right)_{\left.\right|_{y=0}} \right\rvert\,\right.\right. \\
& \leq\left|\frac{q}{2 \varepsilon^{2}} \int_{M} 2 b(x) \Psi^{\prime}\left(W_{\varepsilon, \xi_{0}}+\theta \phi_{\varepsilon, \xi_{0}}\right)\left(\phi_{\varepsilon, \xi_{0}}\right) W_{\varepsilon, \xi_{0}}\left(\frac{\partial}{\partial y_{h}} W_{\varepsilon, \xi(y)}\right)_{\mid y=0}\right| \\
&+\left|\frac{q}{\varepsilon^{2}} \int_{M} b(x) \Psi\left(W_{\varepsilon, \xi_{0}}+\theta \phi_{\varepsilon, \xi_{0}}\right) \Psi^{\prime}\left(W_{\varepsilon, \xi_{0}}+\theta \phi_{\left.\varepsilon, \xi_{0}\right)}\right)\left(\phi_{\varepsilon, \xi_{0}}\right) W_{\varepsilon, \xi_{0}}\left(\frac{\partial}{\partial y_{h}} W_{\varepsilon, \xi(y)}\right)_{\left.\right|_{y=0}}\right| \\
&\left.+\left\lvert\, \frac{q}{\varepsilon^{2}} \int_{M} b(x) \Psi\left(W_{\varepsilon, \xi_{0}}\right) \phi_{\varepsilon, \xi_{0}}\left(\frac{\partial}{\partial y_{h}} W_{\varepsilon, \xi(y)}\right)\right.\right)_{\left.\right|_{y=0}} \mid \\
&+\left|\frac{q}{\varepsilon^{2}} \int_{M} b(x) \Psi^{\prime}\left(W_{\varepsilon, \xi_{0}}+\theta \phi_{\varepsilon, \xi_{0}}\right)\left(\phi_{\varepsilon, \xi_{0}}\right) \phi_{\varepsilon, \xi_{0}}\left(\frac{\partial}{\partial y_{h}} W_{\varepsilon, \xi(y)}\right)_{\left.\right|_{y=0}}\right| \\
&+\left|\frac{q}{2 \varepsilon^{2}} \int_{M} b(x) \Psi^{2}\left(W_{\varepsilon, \xi_{0}}+\phi_{\varepsilon, \xi_{0}}\right)\left(\phi_{\varepsilon, \xi_{0}}\right)\left(\frac{\partial}{\partial y_{h}} W_{\varepsilon, \xi(y)}\right)_{\left.\right|_{y=0}}\right| \\
&:= I_{1}+I_{2}+I_{3}+I_{4}+I_{5}
\end{aligned}
$$

From Lemma 5.4, Remark 5.2 and equations (2.8), (2.9), (2.6), (2.7), recalling that $\left\|\phi_{\varepsilon, \xi(y)}\right\|_{\varepsilon} \leq C \varepsilon$, we get

$$
\begin{aligned}
I_{1} & \leq C \frac{\varepsilon^{\frac{4}{3}}}{\varepsilon^{2}}\left(\int_{M}\left[\Psi^{\prime}\left(W_{\varepsilon, \xi_{0}}+\phi_{\varepsilon, \xi_{0}}\right)\left(\phi_{\varepsilon, \xi_{0}}\right)\right]^{3}\right)^{\frac{1}{3}}\left(\frac{1}{\varepsilon^{2}} \int_{M} W_{\varepsilon, \xi_{0}}^{3}\right)^{\frac{1}{3}}\left(\frac{1}{\varepsilon^{2}} \int_{M}\left[\left(\frac{\partial}{\partial y_{h}} W_{\varepsilon, \xi(y)}\right)_{\left.\right|_{y=0}}\right]^{3}\right)^{\frac{1}{3}} \\
& \leq C \varepsilon^{\frac{4}{3}}\left(\int_{\mathbb{R}^{2}}\left[\sum_{k=1}^{2}\left|\frac{1}{\varepsilon} \frac{\partial U}{\partial z_{k}}(z) \chi(\varepsilon z)+\left(\chi(\varepsilon z)+\frac{\partial \chi}{\partial z_{k}}(\varepsilon z)\right) U(z)\right|\right]^{3} d z\right)^{\frac{1}{3}} \\
& \leq C \varepsilon^{\frac{4}{3}} \frac{1}{\varepsilon}=O\left(\varepsilon^{\frac{1}{3}}\right)
\end{aligned}
$$

In a similar way, using Lemma 5.4 and embedding the first and the second term in L^{6} and the third one in $L^{3 / 2}$, we get

$$
I_{4} \leq C \frac{1}{\varepsilon^{2}}\left[\varepsilon^{4 / 3}\left\|\phi_{\varepsilon, \xi}\right\|_{\varepsilon}+\left\|\phi_{\varepsilon, \xi}\right\|_{\varepsilon}^{2}\right]\left\|\phi_{\varepsilon, \xi}\right\|_{\varepsilon} \varepsilon^{\frac{4}{3}-1}=O\left(\varepsilon^{\frac{4}{3}}\right)
$$

For I_{3} by Lemma 5.3 we have

$$
\begin{aligned}
I_{3} & \leq C \frac{\varepsilon^{\frac{4}{3}}}{\varepsilon^{2}}\left(\int_{M}\left[\Psi\left(W_{\varepsilon, \xi_{0}}\right)\right]^{3}\right)^{\frac{1}{3}}\left(\frac{1}{\varepsilon^{2}} \int_{M} \phi_{\varepsilon, \xi_{0}}^{3}\right)^{\frac{1}{3}}\left(\frac{1}{\varepsilon^{2}} \int_{M}\left[\left(\frac{\partial}{\partial y_{h}} W_{\varepsilon, \xi(y)}\right)_{\left.\right|_{y=0}}\right]^{3}\right)^{\frac{1}{3}} \\
& \leq C \frac{\varepsilon^{\frac{4}{3}}}{\varepsilon^{2}}\left\|\Psi\left(W_{\varepsilon, \xi_{0}}\right)\right\|_{g}\left\|\phi_{\varepsilon, \xi_{0}}\right\|_{\varepsilon}\left(\int_{\mathbb{R}^{2}}\left[\sum_{k=1}^{2}\left|\frac{1}{\varepsilon} \frac{\partial U}{\partial z_{k}}(z) \chi(\varepsilon z)+\left(\chi(\varepsilon z)+\frac{\partial \chi}{\partial z_{k}}(\varepsilon z)\right) U(z)\right|\right]^{3} d z\right)^{\frac{1}{3}} \\
& \leq C \frac{\varepsilon^{\frac{4}{3}}}{\varepsilon^{2}} \varepsilon^{\frac{5}{3}} \varepsilon \frac{1}{\varepsilon}=O(\varepsilon)
\end{aligned}
$$

and, from the estimate for I_{3}, since $0<\Psi\left(W_{\varepsilon, \xi_{0}}+\phi_{\varepsilon, \xi_{0}}\right)<1 / q$, we obtain

$$
I_{5} \leq C I_{3}=O(\varepsilon)
$$

Finally, we prove (4.4). Following the proof of Lemma 5.1 in (3), we need only to prove that

$$
\left|G_{\varepsilon}^{\prime}\left(W_{\varepsilon, \xi(y)}+\phi_{\varepsilon, \xi(y)}\right)\left[Z_{\varepsilon, \xi(y)}^{l}\right]\right|=o(1)
$$

that is

$$
\left|\frac{1}{\varepsilon^{2}} \int_{M}\left[\Psi\left(W_{\varepsilon, \xi(y)}+\phi_{\varepsilon, \xi(y)}\right)-q \Psi^{2}\left(W_{\varepsilon, \xi(y)}+\phi_{\varepsilon, \xi(y)}\right)\right]\left(W_{\varepsilon, \xi(y)}+\phi_{\varepsilon, \xi(y)}\right) Z_{\varepsilon, \xi(y)}^{l}\right|=o(1)
$$

We have

$$
\begin{aligned}
& \left|\frac{1}{\varepsilon^{2}} \int_{M}\left[\Psi\left(W_{\varepsilon, \xi(y)}+\phi_{\varepsilon, \xi(y)}\right)-q \Psi^{2}\left(W_{\varepsilon, \xi(y)}+\phi_{\varepsilon, \xi(y)}\right)\right]\left(W_{\varepsilon, \xi(y)}+\phi_{\varepsilon, \xi(y)}\right) Z_{\varepsilon, \xi(y)}^{l}\right| \\
& \leq \frac{C}{\varepsilon^{2}} \int_{M}\left|\Psi\left(W_{\varepsilon, \xi(y)}+\phi_{\varepsilon, \xi(y)}\right)\left(W_{\varepsilon, \xi(y)}+\phi_{\varepsilon, \xi(y)}\right) Z_{\varepsilon, \xi(y)}^{l}\right| \\
& \quad+\frac{C}{\varepsilon^{2}} \int_{M}\left|\Psi^{2}\left(W_{\varepsilon, \xi(y)}+\phi_{\varepsilon, \xi(y)}\right)\left(W_{\varepsilon, \xi(y)}+\phi_{\varepsilon, \xi(y)}\right) Z_{\varepsilon, \xi(y)}^{l}\right|:=I_{1}+I_{2}
\end{aligned}
$$

By Proposition 2.3, we have that $\left\|Z_{\varepsilon, \xi(y)}^{l}\right\|_{\varepsilon}=O(1)$. So, by Lemma 5.3 and Remark 5.2. we have

$$
\begin{aligned}
I_{1} & \leq C \frac{\varepsilon^{\frac{4}{3}}}{\varepsilon^{2}}\left(\int_{M}\left[\Psi\left(W_{\varepsilon, \xi_{0}}+\phi_{\varepsilon, \xi_{0}}\right)\right]^{3}\right)^{\frac{1}{3}}\left(\frac{1}{\varepsilon^{2}} \int_{M}\left(W_{\varepsilon, \xi_{0}}+\phi_{\varepsilon, \xi_{0}}\right)^{3}\right)^{\frac{1}{3}}\left(\frac{1}{\varepsilon^{2}} \int_{M}\left|Z_{\varepsilon, \xi(y)}^{l}\right|^{3}\right)^{\frac{1}{3}} \\
& \leq C \frac{\varepsilon^{\frac{4}{3}}}{\varepsilon^{2}}\left\|\Psi\left(W_{\varepsilon, \xi_{0}}+\phi_{\varepsilon, \xi_{0}}\right)\right\|_{g}\left(\left\|W_{\varepsilon, \xi_{0}}\right\|_{3, \varepsilon}+\left\|\phi_{\varepsilon, \xi_{0}}\right\|_{\varepsilon}\right)\left\|Z_{\varepsilon, \xi(y)}^{l}\right\|_{\varepsilon}=O(\varepsilon)
\end{aligned}
$$

Again, as $0<\Psi\left(W_{\varepsilon, \xi_{0}}+\phi_{\varepsilon, \xi_{0}}\right)<1 / q$, we obtain

$$
I_{2} \leq C I_{1}=O(\varepsilon)
$$

This concludes the proof.
Lemma 4.2. The expansion

$$
I_{\varepsilon}\left(W_{\varepsilon, \xi}\right)=\left(\frac{1}{2}-\frac{1}{p}\right) \frac{c(\xi)^{\frac{n}{2}} a(\xi)^{\frac{p}{p-2}-\frac{n}{2}}}{b(\xi)^{\frac{2}{p-2}}} \int_{\mathbb{R}^{n}} U^{p} d z+o(1)
$$

holds true \mathcal{C}^{1}-uniformly with respect to $\xi \in M$.

Proof. In Lemma 5.2 of [3] we proved that

$$
J_{\varepsilon}\left(W_{\varepsilon, \xi}\right)=\left(\frac{1}{2}-\frac{1}{p}\right) \frac{c(\xi)^{\frac{n}{2}} a(\xi)^{\frac{p}{p-2}-\frac{n}{2}}}{b(\xi)^{\frac{2}{p-2}}} \int_{\mathbb{R}^{n}} U^{p} d z+O(\varepsilon)
$$

Hence, it suffices to show now that $\left|G_{\varepsilon}\left(W_{\varepsilon, \xi}\right)\right|=o(1), \mathcal{C}^{1}$-uniformly with respect to $\xi \in M$.

Regarding the \mathcal{C}^{0}-convergence, by Remark 5.2 and Lemma 5.3, we have that

$$
\begin{aligned}
\left|G_{\varepsilon}\left(W_{\varepsilon, \xi}\right)\right| & \leq \frac{C}{\varepsilon^{2}} \int_{M} \Psi\left(W_{\varepsilon, \xi}\right) W_{\varepsilon, \xi}^{2} d \mu_{g} \\
& \leq C \frac{\varepsilon}{\varepsilon^{2}}\left(\int_{M} \Psi\left(W_{\varepsilon, \xi}\right)^{2}\right)^{\frac{1}{2}}\left(\frac{1}{\varepsilon^{2}} \int_{M} W_{\varepsilon, \xi}^{4}\right)^{\frac{1}{2}} \\
& \leq C \frac{1}{\varepsilon}\left\|\Psi\left(W_{\varepsilon, \xi}\right)\right\|_{g} \leq \frac{\varepsilon^{\frac{5}{3}}}{\varepsilon}=O\left(\varepsilon^{\frac{2}{3}}\right)
\end{aligned}
$$

Regarding the \mathcal{C}^{1}-convergence observe that

$$
\begin{aligned}
\left.\left|\frac{\partial}{\partial y_{h}} G_{\varepsilon}\left(W_{\varepsilon, \xi}\right)\right|_{y=0} \right\rvert\, \leq & \left.\left|\frac{C}{\varepsilon^{2}} \frac{\partial}{\partial y_{h}} \int_{M} \Psi\left(W_{\varepsilon, \xi(y)}\right) W_{\varepsilon, \xi(y)}^{2}\right|_{y=0} d \mu_{g} \right\rvert\, \\
\leq & \left.\left|\frac{C}{\varepsilon^{2}} \int_{M} \Psi\left(W_{\varepsilon, \xi(y)}\right) 2 W_{\varepsilon, \xi(y)}\left(\frac{\partial}{\partial y_{h}} W_{\varepsilon, \xi(y)}\right)\right|_{y=0} d \mu_{g} \right\rvert\, \\
& +\left|\frac{C}{\varepsilon^{2}} \int_{M} W_{\varepsilon, \xi(y)}^{2} \Psi^{\prime}\left(W_{\varepsilon, \xi(y)}\right)\left[\left.\frac{\partial}{\partial y_{h}} W_{\varepsilon, \xi(y)}\right|_{y=0}\right] d \mu_{g}\right| \\
:= & I_{1}+I_{2} .
\end{aligned}
$$

Now, from Remark 5.2, Lemma 5.3, and the estimates (2.8) and (2.9), we derive

$$
\begin{aligned}
I_{1} & \leq C \frac{\varepsilon^{\frac{8}{5}}}{\varepsilon^{2}}\left(\int_{M} \Psi\left(W_{\varepsilon, \xi(y)}\right)^{5}\right)^{\frac{1}{5}}\left(\frac{1}{\varepsilon^{2}} \int_{M} W_{\varepsilon, \xi(y)}^{\frac{5}{2}}\right)^{\frac{2}{5}}\left(\frac{1}{\varepsilon^{2}} \int_{M}\left(\left.\left(\frac{\partial}{\partial y_{h}} W_{\varepsilon, \xi(y)}\right)\right|_{y=0}\right)^{\frac{5}{2}}\right)^{\frac{2}{5}} \\
& \leq C \frac{\varepsilon^{\frac{8}{5}}}{\varepsilon^{2}} \varepsilon^{\frac{8}{5}} \frac{1}{\varepsilon}=o(1)
\end{aligned}
$$

On the other hand, from Remark 5.2 the proof of Lemma 5.4 and the estimates (2.8) and (2.9), for some $t \in(1,3 / 2)$ we obtain

$$
\begin{aligned}
I_{2} & \leq C \frac{\varepsilon^{\frac{2}{t}}}{\varepsilon^{2}}\left(\frac{1}{\varepsilon^{2}} \int_{M} W_{\varepsilon, \xi(h)}^{2 t}\right)^{\frac{1}{t}}\left(\int_{M}\left(\Psi^{\prime}\left(W_{\varepsilon, \xi(y)}\right)\left[\left.\frac{\partial}{\partial y_{h}} W_{\varepsilon, \xi(h)}\right|_{y=0}\right]\right)^{t^{\prime}}\right)^{\frac{1}{t^{\prime}}} \\
& \leq C \frac{\varepsilon^{\frac{2}{t}}}{\varepsilon^{2}}\left\|\Psi^{\prime}\left(W_{\varepsilon, \xi(y)}\right)\left[\left.\frac{\partial}{\partial y_{h}} W_{\varepsilon, \xi(h)}\right|_{y=0}\right]\right\|_{g} \\
& \leq\left. C \frac{\varepsilon^{\frac{2}{t}}}{\varepsilon^{2}} \varepsilon^{\frac{4}{3}}\left|\frac{\partial}{\partial y_{h}} W_{\varepsilon, \xi(h)}\right|_{y=0}\right|_{g, 6} \\
& \leq C \frac{\varepsilon^{\frac{2}{t}}}{\varepsilon^{2}} \varepsilon^{\frac{4}{3}} \varepsilon^{\frac{1}{3}}\left(\frac{1}{\varepsilon^{2}} \int_{M}\left(\left.\frac{\partial}{\partial y_{h}} W_{\varepsilon, \xi(h)}\right|_{y=0}\right)^{6}\right)^{\frac{1}{6}} \\
& \leq C \frac{\varepsilon^{\frac{2}{t}}}{\varepsilon^{2}} \varepsilon^{\frac{4}{3}} \varepsilon^{\frac{1}{3}} \frac{1}{\varepsilon}=C \varepsilon^{\frac{2}{t}-\frac{4}{3}}=o(1) .
\end{aligned}
$$

This concludes the proof.

5. Some estimates involving Ψ

We start by pointing out the following facts.
Remark 5.1. There exists a constant $C>0$ such that, for every $\varphi \in H_{g}^{1}(M)$ and every $0<\varepsilon<1$, we have

$$
\begin{aligned}
C\|\varphi\|_{g}^{2} & =C \int_{M}\left(\left|\nabla_{g} \varphi\right|^{2}+\varphi^{2}\right) d \mu_{g} \\
& \leq \int_{M}\left(c(x)\left|\nabla_{g} \varphi\right|^{2}+\frac{d(x)}{\varepsilon^{2}} \varphi^{2}\right) d \mu_{g}=\|\varphi\|_{\varepsilon}^{2}
\end{aligned}
$$

Remark 5.2. The following estimates

$$
\begin{gathered}
\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{2}}\left|W_{\varepsilon, \xi}\right|_{g, p}^{p} \leq C|U|_{p}^{p}, \quad p \geq 2 \\
\lim _{\varepsilon \rightarrow 0}\left|\nabla_{g} W_{\varepsilon, \xi}\right|_{g, 2}^{2} \leq C|\nabla U|_{2}^{2}
\end{gathered}
$$

hold true uniformly with respect to $\xi \in M$.
Abusing notation we write

$$
\|u\|_{g}^{2}=\int_{M}\left(c(x)\left|\nabla_{g} \varphi\right|^{2}+b(x) u^{2}\right) d \mu_{g}
$$

This norm is equivalent to the standard norm (3.1) of $H_{g}^{1}(M)$. From equations (2.1), (2.2) and (2.3) we obtain

$$
\begin{align*}
\|\Psi(u)\|_{g}^{2} & =\int_{M} b(x) q u^{2} \Psi(u) d \mu_{g}-\int_{M} b(x) q^{2} u^{2}(\Psi(u))^{2} d \mu_{g} \tag{5.1}\\
& \leq C \int_{M} u^{2} \Psi(u) d \mu_{g}
\end{align*}
$$

$$
\begin{align*}
\left\|\Psi^{\prime}(u)[h]\right\|_{g}^{2}= & \int_{M} 2 b(x) q u(1-q \Psi(u)) h \Psi^{\prime}(u)[h] d \mu_{g} \tag{5.2}\\
& -\int_{M} b(x) q^{2} u^{2}\left(\Psi^{\prime}(u)[h]\right)^{2} d \mu_{g} \\
\leq & C \int_{M}|u||h|\left|\Psi^{\prime}(u)[h]\right| d \mu_{g},
\end{align*}
$$

for all $u, h \in H_{g}^{1}(M)$.
Lemma 5.3. Given $\vartheta \in(1,2)$ there is a constant $C>0$ such that the inequality

$$
\left\|\Psi\left(W_{\varepsilon, \xi}+\varphi\right)\right\|_{g} \leq C\left(\varepsilon^{\vartheta}+\|\varphi\|_{g}^{2}\right)
$$

holds true for every $\varphi \in H_{g}^{1}(M), \xi \in M$ and small enough $\varepsilon>0$.
Proof. Let $t \in(2, \infty)$ be such that $\frac{2}{t^{\prime}}=\vartheta$ where t^{\prime} is the exponent conjugate to t. From inequality (5.1) we obtain

$$
\begin{aligned}
\left\|\Psi\left(W_{\varepsilon, \xi}+\varphi\right)\right\|_{g}^{2} & \leq C\left(\int_{M}\left[\Psi\left(W_{\varepsilon, \xi}+\varphi\right)\right]^{t} d \mu_{g}\right)^{1 / t}\left(\int_{M}\left(W_{\varepsilon, \xi}+\varphi\right)^{2 t^{\prime}}\right)^{1 / t^{\prime}} \\
& \leq C\left\|\Psi\left(W_{\varepsilon, \xi}+\varphi\right)\right\|_{g}\left|W_{\varepsilon, \xi}+\varphi\right|_{g, 2 t^{\prime}}^{2}
\end{aligned}
$$

Thus, by Remark 5.2

$$
\begin{aligned}
\left\|\Psi\left(W_{\varepsilon, \xi}+\varphi\right)\right\|_{g} & \leq C\left(\varepsilon^{2 / t^{\prime}}\left(\frac{1}{\varepsilon^{2}} \int_{M} W_{\varepsilon, \xi}^{2 t^{\prime}}\right)^{1 / t^{\prime}}+\left(\int_{M} \varphi^{2 t^{\prime}}\right)^{1 / t^{\prime}}\right) \\
& \leq C\left(\varepsilon^{\vartheta}+\|\varphi\|_{g}^{2}\right)
\end{aligned}
$$

as claimed.
Lemma 5.4. Given $s \in(1,2)$ there is a constant $C>0$ such that the inequality

$$
\left\|\Psi^{\prime}\left(W_{\varepsilon, \xi}+k\right)[h]\right\|_{g} \leq C\|h\|_{g}\left(\varepsilon^{\frac{2}{s}}+\|k\|_{g}\right)
$$

holds true for every $k, h \in H_{g}^{1}(M), \xi \in M$ and small enough $\varepsilon>0$.
Proof. From inequality (5.2) we obtain,

$$
\begin{aligned}
\left\|\Psi^{\prime}\left(W_{\varepsilon, \xi}+k\right)[h]\right\|_{g}^{2} & \leq C \int_{M}\left|W_{\varepsilon, \xi}+k\right||h|\left|\Psi^{\prime}\left(W_{\varepsilon, \xi}+k\right)[h]\right| d \mu_{g} \\
& \leq C\left(\int_{M}\left|W_{\varepsilon, \xi}\right||h|\left|\Psi^{\prime}\left(W_{\varepsilon, \xi}+k\right)[h]\right| d \mu_{g}+\int_{M}|k||h|\left|\Psi^{\prime}\left(W_{\varepsilon, \xi}+k\right)[h]\right| d \mu_{g}\right) \\
& =: I_{1}+I_{2} .
\end{aligned}
$$

Set $t:=2 s^{\prime} \in(4, \infty)$, where s^{\prime} is the conjugate exponent to s. Using Remark 5.2 we conclude that

$$
\begin{aligned}
I_{1} & \leq C\left|\Psi^{\prime}\left(W_{\varepsilon, \xi}+k\right)[h]\right|_{g, t}|h|_{g, t}\left|W_{\varepsilon, \xi}\right|_{g, s} \\
& =C\left\|\Psi^{\prime}\left(W_{\varepsilon, \xi}+k\right)[h]\right\|_{g}\|h\|_{g} \varepsilon^{\frac{2}{s}}\left(\frac{1}{\varepsilon^{2}} \int_{M} W_{\varepsilon, \xi}^{s}\right)^{1 / s} \\
& =C\left\|\Psi^{\prime}\left(W_{\varepsilon, \xi}+k\right)[h]\right\|_{g}\|h\|_{g} \varepsilon^{\frac{2}{s}}
\end{aligned}
$$

Since

$$
I_{2} \leq C\left|\Psi^{\prime}\left(W_{\varepsilon, \xi}+k\right)[h]\right|_{g, 3}|h|_{g, 3}|k|_{g, 3} \leq C\left\|\Psi^{\prime}\left(W_{\varepsilon, \xi}+k\right)[h]\right\|_{g}\|h\|_{g}\|k\|_{g}
$$

the claim follows.
Lemma 5.5. Consider the functions

$$
\tilde{v}_{\varepsilon, \xi}(z):= \begin{cases}\Psi\left(W_{\varepsilon, \xi}\right)\left(\exp _{\xi}(\varepsilon z)\right) & \text { for } z \in B(0, r / \varepsilon) \\ 0 & \text { for } z \in \mathbb{R}^{2} \backslash B(0, r / \varepsilon)\end{cases}
$$

Then, for any $\vartheta \in(1,2)$, there exists a constant $C>0$, independent of ε, ξ, such that

$$
\begin{aligned}
\left|\tilde{v}_{\varepsilon, \xi}(z)\right|_{L^{2}\left(\mathbb{R}^{3}\right)} & \leq C \varepsilon^{\vartheta-1} \\
\left|\nabla \tilde{v}_{\varepsilon, \xi}(z)\right|_{L^{2}\left(\mathbb{R}^{3}\right)} & \leq C \varepsilon^{\vartheta}
\end{aligned}
$$

Proof. After a change of variables we have that

$$
\begin{aligned}
& \int_{B_{g}(\xi, r)}\left|\nabla \Psi\left(W_{\varepsilon, \xi}\right)\right|^{2}+\left|\Psi\left(W_{\varepsilon, \xi}\right)\right|^{2} d \mu_{g} \\
&= \varepsilon^{2} \int_{B(0, r / \varepsilon)}\left|g_{\xi}(\varepsilon z)\right|^{1 / 2}\left(\sum_{i j} g_{\xi}^{i j}(\varepsilon z) \frac{1}{\varepsilon^{2}} \frac{\partial \tilde{v}_{\varepsilon, \xi}(z)}{\partial z_{i}} \frac{\partial \tilde{v}_{\varepsilon, \xi}(z)}{\partial z_{i}}+\tilde{v}_{\varepsilon, \xi}^{2}(z)\right) d z
\end{aligned}
$$

Thus

$$
\left\|\Psi\left(W_{\varepsilon, \xi}\right)\right\|_{g}^{2} \geq C\left(\left|\nabla \tilde{v}_{\varepsilon, \xi}\right|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}+\varepsilon^{2}\left|\tilde{v}_{\varepsilon, \xi}\right|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}\right)
$$

This, combined with Lemma 5.3, gives

$$
\left|\nabla \tilde{v}_{\varepsilon, \xi}\right|_{L^{2}\left(\mathbb{R}^{3}\right)}+\varepsilon\left|\tilde{v}_{\varepsilon, \xi}\right|_{L^{2}\left(\mathbb{R}^{3}\right)} \leq C \varepsilon^{\vartheta}
$$

as claimed.

References

[1] P. Baird and J.C. Wood. Harmonic morphisms between Riemannian manifolds. London Mathematical Society Monographs. New Series 29. The Clarendon Press, Oxford University Press, Oxford, 2003.
[2] V. Benci and D. Fortunato. Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations. Rev. Math. Phys. 14 (2002), 409-420.
[3] M. Clapp, M. Ghimenti, and A.M. Micheletti. Solutions to a singularly perturbed supercritical elliptic equation on a Riemannian manifold concentrating at a submanifold. Preprint 2013.
[4] T. D'Aprile and J. Wei. Layered solutions for a semilinear elliptic system in a ball. J. Differential Equations 226 (2006), 269-294.
[5] T. D'Aprile and J. Wei. Clustered solutions around harmonic centers to a coupled elliptic system. Ann. Inst. H. Poincaré Anal. Non Linéaire 226 (2007), 605-628.
[6] F. Dobarro and E. Lami Dozo. Scalar curvature and warped products of Riemann manifolds. Trans. Amer. Math. Soc. 303 (1987), 161-168.
[7] O. Druet and E. Hebey. Existence and a priori bounds for electrostatic Klein-Gordon-Maxwell systems in fully inhomogeneous spaces. Commun. Contemp. Math. 12 (2010), 831-869.
[8] M. Ghimenti and A.M. Micheletti. Number and profile of low energy solutions for singularly perturbed Klein-Gordon-Maxwell systems on a riemannian manifold. arXiv preprint http://arxiv.org/abs/1303.649 in press.
[9] M. Ghimenti, A.M. Micheletti, and A. Pistoia. The role of the scalar curvature in some singularly perturbed coupled elliptic systems on Riemannian manifolds. Discr. Cont. Dyn. Syst. in press.
[10] E. Hebey and T.T. Truong. Static Klein-Gordon-Maxwell-Proca systems in 4-dimensional closed manifolds. J. Reine Angew. Math. 667 (2012), 221-248.
[11] E. Hebey and J. Wei. Resonant states for the static Klein-Gordon-Maxwell-Proca system. Math. Res. Lett. 19 (2012). 953-967.
[12] A.M. Micheletti and A. Pistoia. The role of the scalar curvature in a nonlinear elliptic problem on Riemannian manifolds. Calc. Var. Partial Differential Equations 34 (2009), 233-265.
[13] B. Ruf and P.N. Srikanth. Singularly perturbed elliptic equations with solutions concentrating on a 1-dimensional orbit. J. Eur. Math. Soc. (JEMS) 12 (2010), 413-427.
[14] B. Ruf and P.N. Srikanth, Concentration on Hopf fibres for singularly perturbed elliptic equations. Preprint 2013.
[15] D. Ruiz. Semiclassical states for coupled Schrödinger-Maxwell equations: Concentration around a sphere. Math. Models Methods Appl. Sci. 15 (2005), 141-164.

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior CU, 04510 México DF, Mexico

E-mail address: monica.clapp@im.unam.mx
Dipartimento di Matematica Applicata, Università di Pisa, Via Buonarroti 1/c 56127, Pisa, Italy

E-mail address: marco.ghimenti@dma.unipi.it
Dipartimento di Matematica Applicata, Università di Pisa, Via Buonarroti 1/c 56127, Pisa, Italy

E-mail address: a.micheletti@dma.unipi.it

[^0]: Date: January 22, 2014.
 Key words and phrases. Static Klein-Gordon-Maxwell-Proca system, semiclassical states, Riemannian manifold, supercritical nonlinearity, warped product, harmonic morphism, LyapunovSchmidt reduction.

 Research supported by CONACYT grant 129847 and UNAM-DGAPA-PAPIIT grant IN106612 (Mexico), and MIUR projects PRIN2009: "Variational and Topological Methods in the Study of Nonlinear Phenomena" and "Critical Point Theory and Perturbative Methods for Nonlinear Differential Equations". (Italy).

